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ABSTRACT

This paper provides a methodology that can be used to weigh the costs and

benefits of precision agriculture in the measurement and application of variable-

rate production technology.  Empirical estimates of the economic value of

precision farming in the form of variable-rate fertilizer application to corn fields in

the mid-western United States are calculated and compared to the current cost of

investing in this technology.  The results of this study indicate that the use of

precision technology in the application of fertilizer for corn production in the

United States is not profitable over a relatively wide range of corn prices, nitrogen

prices, and agronomic differences in soil characteristics.
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INVESTING IN PRECISION AGRICULTURE

I.  INTRODUCTION

For some observers, site-specific crop management, using the latest technology

such as yield counters, ground-based monitors, computers, satellites, and variable-rate

application technologies for spatially-variable field operations, represents the potential

for a new scientific revolution in agriculture.  This emerging technology is known

collectively as precision agriculture.  Schueller states, “Spatially-variable field operations

are unquestionably the wave of the future.  Both researchers and farmers are invariably

enthused when they understand the concept.”  However, while many farmers are excited

about the future prospects for precision agriculture, they are typically not as enthusiastic

about investing in the technology.  Most farmers are interested in the bottom line.  They

will adopt the new technology only if it is expected to be a profitable investment.  While

the costs associated with various types of precision technology are not difficult to

calculate, the benefits are.  For example, measurement of the potential productivity gains

associated with variable-rate application technologies requires knowledge of underlying

agronomic conditions, such as the distribution of soil characteristics across a field, and

the way in which changes in input use affect productivity.

There are a number of studies that have attempted to measure the benefits from

the use of precision technology in agriculture.  Many agronomists have recognized that

there are agronomic benefits associated with precision farming, some of which extend

beyond the benefits from increased productivity.1  However, they are still working to

"prove the benefits economically" (Dunn).  Schnitkey, Hopkins, and Tweeten state that

precision farming is "economically attractive when a field's soil characteristics vary so
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that varying input rates across a field based on soil characteristics results in more efficient

input use."  Swinton and Ahmad found that while many groups within the agribusiness

sector have an intense interest in precision technologies, those experienced with these

technologies found a number of unexpected costs, as well as a few unexpected benefits

associated with adoption of precision agriculture equipment and services.  They conclude

that evaluating the returns to investment in site-specific crop management requires more

information than the yield and cash cost data that are typically available.  Lowenberg-

DeBoer and Boehlje found that out of 11 case studies of operations that adopted precision

technology, only two showed conclusive evidence of increased profitability.  Factors

contributing to profitability were high initial soil fertility and higher valued crops.  They

conclude that, “The available economic analysis cannot dispel the possibility that

precision farming is a technological dead-end.”

The purpose of this paper is to estimate the economic benefits of precision

agriculture by analyzing the costs and benefits associated with variable-rate production

and monitoring technology.  Empirical estimates of the profitability of precision farming

are obtained for variable-rate nitrogen application for corn production in several mid-

western states.  The value of precision farming is compared to the current costs of

investing in precision technology in order to determine the profitability of the variable-

rate application of nitrogen over a period of five years.  In addition, we examine the

sensitivity of the results to differences in: (1) functional form; (2) input and output prices;

(3) dispersion of soil types; and (4) the accuracy of precision technology.
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II. THE VALUE OF PRECISION FARMING

The value of precision in the use of inputs applied to a particular field can be

measured by comparing the gross benefit from the allocation of inputs in the absence of

precision information and technology, with the gross benefit from the optimal application

of inputs, given precision information and technology.  In the absence of precision

technology, the farmer does not have the ability to apply variable inputs to different sub-

plots within a field, nor does he have the ability to accurately determine the relative

productivity of those different portions.  However, a particular farmer usually has

knowledge concerning the average productivity across a (larger) parcel of land.  In this

case, profit maximization will result in the uniform application of inputs across the entire

field.  On the other hand, if precision technology is available, the farmer can vary the

application of inputs across different sub-plots of the field, resulting in higher

productivity, and larger gross benefits.  The additional gain from precision technology is

driven by an increase in the information available to the farmer.  For example, as Dunn

illustrates, with current grid sampling technology, a 150-acre field can be divided into

sub-plots as small as 2.5 acres.  A different optimal input mix can be used on each 2.5

acre sub-plot.  If the distribution of the underlying productivity of the soil is more

variable, the gross benefits from precision agriculture will be larger.

We proceed by determining the input mix for a farmer who is constrained to

treating the entire field as one production unit.  This outcome is compared to the input

mix for a farmer who has access to variable-rate technology that allows him to apply a

different input mix across each sub-plot of the field.  The difference in gross benefits

between these two cases provides a measure of the value of precision farming.
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In many cases, each field in which a farmer operates possesses soil characteristics

that can vary greatly from one sub-plot to another.  Hence, the aggregate production

function of a particular field is actually comprised of a number of small production units.

Let F(V) be the aggregate primal production function of a particular field, then:

where S is the number of sub-plots, V is a 1xS vector of inputs applied to each sub-plot,

and fs(vs) represents the primal production function for sub-plot s, given an amount vs

applied to sub-plot s.

1. Gross Benefits in the absence of Precision Technology

Consider a farmer that does not have access to variable-rate application and

monitoring technology.  He must treat each sub-plot in a uniform manner.  Hence, his

objective function is to maximize profits in the presence of the (implicit) constraint that v

= vi and that all the vi’s are equal.  This objective function can be written as:

where p is the price of the output, w is the cost of the input, and v is the amount of the

input uniformly applied to each sub-plot.  The solution to maximization problem (2)

provides the optimal input mix in the absence of precision technology.  The first order

condition for this problem is:
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Intuitively, solution (3) is identical to maximizing profit along the average production

function (F/S).  The solution (vNP) obtained by solving (3) provides the gross benefits

from farming in the absence of precision technology, which equals

2. Gross Benefits with Precision Technologies

Consider the gross benefits accruing to a farmer that has access to precision

classification equipment, and has access to equipment that can mechanize the variable

application of these inputs.  Retaining the notation from the last section, the producer's

maximization problem becomes

with precision technologies, the farmer will apply different amounts of inputs across

different portions of a field.  The solution to maximization problem (5) provides the

optimal input mix with precision technology.  There are S first order conditions

associated with this problem.  The first order conditions for the quantity of applied inputs

are:

The solution set to (6) {v1
PR,…,vS

PR} provides the gross benefit from the use of precision

technology, which equals
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The value of precision farming is calculated as the difference between the gross

benefits determined by maximization problem (7), which differentiates among sub-plots

through precision technology, and the gross benefits associated with maximization

problem (4), which does not differentiate among sub-plots.  Mathematically, the value of

variable-rate application technology for a single input becomes:

3. Empirical Implementation

The value of precision agriculture in equation (8) is heavily dependent upon the

exact form of the primal production function.  We are interested in obtaining empirical

estimates of the benefits of the variable-rate application of fertilizer in corn production.

The three major components of fertilizer are potassium, nitrogen, and phosphorus.  In the

mid-western United States, nitrogen is the main ingredient, but potassium and

phosphorus are also applied in smaller quantities.  Even though the analysis focuses on

nitrogen, potassium and phosphorus must be taken into account.

As a first approximation of the value of variable-rate fertilizer application, we

assume a functional form that possesses all three stages of production.2  The following

functional form proposed by Zellner possesses each stage of production, and can be

easily manipulated to differentiate among land types.  This functional form is
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and 2v is a latent factor of production that controls the overall productivity of land.3  It is

assumed that v2 incorporates potassium, phosphorus, and any other controlled or

uncertain variables that influence the productivity of the soil.  This approach has the

advantage of reducing notational complexity while still preserving the model's capacity to

underscore the economic incentives at work.4

 We restrict our analysis by assuming that all corn production in the mid-western

states in 1995 used 100% conventional tillage and that the actual amount of fertilizer

applied by each farmer was optimal given the restriction of uniform application implied

by maximization problem (2).  Under these assumptions, we work backwards in order to

derive the parameters a and b, assuming a univariate Zellner production function using

the semiparametric procedure developed by Moss (1999).  Moss suggests removing the

effect of the other inputs using a nonparametric kernel estimator:
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where iy  is the observed level of corn production at observation i, (.)k  is a Gaussian

kernel, ix1 is the level of nitrogen applied for observation i, ix2 is the observed level of

phosphorus, ix3 is the observed level of potassium, and ω is the bandwidth for the

nonparametric kernel.  The i subscript denotes the observed input and output levels at the

point of estimation while the j subscripts denotes the observed level of inputs and output

for the rest of the sample.  The two remaining variables on the left-hand side, 2x and 3x ,

are the sample average levels of phosphorous and potassium, respectively.  The left-hand

side of equation (9) has the effect of normalizing the sample around the mean level of
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phosphorous and potassium.  Given this normalization, the coefficients a and b can be

estimated using nonlinear least squares.

Once the functional form has been specified, the dispersion of soil types across

each individual farmer’s field must be introduced into the system.  While the authors

were able to obtain micro-level data regarding the individual amount of fertilizer applied

by a sample of corn producers from various states, we were not able to obtain (sub)

micro-level data regarding individual sub-plots contained within a farmer’s field.  To

make the model tractable, each field is divided up into two sub-plots of the same size.

One sub-plot is considered “lower quality land” while the other sub-plot is considered

“higher quality land”.  As a proxy for the dispersion of soil types across an individual

field, we turn to previous research.  Specifically, Wollenhaupt, Mulla, and Crawford

found that corn yields have a coefficient of variation between 8 and 29 percent.  Hence,

we compute estimates of the benefits of variable-rate fertilizer application for corn

production, by choosing coefficients of variation between 8 and 29 percent.

At first glance, dividing a farmer’s field into only two different types and

assuming that there is exactly 50% of each type seems unrealistic.  However, this process

actually generates the maximum estimate of the benefits from variable-rate fertilizer

application, given a specific coefficient of variation.  For example, consider a field that

has a particular coefficient of variation, but is instead divided up into two unequal halves.

As the amount of high quality land increases beyond 50%, the field becomes closer and

closer to being uniformly high quality, implying that the value of precision agriculture

approaches zero.  Alternatively, as the relative quantity of high quality land decreases

below 50%, the field approaches uniformity in low quality land and the benefits from
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variable-rate application also approach zero.  Finally, consider a field with a certain

coefficient of variation that is divided up into several sub-plots of land that differ in

quality.  As long as the distribution of land types are mean-variance equivalent (i.e. the

first and second moments of the distribution are equal to the first and second moments of

the simple distribution defined by two sub-plots of equal size) the estimates obtained in

both cases will be approximately equal.5

The specification of the Zellner production function in equation (9) is dependent

on two input levels and two parameter values.  Focusing on 1v  in our development of the

value of precision agriculture, we let 2v equal 21 µ− for low quality land and 21 µ+ for

high quality land.  This specification offers two advantages.  First, we can select µ to

yield specific coefficients of variation subject to optimizing behavior for 1v .  Second,

assuming that the percentage of low quality land is 0.5 yields an average production

function that is approximately equal to the Zellner function with 2v equal to 1.00.

Applying this normalization leaves us with one variable, 1v , and two parameters (a and

b) to estimate.

4. Empirical Results

Estimates of a and b were derived from a sample of farm level data provided by the

USDA/NASS Agricultural Chemical Usage Survey, 1995 Field Crops Summary.  Only

six states, Illinois, Indiana, Iowa, Michigan, Minnesota, and Ohio were included in the

analysis because the sample sizes for the other states were not large enough.  The

estimated values of a and b for this specification are presented in Table 1 along with the
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number of observations and the bandwidth parameter resulting from the kernel

estimation.

Empirical estimates of the value of precision farming by state are presented in Table

2.  Column 1 shows the various values of µ that are calibrated to a 0.2 coefficient of

variation.  This value was chosen because it is the approximate midpoint of the range

provided by Wollenhaupt, Mulla, and Crawford.  The next three columns show the results

from the “average function” that can be interpreted as the optimal values revealed

through the estimation procedure in the absence of precision farming.  For example, the

optimal nitrogen application rate in Illinois for 1995 was 155.98 pounds/acre using the

average price of corn received by farmers in 1995 of $3.09/bushel, and the average price

of nitrogen in 1995 of $0.109/pound.  The average yield in 1995 was 134.80 bushels per

acre generating a return above fertilizer cost of $399.54/acre.  The next column provides

the gross benefits from farming in the absence of precision technology by farmers in each

state (corresponding to BNP from equation (4)).

The optimal quantities of nitrogen and corresponding yields that would have been

realized had farmers used variable-rate fertilizer application in 1995 are provided in the

next few columns of Table 2.  These values were generated by first obtaining estimates

for individual farmers, and then aggregating.  The optimal quantity of nitrogen applied to

the low quality land ranges from 109.94 lbs/acre in Minnesota to 161.39 lbs/acre in Ohio,

whereas the optimal quantity of nitrogen applied to the high quality land ranges from

126.34 lbs/acre in Minnesota to 185.76 lbs/acre in Ohio.  These values are different from

those that existed in the absence of precision technology.  The next column provides the
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gross benefits to producers in each state from farming using variable-rate precision

technology (corresponding to BPR from equation (7)).

The intuition behind the disparity in nitrogen application to the different types of

land in Table 2 is illustrated in Figure 1, which compares corn yield as a function of

optimal nitrogen use under the average production function, the production function for

high-quality sub-plots, and the production function for low-quality sub-plots of land.  At

the average level of nitrogen in the absence of precision technology (N=155.98

pounds/acre), the marginal physical product of nitrogen along the average Illinois

production function is equal to the price ratio.  This is the optimal allocation applied by

the farmer in the absence of information on land quality within the field.  In the absence

of this detailed information, the farmer applies the same level of nitrogen to both the low

and high quality sub-plots.  When this level of nitrogen is applied to the lower quality

land, the marginal physical product is actually negative.  Hence, applying the same rate

of nitrogen as the average production function represents operating the lower quality land

in stage III.  Similarly, if this level of nitrogen is applied to the high-quality land, the

marginal physical product of nitrogen becomes higher than the price ratio.  Given

additional information regarding the underlying quality of land, the farmer would

optimally increase the nitrogen applied to the high quality land and decrease the nitrogen

applied to the low quality land.

The increase in revenue that can be attributed to the reallocation of nitrogen

across the field due to the availability of precision technology is provided in the last

column of Table 2.  The values in this column correspond to Λ from equation (8).  They

indicate the difference in gross benefits between producing corn using variable-rate
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technology and producing corn in the absence of variable-rate technology.  The value of

precision technology under 1995 nitrogen and corn prices ranges from $2.14 per acre in

Minnesota to $2.78 per acre in Indiana.

III. The Profitability of Precision Agriculture

The above analysis clearly shows that spatially variable field operations have

value because of the more efficient use of inputs in the presence of precision technology.

However, the additional value must be weighed against the additional costs associated

with investing in the new technology.  The use of grid-sampling based variable-rate

application technology requires (1) sampling of the soil in a grid pattern to determine the

nutrient status of different sub-plots of the field; (2) the chemical assay of the soil; (3) the

analysis of the chemical assay; and (4) the cost of the variable-rate application

technologies.  From a management perspective, the typical approach would involve soil

sampling, assay of the sample, and analysis of the assay once every five years.  However,

the additional cost of variable-rate application technology must be incurred every year.

The typical costs associated with investing in precision technology for fertilizer

application to corn production in the mid-west are presented in Table 3.  The amortized

annual costs range from $5.71 to $7.69 per acre.  These estimates imply that, under 1995

nitrogen and corn prices, and assuming an average coefficient of dispersion of 0.2, the

use of precision technology for application of nitrogen would not have been profitable in

the mid-western states in 1995.  Referring back to Table 2, the average value of precision

technology ranges from $2.14/acre in Minnesota to $2.78/acre in Indiana.  This is much

lower than the estimated associated costs.
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Our analysis has been highly stylized and is dependent on the range of soil

dispersion based on previously published research.  Specifically, it represents an upper

estimate of the value of precision technology, given an average coefficient of dispersion

of 0.2.  In order to provide evidence that these results are robust, we examine the

sensitivity of our results to the following factors: (1) functional form; (2) input and output

prices; (3) dispersion of soil types; and (4) the accuracy of precision technology.

1. Sensitivity to the Choice of Functional Form

The results of the forgoing analysis depend on the functional form of the primal

production function.  For our purposes, we used the Zellner function, which has the

traditional shape associated with a three-stage production function.  There are a plethora

of applied production functions that we could have chosen instead of the Zellner

specification.  In order to provide evidence of robustness to functional form, we re-

estimated the entire model using the Cobb-Douglas production function:

( ) γβα
321321 ,, xxxxxxf =

where 1x is nitrogen in pounds per acre, 2x is phosphorous, 3x is potassium and α , β ,

and γ are estimated parameters.  We further simplify the analysis by assuming that the

levels of phosphorous and potassium are held constant, so that:

α
11 )( Axxf =

We then solved for the parameters A and α which approximate the Zellner function at the

optimizing level of nitrogen.  As with the Zellner production function, we then construct

two production functions
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where µ is selected to yield a coefficient of variation for yields of 20 percent.  The

parameters are estimated simultaneously and it is again assumed that the field is divided

into two sub-plots of equal size.

The value of the parameters A and α for the Cobb-Douglas approximation are

provided in Table 4.  Also included in Table 4 are the µ required to generate a coefficient

of variation in yields of 0.2, the optimal levels of nitrogen for each land type, the gross

benefit of variable-rate fertilizer application, and the value of precision agriculture.

Comparing these results with those provided in Table 2, indicates that precision

agriculture would be even less profitable if the underlying production functions were

more closely approximated by the Cobb-Douglas specification.  On average, the value of

precision agriculture for the Cobb-Douglas specification is 45 percent of the value under

the original Zellner function.  The smaller value of precision agriculture can be attributed

to the relative flatness of the Cobb-Douglas function and lack of a stage III.

The linear response plateau production function is another alternative functional

form.  This function has a constant marginal product of nitrogen below some plateau

level of production, and a constant level of total physical product above the plateau.  The

optimal decision under this production function would be to apply nitrogen at a rate

sufficient to obtain the plateau if the marginal physical product of nitrogen along the

linear response path is greater than the ratio of the price of nitrogen to the price of corn.

Parameterization of this production function within our current formulation would



17

depend on the determination of the linear response coefficient and the production plateau.

It is expected that the value of precision farming under the linear response plateau

function would be somewhat higher than the value generated by continuously

differentiable functions typically used in production analysis.

2. Input and Output Prices

The value of precision farming is sensitive to the relative price of the output with

respect to the price of the input.  For this reason, precision technology would be much

more promising when applied to higher-valued crops.  Of course, if the price of corn

were high enough when compared to the price of nitrogen, variable-rate fertilizer

application would become profitable.  Evidence regarding the sensitivity of the value of

precision technology to changes in relative prices are provided in Table 5.

The values of precision agriculture presented in Table 5 are derived assuming that

the price of nitrogen remains constant, while the price of corn changes.  The value of

precision agriculture increases with an increase in the price of corn.  This result is driven

by the fact that the allocation of the marginal unit of nitrogen between land types

becomes more important as the value of higher yields increases.  This result also implies

that the value of precision agriculture declines as the price of nitrogen increases with the

price of corn.  The value of precision farming is asymmetric around the point of

maximum physical product in the lower quality land.  This result begs the question as to

whether precision farming would lead to less input use.  In this case, the use of nitrogen

will be lower under precision farming so that additional benefits from the reduction in

non-point pollution will be realized.6
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3. Dispersion of Soil Types

The value of variable rate application of fertilizer is affected by the observed

variability in yield.  Within our framework, variability in yield arises from the variability

in soil quality through v2 in equation (9).  Wollenhaupt, Mulla, and Crawford suggested

that the range of variability in yields among different sub-plots of a field range from

between 8 and 29 percent for corn producers.   The sensitivity of the estimates of the

value of precision agriculture to a wide range of soil variation in each state are presented

in Table 6.  Consistent with intuition, the value of precision agriculture increases with the

dispersion of soil types.  At the highest realistic level of soil dispersion (0.29 coefficient

of variation) the value of precision for a farmer in Indiana is $5.77 per acre which is

slightly higher than the lowest estimate of the additional annual cost attributed to

variable-rate application of fertilizer in corn production ($5.71 per acre from Table 3).

Another dimension of the dispersion of soil types can be observed by varying the

percent of low productivity land.  The variance of yields across land types is a quadratic

function of the percentage of low quality land.  Figure 2 depicts the value of variable rate

technology for Illinois for different percentages of low quality land.  As would be

expected given the results in Table 6, the value of precision agriculture takes on a

quadratic shape consistent with the quadratic shape of the variance.  This reiterates the

point that if the percentage of low quality land is small, the gain to differential application

of fertilizer on the low quality land is small.  Similarly, if the percent of high quality land

is small, the gain to applying more fertilizer on the high quality land is small.
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4. Accuracy of Precision Technology

The forgoing analysis assumes that precision technology can provide perfect

information regarding the composition of the underlying quality of the land.  However, in

practice this is not the case.  The soil sampling and classification process can generate

inaccurate results.  The machinery used for variable-rate application of the inputs may

also be inaccurate.  There are several ways that one could potentially incorporate

erroneous classification and erroneous variable-rate application into the analysis.

Intuitively, however, any inaccuracies inherent in the technology would simply reduce

the estimates of the value of precision farming provided in Tables 2 through 6.

Considering that none of the previous results show a significant positive value of

variable-rate fertilizer application to corn fields in the mid-western U.S., the introduction

of technological inaccuracies would only serve to decrease these values further.

IV.  CONCLUSIONS AND LIMITATIONS

This paper provides a methodology that can be used to weigh the costs and

benefits of precision agriculture in the measurement and application of variable-rate

production technology.  Empirical estimates of the economic value of precision farming

in the form of variable-rate fertilizer application to corn fields in the mid-western United

States were calculated and compared to the current cost of investing in this technology.

The results of this study indicate that the use of precision technology in the application of

nitrogen for corn production in the United States has an associated average value ranging

anywhere from $1.02 per acre to $5.77 per acre.  The costs associated with investing in

this technology range from $5.71 per acre to $7.69 per acre.  Hence, for the average farm
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in the mid-western United States, investing in precision technology for the sole purpose

of variable-rate fertilizer application in corn production is not profitable over a relatively

wide range of corn prices, nitrogen prices, and agronomic differences in soil

characteristics.

Schnitkey, Hopkins, and Tweeten found that the value of precision fertilizer

application to corn-soybean fields is approximately $3.28 per acre.  In our analysis, a

coefficient of variation of between 20 and 25 percent, associated with differences in the

underlying soil characteristics of a particular field, would generate a value close to that

found by Schnitkey, Hopkins, and Tweeten (assuming that the technology is 100%

accurate).  Wollenhaupt, Mulla, and Crawford found that crop yields have a coefficient of

variation in the range of 8 to 29 percent across different portions of fields in the United

States.  Our estimates, though slightly lower than Schnitkey et al. on average, are

reasonably consistent with these previous findings.

The economic analysis of any precision technology is sensitive to many factors.

These include the specification of functional form for the production functions associated

with the underlying land types, the prices of inputs and outputs, the distribution of soil

types, relative differences in soil productivity, and the degree of accuracy associated with

classification and variable-input application.  Moreover, random natural events,

particularly weather, have a significant effect on the reliability of estimates associated

with any empirical study that approximates an underlying production process.  In the

future, the method of analysis used in this study could be expanded by formulating a

number of different probability distributions around a number of different factors and

incorporating them into the analysis.  However, the results of the analysis in this paper
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provide strong evidence that the use of precision agriculture solely for the purpose of

variable-rate fertilizer application to corn production in the mid-western United States is

not economically viable.
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Table 1.  Semiparametric Estimates of the Zellner Production Function
State Observations Bandwidth a b

Illinois 142 .4674 .0005433 .01794
(.0008681)* (.009046)

Indiana 82 .4017 .001029 .02162
(.002217) (.01419)

Iowa 282 3.1033 .0008637 .02093
(.001828) (.01458)

Michigan 42 6.1303 .0006728 .01918
(.001019) (.009507)

Minnesota 102 13.3870 .001214 .02356
(.002207) (.01359)

Ohio 56 1.6869 .0004016 .01597
(.0007015) (.008978)

*Numbers in parenthesis denote standard deviations
Note: all estimates assume a coefficient of variation of 0.2

Table 2.  Value of Precision Farming by Statea

Precision  Agriculture

Average Function Low Quality Land High Quality Land

µ Nitrogen Yield Gross
Benefit

Nitrogen Yield Nitrogen Yield Gross
Benefit

Value of
Precision

Ag

Illinois 0.1355 155.98 134.80 399.54 143.82 108.31 165.48 161.77 401.99 2.44

Indiana 0.1350 130.05 145.89 471.64 120.04 117.34 137.86 175.07 474.42 2.78

Iowa 0.1353 133.93 134.96 384.88 123.54 108.48 142.05 161.96 387.21 2.32

Michigan 0.1355 145.99 136.61 389.81 134.63 109.78 154.87 163.93 392.19 2.37

Minnesota 0.1352 119.15 133.00 358.80 109.94 106.93 126.34 159.60 360.94 2.14

Ohio 0.1356 175.07 141.25 425.86 161.39 113.48 185.76 169.51 428.49 2.62
aCorn prices from the USDA’s Agricultural Prices (1998) were $3.09/bushel for Illinois, $3.33/bushel for Indiana,
$2.96/bushel in Iowa, $2.97/bushel in Michigan, $2.79/bushel in Minnesota, and $3.15/bushel in Ohio.  The price of
Nitrogen was $218/ton for all states except Minnesota which was $206/ton.
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Table 3. Marginal Cost of Variable Rate Nitrogen Applicationa

Additional Cost Amount per Acre Cost Amortized over 5 Yearsb

Grid Sampling $3.00-$10.00 $.79-$2.64
Soil Assay $3.00 $.79
Computer Mapping $.50-$1.00 $.13-$.26
Variable Rate Application $4.00 $4.00
Annual Cost of VRT $5.71-$7.69
aThe estimated cost of precision agriculture were obtained from Nyle Wollenhaupt at Ag-Chem
Equipment Company.
bThe annual cost for grid sampling, soil assay, and computer mapping assume a five year use of a
single map and a .10 interest rate.

Table 4:  Value of Precision Agriculture Under Cobb-Douglas Specification
A α µ N1 N2 Gross

Benefits
Value

Illinois 109.69 0.0408 0.33312 103.232 223.474 403.358 1.186
Indiana 126.57 0.0292 0.35145 85.313 186.612 474.956 1.024
Iowa 112.84 0.0365 0.34064 88.303 192.053 388.189 1.034
Michigan 112.36 0.0392 0.33603 96.476 209.239 393.406 1.117
Minnesota 113.55 0.0331 0.34666 78.321 170.970 361.589 0.879
Ohio 113.18 0.0429 0.32899 116.117 250.668 430.153 1.320

Table 5.  Value of Precision Agriculture Under Differing Corn Prices
Corn Price ($/bushel)

1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50
Illinois 1.07 1.26 1.45 1.63 1.82 2.01 2.20 2.40 2.59 2.79
Indiana 1.12 1.32 1.52 1.72 1.92 2.12 2.32 2.53 2.73 2.94
Iowa 1.05 1.24 1.42 1.61 1.80 1.99 2.18 2.37 2.56 2.75
Michigan 1.08 1.26 1.45 1.64 1.83 2.02 2.22 2.41 2.61 2.81
Minnesota 1.02 1.20 1.38 1.56 1.75 1.93 2.12 2.31 2.49 2.68
Ohio 1.14 1.33 1.53 1.72 1.92 2.12 2.33 2.53 2.74 2.94
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Table 6.  Value of Precision Agriculture at Various Coefficients of Variation
Coefficients of Variation

0.08 0.15 0.20 0.25 0.29
Illinois 0.39 1.38 2.44 3.80 5.08
Indiana 0.45 1.57 2.78 4.32 5.77
Iowa 0.38 1.31 2.32 3.61 4.83
Michigan 0.38 1.34 2.37 3.69 4.93
Minnesota 0.35 1.21 2.14 3.33 4.45
Ohio 0.42 1.48 2.62 4.07 5.45
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Figure 1.  Corn Yield as a Function of Nitrogen for Different Land Types

Figure 2. Gains to Variable Rate Nitrogen Application for Alternative Shares

of Low Quality Land
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ENDNOTES

                                                

1 Nonpoint pollution control is among the list of non-economic benefits associated with

the variable-rate application of chemical inputs.  Examples include contaminated water

supplies from chemical run-offs and the externalities associated with air-borne

herbicides and pesticides.  However, these issues are beyond the scope of this paper.

We refer the interested reader to Khanna and Zilberman.

2 Some empirical studies of nitrogen application suggest that stage 3 does not exist.

While stage 3 is usually not reached in practice due to economic considerations, it is

still technologically feasible.  Moreover, in section 3.1 we provide empirical results for

the Cobb-Douglas specification, a function that has only 2 stages.

3 It can be shown that the marginal product of 2v is positive and that the marginal product

of 1v is increasing in 2v  across the relevant range of production.  Further, the total

physical product with respect to 1v  yields all three stages of production.

4 Schueller develops five considerations that could significantly alter the value of

precision farming: Weather effects, crop production management, time demands,

agronomy, and operational accuracy.  With regard to weather he states:  “It must be

remembered that weather is almost the overriding factor in crop production.  Time

history of rainfall and temperature will affect the production more than anything which

can be controlled in a spatially-variable manner.”

5 In order to test this hypothesis, a limited number of simulations were conducted that

involved dividing a field up into an increasing number of sub-plots and re-estimating



2

                                                                                                                                                

the model.  The fields were divided up so that they were all mean-variance equivalent

distributions.  In all of the cases we tested, the largest difference between the estimated

value of precision agriculture obtained by dividing the field in half, and using mean-

variance equivalent distributions was under .01 percent.

6 In general, the concavity of the production function around the point of optimality is

sufficient to guarantee that the overall level of nitrogen applied to the entire field under

precision farming will be lower than the overall level of nitrogen in the absence of

precision farming.
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