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Pricing Weather Derivatives

Weather derivatives are contingent securities that promise payment to the holder based on

the difference between an underlying weather index – accumulated snowfall, rainfall, or

“degree days” over a specified period – and an agreed strike value.   Because weather1

represents a common source of volume risk for agribusinesses of all types, weather

derivatives are a potentially valuable tool for risk management.  Compared to insurance

contracts, there are many benefits to using weather derivatives to manage risk.  First, in

order to claim a loss under an insurance contract, a grower must prove that a loss

occurred on his or her own farm, or county in the case of area-based insurance products.  

Adjusting crop losses is expensive to administer and contains an element of subjectivity

that growers seldom appreciate.  Second, insurance in general is intended to cover the

damage caused by infrequent, high-loss events rather than relatively high-probability,

limited-loss events.  Third, crop insurance products that are based on individual-firm

losses are subject to moral hazard problems, so an alternative tool that pays out based on

some objective measure of the weather itself may be a preferable alternative (Yoo;

Turvey; Cao and Wei).  2

In spite of these advantages, and the increasing interest in weather risk

management more generally (Weather Risk Management Association), the volume of

trade in weather derivatives has been growing relatively slowly (Dischel).  Several factors

contribute to this lack of liquidity, including (1) the absence of a forward market in a

relevant weather index, (2) potential basis risk, (3) problems defining meaningful weather

data, and (4) the lack of agreement over a common pricing model (Dischel; Nelken;
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Turvey).  Although the Chicago Mercantile Exchange (CME) began trading degree-day

futures and options for a number of major U.S. cities in the fall of 1999, the fact that

weather is a local phenomenon and micro-climates often differ radically within small

geographic areas means that the CME products are of little use to most agricultural

producers, or of limited use to many.  Second, basis risk is likely to be a significant

problem for firms that wish to hedge using derivatives based on weather indices.  Basis

risk, in this case, refers to the difference between a weather index value defined for a

particular location, a large city for example, and the actual value of the same weather

index that applies to a specific firm.  Third, without a traded instrument to form part of a3

riskless hedge, conventional preference-free Black-Scholes (BS) pricing models cannot

be used and derivatives must be priced so as to reflect the market price of risk.  Although

economic research can do little to remedy the first two problems, the third can be

addressed by designing an appropriate equilibrium pricing model and demonstrating how

it can be applied to a specific type of weather derivative.

The objective of this article, therefore, is to develop an appropriate pricing model

for valuing weather derivatives that is sufficiently practical to be  useful to agricultural

risk managers, yet sufficiently general to be of use to a broad scope of non-agribusiness

firms with weather-related risks.  By calculating equilibrium prices for cooling-degree-

day (CDD) put and call options in a representative production region, the study

demonstrates how weather derivatives can be priced.  Further, estimates of the

temperature - yield relationship for a typical crop show how derivatives can be used by a

firm involved in producing and trading an example commodity to effectively manage

weather risk.   The article begins by briefly explaining how weather derivatives work. 
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The second section describes the data used, while the third section presents an

equilibrium pricing model based on the general equilibrium approach of Lucas.  The

fourth section defines the stochastic processes governing weather and aggregate economic

output and how the pricing model applies to a particular agricultural region.  The prices

implied by this model, as well as estimates of the market price of risk and an assessment

of the potential hedging effectiveness of weather derivatives are presented and discussed

in a fifth section.  A final section concludes and offers some suggestions for both future

research and product development. 

Background on Weather Derivatives

Weather derivatives exist as either futures, options or swaps and are traded either on

formal exchanges (futures and options on the CME) or over-the-counter (options and

swaps).  Derivatives can be written for any one of a number of weather phenomena,

including accumulations of CDD or HDD, a particular sequence of events, such as three

consecutive days below 32 degrees Fahrenheit, or cumulative precipitation over a

specified period of time.  Because temperature derivatives are the most common, this

study focuses on options written on either a CDD or HDD index.  There are five essential

elements to every weather contract: (1) the underlying weather index, (2) the period over

which the index accumulates, typically a season or month, (3) the weather station that

reports daily maximum and minimum temperatures, (4) the dollar value attached to each

move of the index value, and (5) the reference or “strike” value of the underlying index

(Cao and Wei).  Using a CDD call as an example, the option will acquire value when the

cumulative CDD index rises above an agreed strike level.  At the agreed expiry date, the
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holder receives a payment if the CDD index rises above the strike level.  The amount of

the payment is equal to the CDD index less the strike level multiplied by some notional

dollar value per unit of the index. 

Ideally, the buyer of the derivative is thus compensated by the writer for an

amount that offsets the real business losses from adverse weather.  For example, an

amusement park owner would buy a CDD put that pays out if there is a string of

unusually cold days.  The value accumulated with the long put position will help offset

the lost revenue from customers who have stayed away during the cool weather period. 

If, on the other hand, the intervening period was unusually hot so that the CDD index

rises well above the strike level, then the put expires worthless.  The amusement park

owner is out the premium paid at the initiation of the contract to the writer of the put, but

has likely met desired risk management goals because increased business revenue likely

more than compensates for the price of this “insurance policy.”  A farmer’s interest in

weather derivatives is analogous to the amusement park owner example.  A fruit grower,

for example, would likely buy a CDD call so that he or she is compensated if sustained,

unusually hot weather during the critical growing period reduces yield. 

Weather Data 

Data Description and Sources

The weather data are from the U.S. National Climatic Data Center (NCDC) for a weather

station located in Fresno, CA.  Estimates of the temperature data process are obtained

using 30 years of daily average temperatures.  Although there are many more years of

data from the NCDC, the sample used in this study consists of 30 years in order to gain as
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(1)

much estimation efficiency as possible while minimizing the “heat island” effect that

arises in arid and semi-arid areas with the creation of heat-retaining buildings, roads and

artificial parks (Dischel).  The weather data consist of daily maximum, minimum, and

average temperature as well as daily precipitation for the entire year.  Therefore, the

weather process itself is estimated using all daily observations in the data set, but the

particular CDD index used in the pricing model below describes only the May through

July window.   Specifically, the CDD index is defined as the cumulative sum of the extent

to which daily average temperatures exceed a 65 degree Fahrenheit benchmark:

twhere w  is the average daily temperature on day t measured in degrees Fahrenheit. 

Although the temperature series is not directly applicable to any particular grower,

primarily because it is gathered at the Fresno Air Terminal, the proximity of many

growers to Fresno and the relative topographical homogeneity of the surrounding area

should lessen the basis risk for growers farther from the weather station. 

Pricing weather derivatives using the general equilibrium framework described

below requires an “aggregate dividend,” or a measure of aggregate economic activity.  In

order to minimize basis risk while ensuring that the derivative is relevant to all potential

traders in Central California, personal consumption expenditures for Fresno County are

chosen for this purpose.  These data are from the Bureau of Economic Analysis and are

measured in nominal dollars, on an annual basis over the 1970 - 2000 sample period. 

Further, to determine the effectiveness of weather derivatives in hedging growers’
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yield risk, it is necessary to estimate the relationship between the CDD index defined

above and crop yields.  For this purpose, annual county-average yields for an important

and representative crop in Fresno County, nectarines, were obtained from the California

Department of Food and Agriculture (CDFA) as reported by the Fresno County

Agricultural Commissioner’s office for the period 1980 - 2001.  County-level yield data

necessarily induces some aggregation bias, but avoids idiosyncratic yield variations that

would arise with farm-level, panel data on crop yields.  Table 1 provides summary

statistics and basic tests of normality for the average daily temperature data from 1970 -

2000. 

Empirical Model of Weather and Weather Derivatives

Alternative Stochastic Processes 

When pricing any derivative security, the accuracy of the pricing model depends critically

upon the nature of the process for the underlying security or, in this case, the underlying

state variable – temperature.  In daily data, temperature varies in a way that is relatively

well understood (Cao and Wei; Nelken; Turvey; Alaton, Djehiche and Stillberger; West;

Yoo).  The average daily temperature varies by season, but tends to revert to a long-run

average that is likely moving slowly upward with the accumulation of carbon dioxide in

the atmosphere.  Further, changes in temperature from day to day are not entirely random

as weather systems tend to lead to “warm spells” or “cold snaps.”  Temperature also tends

to be more volatile in winter than in summer (Cao and Wei 2002), while rapid changes in

temperature are more the rule than the exception.  The most general statistical model of

the stochastic process for temperature leads to a mean-reverting Brownian motion with
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(2)

(3)

log-normal jumps and time-varying volatility: 

wwhere w is the average daily temperature in degrees Fahrenheit, "  is the instantaneous

wmean of the process, 6 is the rate of mean-reversion, h  is the standard deviation, and dz

defines the Wiener process with properties: E(dz) = 0 and E(dz ) = dt.   Discrete jumps in2 4

temperature occur according to a Poisson process q with average arrival rate 8 and a

random percentage shock, N, which is distributed log-normal with: ln (1 + N) ~ N(( -

0.5* , * ) where *  is the variance of the jump component.  The Poisson counter q is2 2 2

distributed as: 

Accounting for discrete jumps in the weather series this way is relatively common in the

literature on stock price fluctuation (Merton; Ball and Torous 1983, 1985; Jarrow and

Rosenfeld; Jorion; Bates 1991), exchange rates (Jorion; Naik and Lee; Bates 1996) and

commodity prices (Hilliard and Reiss), but is also appropriate for temperature as the killer

frost in California in December of 1998 demonstrated. 

To accommodate seasonal fluctuations in both the level and volatility of

temperature, the mean and variance of (2) are specified as functions of temperature and

time.  Seasonality, autoregression and trend are removed from the raw temperature series

by defining its unconditional mean in a manner similar to Alaton, Djehiche, and

Stillberger; Yoo, and West:
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(4)

(5)

where the optimal lag is found to be  p = 3 by the Schwarz criterion.  Time-varying

volatility, on the other hand, is incorporated by specifying the conditional volatility as a

first-order autoregressive conditional heteroscedastic (ARCH) process:

the parameters of which are estimated by substituting (5) into the general process (2) and

estimating the entire process by maximum likelihood.  With an ARCH specification,

shocks can exhibit some memory through volatility, but they are also likely to persist

through the mean of the series.  Combining each of these elements, the set of alternative

processes to be estimated includes: (1) simple Brownian motion (BM), (2) mean reverting

Brownian motion (MRBM), (3) mean reverting Brownian motion with log-normal jumps

(MRBM-J) and (4) mean reverting Brownian motion with log-normal jumps and ARCH.  

The preferred model is selected from among these nested alternatives using a set of paired

likelihood ratio tests. 

Pricing Model for Weather Derivatives

Originally, practitioners used simple “burn rate” (BR) models or modified existing BS

based pricing models to the weather problem by defining the underlying security in terms

of the CME CDD or HDD contracts defined for a specific urban location.   BR models5

have one key advantage that explains their popularity among practitioners – ease of use. 
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However, because there is no way to update the probabilities of adverse weather events,

derivatives priced using BR models will trade infrequently, if at all (Dischel; Turvey;

Pirrong and Jermakayan; Zeng).  No-arbitrage models are also inappropriate because

weather is not a traded asset, but rather a state variable, so traders cannot form the riskless

hedge on which such models are based.   Further, because the risks associated with6

weather are non-diversifiable, weather derivative prices must reflect a market price of

risk.  This rules out the use of a BS type of model.  Turvey addresses the absence of a

hedgeable asset by applying the risk-neutral pricing model of Cox, Ingersoll and Ross

under the simplifying assumptions that the mean drift rate of the weather index and the

“weather beta” are both zero.    However, such an approach assumes that the stochastic7

process governing the HDD index exhibits independent increments.  This rules out either

mean-reversion or time-varying volatility.  On the other hand, Cao and Wei; Davis;

Alaton, Djehiche, and Stillberger; and Yoo all provide empirical evidence to the contrary,

namely that weather indices are highly non-linear, seasonal and mean-reverting.  If this is

the case, then there is no stochastic representation that can provide an analytical solution

to the valuation problem.  Therefore, an alternative approach must be used. 

There are three general ways to proceed in the case of incomplete markets: (1)

define a risk-neutral equivalent martingale probability measure (EMM) and discount the

expected payoff at the risk-free rate (Alaton, Djehiche and Stillberger; Yoo), (2) derive an

equilibrium pricing model that explicitly incorporates the market price of risk (Pirrong

and Yermakayan), or (3) specify an equilibrium pricing model that implicitly includes a

risk premium for the non-traded asset (Cao and Wei).  Although the first approach is

theoretically valid, we have no way of directly estimating the market price of risk so this
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(6)

approach cannot provide a solution to the problem at hand.  Neither does the second

method include a way of recovering the market price of risk without a forward or futures

contract in the underlying weather index.  Therefore, this study applies the Lucas general

equilibrium valuation model to determine the value of weather derivatives, both put

options and call options, using the algorithm developed by Cao and Wei.

Only the components of the Lucas model that are essential to our weather

derivative application are described here.  The model assumes a pure exchange economy. 

In other words, in contrast to the endogenous production environment of Cox, Ingersoll

and Ross, production is assumed exogenous and agents expected utility maximizers. 

tThere are two state variables: (1) production (y ) and (2) the weather, or more specifically,

ttemperature, w .  Asset prices serve to equilibrate the market for all claims on output

given any state of the world and, as such, represent state-dependent contingent claim

values.  All production in the economy is owned by agents with equity claims that pay an

taggregate dividend, d . The aggregate dividend, in turn, depends on the weather according

to an autoregressive process.  In equilibrium, consumption is equal to the aggregate

tdividend.  A representative, risk-averse consumer chooses consumption (c ) to maximize

the present value of expected utility:

c ccwhere ( is the constant relative risk aversion (CRRA) parameter, U  > 0, U  < 0 and 0 <

( < 4.   Note that ( = 0 corresponds to risk-neutrality and ( = 1 to log-utility, which is a

common assumption in models of this type.  The value of any contingent claim is found

by maximizing the expectation of (6) with respect to consumption subject to the joint
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(7)

(8)

evolution of the state variables in the model.  

While the generating process for weather was defined in equation (2), the

aggregate dividend is assumed to follow an autoregressive process where the current

period dividend is a function of its value in the previous year as well as current and

previous weather innovations: 

twhere: and >  is an iid normal error term.  Because the dividend process is a

function of both current and previous weather innovations, it provides information on

both the contemporaneous and lagged correlation between aggregate output and the

weather.  This feature is important as it allows us to forecast future values of the dividend

based on current realizations of the weather and the weather process estimated above. 

Given this process for the dynamic wealth constraint, solving the expected utility-

maximization problem (6) requires the price of any contingent claim to be equal to the

dividend ratio at expiry multiplied by its expected payoff.  In terms of the objective

t tdefined in (6), and substituting in the equilibrium condition d  = c  , the price of any

weather derivative at any date t prior to expiry, T, is:

Twhere the payoff, X , to a call option on an underlying CDD index is max[CDD - K, 0]

for a strike value of K .  Analogous reasoning holds for a put option.  Importantly, note

that if the aggregate dividend is not autoregressive and is not correlated with the weather,
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(9)

tthen the derivative price is no longer a function of d  and (, so the market price of risk

will equal zero.  In this case, the weather derivative price is simply the present value of its

expected payoff at expiry.  Combining the weather process in (2) and the dividend

process in (7) with the valuation model (8) provides the method of valuing weather

derivatives. 

Estimation and Calibration Procedures

The first step in implementing the pricing model is to estimate the weather process. There

are at least four alternative methods for estimating the parameters of the jump-diffusion

weather process given by (2):  (1) the method of cumulants (Ball and Torous 1983), (2)

direct maximum likelihood estimation (Ball and Torous 1983, 1985; Jorion or Jarrow and

Rosenfeld), (3) implied estimation of derivative moments using an existing price series

(Hilliard and Reiss) and (4) a least-squares estimator (Bates 1991, 1996).  Because there

is no weather derivative price series for a weather station in Central California, implicit

estimation is not possible, therefore, all models are estimated using maximum likelihood. 

With this approach, the most general likelihood function is written as:8

for T - 1 observations of discrete changes in the de-trended temperature series:

t t w where w  is the temperature residual: w  - " , 8 is the Poisson intensitya

tparameter,  *  is the volatility of the discrete part, h  the volatility of the continuous part,2
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and N is the mean jump size.   Following Ball and Torous (1985), n is defined as the9

random realization of a shock to temperature, and N is fixed at a value likely to include

all possible occurrences of a shock, and (9) is maximized with respect to the remaining

parameters.  Likelihood functions for each of the other processes are defined in a similar

way, but with appropriate restrictions.  As Ball and Torous (1985) suggest, a Bernoulli

jump-diffusion model provides useful starting values for the maximum likelihood

estimation procedure.  With these starting values, convergence of each model occurs

within 85 iterations using a Newton-Raphson non-linear solution algorithm with 11,050

daily temperature observations.  Because each of the first three models are nested within

the fourth, the preferred process is selected on the basis of likelihood ratio tests. 

Residuals from this process are then calculated for use in the second step – estimating the

correlation between weather innovations and the aggregate dividend. 

Although it would be preferable to estimate the weather and dividend processes

together, doing so is not possible because the weather data are daily, whereas the

aggregate dividend is measured on an annual basis.  Therefore, the second step involves

estimating the dividend process (7) using annualized temperature residuals.  A measure of

the aggregate dividend must reflect the value of economic output for a particular

economy.  Therefore, the dividend is defined in terms of aggregate personal consumption

expenditure for Fresno county over the 1970 - 2000 time period.  Preliminary

specification tests of equation (7) found strong evidence of a unit root, so the equation is

estimated in first differences. Estimates appear in table 3.  

Step three involves calibrating the pricing model and finding prices for both put

options and call options on a CDD index for Fresno County.  Given the complexity of the
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processes for both weather and the aggregate dividend, finding a closed-form solution to

(8) is not possible, so the third step consists of conducting a Monte Carlo simulation of

the weather and derivative processes.  Finding complex derivative values via Monte

Carlo simulation is a generally accepted method (Boyle; Hull; Pirrong and Jermakayan). 

With this approach, the process for the underlying state variables are simulated a large

number of times and the value of the derivative at expiry is calculated using (8).  By

averaging the implied derivative prices over all random draws, this method provides an

estimate of the true derivative price.  Specifically, the Monte Carlo simulation constructs

10,000 forward values of the CDD index and, simultaneously, calculates associated

values of the aggregate dividend at the expiry date, T, using the parameters from the

relationship (7).  By forecasting the temperature for each day of the sample process, the

Monte Carlo simulation provides a distribution of payout values for the derivative at time

T.  Next, we find the expected value of the product of the payout value and dividend ratio

by averaging over all 10,000 draws.  Calculating the present value of this average

provides an estimate of the derivative price at time t.

This framework also provides a convenient method of implicitly estimating the

market price of risk.  Recall that in the absence of a tradable underlying asset, the market

price of risk may have a significant impact on a contingent claim traded in an incomplete

market.  Indeed, if the market price of risk were known, or could be assumed to be zero,

then weather derivatives could be priced using a risk-neutral valuation method (Hull). 

Without access to a relevant price series for existing weather derivative contracts,

estimating the market price against a traded benchmark is impossible.  Neither can we

assume the market price of risk is zero because, as we demonstrate, aggregate economic



-15-

output and the weather are not independent.  Nonetheless, it is possible to estimate the

market price of risk as an implicit parameter in a general equilibrium framework.  This

approach relies on the fact that if there is no correlation (contemporaneous or lagged)

between weather and an aggregate market index, then the market price of risk must be

zero.   Imposing a zero-correlation assumption on the dividend forecasts calculated using10

equation (7) produces a lower value for the aggregate dividend at expiry and, hence, a

lower derivative value in equilibrium.  By comparing derivative values calculated with

zero and the positive, or empirical correlation, the market price of risk is simply the

annualized percentage difference in the “risk neutral” and the “true” derivative value. 

Because each draw of the Monte Carlo simulation produces a different estimate of 8,

averaging over all 10,000 draws provides an expected market price of risk that is assumed

to be an unbiased estimate of the true value.  This procedure is repeated for a range of

relative risk aversion parameters, from 0.0 (risk neutrality) to 20.0 (extreme risk aversion)

and the market price of risk calculated for each case.  Determining an equilibrium price,

however, does not guarantee that weather derivatives are valuable risk management tools

for agribusiness.

Determining Hedging Effectiveness

Ultimately, the ability to arrive at an equilibrium price for a derivative is a necessary

condition for the development of a liquid market, but is not a sufficient one.  Rather,

market participants must believe that the derivative represents an effective hedging tool

for significant trading volume to arise.  Hedging effectiveness, in turn, depends upon the

correlation of the underlying state variable, the CDD index in the current example, with
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(10)

key measures of economic interest – output, revenue, cost or profit.  In the case of an

energy producer, Hull argues that the ability to effectively hedge both price and volume

risks can be determined by estimating a regression model of his or her profit on power

prices and a CDD or HDD index.  Finding significant temperature and power-price

regression parameters amounts to an empirical “proof” of the likely effectiveness of either

a power or weather hedge.  For farm commodity producers, analogous reasoning suggests

that a regression model of yields on a CDD index calculated over a critical growing

period can serve the same purpose.   Using nectarines grown in Fresno County,11

California as an example, a regression model is estimated that includes a CDD index

calculated over the 92-day May to July period when yield potential is determined (c), the

square of c and a linear time trend:

to explain nectarine yields, y.  Although there are admittedly many other factors that

potentially influence yields, if they are uncorrelated with temperature then (10) will

provide reliable estimates of the temperature - yield relationship.  The results obtained

from estimating this model with the Fresno nectarine data are presented and discussed

after each of the prior three steps in the algorithm explained here.

Results and Discussion 

This section reports the estimates of all four components of the weather derivative pricing

model: (1) maximum likelihood estimates of each alternative CDD process, (2) estimates
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of the aggregate dividend process, (3) Monte Carlo estimates of weather derivative prices

under varying degrees of risk aversion, and (4) estimates of hedging effectiveness for a

representative agricultural product.  Following the presentation of these results, we offer

some implications for real-world pricing of weather claims and others for which

traditional pricing methods are not available. 

Although each set of results contributes to the weather derivative literature, the

weather process estimates are likely to be of greatest interest to others searching for a

pricing model.   Table 2 provides all parameter estimates and likelihood ratio tests used to

compare alternative weather process models to the most general one.  The results in table

2 indicate rejection of the restricted specifications in favor of the more general model. 

Therefore, the preferred model is a mean-reverting Brownian motion with log-normal

jumps and first-order autoregressive conditional heteroscedastic errors.  While time-

varying volatility does not allow for random variation in volatility, a battery of goodness-

of-fit tests suggest further refinements of this model may not be necessary.  For example,

under the null hypothesis that the residuals are normally distributed, the Jarque-Bera test

statistic is 5.99, resulting in a failure to reject the null at the 5% level of significance.  In

addition, a Durbin-Watson test statistic for first-degree autocorrelation lies safely in the

region of non-rejection, suggesting that the residuals are approximately white-noise. 

Consequently, based on the likelihood-ratio test results, the MRBM-J-ARCH model is

preferred.

[table 2 in here]

The results in table 2  illustrate sharp qualitative differences in the implications of

each process.  For example, the simpler BM process dramatically understates the mean



-18-

drift rate.  By ignoring mean-reversion, the BM specification implies that the CDD index

can wander away from its long-term average indefinitely.  This is not likely to happen in

reality, so should not be reflected in weather derivative prices.  The results in table 2 also

show the importance of jumps in the temperature process through the large incremental

improvements in fit by each jump-diffusion model relative to its continuous analog. 

Although the CDD process is physical, rather than financial, these results are consistent

with the implications of ignoring “fat tails” in financial asset returns processes found by

Bates (1991, 1996); Naik and Lee; and Jorion.  Third, although allowing for time-varying

volatility improves the fit significantly, including an ARCH error component is

apparently not as important as in other contexts.  Specifically, in their comparison of

alternative option pricing models, Bakshi, Cao and Chen provide evidence from S&P 500

index options that allowing for time-varying volatility provides the largest incremental

gain in option pricing “fit” from among each of the BS extensions that they consider.  By

using stocks traded on organized exchanges, however, they are able to use indirect market

evidence to demonstrate the superiority of their time-varying volatility models, whereas

this study necessarily relies on direct estimation.  It remains, however, to determine

whether a contingent claim on temperature can be priced in the market.

 Indeed, a weather derivative will only have value in a general equilibrium

framework if the underlying index is correlated with a measure of aggregate economic

output.  Table 3 provides evidence of a statistically significant correlation between the

weather series residuals and aggregate output both contemporaneously and at lags of one

and two periods.  Consequently, weather and the aggregate dividend are not independent,

so the market price of risk must be taken into account.  Although the t-ratios in this
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regression are relatively low, this is not surprising given the short time series available

and the number of factors that influence output.  Moreover, based on the Durbin-Watson

statistic and results from the RESET specification test shown in table 3, this model is well

specified.  

[table 3 in here]

Table 4 shows equilibrium prices calculated for both at-the-money puts and calls

as well as similar derivative prices calculated using traditional BR and BS methods.  For

the equilibrium prices, this table also provides estimates of the implied market price of

risk at each degree of risk aversion and a t-test of the null hypothesis that the price of risk

is equal to zero in each case.  Several interesting results are apparent from this table. 

First, for both puts and calls, and at each level of risk aversion, the market price of risk is

significantly different from zero.  While it is small in an economic sense at low levels of

risk aversion, the market price of risk rises to nearly 30% of the derivative value for calls,

and approximately 11% for puts.  Admittedly, this level of risk aversion is extreme, but it

serves to illustrate the potential importance of ignoring risk preferences in estimating

derivative prices when a risk neutral valuation method does not apply.  While Cao and

Wei find a small percentage of their example cities in which the market price of risk is

significant, and Alaton similarly concludes that it is likely to be small, the results in table

4 show that the market price of risk is not only statistically significant (relative to the

benchmark derivative), but economically large as well.  This result is more akin to

Pirrong and Jermakayan, who find the market price of risk to be a significant factor in

pricing power derivatives. 

Note also that the “risk discount” associated with call options is greater in
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absolute value than the premium associated with puts.  This result, which is similar to

that found by Cao and Wei, reflects the fact that the covariance between the payoff at

expiry and the aggregate dividend for a put is negative for a put option and positive for a

T 0call.  As the dividend ratio (d  / d ) is always greater than 1.0 due to the positive

correlation between temperature and aggregate output, raising the dividend ratio to a

negative exponent in the marginal utility function causes the observed pattern of

premiums and discounts.  Intuitively, because the expected utility function used in the

pricing model is increasing and concave, the marginal utility for a downside temperature

movement is greater in absolute value than an equivalent upward movement.  As the

degree of risk aversion rises, this concavity is accentuated.  Consequently, a more risk-

averse investor will pay more for the downside protection inherent in a put the greater the

probability that such a movement occurs. 

Comparing prices implied by the equilibrium model to those calculated with

standard BR or BS models finds that the latter significantly overprice both at-the-money

calls and puts.  This is due to the fact that option prices rise in volatility (positive vega)

and the BS model, based on a standard geometric Brownian motion process, does not

“factor out” that part of volatility due to irregular, discrete jumps.  While the jumps add to

overall volatility, weighting their occurrence by their probability significantly reduces

their ultimate impact on the Monte Carlo option values.  Consistent with the equity

options (Merton; Naik and Lee; Bakshi, Cao and Chen) and foreign-exchange options

literatures (Bates 1991; Jorion), the results in table 4 show that factoring out small

probabilities of extreme fundamental events produces lower derivative price estimates. 

This is an important result given the nature of weather risks facing agricultural producers. 
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Particularly in California’s Central Valley, the band of normal fluctuation for both rain

and temperature is quite small, but infrequent frosts or storms are the largest cause of

economic damage.  Some of this difference may also be due to the fact that the BS model

does not account for mean reversion in the temperature index.  In fact, Cao and Wei,

Alaton, and Pirrong and Jermakayan all find that mean reversion is perhaps the most

important feature of the weather index process.  Dixit and Pindyck demonstrate the knife-

edge nature of this result in the context of a real option model – while derivatives that

admit the possibility of an explosive path away from the strike price will have a higher

intrinsic value, low levels of mean reversion (as our data show) mean that volatility plays

a greater role in determining the expected payoff.  

Neither the BR nor the BS models allow for time-varying volatility.  Given that

derivative prices rise in volatility, this result would suggest that ignoring the time-

dependent nature of volatility will produce lower, not higher, option prices.  However,

Hull and White show that a standard BS pricing model underprices options that are out of

the money, whereas the derivatives in table 4 are priced at-the-money for comparison

purposes.  Hull and White’s result is not unique to financial options as Myers and Hanson

show that pricing models for options on agricultural futures that incorporate time-varying

volatility provide better estimates (as measured by root mean square error) than do

constant-volatility alternatives. 

[table 4 in here]

The results in table 5 suggest that there is indeed a significant relationship

between temperature and nectarine yields.  For a weather derivative based on this CDD

index to be a valuable risk management tool for Fresno County nectarine growers, the
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CDD index must be correlated with nectarine yields. However, the non-linear relationship

suggests that non-typical trading strategies are appropriate.  Namely, a grower should

implement a straddle strategy by simultaneously buying a put and a call with strike CDD

values set at the optimal level indicated by the yield model.  A straddle would protect the

grower from yield losses that result from excessively hot or cold temperatures over the

critical growing period. Moreover, because this strategy involves the purchase of two

options, the importance of minimizing the bid-ask spread through accurate pricing

methods is apparent.  

[table 5 in here ]  

Conclusions 

If weather derivatives are to achieve sufficient liquidity to be widely used revenue risk-

management tools, then finding better pricing models is a necessary step.  Defining

“better” as a more accurate representation of the true value of the claim on a CDD index,

an improved pricing model must consider both the complexity of the underlying weather

process and the fact that weather is a non-traded asset.  In creating such a model, this

study adopts an equilibrium pricing approach based on the valuation framework

developed by Lucas.  The equilibrium pricing model is applied to weather data from

Fresno, CA and used to calculate prices for both puts and calls on a CDD index.  In doing

so, the study also estimates the market price of risk over a range of risk aversion

assumptions for both types of derivative. 

Previous research into similar types of processes (electricity, stock prices,

exchange rates) have found the usual geometric Brownian motion assumption to be
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inadequate.  To investigate whether this is also the case for a daily termperature series,

this study considers four alternative specifications and tests among them using a series of

likelihood ratio tests.  These tests show that the preferred model for average daily

temperature in Fresno, CA, once it is corrected for seasonality and long-term warming

trends, is a mean-reverting Brownian motion process with first-order autoregressive

errors and a log-normally distributed jump term.  This process is considerably more

complex than the geometric Brownian motion that is typically used to model other

processes on which financial derivatives are based. 

The equilibrium simulation finds that misspecifying the underlying weather

process can result in significant overpricing of derivatives based on a cumulative CDD

index.  Specifically, allowing for mean reversion, time-varying volatility and the fact that

weather processes consist of discrete jump-diffusion rather than continuous diffusion

processes each lead to lower weather derivative prices.  More importantly, perhaps,

estimating the market price of risk over a range of risk aversion parameters shows that the

risk premium can be a significant part of the derivative price.  Consequently, when risk-

neutral valuation cannot be applied, assuming the market price of risk is zero could result

in significant pricing errors.  Estimates of a simple hedging-effectiveness model also

show that these derivatives have potential as viable risk management tools.  
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Footnotes 

For example, a “cooling degree day (CDD)” is defined as the amount by which the1

average temperature on a given day exceeds  65o F, or CDD = max (T - 65, 0), where T is

the average temperature on a particular day.  A “heating degree day (HDD),” on the other

hand, is the amount by which the average daily temperature falls below 65o F.  Weather

derivatives are typically based on accumulated CDDs or HDDs over a defined period.  

 According to a 1998 survey of California growers, 46.9% of growers ranked weather-2

related risks as the most important they face, followed by 32.0% citing output price risk

(Blank)

Basis risk also arises from the fact that yields depend on both precipitation and3

temperature.  Rain and heat are not perfectly correlated, nor are they linearly related to

yields and market prices.  Moreover, temperature varies continuously from region to

region, whereas precipitation risk tends to be more localized.  If weather risk derives from

both sources, then collecting useable data and defining a relevant index may be important,

yet potentially difficult. 

The temperature process is modeled directly here, rather than the CDD index, because4

calculating the CDD index introduces a truncation point that adds unnecessarily to the

complexity of the underlying process.  Moreover, any CDD, HDD or variation thereof,

can be calculated from a simulated temperature process (Cao and Wei 2003).   
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A burn rate model assumes that a derivative price is equal to the present value of its5

expected payoff at expiry, where the expectation is calculated on the basis of historical

data.  In this sense, burn rate models are also termed “actuarial” pricing models.

Although there are CDD and HDD futures contracts on the CME, these apply to only a 6

handful of major metropolitan areas, so cannot be used to hedge weather risks for growers

in Central California, or many other agricultural areas for that matter.

This latter assumption is justified on the grounds that it is unlikely that the market7

portfolio can have any impact on the number of degree days, but it is not necessarily true

that weather events do not impact the market portfolio.

A GARCH process is more general and parsimonious than the ARCH used here (Hull8

and White).  Although estimating a GARCH(1,1) model, for example, would be

preferable, it would not converge in this problem.  This is perhaps understandable given

the demands that GARCH models make on the data, the complexity elsewhere in our

model, and the fact that a GARCH process would likely explain many of the same

innovations defined within the model as jumps. 

This assumption is more general than Ball and Torous (1985), who assume a jump size9

of mean zero.
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This assertion can be proven.  Assume the aggregate dividend is measured by a broad10

mindex of stock prices, and follows a stochastic process with growth rate :  and volatility

m 1 1F , there is a risky asset with growth rate :  and volatility F , and the risk-free return is r. 

Hull shows that the market price of risk for any traded asset must be equal to its excess

1 1return above the risk-free rate normalized by its volatility, or 8 = ( :  - r) / F .  However,

by the capital asset pricing model (CAPM), this excess return is determined in the market

as compensation for the risk the asset contributes to an otherwise well-diversified

portfolio, which depends upon the correlation of returns to the asset and market return: 

1 1 m m 1:  - r = (DF  / F ) (:  - r).  If D = 0, therefore, :  - r = 0 and 8 = 0 as well. 

As in the power example, this study only considers weather derivatives role as volume11

risk management tools, although prices may also be, albeit more loosely, associated with

weather.  Investigating this dual role may be a fruitful topic of future research in this area. 
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Table 1. Summary of Fresno Weather Station Data: 1970 - 2001

Statistic t                               w a
t                                ws

Sample Size 11,050       11,050       

Mean 63.702 -0.005

Variance 13.942 5.960

Minimum 27.000 -16.301

Maximum 96.000 14.403

1Skewness (b ) 0.335* -0.338*b

2Kurtosis (b ) -0.700* 0.277

Chi-Square (CS) 76.293* 35.009

Jarque-Bera (JB) 14.090* 7.877*

Augmented Dickey-Fuller (ADF) 75.631* 46.895*

Durbin-Watson (DW) 0.072* 2.072

GARCH (1,1) 0.174 -.200

t t In this table, w  refers to the temperature series, in degrees Fahrenheit, ws  to the temperature series adjusted for seasonality,a

1 2linear time trend and third-order autoregression, b  is the coefficient of skewness, b   is the coefficient of excess kurtosis.  Both

1 2 1b  and b  are asymptotically normally distributed, with zero mean under the null hypothesis.  The standard deviation of b  is

20.128 and for b  is 0.255. CS is a chi-square goodness of fit test for residual normality based on comparing the expected and

observed distribution of residuals.  Dividing the observations into 30 groups implies 27 degrees of freedom and a critical value

of 40.11 at a 5% level of significance.  JB is a Jarque-Bera Lagrange multiplier test statistic for residual normality and is

1 2calculated as: JB = N (b /6 + b /24).  The  JB test statistic is chi-square distributed with two degrees of freedom, so the2 2

0 0 1 2critical value is 5.99 at a 5% level. The ADF (unit root) test is an F-test for the joint significance of H : "  =  "  =  "  in the

regression:

twith p = 3 and :  iid normal error terms.  The critical value at a 10% level is F = 4.03.  DW is the Durbin-Watson test statistic

for first-order autocorrelation and has a critical lower bound of 1.758 for all processes at a 5% level of significance.  The test

1for GARCH (1,1) errors is a t-test of the N  coefficient in the following conditional variance function:

where p = 1 and q = 1 reflects the GARCH (1,1) assumption.  

 A single asterisk indicates rejection of the null hypothesis at a 5% levelb
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Table 2. Weather Process Comparison: Fresno Air Terminal, F, 1970 - 2000o

BMa MRBM MRBM-J MRBM-J-ARCH

Parameter Description Estimate t-ratio Estimate t-ratio Estimate t-ratio Estimate t-ratiob

" Drift term -0.002 -0.041 0.001 0.026 0.429* 6.729 0.461* 6.495

6 Rate of mean reversion 0.501* 61.122 0.496* 62.099 0.490* 54.526

8 Poisson arrival rate 0.722* 74.815 0.819* 7.913

N Magnitude of jump (%) -0.704* -6.908 -0.605* -7.047

F Variance of continuous part 21.370* 70.578 15.996* 74.270 9.130* 29.9472

1a ARCH intercept 6.543* 11.780

2a ARCH slope 0.079* 8.720

* Variance of jump 10.782* 17.779 9.143* 11.9912

LLF -32,502.4 -30,906.7 -30,263.6 -30,118.3

LR 4,768.200** 788.400** 145.300**c

CS 27.121 20.739 19.496 21.624

JB 3.494 4.054 3.787 3.713

1b 0.039 -0.193 -0.180 -0.178

2b 0.496 0.366 0.369 0.365

DW 3.071 2.312 2.321 2.330

 In this table BM refers to a simple Brownian motion process, MRBM to a mean-reverting Brownian motion, MRBM-J to a mean reverting Brownian motion with log-a

normal jumps, and MRBM-J-ARCH to a MRBM-J process with auto-regressive, conditionally heteroscedastic errors.  

 A single asterisk indicates rejection of the null hypothesis that the parameter equals zero at a 5% level of significance.  b

U R U The likelihood ratio chi-square statistic is calculated as: LR = 2 ( LLF  - LLF ) where LLF  is the log-likelihood function value of the most general (MRBM-J-ARCH)c

model with and has q restrictions.  A double asterisk indicates rejection of the null hypothesis that the restrictions imposed are valid.  Three asterisks indicate rejection of

the null hypothesis of normality at a 5% level of significance, while four asterisks indicates rejection of the null hypothesis of no autocorrelation. All other tests are defined

in a footnote to table 1.  



Table 3. Aggregate Dividend Process Estimates: Fresno County Personal Consumption Expenditure:
1970 - 2000 and Temperature Process Residuals

Variable Estimate t-ratioa

Constant 4.997* 12.330

t, 4.931* 1.779

t-1, 6.792* 2.420

t-2, 5.287* 1.921

D.W. 1.719

R2 0.293

RESET - 2 0.076

RESET - 3 0.994

RESET - 4 0.700

t Dependent variable is )y  = change in annual personal consumption expenditure for Fresno County, CA.  Independent
a

variables are annual average residuals from estimates of preferred weather process in table 2: where is the

5%, 1,corrected (for seasonality, autoregression and drift) temperature value for day t.  Critical values for the RESET tests are: F

23 5%, 1, 22 5%, 1, 21= 4.28, F  = 4.30, and F  = 4.32 for the RESET - 1, RESET - 2, and RESET - 3 tests, respectively.  A single

asterisk indicates significance at a 10% level.  Constant term is scaled by a factor of 10  to facilitate presentation. 6



Table 4. Weather Derivative Monte Carlo Equilibrium Price Estimates: Fresno County

Model Derivative Price a

 Risk
Aversion

Call Put

c pV 8 t-ratio V 8 t-ratiob

(1) Burn Rate $56.89 $56.86c

(2) Black-Scholes $71.22 $63.29d

(3) Monte Carlo

0     ( 0.0 $53.12 $53.41

1     ( 1.0 $52.89 -1.70% 10.143 $53.50 1.50% 2.946

2     ( 2.0 $52.67 -3.40% 8.741 $53.55 2.30% 3.135

3     ( 5.0 $52.00 -8.10% 12.374 $53.74 4.70% 3.942

4     ( 10.0 $51.00 -15.20% 12.388 $54.13 8.10% 4.743

5     ( 20.0 $48.88 -29.80% 13.310 $54.33 10.80% 4.886

      In this table, all derivative price simulations use the preferred (MRBM-J-ARCH) weather process parameter estimates in table 3, a risk-free rate of 3%, a commona

strike CDD equal to the long-run average of 1047.4, a tick-rate of $1.00 per accumulated CDD and a time-period of 92 days (May 1 - July 31).  All simulations use 10,000

replications of the normal and Poisson deviates.  All rates of return are expressed on a annual basis. 

c      The null hypothesis is that the market price of risk is zero.  For each derivative type (call or put), the first row (( ) under the “Monte Carlo” heading is the price with
b

a zero market price of risk, while subsequent rows assume a non-zero market price of risk consistent with the associated coefficient of relative risk aversion.  The next

column gives the implied market price of risk calculated by comparing each derivative price with the risk-neutral benchmark.    

      “Burn rate” prices are calculated such that each derivative is priced to be actuarially sound on a historical basis.  That is, option prices are the present value of
c

expected payoffs at expiry given historical probabilities and the expected payoff relationships for a call: C = max (CDD - K, 0) and a put: P = max (K - CDD, 0), where K

is the strike value.  

      Black-Scholes prices are calculated using the Black-Scholes options pricing formula with assumed historical volatility and average accumulated CDD value at expiry. 
d

 

 



Table 5.  Estimates of Hedging Effectiveness: Weather Impact on Yield

Nectarine

Variable Estimate t-ratioa

Const. -5.025* -2.009

t -0.044 -1.549

1w 27.471* 2.956

1w -11.028* -2.6282

RESET - 1 3.734

RESET - 2 2.438

RESET - 3 1.547

R2 0.618

1      In the above table, t is a linear time-trend variable and w  is the value of the CDD index at the end of the sample period. 
a

1,14 1,13 1,12Yield is defined as tons per acre.  Critical values for the RESET test at a 5% level are: F  = 4.60, F  = 4.67, F  =

4.75.  
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