Finger Rock Wash
 Letter of Map Revision
 Technical Data Notebook

Sections 3, 10, 15 \& 22, T13S, R14E G\&SRB\&M, Pima County, Arizona

Prepared for:
Pima County Regional Flood Control District 97 East Congress Street, $3^{\text {rd }}$ Floor

Tucson, Arizona 85701

Prepared by:
CMG Drainage Engineering, Inc.
3555 North Mountain Avenue
Tucson, AZ 85719
520-882-4244
jcurless@cmgdrainage.com

Expires 12/31/2012

CMG Project No. 27028
October 15, 2010

TABLE OF CONTENTS

SECTION 1: INTRODUCTION 1
1.1 PURPOSE 1
1.2 AUTHORITY FOR StUDY 1
1.3 Location of Study 1
1.4 Hydrologic and Hydraulic Methodology 2
1.5 AckNOWLEDGMENTS 2
1.6 Study Results 2
SECTION 2: FEMA FORMS 3
2.1 Study Documentation Abstract for FEMA Submittals 3
2.1.1 Date Study Accepted 3
2.1.2 Study Contractor 3
2.1.3 FEMA Technical Review Contractor 3
2.1.4 FEMA Regional Reviewer 3
2.1.5 State Technical Reviewer 3
2.1.6 Local Technical Reviewer 3
2.1.7 Reach Description 4
2.1.8 USGS Quadrangle Sheets 4
2.1.9 Unique Conditions and Problems 4
2.1.10 Coordination of Peak Discharges 4
2.2 FEMA FORMS 5
SECTION 3: SURVEY AND MAPPING INFORMATION 6
3.1 Field Survey Information 6
3.2 MAPPING 6
SECTION 4: HYDROLOGY 7
4.1 METHOD DESCRIPTION 7
4.2 Parameter Estimation 7
4.2.1 Drainage Area Boundaries 7
4.2.2 Watershed Work Maps 7
4.2.3 Gage Data 8
4.2.4 Statistical Parameters 8
4.2.5 Precipitation 8
4.2.6 Physical Parameters 9
4.3 Problems encountered during the Study 13
4.3.1 Special Problems and Solutions 13
4.3.2 Modeling Warnings and Error Messages 13
4.4 Calibration 14
4.5 FInal Results 14
4.5.1 Hydrologic Analysis Results 14
4.5.2 Verification of Results 15
SECTION 5: HYDRAULICS 17
5.1 METHOd DESCRIPTION 17
5.2 WORk Study Maps 17
5.3 Parameter Estimation 18
5.3.1 Roughness Coefficients 18
5.3.2 Expansion and Contraction Coefficients 19
5.4 Cross Section Description 19
5.5 Modeling Consideration 20
5.5.1 Hydraulic Jump and Drop Analysis 20
5.5.2 Bridges and Culverts 21
5.5.3 Levees and Dikes 23
5.5.4 Islands and Flow Splits 23
5.5.5 Ineffective Flow Areas 26
5.5.6 Supercritical Flow 26
5.6 Floodway Modeling 26
5.6.1 Establishing the primary channel as floodway 26
5.6.2 Regulation of erosion hazard areas 26
5.6.3 Encroachment limits are stricter than FEMA guidelines 27
5.6.4 Expanding the definition of primary channel in confined flow areas. 27
5.7 PROBLEMS ENCOUNTERED DURING THE STUDY 27
5.7.1 Special Problems and Solutions 28
5.7.2 Model Warnings and Error Messages 28
5.8 CALIBRATION 28
5.9 Final Results 28
5.9.1 Hydraulic Analysis Results 28
5.9.2 Verification of Results 29
SECTION 6: EROSION AND SEDIMENT TRANSPORT 30
SECTION 7: DRAFT FIS REPORT DATA 31
7.1 Summary of Discharges 31
7.2 Floodway Data. 31
7.3 Annotated Flood Insurance Rate Maps 31
7.4 Flood Profiles. 32

LIST OF TABLES

TABLE 1 - NOAA-14 Precipitation Table - 3-hr Storm Duration 8
TABLE 2 - Subbasin Physical Parameters. 10
TABLE 3 - Subbasin Channel Routing Summary 13
TABLE 4 - Peak Discharge Summary by Subbasin 15
TABLE 5 - Comparison to Similar Watersheds - 100-year Recurrence Interval Storm 16
TABLE 6 - Summary of Manning's "n" Roughness Coefficients 19
TABLE 7 - Culvert Summary Table 21
TABLE 8 - HEC-RAS Model Results for "With" \& "Without" Skyline Drive Culvert. 22
TABLE 9 - Summary of Discharges and Water Surface Elevations: Coronado Split Reach vs. Corresponding Main Channel Reach 3 Cross Sections 24
TABLE 10 - Lateral Weir Summary Table 25
TABLE 11 - HEC-RAS Steady Flow Data Summary 31

LIST OF APPENDICES

APPENDIX A - FEMA FORMS

MT-2 Form 1 - Overview \& Concurrence Form
MT-2 Form 2 - Riverine Hydrology \& Hydraulics Form

MT-2 Form 3 - Riverine Structures Form
APPENDIX B - REFERENCES
APPENDIX C - SURVEY FIELD NOTES \& AS-BUILT PLANS
C. 1 - SURVEY FIELD NOTES
C. 2 - CULVERT AS-BUILT PLANS

APPENDIX D - HYDROLOGIC ANALYSIS SUPPORTING DOCUMENTATION
D. 1 - PRECIPITATION DATA
D. 2 - PHYSICAL PARAMETER CALCULATIONS
D. 3 - HYDROGRAPH ROUTING DATA
D. 4 - RESERVOIR ROUTING DATA
D. 5 - HEC-1 MODEL INPUT/OUTPUT

APPENDIX E - HYDRAULIC ANALYSIS SUPPORTING DOCUMENTATION
E. 1 - ROUGHNESS COEFFICIENT ESTIMATION
E. 2 - CROSS SECTION PLOTS
E. 3 -PIMA COUNTY REGIONAL FLOOD CONTROL DISTRICT FLOODPLAIN

ORDINANCE 2010-FC5 (APPLICABLE SECTIONS)
E. 4 - HEC-RAS MODEL (WITH SKYLINE DRIVE CULVERT) INPUT/OUTPUT
E. 5 - HEC-RAS MODEL (WITHOUT SKYLINE DRIVE CULVERT) OUTPUT SUMMARY TABLE
APPENDIX F - EXHIBIT MAPS
Figure F-1 - Location Map
Figure F-2 - Watershed Map
Figure F-3 - Hydrologic Soils Group Map
Figure F-4 - Hydraulic Work Maps
Figure F-5 - Annotated Flood Insurance Rate Maps (FIRMs)
Preliminary Flood Profiles from RAS-PLOT
APPENDIX G - ELECTRONIC FILES ON DVD
HEC-1 Model -
Filename: 27028-FR100yrHEC-1_2008.02.18.dat
HEC-RAS Model (with Skyline Dr culvert) -
Filenames: FRW88.F01
FRW88.G01
FRW88.O01
FRW88.P01
FRW88.prj
HEC-RAS Model (without Skyline Dr culvert) -
Filenames: FRW88_NoSkylineCulv.F01
FRW88_NoSkylineCulv.G01
FRW88_NoSkylineCulv.O01
FRW88_NoSkylineCulv.P01
FRW88_NoSkylineCulv.prj
TDN Report text plus Appendices A - E (pdf format)
TDN Appendix F Exhibit Maps (pdf format)
Figure 1 - Location Map
Figure 2 - Watershed Map
Figure 3 - Hydrologic Soils Group Map
Figure 4 - Hydraulic Work Maps
Figure 5 - Annotated Flood Insurance Rate Maps (FIRMs)
Preliminary Flood Profiles from RAS-PLOT (on NGVD29 datum)
Shapefiles of Proposed Floodplain Mapping Revisions (ArcView shapefile format)

SECTION 1: INTRODUCTION

1.1 Purpose

This Technical Data Notebook has been prepared in support of a Letter of Map Revision (LOMR) submittal to amend the 100-year floodplain, or Special Flood Hazard Area (SFHA) associated with Finger Rock Wash in Pima County, Arizona. The purpose of this LOMR application is to revise the effective Flood Insurance Rate Map (FIRM) SFHA boundaries based on updated and more detailed information. No new hydraulic structures are present within the study limits.

1.2 Authority for Study

The National Flood Insurance Act of 1968 created the National Flood Insurance Program (NFIP) to improve basic knowledge about flood hazards and reduce future flood damages through State and local community floodplain management regulations (Reference \#1). The Federal Emergency Management Agency (FEMA) is charged with administration of the NFIP. In addition to providing flood insurance and floodplain management regulations, the NFIP identifies and maps the nation's floodplains. The floodplains are depicted on Flood Insurance Rate Maps, or FIRMs, for each local community. FEMA recognizes that changes to the maps may be necessary over time due to improvements in the techniques used in assessing flood risks, changes in physical conditions in the floodplains or watersheds, or the availability of new scientific or technical data. The NFIP regulations allow FEMA to revise and amend maps, as warranted, and require that each NFIP community inform FEMA of any new studies that present information that more accurately reflects existing flood risks and affects Base Flood Elevations (BFEs) in the community. This LOMR application has been undertaken by the Pima County Regional Flood Control District (PCRFCD) to fulfill this NFIP requirement for updated flood hazard mapping on Finger Rock Wash.

1.3 Location of Study

The study reach of Finger Rock Wash is located within portions of Sections 3, 10, 15 and 22, Township 13 South, Range 14 East, G\&SRB\&M, in northeastern Pima County, Arizona. A location and vicinity map for the study area are shown on Figure 1, Appendix F.

1.4 Hydrologic and Hydraulic Methodology

Hydrologic analyses were performed to update the 1% annual chance flood regulatory discharge rates at various concentration points along the Finger Rock Wash based on improved methodology and more recent topographic mapping in the watersheds downstream of the Coronado National Forest. The hydrologic modeling was performed using the U.S. Army Corps of Engineers' HEC-1 flood hydrograph computer program. The methodology is consistent with Arizona Department of Water Resources (ADWR) State Standard for Hydrologic Modeling Guidelines (SS10-07) (Reference \#2) and model parameters were provided by the PCRFCD in accordance with District guidelines and policies.

The U.S. Army Corps of Engineers' river system modeling software, HEC-RAS version 4.0.0, March 2008, was used to model the water surface elevations and determine floodplain limits for the 1% annual chance flood profile. The hydraulic model is based on updated topographic information collected along the study reaches.

1.5 Acknowledgments

Guidance and review was provided throughout the development of this study by PCRFCD staff including Lynn Orchard, CFM, Project Manager; Bill Zimmerman, Planning \& Development Division Manager; Terry Hendricks, CFM; \& Evan Canfield, PhD, PE, CFM.

1.6 Study Results

The enclosed information has been developed to support this LOMR application. The application has been reviewed and accepted by PCRFCD, the local agency with jurisdiction over the affected watercourses. The study results provide a more accurate and detailed floodplain delineation for Finger Rock Wash than was previously reported.

SECTION 2: FEMA FORMS

2.1 Study Documentation Abstract for FEMA Submittals

2.1.1 Date Study Accepted

2.1.2 Study Contractor

CMG Drainage Engineering, Inc. 3555 North Mountain Avenue Tucson, AZ 85719
Phone: (520) 882-4244
Prepared by: Jerald L. Curless, PE icurless@cmgdrainage.com

2.1.3 FEMA Technical Review Contractor

\qquad
\qquad
\qquad

2.1.4 FEMA Regional Reviewer

\qquad
\qquad
\qquad

2.1.5 State Technical Reviewer

2.1.6 Local Technical Reviewer

Lynn Orchard, CFM Chief Hydrologist Pima County Regional Flood Control District Planning \& Development Division 97 East Congress Street, $3^{\text {rd }}$ Floor Tucson, AZ 85701
Phone: (520) 243-1800

2.1.7 Reach Description

The downstream limit of this study is the confluence of Finger Rock Wash with Rillito Creek. The study extends approximately 4.80 miles upstream on the main Finger Rock Wash main channel to the Coronado National Forest boundary. The study also includes a short tributary reach on Pontatoc Canyon Wash that joins Finger Rock Wash approximately 0.16 miles downstream of the Coronado National Forest boundary (the upstream study limit). Lastly, the study area includes a split reach that diverges east from Finger Rock Wash near River Mile 4.477, at the Coronado Drive at-grade crossing, and extends downstream approximately 0.85 miles before rejoining the main Finger Rock Wash channel near River Mile 3.748.

The study reaches are currently designated as SFHA Zone A on the following DFIRM Panels that have an effective date of February 8, 1999 (relevant LOMR updates are also noted):

- 04019C1635K, revised to reflect LOMRs dated October 12, 2000 and April 29, 2004;
- 04019C1643K, revised to reflect LOMR dated April 22, 2004;
- 04019C1644K, revised to reflect LOMR dated April 22, 2004;
- 04019C1645K;

2.1.8 USGS Quadrangle Sheets

The watersheds for the study area are shown on Tucson North, Oro Valley and Sabino Canyon USGS 7.5-Minute, 1:24,000 Quadrangle Maps for Arizona. The floodplain mapping study area is contained on the Tucson North Quadrangle Map.

2.1.9 Unique Conditions and Problems

There were no remarkable unique conditions or problems encountered during the course of this study.

2.1.10 Coordination of Peak Discharges

Suitable stream flow data is not available for Finger Rock Wash. The PCRFCD does have an Alert Flood Warning gage at the Skyline Road culvert crossing, however the data produced by this gage is not considered applicable for detailed stage-discharge measurement analysis or comparisons. A HEC-1 flood hydrograph model was developed for the Finger Rock Wash watershed based on a hypothetical storm event for the 1-percent annual chance recurrence interval. The HEC-1 model was set up using methodology prescribed by the PCRFCD at the time this study was initiated. The resulting discharge
rates were reviewed and approved by the PCRFCD technical reviewer on or about February 18,2008 , prior to the initiation of floodplain hydraulic mapping.

2.2 FEMA Forms

FEMA MT-2 Forms are included in Appendix A including:

- MT-2 Form 1, Overview and Concurrence Form, plus Attachment 1-1: Part C. Review Fee - Exemption explanation
- MT-2 Form 2, Riverine Hydrology \& Hydraulics Form
- MT-2 Form 3, Riverine Structures Form, plus Attachment 3-1: Part A. General Description of Structure continuation

SECTION 3: SURVEY AND MAPPING INFORMATION

3.1 Field Survey Information

As-built elevations for the existing culverts and select ground points located throughout the study reach were field surveyed by OPW Engineering, LLC in January 2008, as a part of this project. As-built plans for the culverts that were available and certified field survey information are provided in Appendix C. The survey information is also provided graphically on the certified Hydraulic Work Maps found in Appendix F.

3.2 Mapping

Topographic mapping and aerial photography used in the preparation of this LOMR application were acquired from the Pima Association of Governments (PAG) GIS Regional Data Clearinghouse. The topographic mapping was generated in 1998, with contours being provided on a 2 -foot interval. The aerial photography was generated in 2005 by PAG. The topography and all field survey elevations are based on the following:

- Horizontal Datum: NAD83-92(HARN)
- Projection: Arizona State Plane, Central Zone
- Units: International Feet
- Vertical Datum: NAVD88

A vertical datum conversion from NAVD88 to NGVD29 was performed in accordance with the conversion protocol from Guidelines \& Specifications for Mapping Partners, FEMA, April 2003, Appendix B, Guidance for Converting to NAVD88 (Reference \#3). The average NGS Vertcon datum shift for the Finger Rock Wash study reach is: NAVD88-2.29 ft $=$ NGVD29. The conversion computations have been included in Appendix C.

The electronic DFIRM files in AutoCAD and ArcView formats (horizontal datum, projection \& units as noted above) were acquired from the PCRFCD for use in creating mapping exhibits for this LOMR. Hydraulic Work Maps and Annotated FIRMs have been provided at a horizontal scale of 1 inch $=100$ feet. The effective FIRM mapping for Finger Rock Wash was completed either as part of the original Flood Insurance Study (FIS) for Pima County in 1979, or as an update in the mid-1980s. The original mapping, outside the LOMR areas noted above, was based on approximate methods and a hydraulic model was not available for this study.

SECTION 4: HYDROLOGY

4.1 Method Description

As noted in Section 1.4 above, the U.S. Army Corps of Engineers' HEC-1, computer program, version 4.1, June 1998 (Reference \#4), was used to develop peak flow rates and hydrographs from the 1% annual chance storm occurring over the entire Finger Rock Wash watershed. Peak discharges from the HEC-1 model were input into the floodplain hydraulic model (HECRAS) at key locations along the watercourse to simulate flood flows moving through the study reach.

4.2 Parameter Estimation

4.2.1 Drainage Area Boundaries

The limits of the study watershed extend from the geologic floodplain of the Rillito Creek on the downstream end (near the boundary line between T13S, R14E, Section 22/27), upstream (northward) to the upstream limits near Mt. Kimball (in T12S, R14E, Section 23) in the Santa Catalina Mountains, north of Tucson. The watershed varies in elevation from approximately 2426 feet at the downstream end to approximately 7245 feet near the peak of Mt. Kimball. Watercourse slopes in the overall watershed vary from 0.028 feet per feet in the lower watershed, to approximately 0.405 feet per feet in the upper watershed.

4.2.2 Watershed Work Maps

A watershed work map was developed for the project using PAG aerial photography and topographic GIS data for the areas south (downstream) of the Coronado National Forest boundary (boundary line between T13S, R14E, Sections $34 / 3$ \& Sections 35/2) and USGS Quadrangle Maps for the areas upstream of the Forest boundary. This map was generated at a horizontal scale of 1 inch $=800$ feet. The topography is provided with a contour interval of 10 feet in the PAG data areas, and a contour interval of 40 feet on the USGS Quadrangles. The watershed map, which is provided as Figure F-2 in Appendix F, illustrates the following information:

- Subbasin boundaries and flow concentration points;
- Point rainfall locations and data;
- Time of concentration $\left(T_{c}\right)$ flow paths;
- Hydrograph routing flow paths;
- Tabular hydrologic data for each subbasin.

4.2.3 Gage Data

As noted in Section 2.1.10 above, there is a PCRFCD Alert Flood Warning gage at the Skyline Road culvert crossing; however the data produced by this gage is not applicable for detailed stage-discharge measurement analysis or comparisons. Consequently, stream flow gage data was not available for this study.

4.2.4 Statistical Parameters

Rainfall data records and information were acquired from NOAA Atlas 14, PrecipitationFrequency Atlas of the United States, Volume 1 Version 4.0: Semiarid Southwest (Arizona, Southeast California, Nevada, New Mexico, Utah), 2004, Revised 2006 (Reference \#5). Excerpts from this document that provide a discussion on the length of records and methods of analyses are provided in Appendix D.1.

4.2.5 Precipitation

As noted in the previous section, rainfall data for this study was acquired from NOAA Atlas 14 records for the Finger Rock Wash watershed. Per requirements contained in PCRFCD Technical Policy TECH-010 Rainfall Input for Hydrologic Modeling (Reference \#6), values that correspond to the upper bound of the 90% confidence interval were used.

Seven point rainfall locations were chosen within the watershed to provide representative rainfall amounts for the hydrologic model. Rainfall depths increased as elevations in the watershed increased. Rainfall data is summarized in Table 1, NOAA 14 data sheets are included in Appendix D.1, and point rainfall locations are shown on Figure F-2 in Appendix F.

Table 1: NOAA 14 Precipitation Table - 3-hr Storm Duration

Point Rainfall ID	T-R-S	Latitude I Longitude	Approx Elev.	Corresponding HEC-1 Subbasin	100-yr Rainfall Depth (inches)	100-yr Rainfall Depth with Reduction Reduches)
(inches						

The HEC-1 model produced a total time to peak (T_{p}) for the Finger Rock Wash watershed of 1.33 hours. From USDA Natural Resources Conservation Service (NRCS) (formerly SCS) NEH-4, Hydrology, Chapter 16 - Hydrographs (Reference \#7) Equations 16.7 and 16.12, a T_{p} of 1.33 hours equates to an approximate $\mathrm{T}_{\mathrm{c}}=2$ hours. A 3-hour design storm was chosen in accordance with PCRFCD Technical Policy 18 (TECH-018) Acceptable Model Parameterization for Determining Peak Discharge (Reference \#8), in which a 3-hour storm distribution is stipulated as the local storm for watersheds with times of concentration equal to, or less than 3 hours.

The 3-hour hypothetical storm corresponds to relatively small convective thunderstorms that often occur during the months of July through September in the Tucson area. These storms are usually limited in aerial extent with maximum rainfall amounts and intensities confined to less than a two-square-mile central core of rainfall. An aerial reduction factor of 0.84 that is consistent with the 6.35 square mile Finger Rock Wash watershed area was applied to the NOAA 14 point rainfall data for input into the HEC-1 model. The aerial reduction factor was derived from NOAA Technical Memorandum NWS HYDRO-40 data that support the premise that average rainfall depths decrease as the areal extent of storms increase. Aerial reduction factors for Arizona are presented in ADWR State Standard SS10-07 (Reference \#2).

Rainfall temporal distribution was based on that presented in the City of Tucson Stormwater Management Study (TSMS), Existing-Conditions Hydrologic Modeling for the TSMS Phase II (Reference \#9) and a TSMS Technical Memorandum 7.2.6, Temporal Distribution for a 3hour Thunderstorm (Reference \#10). These documents describe how the TSMS 3-hour temporal distribution was adapted from a 1-hour rainfall distribution developed from data collected from the nearby US Agricultural Research Service Walnut Gulch Experimental Watershed. The data collection and research are documented in a technical paper StormCell Properties Influencing Runoff From Small Watersheds (Osborn, 1983) (Reference \#10) for 3-hour, early-occurring, maximum rainfall intensities. The TSMS Temporal Distribution of a Design 3-Hour Thunderstorm and TSMS Technical Memorandum 7.2.6 are included in Appendix D.1.

4.2.6 Physical Parameters

The Finger Rock Wash watershed was subdivided into 22 subbasins, varying in size from 0.055 to 0.592 square miles. Subwatershed physical characteristics are summarized in

Table 2. A schematic diagram of the HEC-1 stream network can be found on pages 9 through 11 of the HEC-1 input/output printout in Appendix D.5.

Rainfall loss and runoff transformation methods and parameters were determined based on PCRFCD TECH-018 guidelines and Pima County Hydrology Procedures documented in the PCRFCD PC-Hydro User Guide, March 2007 (Reference \#11).

Table 2: Subbasin Physical Parameters

Subbasin ID	$\begin{aligned} & \text { Subbasin } \\ & \text { Area } \\ & \text { (sq mi) } \end{aligned}$	Hydrologic Soils Groups			Vegetation Cover (\%)	SCS Curve No.	Impervious Surface (\%)	Tc Flow Path Length (ft)	Mean Slope (ft/ft)	$\begin{gathered} \mathbf{T}_{\mathbf{c}} \\ \text { (hrs) } \end{gathered}$	$\begin{aligned} & \mathrm{Lag} \\ & \text { (hrs) } \end{aligned}$
		$\begin{array}{\|c\|} \hline \text { B } \\ (\%) \\ \hline \end{array}$	$\begin{gathered} \text { C } \\ \text { (\%) } \end{gathered}$	$\begin{gathered} \hline \mathrm{D} \\ (\%) \\ \hline \end{gathered}$							
FR-1	0.083	90	10	0	30	77	10	3097	0.027	0.325	0.195
FR-2	0.175	85	15	0	30	77	15	4970	0.033	0.420	0.252
FR-3	0.317	88	12	0	30	77	25	6080	0.029	0.390	0.234
FR-4	0.055	92	8	0	30	77	25	2110	0.041	0.167	0.100
FR-5	0.155	90	10	0	25	77	10	3880	0.035	0.333	0.200
FR-6	0.133	15	30	45	30	77	20	5122	0.034	0.370	0.222
FR-7	0.173	84	6	10	30	78	20	4695	0.040	0.372	0.223
FR-8	0.592	40	0	60	30	85	20	7005	0.189	0.318	0.191
FR-9	0.151	0	0	100	40	86	5	5720	0.226	0.297	0.178
FR-10	0.561	0	0	100	40	86	2	8770	0.287	0.330	0.198
FR-11	0.480	0	0	100	40	86	10	7260	0.382	0.290	0.174
FR-12	0.434	0	0	100	40	86	15	6834	0.299	0.288	0.173
FR-61	0.166	60	20	20	30	81	35	6064	0.036	0.478	0.287
FR-62	0.503	75	0	25	30	80	20	8880	0.120	0.249	0.199
FR-81	0.313	40	0	60	30	85	20	9495	0.241	0.388	0.233
FR-82	0.330	40	0	60	30	85	15	6745	0.336	0.277	0.166
FR-91	0.113	0	0	100	40	86	10	3680	0.186	0.277	0.166
FR-92	0.222	0	0	100	40	86	5	5440	0.224	0.268	0.161
FR-93	0.381	0	0	100	40	86	5	6520	0.373	0.295	0.177
FR-94	0.464	0	0	100	40	86	10	6660	0.295	0.278	0.167
FR-921	0.211	0	0	100	40	86	2	6140	0.238	0.267	0.160
FR-922	0.341	0	0	100	40	86	10	7300	0.405	0.302	0.181

Rainfall losses were estimated by the SCS Curve Number (CN) method. This method estimates infiltration losses based on hydrologic soils types and vegetation type and cover density. Hydrologic soils types for each subbasin were determined from the Soil Survey of Pima County, Arizona as provided in GIS format by the PCRFCD. Hydrologic soil type percentages were estimated by overlaying the GIS soils drawings onto the CAD watershed map for each subbasin. Vegetation cover types and densities were estimated by examination of aerial photographs and guidance found in Section 2.4.3 of the PCRFCD PCHydro User Guide (Reference \#11).

For portions of the Finger Rock Wash watershed south of the Coronado National Forest
boundary, the percent impervious surface listed in Table 2 reflects the existing land use as determined by zoning/development records and aerial photographs. North of this boundary, impervious surfaces varying from 2% to 10% per subwatershed, were estimated from aerial photographs to account for hydraulically-connected rock outcrops.

Runoff transformation was modeled using the SCS Unit Hydrograph function within HEC-1. This method requires that subbasin Lag times be input on the HEC-1 UD records. Lag times were computed as L = 0.6 T_{c} per Equation 15.3 from NRCS NEH-4, Hydrology, Chapter 15 Travel Time, Time of Concentration and Lag (Reference \#7). For the T_{c} computations, the subbasin watershed boundaries and T_{c} hydraulic flow paths were delineated on the Finger Rock Wash Watershed Map, Figure F-2. Per methods outlined in NRCS Technical Release No. 55 (TR-55) (Reference \#12), sheet flow, shallow concentrated flow and channel flow segments were identified along the T_{c} hydraulic flow paths. Velocities in the channel portions of the T_{c} flow paths were estimated by a Manning's normal depth analysis for a representative channel cross section within each channel segment.

The Manning's n values were determined based on review of aerial photographs and methods prescribed in Arizona State Standard for Floodplain Hydraulic Modeling (SS 09-02) (Reference \#13) and USGS Scientific Investigations Report 2006-5108 (Reference \#14). Attention was paid to the resulting Froude numbers generated by the application of the estimated Manning's n values to confirm that appropriate hydraulic conditions, i.e. subcritical flow were being produced for each channel segment. This is in accordance with USGS and USDA Forest Service studies (References \#15 and \#16, respectively), which found that high gradient and mobile bed natural channels, such as those found within the Finger Rock Wash drainage system, will not consistently flow under super-critical conditions except for short isolated reaches and for short time periods. T_{c} and Lag time parameters are summarized in Table 2, and detailed computation sheets are included in Appendix D.2.

Hydrograph routing between subbasins was performed using the normal depth storage routing method option within HEC-1. Representative eight-point cross sections were developed for each routing reach based on field investigations and review of PAG 2005 color aerial photographs and 1998 topography. Manning's n values for each routing reach were estimated using similar methods described above for the T_{c} channel segment velocity computations, i.e. channel roughness was computed based on the assumption that flow in steep gradient, mobile bed channels is seldom supercritical (References \#15 and \#16).

From ADWR SS 10-07 (Reference \#2), "the amount of hydrograph attenuation is related to the number of subreaches needed to simulate the movement of the flood wave through the reach." For this study, guidance from the HEC-1 User Manual (Reference \#4) was used to estimate the appropriate number of subreaches for each routing reach per the following relationship. The number of subreaches should be equal to the flood wave travel time through the routing reach divided by the HEC-1 model computational time interval (NMIN). A ratio of flood wave velocity to average channel velocity of 1.5 for natural watercourses was used to compute the routing reach flood wave travel times.

To account for potential flood storage upstream of the five culvert crossings within the study reach, flood storage (reservoir) routing was performed at each culvert crossing using the Modified Puls reservoir routing option within HEC-1. Culvert and roadway input data were determined from as-built plans, field surveys, site visits and inspection of aerial photographs and topography. Upstream area-elevation information was determined from the project topographic mapping by CAD methods and input into the HEC-1 model on the SA and SE records. Separate stage-discharge relationships for each culvert were developed by use of the Federal Highways Administration (FHWA) HY-8 Culvert Hydraulic computer program. This program is based on and automated the design methods described in FHWA Hydraulic Design Series No. 5 (HDS-5) Hydraulic Design of Highway Culverts (Reference \#17). Stage-discharge information was input into the HEC-1 model on the SQ and SE records. A summary of the channel routing information is shown in Table 3, and the hydrograph routing and reservoir routing data are included in Appendices D. 3 and D. 4 respectively.

Table 3: Subbasin Channel Routing Summary

Routing Reach ID	Left Overbank Manning's n	Channel Manning's n	Right Overbank Manning's n	Reach Length (ft)	Channel Slope (ft/ft)	Floodwave Velocity (ft/sec)	Reach travel time (min)	Number of subreaches*
$\begin{gathered} \hline \text { FR-2 to } \\ \text { FR-1 } \end{gathered}$	0.050	0.040	0.050	2300	0.018	11.2	3.4	2
$\begin{gathered} \text { FR-3 to } \\ \text { FR-2 } \end{gathered}$	0.055	0.045	0.055	2465	0.016	10.7	3.8	2
$\begin{gathered} \text { FR-4 to } \\ \text { FR-3 } \\ \hline \end{gathered}$	0.060	0.045	0.060	5940	0.017	12.5	7.9	4
$\begin{gathered} \text { FR-5 to } \\ \text { FR-4 } \end{gathered}$	0.060	0.050	0.060	1270	0.019	10.6	2.0	1
$\begin{gathered} \text { FR-6 to } \\ \text { FR-5 } \\ \hline \end{gathered}$	0.060	0.045	0.060	3140	0.018	13.6	3.8	2
$\begin{gathered} \text { FR-7 to } \\ \text { FR-6 } \end{gathered}$	0.060	0.045	0.060	3136	0.024	14.5	3.6	2
$\begin{gathered} \text { FR-8 to } \\ \text { FR-7 } \end{gathered}$	0.060	0.045	0.060	1350	0.018	15.3	1.5	1
$\begin{gathered} \text { FR-9 to } \\ \text { FR-8 } \\ \hline \end{gathered}$	0.065	0.065	0.065	4615	0.045	19.0	4.0	2
$\begin{array}{\|c\|} \hline \text { FR-10 to } \\ \text { FR-9 } \\ \hline \end{array}$	0.095	0.095	0.095	4300	0.093	16.5	4.3	2
$\begin{array}{\|\|c\|} \hline \text { FR-11 to } \\ \text { FR-10 } \\ \hline \end{array}$	0.125	0.125	0.125	4720	0.159	18.1	4.3	2
$\begin{gathered} \text { FR-12 to } \\ \text { FR-11 } \end{gathered}$	0.160	0.160	0.160	4000	0.268	15.7	4.2	2
$\begin{gathered} \text { FR-62 to } \\ \text { FR-61 } \end{gathered}$	0.050	0.050	0.050	4270	0.032	10.9	6.5	3
$\begin{aligned} & \text { FR-82 to } \\ & \text { FR-81 } \end{aligned}$	0.085	0.085	0.085	4475	0.049	11.4	6.5	3
$\begin{array}{\|c\|} \hline \text { FR-92 to } \\ \text { FR-91 } \\ \hline \end{array}$	0.095	0.095	0.095	1520	0.092	18.0	1.4	1
$\begin{aligned} & \text { FR-93 to } \\ & \text { FR-92 } \end{aligned}$	0.105	0.105	0.105	4220	0.121	16.1	4.3	2
$\begin{aligned} & \text { FR-94 to } \\ & \text { FR-93 } \\ & \hline \end{aligned}$	0.160	0.160	0.160	3600	0.286	14.3	4.2	2
$\begin{gathered} \text { FR-922 to } \\ \text { FR-921 } \end{gathered}$	0.115	0.115	0.115	5100	0.135	12.8	6.6	3

* Equals Flood Wave Velocity divided by HEC-1 computation interval (NMIN) of 2 min.

4.3 Problems encountered during the Study

4.3.1 Special Problems and Solutions

There were no special problems or unique situations encountered during the hydrologic modeling for this study.

4.3.2 Modeling Warnings and Error Messages

There were no errors encountered during the HEC-1 modeling. Warning messages were encountered during channel routing operations for HEC-1 Stations [12 to 11], [RES-9], [92 to

91], [RES-91], [RES-7], [7 to 6], [RES-5], [RES-4], [3 to 2] and [2 to 1]. The following is an example of the warning message displayed in the HEC-1 output.

Abstract

*** WARNING *** MODIFIED PULS ROUTING MAY BE NUMERICALLY UNSTABLE FOR OUTFLOWS BETWEEN 0. TO 4272. THE ROUTED HYDROGRAPH SHOULD BE EXAMINED FOR OSCILLATIONS OR OUTFLOWS GREATER THAN PEAK INFLOWS. THIS CAN BE CORRECTED BY DECREASING THE TIME INTERVAL OR INCREASING STORAGE (USE A LONGER REACH.) Examination of the routed hydrographs found that no outflows were greater than peak inflows. For Stations [12 to 11], [92 to 91], [RES-7], [7 to 6], [3 to 2] and [2 to 1], the numerically unstable outflow ranges were outside the outflow ranges of the Finger Rock Wash model. For Stations [RES-9] and [RES-91], the Finger Rock Wash model outflows were within the numerically unstable outflow ranges, but no oscillations were noted in the hydrographs and the results appeared reasonable. For Stations [RES-5] and [RES-4], single minor oscillations occurred near the beginning of these reservoir routing hydrographs. The remainder of the hydrograph was normal and the oscillation did not appear to impact the modeling results. Therefore, no corrective steps were taken.

4.4 Calibration

No calibration was conducted in this study.

4.5 Final Results

4.5.1 Hydrologic Analysis Results

The results of the HEC-1 modeling for Finger Rock Wash are summarized by subbasin in Table 4. See Appendix D. 5 for the Finger Rock Wash HEC-1 input/output and Appendix G for the electronic input file.

Table 4: Peak Discharge Summary by Subbasin

Subbasin ID	Area (sq. mi)	Subbasin Discharge (cfs)	Cumulative Discharge (cfs)	Time of Peak (hrs)
FR-1	0.083	61	5589	1.33
FR-2	0.175	131	5653	1.27
FR-3	0.317	301	5756	1.20
FR-4	0.055	72	6046	1.00
FR-5	0.155	120	6213	0.93
FR-6	0.133	123	6657	0.77
FR-7	0.173	180	6121	0.70
FR-8	0.592	887	6055	0.63
FR-9	0.151	224	4798	0.60
FR-10	0.561	822	2235	0.53
FR-11	0.480	854	1563	0.47
FR-12	0.434	811	811	0.40
FR-61	0.166	202	770	0.57
FR-62	0.503	595	595	0.47
FR-81	0.313	430	852	0.53
FR-82	0.330	495	495	0.40
FR-91	0.113	181	2503	0.57
FR-92	0.222	343	2377	0.53
FR-921	0.211	337	777	0.53
FR-922	0.341	559	559	0.43
FR-93	0.381	635	1388	0.47
FR-94	0.464	830	830	0.40
Totals	6.353	$\mathrm{~N} / \mathrm{A}$	N / A	N / A

4.5.2 Verification of Results

The Finger Rock Wash LOMR hydrologic results were compared with other similar-sized Santa Catalina Mountain foothills watershed's effective discharges for the 100-year storm event. An additional comparison was made using the southern Arizona regional regression equations published by the USGS. Table 5 summarizes the results of these comparisons. The Finger Rock Wash LOMR peak discharge was similar to the peak discharge from the 1986 effective Pima County regulatory study by Simons, Li \& Associates (Reference \#18), which utilized the Pima County Hydrology Method established in 1979. The Finger Rock Wash LOMR HEC-1 unit discharge was somewhat larger than the unit discharge computed from the USGS Regional Regression Equation 13 for southern Arizona (Reference \#19); probably due in part to the urbanized characteristics of the downstream half of the watershed. Overall, the Finger Rock Wash LOMR HEC-1 model predicts a unit discharge within one standard error (68-percent confidence interval) of the regression estimate for Finger Rock Wash. Therefore, the flood discharge estimates used for this LOMR are considered reasonable per guidelines in Appendix C of FEMA's Guidelines \& Specifications for Flood Hazard Mapping Partners (Reference \#20).

Table 5: Comparison to Similar Watersheds - 100-year Recurrence Interval Storm

Data Source	Basin Area (sq. mi.)	100-Year Runoff (cfs)	Unit Runoff (cfs/sq. mi)
Finger Rock Wash Model from This Study	$\mathbf{6 . 3 5 3}$	5589	$\mathbf{8 8 0}$
Finger Rock Wash per USGS Regional Regression Equation 13	6.353	3815	601
Finger Rock Wash from Flecha Caida Study (SLA 1986) and Pima Co Effective Regulatory Discharge	6.444	5779	897
Esperero Canyon Wash at Confluence with Ventana Canyon - Pima Co Effective FIS	6.2	8440	1361
Ventana Canyon at Sunrise Drive - Pima Co Effective FIS	7.0	10,770	1539
Pima Wash Above Confluence with Geronimo Wash - Pima Co Effective FIS	6.3	4250	675
Sabino Creek Above Confluence with Bear Creek - Pima Co Effective FIS	36.8	12,500	340
Sabino Canyon Gauged Data (1993)	35.5	11,300	318

SECTION 5: HYDRAULICS

5.1 Method Description

Finger Rock Wash, from its confluence with Rillito Creek on the downstream end, extending approximately 4.80 miles upstream on the main channel to the Coronado National Forest boundary is the primary subject of this LOMR application. The study also includes a short tributary reach on Pontatoc Canyon Wash that joins Finger Rock Wash approximately 0.16 miles downstream of the Coronado National Forest boundary (the upstream study limit). Lastly, the study area includes a split reach that diverges north and east from Finger Rock Wash near River Mile 4.477, at the Coronado Drive at-grade crossing, and extends downstream approximately 0.85 miles before rejoining the main Finger Rock Wash channel near River Mile 3.748.

Finger Rock Wash is a major tributary to Rillito Creek that emanates from the Santa Catalina Mountains, north of the City of Tucson, Arizona. Flow is generally in a north to south direction and the floodplain mapping study reach is situated primarily in mountain foothills terrain. Finger Rock Wash consists primarily of a sand/cobble bed channel varying in depth up to approximately four feet in places. The channel is well entrenched and the floodplain changes from narrow steep-sided canyons in the upper reaches, to broader, flatter floodplains in the lower reaches. The overbanks of the wash are moderately to heavily vegetated. The upstream portions of the study area are of a relatively natural character, with an active channel, and narrow floodplains with abundant desert vegetation. Human activity and floodplain encroachment increase in the downstream direction. Development is generally limited to low-density residential development. Activities that impact the channel and floodplain include road crossings and residential development encroachment.

HEC-RAS, Version 4.0.0 (March 2008, U.S. Army Corps of Engineers) was used to determine the water surface elevations for the 100-year discharge. The downstream boundary condition for the model was determined by the normal depth method within HEC-RAS (slope equal to 0.015 feet per foot).

5.2 Work Study Maps

Hydraulic work maps were developed for the project using PAG aerial photography and topographic GIS data for the floodplain mapping areas south (downstream) of the Coronado National Forest boundary (boundary line between T13S, R14E, Sections 34/3 \& Sections
$35 / 2$). These maps were generated at a horizontal scale of 1 inch $=100$ feet. Streets and property line base information have been imported from Pima County effective DFIRM panels 0419C1635K, 0419C1643K, 0419C1644K and 0419C1645K that were provided by PCRFCD. The topography is provided with a contour interval of 2 feet, and the contours and all ground elevation data are based on NAVD88 vertical datum. Due to Pima County's impending conversion from NGVD29 to NAVD88 vertical datum, water surface elevations have been provided on both datum with a VERTCON of NAVD88 Elev. minus 2.29 feet = NGVD29 Elev. A vertical datum conversion computation sheet is provided in Appendix C.1.

In addition to the information mentioned above, the Hydraulic Work Maps, which are provided as Figure F-4 (Sheets 1 through 6) in Appendix F, illustrate the following:

- Survey Township, Range \& Section information;
- Stream channel center lines / profile base lines;
- River \& reach identifiers that correspond to the HEC-RAS model;
- HEC-RAS hydraulic cross-section lines with graphic representation of the 1% annual chance flood water surface elevations on NGVD29 \& NAVD88 vertical datum;
- 1\% annual chance flood water surface elevations on NGVD29 \& NAVD88 vertical datum in tabular format;
- Lateral weir crest boundary line;
- Existing culvert type, size \& elevation information;
- Effective 1\% annual chance flood Zone A SFHA boundaries;
- Proposed 1% annual chance flood Zone AE SFHA boundaries.

5.3 Parameter Estimation

5.3.1 Roughness Coefficients

Manning's roughness coefficients were established for the hydraulic modeling phase of this project. A field reconnaissance study was conducted, and the results are summarized in the report entitled Finger Rock Wash LOMR Study - Field Reconnaissance Report, prepared by CMG Drainage Engineering, Inc, and dated September 9, 2010. This study is provided in Appendix E. 1 of this report and Table 6 provides a summary of the selected coefficients organized by river reach.

Table 6: Summary of Manning's " n " Roughness Coefficients

River Station	Left Overbank	Channel	Right Overbank
Pontatoc Canyon Tributary Reach			
RS 0.000 to 0.154	0.086	0.066	0.086
Finger Rock Wash Main Channel Reach 1			
RS 4.643 to 4.800	0.086	0.066	0.086
Finger Rock Wash Main Channel Reach 2			
RS 4.492	0.083	0.050	0.083
RS 4.509 to 4.596	0.083	0.061	0.083
Finger Rock Wash Main Channel Reach 3			
RS 3.748 to 4.477	0.083	0.061	0.083
Finger Rock Wash Main Channel Reach 4			
RS 0.000 to 1.939	0.066	0.045	0.066
RS 1.997 to 2.019	0.025	0.025	0.025
RS 2.047 to 2.164	0.066	0.045	0.066
RS 2.233 to 2.268	0.045	0.045	0.045
RS 2.305 to 3.440	0.075	0.050	0.075
RS 3.466 to 3.494	0.020	0.020	0.020
RS 3.521 to 3.656	0.083	0.061	0.083
Coronado Split Reach			
RS 0.000 to 0.186	0.083	0.061	0.083
RS 0.221	0.083	0.030	0.083
RS 0.271	0.083	0.070	0.083
RS 0.319	0.083	0.065	0.083
RS 0.352 to0.382	0.083	0.060	0.083
RS 0.399 to 0.482	0.083	0.070	0.083
RS 0.527	0.083	0.061	0.083
RS 0.561	0.030	0.083	0.061
RS 0.581 to 0.847	0.083	0.030	0.083
RS 0.854	0.083	0.030	0.061

5.3.2 Expansion and Contraction Coefficients

Expansion and contraction coefficients used in the HEC-RAS model are based on guidance provided in the HEC-RAS User's Guide and Hydraulic Reference Manual (Reference \#21). An expansion coefficient of 0.1 and contraction coefficient of 0.3 were used at all cross sections, except at culvert inlets and outlets where they were set respectively, at 0.3 and 0.5 .

5.4 Cross Section Description

The revision area includes the entire length of Finger Rock Wash south (downstream) of the Coronado National Forest, which presently includes only a Zone A SFHA. This LOMR proposes to upgrade the floodplain mapping and SFHA zone designation to Zone AE for all reaches of the watercourse with current SFHAs. A HEC-RAS model consisting of 141 crosssections has been prepared for Finger Rock Wash. The cross-section channel reach lengths
range from approximately 23 feet to approximately 822 feet with an average reach length of just under 220 feet. All cross-sections are based on existing conditions 2 -foot contour interval topography, produced in 1998, which was provided by Pima County for this project. Ground surveys and other Pima County GIS ground point data were also used to supplement the 1998 topography in areas where more detail was required. All topography and ground elevation data are based on NAVD88 vertical datum.

Cross section locations were chosen based on guidance provided in the HEC-RAS User's Guide, Hydraulic Reference Manual, and Arizona State Standard for Floodplain Hydraulic Modeling (SS 09-02) (Reference \#13). The cross sections were located considering changes in channel geometry, discharge, slope, roughness, and distance between cross sections for computational stability. Since the effective FIS mapping for Finger Rock Wash is Zone A, no FIS cross sections exist on the effective FIRM panels. This precluded the need to duplicate effective cross section locations in the current model. Ground points for each cross section were initially obtained by CAD methods, with points being added or modified manually to select cross sections, where needed, to make the model more representative of actual ground conditions. The cross sections were oriented to be perpendicular to estimated flow paths of the 100-year flood event.

Between Finger Rock Wash main channel cross sections 3.748 and 4.477, a flow split reach, which begins at the Coronado Drive at-grade crossing, was modeled as described in Section 2.1.7 above. Cross sections in the split reach numbered from river mile 0.000 (coincident with main channel RS 3.748) to 0.854 (coincident with main channel RS 4.477). Split reach cross sections $0.000,0.079,0.114$ and 0.186 shared alignments with main channel cross sections $3.748,3.815,3.855$ and 3.891 , respectively. Split reach cross sections between and inclusive of 0.221 to 0.482 were drawn separately from the main channel cross sections. Split reach cross sections between and inclusive of 0.527 to 0.854 again shared alignments with main channel cross sections 4.169 to 4.477 , respectively. Additional discussion about the modeling of the Coronado Drive flow split modeling can be found later in Section 5.5.4 of this report.

The location of the channel center line/profile base line and cross-sections are shown on the work maps provided in Appendix F.

5.5 Modeling Consideration

5.5.1 Hydraulic Jump and Drop Analysis

Except at roadway culvert crossings, there were no locations where significant hydraulic jumps or drops where noted. Culvert hydraulics are discussed in the next section, 5.5.2.

5.5.2 Bridges and Culverts

Five existing culverts were modeled within the study reach, from upstream to downstream they included, 1) a single cell $31^{\prime}-0^{\prime \prime} \times 10^{\prime}-1$ " corrugated metal arch culvert on the Pontatoc Canyon tributary at Playa de Coronado, RS 0.078; 2) a single cell 28'-1" x 9'-6" corrugated metal arch culvert on the Finger Rock Wash main channel at Playa de Coronado, RS 4.771; 3) a single 48" diameter corrugated metal pipe culvert at Skyline Drive, main channel RS 3.479; 4) a 9-cell 10' x 8' reinforced concrete box culvert at Sunrise Drive, main channel RS 2.251; and, 5) a 7-cell 84" diameter corrugated metal pipe culvert at Pontatoc Canyon Drive, main channel RS 2.008. The culvert modeling procedures within HEC-RAS were used to analyze the hydraulics of the culverts. Geometric input data for the culverts were obtained from as-built plans and/or field surveys. Current as-built plans for the two Playa de Coronado culverts were available and have been included in Appendix C.2. Archive construction plans for the Skyline Drive and Sunrise Drive culverts were acquired from the Pima County Department of Transportation GIS records and have also been included in Appendix C.2. A summary of the culvert information is provided in Table 7.

Table 7: Culvert Summary Table

Culvert ID Number	Location			Culvert Type	Modeling Method	Culvert Geometric Data Source
	River	Reach	River Sta. / Roadway			
1	Pontatoc Canyon	Pontatoc Canyon	0.078 / Playa Coronado	31'-0" x 10'-1" Corrugated Metal Arch	$\begin{gathered} \text { HEC-RAS: } \\ \text { FHWA } \\ \text { HDS-5 } \end{gathered}$	As-built plans from LOMR \#04-09-038P
2	Finger Rock Wash	Main Reach 1	4.771 / Playa Coronado	$\begin{gathered} 28^{\prime}-0^{\prime \prime} \times 9^{\prime}-6^{\prime \prime} \\ \text { Corrugated } \\ \text { Metal Arch } \\ \hline \end{gathered}$	$\begin{gathered} \text { HEC-RAS: } \\ \text { FHWA } \\ \text { HDS-5 } \\ \hline \end{gathered}$	As-built plans from LOMR \#04-09-038P
3	Finger Rock Wash	Main Reach 4	3.479 / Skyline Drive	Single 48" dia. Corrugated Metal Pipe	$\begin{gathered} \text { HEC-RAS: } \\ \text { FHWA } \\ \text { HDS-5 } \\ \hline \end{gathered}$	Pima Co DOT const. plans \& OPW field survey
4	Finger Rock Wash	Main Reach 4	$2.251 \text { / }$ Sunrise Drive	9-cell 10’ x 8' Reinforced Concrete Box Culvert	$\begin{array}{\|c\|} \hline \text { HEC-RAS: } \\ \text { FHWA } \\ \text { HDS-5 } \end{array}$	Pima Co DOT const. plans \& OPW field survey
5	Finger Rock Wash	Main Reach 4	$\begin{gathered} 2.008 / \\ \text { Pontatoc } \\ \text { Canyon Dr } \\ \hline \end{gathered}$	7-cell 84" dia. Corrugated Metal Pipe	$\begin{gathered} \text { HEC-RAS: } \\ \text { FHWA } \\ \text { HDS-5 } \end{gathered}$	OPW field survey

Results of the hydraulic analysis for the Skyline Drive culvert indicated that a substantial amount of flow would overtop the roadway during the base flood. Because of this overtopping scenario and the potential for the roadway embankment to be washed out
during the base flood, separate HEC-RAS models were run to simulate conditions with and without the roadway and culvert in place. This was done to establish the conditions that produced the highest base flood elevations (BFEs) upstream and downstream of the roadway. The higher BFEs from one, or a combination, of the models were then used as the basis for floodplain mapping through the reach that is influenced by the Skyline Drive crossing.

The hydraulic influence of the Skyline Drive culvert crossing was examined from RS 3.386 downstream of the crossing, to RS 3.855 upstream of the crossing. The HEC-RAS results showed that the model with the Skyline Drive embankment in place produced the highest base flood elevations upstream of the crossing, and that there was no difference in the models downstream. The single 48 -inch culvert beneath Skyline Drive has a relatively low capacity of approximately 232 cfs during the 100-year flood, compared to the design discharge of 6162 cfs at Skyline Drive. This results in the available storage upstream being filled up rapidly and only a small amount of flow attenuation occurring at the culvert. The modeling indicates that the channel and floodplain downstream of the roadway have a combined large conveyance capacity, which results in no difference in downstream BFEs with, or without the culvert and roadway embankment in place. Table 8 provides a summary of the HEC-RAS model results in the Skyline Drive area, as modeled with, and without the culvert and roadway embankment in place.

Table 8: HEC-RAS Model Results for "With" \& "Without" Skyline Drive Culvert

Location			Base Flood Elevation (NAVD88)	
River	Reach	River Station	"With Skyline Dr. Culvert"	Without Skyline Dr. Culvert"
Finger Rock Wash	Main Reach 3	3.855	2821.67	2821.67
Finger Rock Wash	Main Reach 3	3.813	2813.82	2813.82
Finger Rock Wash	Main Reach 3	3.748	2803.28	2803.71
Finger Rock Wash	Main Reach 4	3.656	2792.41	2789.97
Finger Rock Wash	Main Reach 4	3.565	2789.10	2780.60
Finger Rock Wash	Main Reach 4	3.521	2787.47	2775.39
Finger Rock Wash	Main Reach 4	3.494	2787.48	2773.26
Finger Rock Wash	Main Reach 4	3.479	Culvert	Section Removed
Finger Rock Wash	Main Reach 4	3.466	2767.22	Section Removed
Finger Rock Wash	Main Reach 4	3.440	2762.90	2762.90
Finger Rock Wash	Main Reach 4	3.403	2757.16	2757.16
Finger Rock Wash	Main Reach 4	3.386	2754.90	2754.90

The culvert modeling results also indicated that Pontatoc Canyon Drive would be overtopped during the base flood. However, this crossing was designed as a combination crossing with
an armored embankment and therefore was not modeled in a breached scenario. A complete printout of the culvert modeling results for the HEC-RAS model with the Skyline Drive culvert and embankment can be found in Appendix E.4. Since the "No Skyline Dr Culvert" HEC-RAS model only contained changes in the few cross sections in the immediate vicinity of Skyline Drive, a full printout of the HEC-RAS modeling results has not been included. Instead, only the culvert and cross section summary output tables for this model have been provided in Appendix E.4. The complete electronic model files for both HEC-RAS models have been provided in Appendix G on compact disk.

5.5.3 Levees and Dikes

This section is not applicable.

5.5.4 Islands and Flow Splits

As noted in previous Sections 2.1.7 and 5.4, a flow split was determined to exist at the Coronado Drive at-grade crossing at Finger Rock Wash main channel RS 4.477. At this location, flows break out to the east and drain down Coronado Drive. The Coronado split reach extends downstream approximately 0.85 miles before rejoining the main Finger Rock Wash channel near RS 3.748. A separate water surface profile was established for the Coronado split reach with independent river stations extending from 0.000 on the downstream end to 0.854 on the upstream end at the Coronado Drive at-grade crossing flow split location.

Using the junction and split flow optimization features in HEC-RAS, discharges at the flow split were determined to be 3362 cfs in the main channel and 1922 cfs in the Coronado split reach. As flow progresses east and south down the Coronado split reach, topographic differences between the split reach and main channel cause some of the split flow to progressively return to the main channel. Lateral weirs, based on existing topography and obstructions, e.g. buildings, etc., were placed in the model along the drainage divide to simulate this return of flows to the main channel and estimate new discharge quantities at each cross section. The lateral weir crest line was extended along the drainage divide boundary between the main channel reach and Coronado split reach (drainage divide defined as the corresponding left and right bank stations respectively) from cross section 4.189/0.561 (main channel reach/split reach) to 4.477/0.854. Ineffective flow boundaries were set in the model at the drainage divide line to segregate the main channel flows from the Coronado split reach and to generate independent water surface profiles for each reach.

Between cross sections 4.289/0.677 and 4.315/0.691, the HEC-RAS model indicated that no additional flows were being shared between the split reach and main channel, so the lateral weirs were terminated and the remainder of the downstream split reach was modeled as an independent profile in HEC-RAS. Based on the modeling results described above, an island of high ground was mapped between the two profiles between cross sections 3.891/0.186 and 4.315/0.691. This mapping concept is consistent with the effective floodplain mapping in this area, albeit more detailed.

The base flood discharges and water surface elevations for the Coronado split reach and adjacent main channel reach are summarized in Table 9. Table 10 provides a summary of the locations, discharges and other hydraulic characteristics of the lateral weirs.

Table 9: Summary of Discharges and Water Surface Elevations: Coronado Split Reach vs. Corresponding Main Channel Reach 3 Cross Sections

River Station (Main Channel / Split Reach)	Base Flood Discharge (cfs)		Water Surface Elevation (per NAVD88 vertical datum)	
	Main Channel Reach 3	Coronado Split Reach	Main Channel Reach 3	Coronado Split Reach
4.477 / 0.854	3361.56	1922.44	2974.74	2974.65
4.470 / 0.847	3523.65	1760.35	2972.88	2972.70
4.447 / 0.830	3523.65	1476.49	2963.63	2966.41
4.426 / 0.813	4089.64	1194.36	2959.41	2961.67
4.409 / 0.794	4089.64	711.84	2953.59	2956.03
4.392 / 0.774	4640.72	643.28	2948.05	2950.78
4.371 / 0.749	4640.72	291.81	2943.66	2946.03
$4.353 / 0.727$	4992.19	229.97	2937.02	2941.29
$4.333 / 0.708$	5073.97	210.03	2931.34	2936.43
4.315 / 0.691	5073.97	165.05	2924.84	2932.21
4.289 / 0.677	5118.95	165.05	2919.18	2926.99
4.262 / 0.662	5118.95	165.05	2912.57	2921.27
4.243 / 0.642	5118.95	165.05	2906.58	2916.67
4.225 / 0.608	5118.95	165.05	2902.61	2908.95
4.205 / 0.581	5163.18	120.82	2897.10	2902.38
4.189 / 0.561	5163.18	120.82	2892.27	2895.54
4.169 / 0.527	5163.18	120.82	2885.81	2887.79
Main Channel RS 3.944 to 4.151 \& Coronado Split RS 0.221 to 0.482 are independent profiles with separate cross section alignments				
3.891 / 0.186	5163.18	120.82	2827.24	2827.24*
$3.855 / 0.114$	5163.18	120.82	2821.67	2821.67*
3.813 / 0.079	5163.18	120.82	2813.82	2813.82*
3.748 / 0.000	5163.18	120.82	2803.28	2803.28*

*Water surface elevations controlled by Finger Rock Wash Main Channel Profile
Note that main channel reach 3 versus Coronado split reach water surface profiles were compared for cross sections $3.748 / 0.000$ to $3.891 / 0.186$ and the highest water surface
elevations (from the main channel profile) were used to establish base flood elevations and delineate floodplain boundaries.

Table 10: Lateral Weir Summary Table

							Rateral Weir Characteristics
	Reach Station	Q Leaving (cfs)	Weir Top Width (ft)	Weir Avg Depth (tt)	Min Elev Weir Flow (NAVD88)	Water Surface Elev Upstream (NAVD88)	
Coronado Split Reach	0.851	162.50	34.00	4.08	2970.10	2974.65	
Coronado Split Reach	0.839	283.89	76.07	1.44	2964.40	2972.70	
Coronado Split Reach	0.822	282.14	45.02	2.13	2963.00	2966.41	
Coronado Split Reach	0.804	482.56	89.92	1.93	2955.00	2961.67	2956.03
Coronado Split Reach	0.784	68.52	33.00	1.00	2954.50	2956.03	2950.78
Coronado Split Reach	0.762	350.85	57.37	2.09	2945.00	2950.78	2946.03
Coronado Split Reach	0.738	61.48	36.91	0.88	2941.00	2946.03	2941.29
Coronado Split Reach	0.718	19.90	24.24	0.55	2940.00	2941.29	2936.43
Coronado Split Reach	0.700	44.77	53.91	0.54	2932.70	2936.43	2932.21
Coronado Split Reach	0.684	0.00	0.00	0.00	2940.00	2932.21	2926.99
Coronado	0.670	0.00	0.00	0.00	2925.00	2926.99	2921.27
Split Reach							

At lateral weir RS $0.595,43.7$ cfs was shown to flow from the Coronado split reach to main channel, but it was determined that the flow was primarily contained within Columbus Blvd, so the island between the main channel and split reach profiles was left continuous in this area on the hydraulic work maps and annotated FIRMs. Please note however that the floodplain boundaries in this area were delineated such that the residential structures adjacent to lateral weir RS 0.595 and Coronado split reach cross section RS 0.581 lay within the revised SFHA.

5.5.5 Ineffective Flow Areas

Ineffective flows were modeled in the following situations:

- Floodplain areas where flows were not hydraulically connected, e.g. adjacent main channel or split flow areas within the Coronado split flow reach where cross section alignments were shared between the two profiles;
- Cross sections immediately upstream and downstream of culverts to account for expansion and contraction of flows. 3:1 expansion and 1:1 contraction ratios were used.

5.5.6 Supercritical Flow

Per FEMA requirements for floodplain modeling, the HEC-RAS analyses were performed using subcritical flow regimes. Therefore, this section is not applicable.

5.6 Floodway Modeling

Although this LOMR proposes to change the effective Zone A SFHA to a Zone AE with base flood elevations determined, a floodway is not being proposed for Finger Rock Wash. The PCRFCD has established development criteria that are more restrictive than the NFIP minimum regulations. These development criteria, which serve as justification for this proposal, are outlined in the following sections:

5.6.1 Establishing the primary channel as floodway

The District's ordinance establishes that, at a minimum, the primary channel of a watercourse shall be considered a floodway. Applicable sections from the District's Ordinance (Reference \#22), updated in May 2010, are included in Appendix E.3.

5.6.2 Regulation of erosion hazard areas

In addition to potential damage due to flood water, development along watercourses in Southern Arizona may be at risk for damage from erosion; that is the lateral migration of the low flow channel. The District's ordinance established safe erosion hazard setbacks from the primary banks of a watercourse and requires that development be outside of these setbacks to mitigate for the potential the channel would migrate. The primary channel and the erosion hazard setbacks increase that portion of the floodplain that is preserved and have the potential to equal or exceed a floodway that is developed using the FEMA criteria (Sections 16.28.020 and 16.28.030 of the floodplain ordinance).

5.6.3 Encroachment limits are stricter than FEMA guidelines

The Pima County Floodplain Ordinance requires that the cumulative encroachment on a property not create more that a 0.1 foot rise in water surface elevations for the Base Flood event or more than a 10\% increase in velocities as measured at property lines (Section 16.26.020 of the floodplain ordinance).

5.6.4 Expanding the definition of primary channel in confined flow areas

As a result of a technical appeal associated with proposed development along the Campbell Wash, the Pima County Flood Control Board directed the District staff to develop more restrictive development criteria for watercourses that are confined by geologic features. Basically, when the floodplain is confined, the District will evaluate the watercourse to determine which part of the valley of the watercourse should be considered the "active" channel, which is an expansion of the primary channel. The active channel would be considered the administrative floodway (Section 16.08.350 of the floodplain ordinance). This includes "no-rise" criteria for encroachments. The confined flow area is characterized by:

- Major watercourses coming from steeper slopes with a confined floodplain within an incised geologic floodplain. A watercourse is considered confined when the ratios of the wetted top widths of the floodplain associated with the base flood and the 25 -year flood (4% annual chance flood) is 1.25 or less and the height of the geologic features are at least 1.5 times the hydraulic depth of the base flood.
- The Base Flood discharge is greater than 2,000 cfs.

The definition of active channel is:

- The area necessary to convey the base flood without increasing the base flood elevation by more than 0.1 foot under normal flow conditions.
- The portion of the valley bottom subject to more frequent inundation as defined by the 25 -year floodplain.
- The portion of the floodplain that have excessive flood depths and velocities, product of the depth (in feet) times the square of the velocity (in feet per second) is greater than $18\left(\mathrm{DV}^{2}=18\right)$.
- The portion of valley bottom that is underlain by sand and gravel (unconsolidated alluvium related to fluvial processes), or in an area subject to historical channel changes, especially by avulsion.

5.7 Problems encountered during the Study

5.7.1 Special Problems and Solutions

There were no special problems encountered during this study.

5.7.2 Model Warnings and Error Messages

The HEC-RAS modeling produced no error messages. The model warnings were reviewed according to procedures outlined in the HEC-RAS User's Manual and a quality control check was performed on the model results per Arizona State Standard for Floodplain Hydraulic Modeling (SS 09-02) (Reference \#13) guidelines. The hydraulic results were reviewed at locations where warnings were issued and all results were found to be reasonable. The primary warning message involved the model defaulting to critical depth due to the lack of a valid subcritical answer. Given that Finger Rock Wash is a fairly steep gradient stream and the HEC-RAS modeling was performed as a subcritical flow regime to meet FEMA floodplain modeling requirements, these warnings are not unexpected. A summary of the HEC-RAS Errors, Warnings and Notes has been included with the modeling input/output in Appendix E.4.

5.8 Calibration

No model calibration was performed in this study.

5.9 Final Results

5.9.1 Hydraulic Analysis Results

The HEC-RAS hydraulic analysis for the "with Skyline Drive culvert" conditions is the governing analysis for this study. The HEC-RAS model (Filename: FRW88.prj) results are summarized in HEC-RAS summary output tables provided in Appendix E.4. Summary tables have been included for normal stream results, culvert results and lateral structure results. All elevations listed in the results are based on NAVD88 vertical datum. A complete printout of the Finger Rock Wash HEC-RAS input/output report has also been provided in Appendix E.4.

A summary output table for the HEC-RAS model "No Skyline Drive Culvert" (Filename: FRW88_NoSkylineCulv.prj) that shows the normal stream results for Finger Rock Wash Reach 4, where the Skyline Drive crossing is located, has also been included in Appendix E.5.; however, since only a short section of Reach 4 is needed for comparison, a complete report printout has not been provided.

Complete electronic model files on compact disk for both HEC-RAS models, "with" and "without" the Skyline Drive culvert, can be found in Appendix G.

5.9.2 Verification of Results

The limits of the Finger Rock Wash 1-percent annual chance floodplain determined in this study are super-imposed on the current effective floodplain limits on the Annotated FIRM exhibits provided in Appendix F. A comparison of the proposed floodplain limits to the effective floodplain limits shows that they are generally consistent in location and shape. The proposed floodplain limits do deviate where the more detailed topography used in this study has allowed more accurate floodplain delineation than currently shown on the FIRMs.

SECTION 6: EROSION AND SEDIMENT TRANSPORT

The study reach is a relatively stable natural watercourse with no historical indications that sediment transport can be expected to greatly affect base flood elevations. Development within the watershed has been substantially "built-out" per existing zoning classifications for a number of years contributing to the ongoing stability of the watercourse. Consequently, sediment transport was not included in the scope of this LOMR study.

SECTION 7: DRAFT FIS REPORT DATA

7.1 Summary of Discharges

The current effective FIS for Pima County (Reference \#23) does not provide a base flood discharge for Finger Rock Wash. Table 11 contains the following steady flow data for the 1percent annual chance flood that were utilized in the HEC-RAS hydraulic modeling.

Table 11: HEC-RAS Steady Flow Data Summary

Flow Change Location					100-yr Discharge (cfs)
	River	Reach	River Station (mi.)	Description	
1	Coronado Split Flow	Cor Split Reach	0.854	Downstream of flow split at Coronado Drive at-grade crossing	1922
2	Finger Rock Wash	Main Reach 1	4.800	At Coronado National Forest Boundary (upstream study limit)	2324
3	Finger Rock Wash	Main Reach 2	4.596	Downstream of Pontatoc Canyon tributary confluence	5284
4	Finger Rock Wash	Main Reach 3	4.477	Downstream of flow split at Coronado Drive at-grade crossing	3362
5	Finger Rock Wash	Main Reach 4	3.656	Downstream of Coronado Split Reach return to main channel	6162
6	Finger Rock Wash	Main Reach 4	3.403	Downstream of Skyline Drive crossing	6060
7	Finger Rock Wash	Main Reach 4	2.876	Downstream of un-named east tributary confluence	6368
8	Finger Rock Wash	Main Reach 4	2.125	Downstream of Sunrise Drive crossing	6114
9	Finger Rock Wash	Main Reach 4	1.884	Downstream of Pontatoc Canyon Drive crossing	5756
10	Finger Rock Wash	Main Reach 4	0.898	Upstream of La Espalda at-grade crossing	5653
11	Finger Rock Wash	Main Reach 4	0.421	At Camino de la Bajada at-grade crossing	5589
12	Pontatoc Canyon	Pontatoc Cnyn	0.154	At Coronado National Forest Boundary (upstream study limit)	2503

7.2 Floodway Data

As described in Section 5.6 above, a floodway analysis has not been included in this study.

7.3 Annotated Flood Insurance Rate Maps

Annotated FIRMs were developed for the project using PAG aerial photography and panel boundaries, streets, property line and effective SFHA boundary information imported from Pima County effective DFIRM panels 0419C1635K, 0419C1643K, 0419C1644K and 0419C1645K, which were provided by PCRFCD. These maps were generated at a horizontal
scale of 1 inch = 100 feet. Due to Pima County's impending conversion from NGVD29 to NAVD88 vertical datum, water surface elevations on the annotated FIRMs have been provided on both NGVD29 and NAVD88 datum with a VERTCON of NAVD88 Elev. minus 2.29 feet = NGVD29 Elev. A vertical datum conversion computation sheet is provided in Appendix C.1.

In addition to the information mentioned above, the Annotated FIRMs, which are provided on Figure F-5 (Sheets 1 through 6) in Appendix F, illustrate the following:

- Survey Township, Range \& Section information;
- Stream channel center lines / profile base lines;
- HEC-RAS hydraulic cross-section lines with graphic representation of the 1% annual chance flood water surface elevations on NGVD29 \& NAVD88 vertical datum;
- 1\% annual chance flood water surface elevations on NGVD29 \& NAVD88 vertical datum in tabular format;
- Lateral weir crest boundary line in the Coronado Split Reach;
- Effective 1\% annual chance flood Zone A SFHA boundaries;
- Proposed 1\% annual chance flood Zone AE SFHA boundaries.

7.4 Flood Profiles

Preliminary flood profile print outs, based on NGVD29 vertical datum, have been provided in Appendix F.

APPENDIX A

FEMA FORMS

MT-2 FORM 1 - OVERVIEW \& CONCURRENCE FORM
MT-2 FORM 2 - RIVERINE HYDROLOGY \& HYDRAULICS FORM MT-2 FORM 3 - RIVERINE STRUCTURES FORM
U.S. DEPARTMENT OF HOMELAND SECURITY - FEDERAL EMERGENCY MANAGEMENT AGENCY OVERVIEW \& CONCURRENCE FORM
O.M.B No. 1660-0016

PAPERWORK BURDEN DISCLOSURE NOTICE

Public reporting burden for this form is estimated to average 1 hour per response. The burden estimate includes the time for reviewing instructions, searching existing data sources, gathering and maintaining the needed data, and completing, reviewing, and submitting the form. You are not required to respond to this collection of information unless a valid OMB control number appears in the upper right corner of this form. Send comments regarding the accuracy of the burden estimate and any suggestions for reducing this burden to: Information Collections Management, U.S. Department of Homeland Security, Federal Emergency Management Agency, 500 C Street, SW, Washington DC 20472, Paperwork Reduction Project (1660-0016). Submission of the form is required to obtain or retain benefits under the National Flood Insurance Program. Please do not send your completed survey to the above address.

A. REQUESTED RESPONSE FROM DHS-FEMA

This request is for a (check one):CLOMR:
A letter from DHS-FEMA commenting on whether a proposed project, if built as proposed, would justify a map revision, or proposed hydrology changes (See 44 CFR Ch. 1, Parts 60, 65 \& 72).
\square LOMR: A letter from DHS-FEMA officially revising the current NFIP map to show the changes to floodplains, regulatory floodway or flood elevations. (See 44 CFR Ch. 1, Parts 60, $65 \& 72$)

B. OVERVIEW

1. The NFIP map panel(s) affected for all impacted communities is (are):[also Panels 1644 K \& 1645K, Eff. Date 02/08/99]

Community No.	Community Name	State	Map No.	Panel No.	Effective Date
Ex: 480301	City of Katy	TX	480301	0005 D	$02 / 08 / 83$
480287	Harris County	TX	48201 C	0220 G	$09 / 28 / 90$
040073	Pima County Unincorporated Areas	AZ	04019 C	1635 K	$02 / 08 / 99$
040073	Pima County Unincorporated Areas	AZ	04019 C	1643 K	$02 / 08 / 99$

2. a. Flooding Source: Finger Rock Wash
b. Types of Flooding: \square Riverine $\quad \square$ Coastal \square Shallow Flooding (e.g., Zones AO and AH)
\square Alluvial fan \square Lakes \square Other (Attach Description)
3. Project Name/ldentifier: Finger Rock Wash Updated Existing Conditions LOMR
4. FEMA zone designations affected: A (choices: $A, A H, A O, A 1-A 30, A 99, A E, A R, V, V 1-V 30, V E, B, C, D, X)$
5. Basis for Request and Type of Revision:
a. The basis for this revision request is (check all that apply)Physical Change
\square Improved Methodology/DataRegulatory Floodway RevisionBase Map ChangesCoastal Analysis
\square Hydraulic Analysis
T Hydrologic Analysis \square CorrectionsAlluvial Fan Analysis \square Natural Changes
\square Weir-Dam ChangesLevee Certification
\square New Topographic DataOther (Attach Description)

Note: A photograph and narrative description of the area of concern is not required, but is very helpful during review.
b. The area of revision encompasses the following structures (check all that apply)

Structures:Channelization
\square DamLevee/Floodwall
T Bridge/CulvertFillOther (Attach Description)

Has the review fee for the appropriate request category been included?Yes
Fee amount: \$ \qquad
(No, Attach Explanation
Please see the DHS-FEMA Web site at http://www.fema.gov/plan/prevent/fhm/frm_fees.shtm for Fee Amounts and Exemptions.

D. SIGNATURE

All documents submitted in support of this request are correct to the best of my knowledge. I understand that any false statement may be punishable by fine or imprisonment under Title 18 of the United States Code, Section 1001.

Name: Jerald L. Curless, PE	Company: CMG Drainage Engineering, Inc.
Mailing Address:$3555 \text { N Mountain Ave, Tucson, AZ } 85719$	Daytime Telephone No.:520-882-4244 ${ }^{\text {a }}$ Fax No.:520-888-1421
	E-Mail Address: jcurless@cmgdrainage.com
Signature of Requester (required): Sevald L. Cunlens	Date: $10 / 15 / 2010$
As the community official responsible for floodplain management, I hereby ack (LOMR) or conditional LOMR request. Based upon the community's review, of the community floodplain management requirements, including the requirem Federal, State, and local permits have been, or in the case of a conditional LO any existing or proposed structures to be removed from the SFHA are or will be have available upon request by FEMA, all analyses and documentation used	knowledge that we have received and reviewed this Letter of Map Revision we find the completed or proposed project meets or is designed to meet all ment that no fill be placed in the regulatory floodway, and that all necessary OMR, will be obtained. In addition, we have determined that the land and be reasonably safe from flooding as defined in 44CFR 65.2(c), and that we to make this determination.

Community Official's Name and Title: Suzanne Shields, PE, Chief Engineer		Community Name: Pima County RFCD	
Mailing Address:	Daytime Telephone No.:520-243-1800		Fax No.:520-243-1821
97 E Congress St, 3rd Flr, Tucson, AZ 85701	E-Mail Address: suzanne.shields@rfcd.pima.gov		
Community Official's Signature (required):		Date:	

CERTIFICATION BY REGISTERED PROFESSIONAL ENGINEER AND/OR LAND SURVEYOR

This certification is to be signed and sealed by a licensed land surveyor, registered professional engineer, or architect authorized by law to certify elevation information data, hydrologic and hydraulic analysis, and any other supporting information as per NFIP regulations paragraph 65.2(b) and as described in the MT-2 Forms Instructions. All documents submitted in support of this request are correct to the best of my knowledge. I understand that any false statement may be punishable by fine or imprisonment under Title 18 of the United States Code, Section 1001.

MT-2 FORM 1, OVERVIEW \& CONCURRENCE FORM ATTACHMENT 1-1

PART C. REVIEW FEE - (Explanation Why No Fee Included)
This Map Change Request qualifies for a fee exemption, because it is based on updated and more detailed data and incorporates no manmade modifications within the SFHA.

PAPERWORK REDUCTION ACT

Public reporting burden for this form is estimated to average 3.25 hours per response. The burden estimate includes the time for reviewing instructions, searching existing data sources, gathering and maintaining the needed data, and completing, reviewing, and submitting the form. You are not required to respond to this collection of information unless a valid OMB control number appears in the upper right corner of this form. Send comments regarding the accuracy of the burden estimate and any suggestions for reducing this burden to: Information Collections Management, U.S. Department of Homeland Security, Federal Emergency Management Agency, 500 C Street, SW, Washington DC 20472, Paperwork Reduction Project (1660-0016). Submission of the form is required to obtain or retain benefits under the National Flood Insurance Program. Please do not send your completed survey to the above address.

Flooding Source: Finger Rock Wash
Note: Fill out one form for each flooding source studied

A. HYDROLOGY

1. Reason for New Hydrologic Analysis (check all that apply)
\square Not revised (skip to section B)No existing analysis
Improved data
\square Alternative methodologyProposed Conditions (CLOMR)Changed physical condition of watershed
2. Comparison of Representative 1%-Annual-Chance Discharges

Location Drainage Area (Sq. Mi.)
DS of Cor NF Bndy-CP FR-9
3.36

N/A
Effective/FIS (cfs)
Revised (cfs)

Sunrise Dr
5.72

N/A
4798

Rillito Crk Confluence
6.35

N/A
6213
3. Methodology for New Hydrologic Analysis (check all that apply)Statistical Analysis of Gage Records
Precipitation/Runoff Model HEC-1
Regional Regression Equations
Other (please attach description)
Please enclose all relevant models in digital format, maps, computations (including computation of parameters) and documentation to support the new analysis.
4. Review/Approval of Analysis

If your community requires a regional, state, or federal agency to review the hydrologic analysis, please attach evidence of approval/review.
5. Impacts of Sediment Transport on Hydrology

Was sediment transport considered? \square Yes \boxtimes No If yes, then fill out Section F (Sediment Transport) of Form 3. If No, then attach your explanation for why sediment transport was not considered.

B. HYDRAULICS

1. Reach to be Revised

	Description	Cross Section		Water-Surface Elevations (ft.) Effective
Proposed/Revised				
Downstream Limit	Rillito Crk FP, 550' US of Alvernon Way	RM 0.000	N/A	2429.66 NGVD29

2. Hydraulic Method/Model Used

HEC RAS V 4.0.0
3. Pre-Submittal Review of Hydraulic Models

DHS-FEMA has developed two review programs, CHECK-2 and CHECK-RAS, to aid in the review of HEC-2 and HEC-RAS hydraulic models, respectively. These review programs may help verify that the hydraulic estimates and assumptions in the model data are in accordance with NFIP requirements, and that the data are comparable with the assumptions and limitations of HEC-2/HEC-RAS. CHECK-2 and CHECK-RAS identify areas of potential error or concern. These tools do not replace engineering judgment. CHECK-2 and CHECK-RAS can be downloaded from http://www.fema.gov/plan/prevent/fhm/frm soft.shtm. We recommend that you review your HEC-2 and HEC-RAS models with CHECK-2 and CHECK-RAS. Review of your submittal and resolution of valid modeling discrepancies may result in reduced review time.

Duplicate Effective Model* Corrected Effective Model* Existing or Pre-Project Conditions Model Revised or Post-Project Conditions Model Other - (attach description)

Natural Run
File Name: File Name:
File Name:
File Name: File Name:

NA Plan Name:

NA
File Name:
Floodway Run
Datum Plan Name:

File Name:
Plan Name: NA Plan Name:

NA
FRW88.prj Plan Name: FRW88 File Name: NA Plan Name: NA
Plan Name:
Plan Name:

* For details, refer to the corresponding section of the instructions.

【 Digital Models Submitted? (Required)

C. MAPPING REQUIREMENTS

A certified topographic map must be submitted showing the following information (where applicable): the boundaries of the effective, existing, and proposed conditions 1%-annual-chance floodplain (for approximate Zone A revisions) or the boundaries of the 1% - and 0.2%-annual-chance floodplains and regulatory floodway (for detailed Zone AE, AO, and AH revisions); location and alignment of all cross sections with stationing control indicated; stream, road, and other alignments (e.g., dams, levees, etc.); current community easements and boundaries; boundaries of the requester's property; certification of a registered professional engineer registered in the subject State; location and description of reference marks; and the referenced vertical datum (NGVD, NAVD, etc.).

《 Digital Mapping (GIS/CADD) Data Submitted

Note that the boundaries of the existing or proposed conditions floodplains and regulatory floodway to be shown on the revised FIRM and/or FBFM must tie-in with the effective floodplain and regulatory floodway boundaries. Please attach a copy of the effective FIRM and/or FBFM, annotated to show the boundaries of the revised 1% - and 0.2%-annual-chance floodplains and regulatory floodway that tie-in with the boundaries of the effective 1% - and 0.2%-annual-chance floodplain and regulatory floodway at the upstream and downstream limits of the area of revision.

Q Annotated FIRM and/or FBFM (Required)

D. COMMON REGULATORY REQUIREMENTS*

1. For LOMR/CLOMR requests, do Base Flood Elevations (BFEs) increase?
a. For CLOMR requests, if either of the following is true, please submit evidence of compliance with Section 65.12 of the NFIP regulations:

- The proposed project encroaches upon a regulatory floodway and would result in increases above 0.00 foot.
- The proposed project encroaches upon a SFHA with or without BFEs established and would result in increases above 1.00 foot.
b. For LOMR requests, does this request require property owner notification and acceptance of BFE increases? \boxtimes Yes \square No If Yes, please attach proof of property owner notification and acceptance (if available). Elements of and examples of property owner notification can be found in the MT-2 Form 2 Instructions.

2. Does the request involve the placement or proposed placement of fill? Yes \boldsymbol{X} No If Yes, the community must be able to certify that the area to be removed from the special flood hazard area, to include any structures or proposed structures, meets all of the standards of the local floodplain ordinances, and is reasonably safe from flooding in accordance with the NFIP regulations set forth at 44 CFR 60.3(a)(3), 65.5(a)(4), and 65.6(a)(14). Please see the MT-2 instructions for more information.
3. For LOMR requests, is the regulatory floodway being revised?

If Yes, attach evidence of regulatory floodway revision notification. As per Paragraph 65.7(b)(1) of the NFIP Regulations, notification is required for requests involving revisions to the regulatory floodway. (Not required for revisions to approximate 1%-annual-chance floodplains [studied Zone A designation] unless a regulatory floodway is being added. Elements and examples of regulatory floodway revision notification can be found in the MT-2 Form 2 Instructions.)
4. For LOMR/CLOMR requests, does this request have the potential to impact an endangered species?
\square Yes \boxtimes No
If Yes, please submit documentation to the community to show that you have complied with Sections 9 and 10 of the Endangered Species Act (ESA). Section 9 of the ESA prohibits anyone from "taking" or harming an endangered species. If an action might harm an endangered species, a permit is required from U.S. Fish and Wildlife Service or National Marine Fisheries Service under Section 10 of the ESA.

For actions authorized, funded, or being carried out by Federal or State agencies, please submit documentation from the agency showing its compliance with Section 7(a)(2) of the ESA.

* Not inclusive of all applicable regulatory requirements. For details, see 44 CFR parts 60 and 65 .

PAPERWORK REDUCTION ACT

Public reporting burden for this form is estimated to average 7 hours per response. The burden estimate includes the time for reviewing instructions, searching existing data sources, gathering and maintaining the needed data, and completing, reviewing, and submitting the form. You are not required to respond to this collection of information unless a valid OMB control number appears in the upper right corner of this form. Send comments regarding the accuracy of the burden estimate and any suggestions for reducing this burden to: Information Collections Management, U.S. Department of Homeland Security, Federal Emergency Management Agency, 500 C Street, SW, Washington DC 20472, Paperwork Reduction Project ($1660-0016$). Submission of the form is required to obtain or retain benefits under the National Flood Insurance Program. Please do not send your completed survey to the above address.

Flooding Source:
Note: Fill out one form for each flooding source studied

A. GENERAL

Complete the appropriate section(s) for each Structure listed below:
Channelization
complete Section B
Bridge/Culvert complete Section C
Dam/Basin complete Section D
Levee/Floodwall complete Section E
Sediment Transport complete Section F (if required)

Description Of Structure

1. Name of Structure: FRW Culvert \#1 - Playa de Coronado (east crossing)

Type (check one): \square Channelization $\quad \square$ Bridge/Culvert \square Levee/Floodwall \square Dam/Basin
Location of Structure: River Mile 0.078 Pontatoc Canyon Reach
Downstream Limit/Cross Section: RM 0.059
Upstream Limit/Cross Section: RM 0.087
2. Name of Structure: FRW Culvert \#2 - Playa de Coronado (west crossing)

Type (check one): \square Channelization \square Bridge/Culvert
\square Levee/Floodwall
\square Dam/Basin
Location of Structure: RM 4.771 Main Channel Reach 1
Downstream Limit/Cross Section: RM 4.756
Upstream Limit/Cross Section: RM 4.783
3. Name of Structure: FRW Culvert \#3 - Skyline Dr.

Type (check one) $\quad \square$ Channelization
\square Dam/Basin
Location of Structure: RM 3.479 Main Channel Reach 4
Downstream Limit/Cross Section: RM 3.440
Upstream Limit/Cross Section: RM 3.521

NOTE: For more structures, attach additional pages as needed. (see Attachment 1 for additional structures)

B. CHANNELIZATION

Flooding Source:
Name of Structure:

1. Accessory Structures

The channelization includes (check one):
\square Levees [Attach Section E (Levee/Floodwall)]Drop structures
Superelevated sectionsTransitions in cross sectional geometryDebris basin/detention basin [Attach Section D (Dam/Basin)] Other (Describe):
2. Drawing Checklist

Attach the plans of the channelization certified by a registered professional engineer, as described in the instructions.
3. Hydraulic Considerations

The channel was designed to carry (cfs) and/or the -year flood.
The design elevation in the channel is based on (check one):
Subcritical flow

Critical flow
Supercritical flow
Energy grade line
If there is the potential for a hydraulic jump at the following locations, check all that apply and attach an explanation of how the hydraulic jump is controlled without affecting the stability of the channel.Inlet to channelOutlet of channelAt Drop StructuresAt TransitionsOther locations (specify):
4. Sediment Transport Considerations

Was sediment transport considered?Yes $\square \mathrm{N}$ If Yes, then fill out Section F (Sediment Transport). If No, then attach your explanation for why sediment transport was not considered.

C. BRIDGE/CULVERT

Flooding Source: Finger Rock Wash

Name of Structure: FRW Culverts \#1 - 5

1. This revision reflects (check one):

Bridge/culvert not modeled in the FIS (FRW Culverts \#3, 4 \&5)
\square Modified bridge/culvert previously modeled in the FIS
\square Revised analysis of bridge/culvert previously modeled in the FIS (FRW Culverts \#1 \&2)
2. Hydraulic model used to analyze the structure (e.g., HEC-2 with special bridge routine, WSPRO, HY8):

If different than hydraulic analysis for the flooding source, justify why the hydraulic analysis used for the flooding source could not analyze the structures. Attach justification. HEC-RAS culvert routine
3. Attach plans of the structures certified by a registered professional engineer. The plan detail and information should include the following (check the information that has been provided):
\square Dimensions (height, width, span, radius, length)
\square Shape (culverts only)
Material
Beveling or Rounding
\square Wing Wall Angle
0 Skew Angle
\square Distances Between Cross Sections
\square Erosion Protection
N Low Chord Elevations - Upstream and Downstream
T Top of Road Elevations - Upstream and Downstream
\square Structure Invert Elevations - Upstream and Downstream
\square Stream Invert Elevations - Upstream and Downstream
\square Cross-Section Locations
4. Sediment Transport Considerations

Was sediment transport considered? \square Yes \square No If yes, then fill out Section F (Sediment Transport). If No, then attach your explanation for why sediment transport was not considered.

Flooding Source:

Name of Structure:

1. This request is for (check one): $\quad \square$ Existing dam $\quad \square$ New dam $\quad \square$ Modification of existing dam
2. The dam was designed by (check one): \square Federal agency \square State agency \square Local government agency \square Private organization Name of the agency or organization:
3. The Dam was permitted as (check one):
a. \square Federal Dam \square State Dam

Provide the permit or identification number (ID) for the dam and the appropriate permitting agency or organization
Permit or ID number Permitting Agency or Organization
b.Local Government DamPrivate Dam

Provided related drawings, specification and supporting design information.
4. Does the project involve revised hydrology?YesNo If Yes, complete the Riverine Hydrology \& Hydraulics Form (Form 2).

Was the dam/basin designed using critical duration storm?Yes, provide supporting documentation with your completed Form 2.No, provide a written explanation and justification for not using the critical duration storm.
5. Does the submittal include debris/sediment yield analysis?YesNo

If yes, then fill out Section F (Sediment Transport).
If No, then attach your explanation for why debris/sediment analysis was not considered.
6. Does the Base Flood Elevation behind the dam or downstream of the dam change?No If Yes, complete the Riverine Hydrology \& Hydraulics Form (Form 2) and complete the table below.

Stillwater Elevation Behind the Dam

FREQUENCY (\% annual chance)
FIS
REVISED
10-year (10\%)
50 -year (2\%)
100-year (1\%)
500 -year (0.2%)
Normal Pool Elevation
7. Please attach a copy of the formal Operation and Maintenance Plan

1. System Elements
a. This Levee/Floodwall analysis is based on (check one):upgrading of an existing levee/floodwall system
a newly constructed levee/floodwall systemreanalysis of an existing levee/floodwall system
b. Levee elements and locations are (check one):earthen embankment, dike, berm, etc.

Station	to
Station	to
Station	to

\square Other (describe):
Station to
c. Structural Type (check one):
\square monolithic cast-in place reinforced concrete
\square reinforced concrete masonry block
\square sheet piling
\square Other (describe):
d. Has this levee/floodwall system been certified by a Federal agency to provide protection from the base flood?YesNo

If Yes, by which agency?
e. Attach certified drawings containing the following information (indicate drawing sheet numbers):

1. Plan of the levee embankment and floodwall structures. Sheet Numbers:
2. A profile of the levee/floodwall system showing the Base Flood Elevation (BFE), levee and/or wall crest and foundation, and closure locations for the total levee system. Sheet Numbers:
3. A profile of the BFE, closure opening outlet and inlet invert elevations, type and size of opening, and kind of closure.

Sheet Numbers:
4. A layout detail for the embankment protection measures.

Sheet Numbers:
5. Location, layout, and size and shape of the levee embankment features, foundation treatment, floodwall structure, closure structures, and pump stations.

Sheet Numbers:
2. Freeboard
a. The minimum freeboard provided above the BFE is:

Riverine
3.0 feet or more at the downstream end and throughoutYes YesYesNo No 3.5 feet or more at the upstream end No

Coastal
1.0 foot above the height of the one percent wave associated with the 1%-annual-chance stillwater surge elevation or maximum wave runup (whichever is greater).Yes

2. Freeboard (continued)

Please note, occasionally exceptions are made to the minimum freeboard requirement. If an exception is requested, attach documentation addressing Paragraph 65.10(b)(1)(ii) of the NFIP Regulations.

If $N o$ is answered to any of the above, please attach an explanation.
b. Is there an indication from historical records that ice-jamming can affect the BFE ?
If Yes, provide ice-jam analysis profile and evidence that the minimum freeboard discussed above still exists.
3. Closures
a. Openings through the levee system (check one):
\square existsdoes not exist

If opening exists, list all closures:

Channel Station	Left or Right Bank	Opening Type	Highest Elevation for Opening Invert	Type of Closure Device

(Extend table on an added sheet as needed and reference)

Note: Geotechnical and geologic data
In addition to the required detailed analysis reports, data obtained during field and laboratory investigations and used in the design analysis for the following system features should be submitted in a tabulated summary form. (Reference U.S. Army Corps of Engineers [USACE] EM-1110-2-1906 Form 2086.)
4. Embankment Protection
a. The maximum levee slope landside is:
b. The maximum levee slope floodside is:
c. The range of velocities along the levee during the base flood is:
(min.) to (max.)
d. Embankment material is protected by (describe what kind):
e. Riprap Design Parameters (check one): \square Velocity \square Tractive stress Attach references

	Reach	Sideslope	Flow Depth	Velocity	Curve or Straight	Stone Riprap			Depth of Toedown
						D_{100}	D_{50}	Thickness	
Sta	to								
Sta	to								
Sta	to								
Sta	to								
Sta	to								
Sta	to								

(Extend table on an added sheet as needed and reference each entry)
4. Embankment Protection (continued)
f. Is a bedding/filter analysis and design attached?YesNo
g. Describe the analysis used for other kinds of protection used (include copies of the design analysis):

Attach engineering analysis to support construction plans
5. Embankment And Foundation Stability
a. Identify locations and describe the basis for selection of critical location for analysis:
\square Overall height: Sta. ; height ft.
\square Limiting foundation soil strength:
Sta. , depth to
strength $\phi=\quad$ degrees, $\mathrm{c}=\quad \mathrm{psf}$
slope: SS =
(h) to
(v)
(Repeat as needed on an added sheet for additional locations)
b. Specify the embankment stability analysis methodology used (e.g., circular arc, sliding block, infinite slope, etc.):
c. Summary of stability analysis results:

Case	Loading Conditions	Critical Safety Factor	Criteria (Min.)
I	End of construction		1.3
II	Sudden drawdown		1.0
III	Critical flood stage		1.4
IV	Steady seepage at flood stage		1.4
VI	Earthquake (Case I)		1.0

(Reference: USACE EM-1110-2-1913 Table 6-1)
d. Was a seepage analysis for the embankment performed? \square YesNo If Yes, describe methodology used:
e. Was a seepage analysis for the foundation performed?YesNo
f. Were uplift pressures at the embankment landside toe checked?YesNo
g. Were seepage exit gradients checked for piping potential?YesNo
h. The duration of the base flood hydrograph against the embankment is
hours.

Attach engineering analysis to support construction plans.

E. LEVEE/FLOODWALL (CONTINUED)

6. Floodwall And Foundation Stability
a. Describe analysis submittal based on Code (check one):
UBC (1988) orOther (specify):
b. Stability analysis submitted provides for:OverturningSliding If not, explain:
c. Loading included in the analyses were:Lateral earth @ $P_{A}=\quad p s f ; \quad P_{p}$ psfSurcharge-Slope @surface psfWind @ $\mathrm{P}_{\mathrm{w}}=\quad \mathrm{psf}$Seepage (Uplift);Earthquake @ $\mathrm{P}_{\text {eq }}=$ \%g$1 \%-a n n u a l-c h a n c e ~ s i g n i f i c a n t ~ w a v e ~ h e i g h t: ~ f t . ~$.$1 \%$-annual-chance significant wave period:
sec.
d. Summary of Stability Analysis Results: Factors of Safety.

Itemize for each range in site layout dimension and loading condition limitation for each respective reach.

Loading Condition	Criteria (Min)		Sta	To	Sta	To
	Overturn	Sliding	Overturn	Sliding	Overturn	Sliding
Dead \& Wind	1.5	1.5				
Dead \& Soil	1.5	1.5				
 Impact	1.5	1.5				
Dead, Soil, \& Seismic	1.3	1.3				

(Ref: FEMA 114 Sept 1986; USACE EM 1110-2-2502)
(Note: Extend table on an added sheet as needed and reference)
e. Foundation bearing strength for each soil type:

Bearing Pressure	Sustained Load (psf)	Short Term Load (psf)
Computed design maximum		
Maximum allowable		

f. Foundation scour protectionis, is not provided. If provided, attach explanation and supporting documentation: Attach engineering analysis to support construction plans.

7. Settlement

a. Has anticipated potential settlement been determined and incorporated into the specified construction elevations to maintain the established freeboard margin?YesNo
b. The computed range of settlement is
ft. to
ft .
c. Settlement of the levee crest is determined to be primarily from :
\square Foundation consolidation
\square Embankment compressionOther (Describe):
d. Differential settlement of floodwallshashas not been accommodated in the structural design and construction.

Attach engineering analysis to support construction plans.
8. Interior Drainage
a. Specify size of each interior watershed:

Draining to pressure conduit: acres
Draining to ponding area: acres
b. Relationships Established

Ponding elevation vs. storage
Ponding elevation vs. gravity flow
Differential head vs. gravity flow \square No

The river flow duration curve is enclosed:YesNo
d. Specify the discharge capacity of the head pressure conduit: cfs
e. Which flooding conditions were analyzed?

- Gravity flow (Interior Watershed)
- Common storm (River Watershed)
- Historical ponding probability
- Coastal wave overtopping
If No for any of the above, attach explanation.
f. Interior drainage has been analyzed based on joint probability of interior and exterior flooding and the capacities of pumping and outlet facilities to provide the established level of flood protection.YesNo

If No , attach explanation.
g. The rate of seepage through the levee system for the base flood is
cfs
h. The length of levee system used to drive this seepage rate in item g :
ft .

8. Interior Drainage (continued)

i. Will pumping plants be used for interior drainage?YesNo

If Yes, include the number of pumping plants:
For each pumping plant, list:

	Plant\#1	Plant \#2
The number of pumps		
The ponding storage capacity		
The maximum pumping rate		
The maximum pumping head		
The pumping starting elevation		
The pumping stopping elevation		
Is the discharge facility protected?	\square Yes \square No	
Is there a flood warning plan?	\square Yes \square No	
How much time is available between warning and flooding?		
Will the operation be automatic? If the pumps are electric, are there backup power sources?		

(Reference: USACE EM-1110-2-3101, 3102, 3103, 3104, and 3105)
Include a copy of supporting documentation of data and analysis. Provide a map showing the flooded area and maximum ponding elevations for all interior watersheds that result in flooding.
9. Other Desian Criteria
a. The following items have been addressed as stated:

Liquefactionis \square is not a problem Hydrocompaction \square is \square is not a problem
Heave differential movement due to soils of high shrink/swell \square is \square is not a problem
b. For each of these problems, state the basic facts and corrective action taken:

Attach supporting documentation

c. If the levee/floodwall is new or enlarged, will the structure adversely impact flood levels and/or flow velocities floodside of the structure?
Attach supporting documentation
d. Sediment Transport Considerations:

Was sediment transport considered?YesNo If Yes, then fill out Section F (Sediment Transport). If No, then attach your explanation for why sediment transport was not considered.

10. Operational Plan And Criteria

a. Are the planned/installed works in full compliance with Part 65.10 of the NFIP Regulations?YesNo
b. Does the operation plan incorporate all the provisions for closure devices as required in Paragraph 65.10(c)(1) of the NFIP regulations?
\squareNo
c. Does the operation plan incorporate all the provisions for interior drainage as required in Paragraph 65.10(c)(2) of the NFIP regulations? \square Yes \qquad No

If the answer is No to any of the above, please attach supporting documentation.
11. Maintenance Plan
a. Are the planned/installed works in full compliance with Part 65.10 of the NFIP RegulationsYesNo If No, please attach supporting documentation.
12. Operations and Maintenance Plan

Please attach a copy of the formal Operations and Maintenance Plan for the levee/floodwall.

F. SEDIMENT TRANSPORT

Flooding Source:
Name of Structure:
If there is any indication from historical records that sediment transport (including scour and deposition) can affect the
Base Flood Elevation (BFE); and/or based on the stream morphology, vegetative cover, development of the watershed and bank conditions, there is a potential for debris and sediment transport (including scour and deposition) to affect the BFEs, then provide the following information along with the supporting documentation:

Sediment load associated with the base flood discharge: Volume acre-feet
Debris load associated with the base flood discharge: Volume acre-feet
Sediment transport rate (percent concentration by volume)
Method used to estimate sediment transport:

Most sediment transport formulas are intended for a range of hydraulic conditions and sediment sizes; attach a detailed explanation for using the selected method.

Method used to estimate scour and/or deposition:

Method used to revise hydraulic or hydrologic analysis (model) to account for sediment transport
Please note that bulked flows are used to evaluate the performance of a structure during the base flood; however, FEMA does not map BFEs based on bulked flows.

If a sediment analysis has not been performed, an explanation as to why sediment transport (including scour and deposition) will not affect the BFEs or structures must be provided.

MT-2 FORM 3, RIVERINE STRUCTURES FORM ATTACHMENT 3-1

PART A. GENERAL

Description Of Structure (continued)
4. Name of Structure: FRW Culvert \#4 - Sunrise Dr.

Type: Bridge/Culvert
Location of Structure: RM 2.251 Main Channel Reach 4
Downstream Limit/Cross Section: RM 2.164
Upstream Limit/Cross Section: RM 2.305
5. Name of Structure: FRW Culvert \#5 - Pontatoc Canyon Dr.

Type: Bridge/Culvert
Location of Structure: RM 2.008 Main Channel Reach 4
Downstream Limit/Cross Section: RM 1.939
Upstream Limit/Cross Section: RM 2.047

APPENDIX B

REFERENCES

REFERENCES

1. National Flood Insurance Program-Program Description Report, FEMA, August 1, 2002;
2. Arizona Department of Water Resources, State Standard for Hydrologic Modeling Guidelines (SS 10-07, draft), August 2007;
3. FEMA, Guidelines \& Specifications for Mapping Partners, Appendix B, Guidance for Converting to NAVD88, April 2003;
4. U.S. Army Corps of Engineers, Hydrologic Engineering Center, HEC-1 Flood Hydrograph Package User Manual, Version 4.1, June 1998;
5. National Oceanic and Atmospheric Administration (NOAA) Atlas 14, Precipitation Frequency Atlas for the United States: Volume 1 - Version 4.0 The Semiarid Southwest. National Weather Service, Hydrometeorological Design Studies Center, 2006;
6. Pima County Regional Flood Control District Technical Policy TECH-010, Rainfall Input for Hydrologic Modeling, May 15, 2007;
7. NRCS, National Engineering Handbook, Section 4 - Hydrology (NEH-4), Chapter 15. Travel Time, Time of Concentration and Lag, and Chapter 16. Hydrographs, August 1972;
8. Pima County Regional Flood Control District Technical Policy TECH-018, Acceptable Model Parameterization for Determining Peak Discharge, Draft 2009;
9. City of Tucson, Arizona, Existing Conditions Hydrologic Modeling for the Tucson Stormwater Management Study (TSMS), Phase II, Stormwater Master Plan (Task 7, Subtask 7A.3), December 17, 1993, Revised November 1995, by Simons, Li \& Associates;
10. City of Tucson, Arizona, TSMS Technical Memorandum 7.2.6, Temporal Distribution for a 3-hour Thunderstorm, Simons, Li \& Associates, October 6, 193;
11. Pima County Regional Flood Control District, PC-HYDRO, User Guide - Pima County Hydrology Procedures, Version 5.4.2, October 2009;
12. USDA Natural Resource Conservation Service (NRCS), Technical Release TR-55, Urban Hydrology for Small Watersheds, June 1986;
13. Arizona Department of Water Resources, State Standard for Floodplain Hydraulic Modeling, State Standard (SS 09-02), July 2002;
14. United States Geological Survey (USGS), Scientific Investigations Report 2006-5108, Selection of Manning's Roughness Coefficient for Natural and Constructed Vegetated and Non-Vegetated Channels, and Vegetation Maintenance Plan Guidelines for Vegetated Channels in Central Arizona, 2007;
15. USGS, American Society of Civil Engineers Journal of Hydraulic Engineering, Volume 10, No. 1 - Hydraulics of High-Gradient Streams, November, 1984;
16. USDA Forest Service, Critical Flow Constrains Flow Hydraulics in Mobile-Bed Streams: A New Hypothesis, Water Resources Research, Vol. 33, No. 2, pp. 349-358, February 1997;
17. Federal Highway Administration HDS No. 5, Hydraulic Design of Highway Culverts, September 2001, Revised May 2005;
18. Pima County Regional Flood Control District, Flecha Caida Flood Improvement Study, Phase I 100-year Peak Discharge Magnitudes \& Floodplain Mapping, Simons, Li \& Associates, January 28, 1986;
19. USGS, Open File Report 93-419, Methods for Estimating Magnitude and Frequency of Floods in the Southwestern United States, pg. 59, 1994;
20. U.S. Army Corps of Engineers HEC-RAS River Analysis System User Manual, Version 4.0.0, March 2008;
21. Pima County Regional Flood Control District, Pima County Floodplain and Erosion Hazard Management Ordinance, Title 16 of the Pima County Code, Ordinance 2010 FC5, revised May 2010;
22. FEMA, Flood Insurance Study (FIS) for Pima County, Arizona and Incorporated Areas, February 8, 1999;

APPENDIX C

SURVEY FIELD NOTES \& AS-BUILT PLANS

C. 1 - SURVEY FIELD NOTES

re: Finger Wash Survey

In January of 2008, OPW Engineering, LLC surveyed a variety of wash crossings along Finger Wash. Included in the data collected were roadway elevations, curb locations, box culvert and pipe inverts, flowline grades, tops and toes of slopes and a number of spot elevations. The survey locations were provided by CMG Drainage Engineering in support of a new floodplain mapping study for the watercourse.

The survey data was tied horizontally and vertically to Pima County DOT - City of Tucson DOT Geodetic Control Points BA13, BE13, BJ13, BR13 and BL11, Township 13 South, Range 14 East, using published coordinate and elevation data from the Pima County GIS website. These points correspond to points $3,4,5,6$ and 7 on the attached data sheet.

The datum used is State Plane Coordinates, Arizona Central Zone, international feet, 1983 datum for horizontal control datum and NAVD 88 datum for vertical control.

Thank you.

Chris E. Morrison, R.L.S.
spc83-ifeet-azcentral-navd88.txt
1,487540.56,998483.10,2714.22,BASE
$2,482529.70,1011692.73,2817.10$, BASE
3,487876.76,1010879.17,3106.22,A13 GLO
4,482593.68,1010971.55,2797.20,E13 2IN.BCSM
5,477293.98,1011002.11,2664.80,J13 1/2IN PUNCHED IP 6,466881.78,1011210.84,2420.15,R13 COT ALUM WASHER
7,474757.16,1008871.51,2592.91,L11 60D
$100,468889.57,1012097.38,247.0 .16, \mathrm{SP}$
101,468910.15,1012193.57,2470.00,SP 102,468977.39,1012261.83,2470.95, SP 103,469063.59, 1012309.49, 2473.45, SP 104,469149.40,1012358.22,2474.04,SP 105,469202.35,1012358.57,2474.69, SP 106,468876.40,1012001.65,2470.30,SP 107,468862.09,1011903.40,2469.44, SP 108, 468846.22,1011809.68,2471.85, SP 109,468830.81,1011713.44,2482.72, SP 110,468814.53,1011615.27,2486.39, SP 200,470979.04,1011380.93,2509.52, SP 201,470978.67,1011483.26,2519.73, SP 202,470982.59,1011571.01,2532.31,SP 203,471012.25,1011654.76,2533.75,SP 204,471086.24,1011724.39,2521.99, SP 205,470968.99,1011283.80,2511.36, SP 206,470883.70,1011236.14,2510.01, SP 207,470786.20,1011258.60,2508.61, SP 300,476382.34,1011908.44,2617.68, EP 301,476365.47,1011877.35,2617.40, EP 302,476371.70,1011898.74,2617.46,SP 303,476395.36,1011849.29,2617.46, SP 304, 476429.49,1011812.06,2618.30,SP 305,476469.66,1011775.99,2620.50, SP 306,476508.75,1011742.50,2623.93, SP 307,476548.25,1011709.48,2628.32,SP 308,476587.15,1011676.40,2634.26,SP 309,476625.30,1011643.09,2641.04, SP 310,476355.20,1011937.92,2617.44, SP 311,476342.41,1011986.68,2618.26,SP $312,476336.54,1012035.13,2620.24, \mathrm{SP}$ 313,476337.50,1012083.96,2623.09, SP $314,476344.80,1012132.20,2627.26$, SP 315,476359.35,1012181.26,2632.21,SP 316,476381.51,1012227.60,2636.41,SP 317,476384.49,1011949.48,2610.85,INV.86IN CMP 318,476388.55,1011938.68,2610.54,INV.86IN CMP 319,476392.55,1011927.00,2610.45,INV.86IN CMP 320,476397.31,1011914.71,2611.01,INV.86IN CMP 321,476402.16,1011904.36,2610.51,INV.86IN CMP 322,476398.94,1011882.77,2609.78,INV.86IN CMP 323,476403.18,1011870.76,2609.93,INV.86IN CMP 324,476369.59,1011828.42,2609.34,INV.86IN CMP 325,476364.42,1011839.06,2609.74,INV.86IN CMP 326,476360.63,1011850.98,2609.32,INV.86IN CMP 327,476354.95,1011859.93,2609.37,INV.86IN CMP 328,476350.62,1011871.66,2609.25,INV.86IN CMP 329,476354.80,1011894.16,2609.03,INV.86IN CMP 330,476350.70,1011904.81,2608.84,INV.86IN CMP 400,477477.18,1012499.06,2656.24,BEG BC $401,477474.88,1012440.62,2654.44$, BC 402,477473.53,1012395.98,2653.54, BC 403,477473.38,1012345.26,2652.00, BC 404,477474.49,1012292.20,2651.74, BC 405,477477.13,1012243.58,2651.19, BC 406,477481.39,1012191.72,2650.71, BC 407,477487.17,1012140.50,2650.22, BC 408,477494.26,1012090.33,2649.75, BC
spc83-ifeet-azcentral-navd88.txt
409,477503.08,1012039.07,2649.38, BC
$410,477512.64,1011991.62,2649.33, \mathrm{BC}$ 411,477524.33,1011942.00,2649.48, BC $412,477537.93,1011890.24,2651.54, \mathrm{BC}$ 413,477552.75,1011839.86,2649.84, BC 414,477569.24,1011789.71,2650.34, BC 415,477479.17,1012548.83,2657.78, BC 416,477481.59,1012612.44,2660.37,BC 417,477483.08,1012650.64,2661.97, BC 418,477485.09,1012702.08,2664.66, BC 419,477513.69,1012547.26,2646.91,TOP HEADWALL RCBC 420,477513.92,1012544.44,2635.59,INV.RCBC 10W BY 8H 421,477512.09,1012498.04,2635.61,INV.RCBC 10W BY 8H 422,477512.04,1012498.07,2646.90,TOP HEADWALL RCBC 423,477510.25,1012450.64,2646.74,TOP HEADWALL RCBC $424,477510.50,1012459.64,2635.54$, INV.RCBC 10W BY 8H 425,477344.13,1012456.22,2643.65,TOP HEADWALL RCBC 426,477346.38,1012514.57,2643.59,TOP HEADWALLL RCBC $427,477346.52,1012513.03,2632.16$, INV. RCBC 10 W BY 8 H $428,477344.45,1012469.26,2632.09$, INV.RCBC 10W BY 8H 429,477344.42,1012464.32,2632.09, INV.RCBC IOW BY 8H 430,477347.79,1012549.79,2632.10,INV.RCBC 10W BY 8H 431,477347.85,1012549.83,2643.49,TOP HEADWALL RCBC 500,482641.41,1013645.20,2784.32, EP 501,482616.63,1013644.95,2784.33,EP 502, 482628.29,1013645.96,2784.59, SP 503,482627.95,1013591.10,2785.37,SP 504, 482627.60,1013537.07,2786.60, SP 505,482626.57, 1013482.74,2788.05, SP 506,482626.06,1013427.28,2790.11, SP 507,482625.30,1013373.65,2792.53, SP 508,482625.12,1013317.88,2795.10, SP 509,482628.97,1013695.96,2784.05, SP $510,482630.00,1013750.58,2783.92, \mathrm{SP}$ 511,482630.52,1013806.61,2784.07,SP $512,482631.82,1013858.63,2784.70, \mathrm{SP}$ 513,482632.17,1013911.65,2785.62, SP 514,482632.69,1013967.27,2787.02, SP 515,482684.80,1013648.71,2767.28,INV.48IN. CMP 517,482568.71,1013651.67,2760.73,INV.48IN. CMP 600,485687.31,1013097.98,2895.08, EP 601,485698.92,1013077.11,2896.09, SP 602,485705.09,1013064.88,2896.49, EP 603,485675.65,1013057.20,2897.39, EP 604,485666.34,1013083.40,2896.22,EP 605,485669.77,1013070.95,2897.04, SP 606,485616.73,1013067.16,2898.71,SP 607,485617.63,1013055.55,2898.96,EP 608, 485616. $37,1013077.44,2898.60$, EP 609,485702.49,1013119.67,2894.98, EP 610,485715.06,1013124.42,2895.29,SP 611,485727.22,1013129.56,2895.58, EP $612,485709.03,1013177.60,2893.00$, EP 613,485686.98,1013169.65,2892.96,EP 614,485697.94,1013173.78,2893.22, SP 615,485684.57,1013222.72,2891.45, SP 616,485695.45,1013225.23,2891.50, EP 617,485672.92,1013219.15,2891.25, EP 618,485661.88,1013271.37,2889.77, EP 619,485684.94,1013273.11,2890.08, EP 620,485674.10,1013272.70,2889.99, SP 621,485663.33,1013324.65,2888.66, SP 622,485674.92,1013324.90,2888.83,EP 623,485652.16,1013321.57,2888.51, EP 624,485742.74,1013094.90,2897.96, SP 625,485748.07,1013083.71,2898.08, EP
spc83-ifeet-azcentral-navd88.txt
626,485794.83,1013110.71,2899.24, EP 627,485781.92,1013129.98,2898.54, EP 628, 485788.43,1013118.27,2899.02, SP 629,485827.72,1013152.69,2900.12, SP $630,485820.38,1013160.98,2899.67, \mathrm{EP}$ 631,485835.03,1013143.52,2899.95, EP 632,485874.02,1013178.45,2901.64, EP 633,485857.10,1013195.88,2901.24, EP 634,485865.15,1013187.36,2901.61, SP 635,485905.40,1013221.38,2903.22,SP 636,485897.56,1013230.14,2902.86, EP 637,485911.48,1013213.33,2903.30,EP 638,485668.99,1013157.97,2892.55, TOP 639,485661.48,1013152.58,2888.88, TOE 640,485655.14,1013146.81,2887.54, FL $641,485650.61,1013146.06,2888.65, \mathrm{TOE}$ 642,485645.71,1013142.34,2890.09, TOP 643,485588.28,1013222.97,2890.51, TOP 644,485598.73,1013227.33,2884.30,TOE 645,485616.11,1013240.44,2881.35, FL 646,485630.89,1013253.48,2882.90, TOE 647,485642.44,1013257.94,2888.76,TOP 648,485753.67,1013037.15,2899.73, TOP 649,485751.29,1013030.92,2898.52,TOE 650,485742.75,1013022.71,2897.91, FL 651,485734.33,1013017.49,2898.81, TOE 652,485717.04,1013010.42,2905.60, TOP 700,486594.70,1012053.64,2970.33, EP 701,486571.17,1012060.09,2970.33, SP 702,486540.42,1012071.44,2969.47, EP 703,486603.82,1012030.54,2973.37,EP 704,486590.28,1012023.10,2973.51, SP 705,486578.32,1012017.29,2974.37,EP 706,486589.96,1011992.77,2977.67, EP 707,486601.11,1011998.00,2977.45, SP 708,486612.59,1012003.24,2977.42,EP 709,486622.70,1011974.21,2982.32,EP 710,486601.69,1011965.57,2982.31, EP 711,486612.44,1011970.24,2982.21, SP 712,486620.61,1011942.34,2986.64, SP 713,486609.25,1011939.53,2986.31, EP 714,486630.87,1011944.64,2986.79, EP $715,486573.46,1012087.09,2971.00$, EP 716,486538.15,1012077.79,2969.50, EP 717,486560.70,1012081.27,2970.40,SP $718,486548.79,1012106.84,2970.76, \mathrm{SP}$ 719,486559.42,1012111.89,2970.80, EP 720,486529.43,1012097.07,2970.13, EP 721,486525.24,1012130.55,2969.08, EP 722,486536.33,1012134.98,2969.15, SP 723,486548.32,1012139.42,2969.12,EP $724,486539.17,1012163.93,2967.44$, EP 725,486517.13,1012156.99,2967.20, EP 726,486528.12,1012160.47,2967.35,SP 727,486520.70,1012184.12,2965.80, SP 728,486509.35,1012180.94,2965.65, EP 729,486532.07,1012187.23,2966.16, EP 730,486522.95,1012213.86,2964.50,EP 731,486500.54,1012208.01,2964.15,EP 732,486511.17,1012210.54,2964.23,SP 733,486496.63,1012257.23,2961.81,SP 734,486508.42,1012261.60,2961.96, EP 735,486486.27,1012253.77,2961.61,EP 736,486471.69,1012298.59,2959.28, EP 737,486493.54,1012305.60,2959.74, EP 738,486483.03,1012302.02,2959.54, SP
spc83-ifeet-azcentral-navd88.txt
739,486463.90,1012278.50,2960.52, HP 740,486471.58,1012211.80,2964.41, HP 741,486507.39,1012108.95,2969.81,TOP 742, 486502.58,1012099.49,2967.25, TOE 743,486497.55,1012085.69,2966.75, FL 744,486496.60,1012074.17,2968.38, TOE $745,486489.69,1012048.11,2971.41$, TOP 746,486487.88,1012038.47,2971.73,EP 747,486486.81,1012027.34,2972.00, EP 748,486640.67,1012036.77,2969.93, FL 749,486628.45,1012019.75,2972.72, TOE 750,486650.04,1012053.46,2974.02, TOE 751,486669.07,1012092.21,2998.36,TOP 752,486629.23,1012002.42,2978.10,TOP 1003,487876.76,1010879.16,3106.24, 1004,482593.71,1010971.54,2797.12, 1005,477293.95,1011002.10,2664.87, 1006,466881.76,1011210.81، 2420.13, 1007,474757.19,1008871.58,2592.91,

Finger Rock Wash NAVD88 to NGVD29
Vertical Datum Conversion Computations

Conversion protocol from Guidelines \& Specifications for Mapping Partners, FEMA, April 2003, Appendix B, Guidance for Converting to NAVD88.

B.4.1.2 Multiple Conversion Factors (Stream by stream basis) -

Upstream end of study reach - Approximate River Sta. 4.8 mi .
Lat $=32.337216$, Lon $=-110.907924$
From NGS Vertcon website, datum shift $=0.723 \mathrm{~m}=2.37 \mathrm{ft}$ » NAVD88-2.37 ft = NGVD29

Intermediate point in study reach - Approximate River Sta. 2.4 mi.
Lat $=32.310680$, Lon $=-110.904676$
From NGS Vertcon website, datum shift $=0.697 \mathrm{~m}=2.29 \mathrm{ft}$ » NAVD88-2.29 ft = NGVD29

Downstream end of study reach - Approximate River Sta. 0.0 mi .
Lat $=32.279587$, Lon $=-110.907874$
From NGS Vertcon website, datum shift $=0.676 \mathrm{~m}=2.22 \mathrm{ft}$ » NAVD88-2.22 ft = NGVD29

Average datum shift for Finger Rock Wash study reach: NAVD88-2.29 ft = NGVD29

C. 2 - CULVERT AS-BUILT PLANS

August 28, 2000
Brent E. From, P.E.
Reoblowt Eng hour

To: Sing Shemood; Finger Rock Development Corporation

From: B. E. From
Subject: Summit at Finger Rock, Station 3+23; Super-Span Low Profile Arch
I am pleased to distribute the final inspection report reviewing the performance of the SUPER SPAN structure during the backriling operation.

After assembly the structure was within substantial conformance of the design dimensions. During the backrilling operation the movement of the structure went as predicted; the structure increased in rise as fill was placed along the sides and then settled slightly as fill was placed over the top. The final rise of the structure averaged 9.57 ft ., versus the design rise of 9.50 ft . The final span averaged 28.09 ft ., compared to the design dimension of 28.08 ft . None of the individual measurements along the length of the structure exceeded their established tolerance with the exception of the rise dimension at station 4, and the structure exhibits good symmetry. All of the density records indicate the required densities were achieved with exception of the few measurements taken on the first iii over the top of the structure (this is to be expected).

Our Shape Control Technician monitored the backcilling operation until there was 3 ft . of fill over the top of the structure. This was determined to be the minimum cover for highway loading. It is important to insure that the minimum cover is maintained. Additional fill may be required to facilitate heavy construction equipment; that is, construction equipment which exerts live load pressures in excess of standard highway wheel loads. This is especially important if this road will not be paved. If rutting occurs the ruts should be filled in (rather than graded down) in order to maintain minimum cover.

Finally, we recommend the riprap be placed around the footings on both SuperSpans immediately to provide for scour protection in accordance with our engineers directions.

Congratulations on another successful SUPER-SPAN installation. We appreciate this opportunity to have furnished CONTECH products for your project and look forward to working with you in the future.

Sincerely.

Brent E. Flow
Regional Engineer

cc:R.C. Adams, J.R. Noil, E.J. Prahl, J.S. Schluter, M.A. Taylor, CONTECH Bill Baker, Walbert Baker

Brent E. Flom, P.E.
Ragioned Enginow
To: Bing Sherwood; Finger Rock Development Corporation

From:
B. E. Flom

Subject: Surmit at Finger Rock, Station $10+72$; Super-Span Low Profile Arch
1 am pleased to distribute the final inspection report reviewing the performance of the SUPER SPAN structure during the backfilling operation.
After assembly the structure was within tolerance of the design dimensions. During the backfilling operation the movement of the structure went exactiy as predicted; the structure increased in rise as fill was placed along the sides and then settled slightly as fill was placed over the top. The final rise of the structure averaged 10.17 ft ., versus the design rise of 10.08 ft The final span averaged 31.04 ft , compared to the design dimension of 31.00 ft . None of the individual measurements along the length of the structure exceeded their established tolerance, and the structure extibits good symmetry. All of the density records indicate the required densities were achieved with exception of the few measurements taken on the first lift over the top of the structure (this is to be expected).
Our Shape Control Technician monitored the backfilling operation until there was 4 f. of fill over the top of the structure. This was determined to be the minimum cover for highway loading. It is important to insure that the minimum cover is maintained. Additional fill may be required to tacilitate heavy construction equipment, that is, construction equipment which exerts live load pressures in excess of standard highway wheel loads. This is especially important if this road will not be paved. If rutting occurs the ruts should be filled in (rather than graded down) in order to maintain minimum cover.
Congratulations on another succassful SUPER-SPAN installation. We appreciate this opportunity to have furnished CONTECH products for your project and look forward to working with you in the future.

Sincerely,

Brent E. Flom Regional Engineer
cc:R.C. Adams, J.R. Noll, E.J. Prahl, J.S. Schluter, M.A. Taylor, CONTECH Bill Baker, Walbert Baker Cecil Baldwin; Baldwin Construction

SECTION 10

NOTE: All scour holes were constructed of reinforced concrete. 2

APPENDIX D

HYDROLOGIC ANALYSIS SUPPORTING DOCUMENTATION

D. 1 - PRECIPITATION DATA

NOAA Atlas 14

Precipitation-Frequency Atlas of the United States

Volume 1 Version 4.0: Semiarid Southwest (Arizona, Southeast California, Nevada, New Mexico, Utah)

Geoffrey M. Bonnin, Deborah Martin, Bingzhang Lin, Tye Parzybok, Michael Yekta, David Riley

U.S. Department of Commerce
National Oceanic and Atmospheric
Administration
National Weather
Service

Silver Spring, Maryland, 2004 revised 2006

Table of Contents

1. Abstract 1
2. Preface 1
3. Introduction 3
4. Methods
4.1 Data 6
4.2 Regional approach based on L-moments 18
4.3 Dataset preparation 19
4.4 Development and verification of homogeneous regions 20
4.5 Choice of frequency distribution 26
4.6 Estimation of quantiles 35
4.7 Estimation of confidence limits 41
4.8 Spatial interpolation 42
5. Precipitation Frequency Data Server 54
6. Peer Review 61
7. Interpretation 62
A. 1 Temporal distributions A.1-1
A. 2 Seasonality A. 2-1
A. 3 Trend. A.3-1
A. 4 PRISM report A.4-1
A. 5 Point peer review A.5-1
A. 6 Spatial peer review A.6-1
A. 7 Station lists A.7-1
A. 8 Regional statistics tables A.8-1
A. 9 Heterogeneity (H1) tables A.9-1
A. 10 Regional growth factor tables A. 10-1
Glossary glossary-1
References references-1

1. Abstract

NOAA Atlas 14 contains precipitation frequency estimates with associated confidence limits for the United States and is accompanied by additional information such as temporal distributions and seasonality. The Atlas is divided into volumes based on geographic sections of the country. The Atlas is intended as the official documentation of precipitation frequency estimates and associated information for the United States. It includes discussion of the development methodology and intermediate results. The Precipitation Frequency Data Server (PFDS) was developed and published in tandem with this Atlas to allow delivery of the results and supporting information in multiple forms via the Internet.

2. Preface to Volume 1

NOAA Atlas 14 Volume 1 contains precipitation frequency estimates for Arizona, Nevada, New Mexico, Utah, and southeastern California (Imperial, Inyo, Eastern Kern, Eastern Los Angeles, Riverside, San Bernardino and Eastern San Diego counties). These areas were addressed together in a single project focused on the semiarid southwestern United States. The Atlas supercedes precipitation frequency estimates contained in Technical Paper No. 49 "Two- to ten-day precipitation for return periods of 2 to 100 years in the contiguous United States" (Miller et al., 1964), NOAA Atlas 2 "Precipitation-Frequency Atlas of the Western United States" (Miller et al., 1973), "Short Duration Rainfall Frequency Relations for California" (Frederick and Miller, 1979) and "Short Duration Rainfall Relations for the Western United States" (Arkell and Richards, 1986). The updates are based on more recent and extended data sets, currently accepted statistical approaches, and improved spatial interpolation and mapping techniques.

The work was performed by the Hydrometeorological Design Studies Center within the Office of Hydrologic Development of the National Oceanic and Atmospheric Administration's National Weather Service. Funding for the work was provided by the National Weather Service, U.S. Army Corps of Engineers, Natural Resources Conservation Service, Bureau of Reclamation, Arizona Department of Transportation, and Riverside County, California. Any use of trade names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Citation and Version History. This documentation and associated artifacts such as maps, grids, and point-and-click results from the PFDS, are part of a whole with a single version number and can be referenced as: "Precipitation-Frequency Atlas of the United States" NOAA Atlas 14, Volume 1, Version 4.0, G. M. Bonnin, D. Martin, B. Lin, T. Parzybok, M. Yekta, and D. Riley, NOAA, National Weather Service, Silver Spring, Maryland, 2006.

The version number has the format P.S where:
P is an integer representing successive releases of primary information. Primary information is essentially the data - the values of precipitation frequencies (in ASCII grids of the precipitation frequency estimates and output from the PFDS), shapefiles, cartographic maps, temporal distributions, and seasonality.
S is an integer representing successive releases of secondary information. S reverts to zero (or nothing; i.e., Version 2 and Version 2.0 are equivalent) when P is incremented. Secondary information includes documentation and metadata.

When new information is completed and added, such as draft documentation, without changing any prior information, the version number is not incremented.

The primary version number is stamped on the artifact or is included as part of the filename where the format does not allow for a version stamp (for example, the grids). An examination of any of the artifacts available through the Precipitation Frequency Data Server (PFDS) provides an immediate indication of the primary version number associated with all artifacts. All output from the PFDS is stamped with the version number and date of download.

Several versions of the project have been released. Table 2.1 lists the version history associated with the NOAA Atlas 14 Volume 1, the semiarid southwestern United States precipitation frequency project and indicates the nature of changes made. If major discrepancies are observed or identified by users, a new release may be warranted.

Table 2.1. Version History of the NOAA Atlas 14 Volume 1.

Version no.	Date	Notes
Version 1	October 30, 2002	Draft data used in peer review
Version 2	July 14, 2003	Final released data
Version 3	January 7, 2004	Updated final data
Version 3.0	October 22, 2004	Draft documentation released
Version 3.1	December 3, 2004	Final documentation released
Version 3.2	June 2, 2005	Edited final documentation released
Version 4	June 19, 2006	Updated final data (includes 1-year ARI)
Version 4.0	October 4, 2006	Updated final documentation released

3. Introduction

3.1. Objective

NOAA Atlas 14 Volume 1 provides precipitation frequency estimates for the semiarid southwestern United States which includes Arizona, Nevada, New Mexico, Utah, and southeastern California (Imperial, Inyo, Eastern Kern, Eastern Los Angeles, Riverside, San Bernardino and Eastern San Diego counties). Figures 4.1.1 and 4.1.2 show the project core area where estimates are available (enclosed in the bold line) and also include all stations used in the analysis, even those outside the core area. The Atlas provides precipitation frequency estimates for 5 -minute through 60 -day durations at average recurrence intervals of 1 -year through 1,000 -year. The estimates are based on the analysis of annual maximum series and then converted to partial duration series results. The information in NOAA Atlas 14 Volume 1 supercedes precipitation frequency estimates contained in Technical Paper No. 49 "Two- to ten-day precipitation for return periods of 2 to 100 years in the contiguous United States" (Miller, 1964), NOAA Atlas 2 "Precipitation-Frequency Atlas of the Western United States" (Miller et al., 1973), "Short Duration Rainfall Frequency Relations for California" (Frederick and Miller, 1979) and "Short Duration Rainfall Relations for the Western United States" (Arkell and Richards, 1986). The results are provided at high spatial resolution and include confidence limits for the estimates. The Atlas includes temporal distributions designed for use with the precipitation frequency estimates (Appendix A.1) and seasonal information for heavy precipitation (Appendix A.2). In addition, the potential effects of climate change were examined (Appendix A.3).

The new estimates are based on improvements in three primary areas: denser data networks with a greater period of record, the application of regional frequency analysis using L-moments for selecting and parameterizing probability distributions and new techniques for spatial interpolation and mapping. The new techniques for spatial interpolation and mapping account for topography and have allowed significant improvements in areas of complex terrain.

NOAA Atlas 14 Volume 1 precipitation frequency estimates for the semiarid southwestern United States are available via the Precipitation Frequency Data Server at http:/hdsc.nws.noaa.gov/hdsc/pfds which provides the additional ability to download digital files. The types of results and information found there include:

- point estimates (via a point-and-click interface)
- ArcInfo ${ }^{\oplus}$ ASCII grids
- ESRI shapefiles
- color cartographic maps for each state
- associated Federal Geographic Data Committee-compliant metadata
- data series used in the analyses: annual maximum series and partial duration series
- temporal distributions of heavy precipitation (6-hour, 12 -hour, 24 -hour and 96 -hour)
- seasonal exceedance graphs: counts of events that exceed the 1 in $2,5,10,25,50$ and 100
annual exceedance probabilities for the 60 -minute, 24 -hour, 48 -hour, and 10 -day durations. As discussed in Sections 4.8.4 and 4.8.5, the color cartographic maps and ESRI shapefiles were created to serve as visual aids and, unlike NOAA Atlas 2, are not recommended for interpolating final point or area precipitation frequency estimates. Users are urged to take advantage of the Precipitation Frequency Data Server or the underlying ArcInfo ${ }^{\circledR}$ ASCII grids for accessing estimates.

3.2. Terminology; Partial Duration and Annual Maximum Series

This publication adopts the terminology "average recurrence interval" (ARI) and "annual exceedance probability" (AEP) presented in Australian Rainfall and Runoff (Institute of Engineers, Australia, 1987) which in turn is based on Laurenson (1987). NOAA Atlas 14 is based on the analysis of annual maximum series data with the results converted to represent estimates based on partial
duration series. The results for these two types of series differ at shorter average recurrence intervals and have different meanings. Factors for converting between these results are provided in Section 4.6.4.

An annual maximum series is constructed by taking the highest accumulated precipitation for a particular duration in each successive year of record, whether the year is defined as a calendar year or using some other arbitrary boundary such as a water year. Calendar years are used in this Atlas. An annual maximum series inherently excludes other extreme cases that occur in the same year as a more extreme case. In other words, the second highest case on record at an observing station may occur in the same year as the highest case on record but will not be included in the annual maximum series. A partial duration series is constructed by taking all of the highest cases above a threshold regardless of the year in which the case occurred. In this Atlas, partial duration series consist of the N largest cases in the period of record, where N is the number of years in the period of record at the particular observing station.

Analysis of annual maximum series produces estimates of the average period between years when a particular value is exceeded. On the other hand, analysis of partial duration series gives the average period between cases of a particular magnitude. The two results are numerically similar at rarer average recurrence intervals but differ at shorter average recurrence intervals (below about 20 years). The difference can be important depending on the application.

Typically, the use of AEP and ARI reflects the analysis of the different series. However, in some cases, average recurrence interval is used as a general term for ease of reference.

3.3. Approach

The approach used in this project largely follows the regional frequency analysis using the method of L-moments described in Hosking and Wallis (1997). This section provides an overview of the approach. Greater detail on the approach is provided in Section 4.2.

This Atlas introduces a change from past NWS publications by its use of regional frequency analysis using L-moments for selecting and parameterizing probability distributions. Both annual maximum series and partial duration series were extracted at each observing station from quality controlled data sets. Because of the greater reliability of the analysis of annual maximum series, an average ratio of partial duration series to annual maximum series precipitation frequency estimates (quantiles) was computed and then applied to the annual maximum series quantiles to obtain the final equivalent partial duration series quantiles.

Quality control was performed on the initial observed data sets (see Section 4.3) and it continued throughout the process as an inherent result of the performance parameters of intermediate steps.

To support the regional approach, potential regions were initially determined based on climatology. They were then tested statistically for homogeneity. Individual stations in each region were also tested statistically for discordancy. Adjustments were made in the definition of regions based on underlying climatology in cases where homogeneity and discordancy criteria were not met.

A variety of probability distributions were examined and the most appropriate distribution for each region and duration was selected using several different performance measures. The final determination of the appropriate distributions for each region and duration was made based on sensitivity tests and a desire for a relatively smooth transition between distributions from region to region. Probability distributions selected for annual maximum series were not necessarily the same as those selected for partial duration series.

Quantiles at each station were determined based on the mean of the data series at the station and the regionally determined higher order moments of the selected probability distribution. There were a number of stations where the regional approach did not provide the most effective choice of probability distribution. In these cases the most appropriate probability distribution was chosen and parameterized based solely on data at that station. Quantiles for durations below 60-minutes (n-
minute durations) were computed using an average ratio between the n-minute and 60 -minute quantiles due to the small number of stations recording data at less than 60 -minute intervals.

For the first time, the National Weather Service is providing confidence limits for the precipitation frequency estimates in the area covered by NOAA Atlas 14. Monte Carlo Simulation was used to produce upper and lower bounds at the 90% confidence level.

In the regional approach, the second and higher order moments are constant for each region resulting in a potential for discontinuities in the quantiles at regional boundaries. In order to avoid potential discontinuities and to achieve an effective spatial interpolation of quantiles between observing stations, the data series means at each station for each duration were spatially interpolated using PRISM technology by the Spatial Climate Analysis Service (SCAS) at Oregon State University (Appendix A.4). Because the mean was derived directly at each observing station from the data series and independently of the regional computations, it was not subject to the same discontinuities. The grid of quantiles for each successive average recurrence interval was then derived in an iterative process using a strong linear relationship between a particular duration and average recurrence interval and the next rarer average recurrence interval of the same duration (see Section 4.8.2). The resulting set of grids were tested and adjusted in cases where inconsistencies occurred between durations and frequencies. Computations were made over a geographic domain that was larger than the published domain to ensure continuity at the edges of the published domain.

Both the spatial interpolation and the point estimates were subject to external peer reviews (see Section 6 and Appendices A.5 and A.6). Based on the results of the peer review, adjustments were made where necessary by the addition of new observations or removal of questionable ones. Adjustments were also made in the definition of regions.

Temporal precipitation patterns were extracted for use with the precipitation frequency estimates presented in the Atlas (Appendix A.1). The temporal patterns are presented in probabilistic terms and can be used in Monte Carlo development of ensembles of possible scenarios. They were specifically designed to be consistent with the definition of duration used for the precipitation frequency estimates.

The seasonality of heavy precipitation is represented in seasonal exceedance graphs that are available through the Precipitation Frequency Data Server. The graphs were developed for each region by tabulating the number of events exceeding the precipitation frequency estimate at each station for a given annual exceedance probability (Appendix A.2).

The 1-day annual maximum series were analyzed for linear trends in mean and variance and shifts in mean to determine whether climate change during the period of record was an issue in the production of this Atlas (Appendix A.3). The results showed little observable or geographically consistent impact of climate change on the annual maximum series during the period of record and so the entire period of record was used. The estimates presented in this Atlas make the necessary assumption that there is no effect of climate change in future years on precipitation frequency estimates. The estimates will need to be modified if that assumption proves quantifiably incorrect.

4. Method

4.1. Data

4.1.1. Properties

Sources. Daily, hourly, and n-minute (defined below) measurements of precipitation from various sources were used for this project (Table 4.1.1). Figure 4.1.1 shows the locations of daily stations, including SNOTEL (defined below), in the project area. Figure 4.1 .2 shows the hourly and n-minute stations.

The National Weather Service (NWS) Cooperative Observer Program's (COOP) daily and hourly stations were the primary source of precipitation gauge records. The following data sets of COOP data were obtained from National Oceanic and Atmospheric Administration's (NOAA) National Climatic Data Center (NCDC):

- Hourly data set: TD3240
- Daily data set: TD3200 and TD3206
- N-minute data set: TD9649 and an additional dataset covering 1973-1979

Other sources were NRCS (USDA) and local datasets, which included data from:

- San Bernardino County Flood Control District, CA
- Riverside County Flood Control and Water Conservation District, CA
- NWS's California-Nevada River Forecast Center at Sacramento, CA
- California Department of Water Resources (CDWR) Automated Local Evaluation in Real Time (ALERT) precipitation gauges
- ALERT hourly data from Maricopa County Flood Control District, AZ
- U.S. Geological Survey (USGS) dense precipitation gauge network from the Albuquerque Metropolitan Arroyo Flood Control Authority (AMAFCA).
Various supplementary stations provided information where no or limited data were previously available - in high elevations and south of the United States border. SNOTEL (SNOpack TELemetry) provided information in high elevations of the project area. The SNOTEL network of stations at high elevations ($6000-11,000$ feet) is operated by the United State's Department of Agriculture's (USDA) National Resources Conservation Service (NRCS). Additional daily data south of the United States border were obtained through the cooperation of Mr. Jorge Sanchez-Sesma, Instituto Mexicano de Technologia del Agua, Mexico City, Mexico.

Table 4.1.1. Number of stations in each state in the project area.

State	Daily	SNOTEL	Hourly	N-min
Arizona	270	13	68	5
Southeastern California	129	1	75	7
Nevada	114	26	39	5
New Mexico	239	11	76	3
Utah	212	67	42	4
Border states*	477	64	181	3
Baja, Mexico	31	n / a	n / a	n / a
Chihuahua, Mexico	10	n / a	n / a	n / a
Sonora, Mexico	22	n / a	n / a	n / a
Total	$\mathbf{1 5 0 4}$	$\mathbf{1 8 2}$	$\mathbf{4 8 1}$	$\mathbf{2 7}$

*Border states include parts of California, Colorado, Idaho, Oklahoma, Oregon, Texas and Wyoming that are directly adjacent to the project core area.

Record length. Record length may be characterized by the entire period of record or by the number of years of useable data within the total period of record (data years). For this project, only daily stations with 20 or more data years and hourly stations with 15 or more data years were used in the analysis. (Although, Mexico data were limited, so a threshold of 13 data years was used.) The records of these stations extend through December 2000 and average 54 data years in length for daily stations and 37 data years for hourly (Table 4.1.2). Figures 4.1.3 and 4.1.4 show the number of data years by percent of stations for the daily and hourly data. N -minute records used in the analysis had 14 to nearly 100 years of data with records extending through May 1997. At the time of this project the n-minute data at NCDC had not been updated beyond 1997. Eight n-minute stations had more than 80 years of data. (See Appendix A. 7 for a complete list of stations or http://hdsc.nws.noaa.gov/hdsc/pfds/pfds_data.html for downloadable comma-delimited station lists.)

Table 4.1.2. Information for daily and hourly datasets through $12 / 2000$ and n -minute datasets through 5/1997.

	Daily	Hourly	N-minute
No. of stations	1441 (+182 SNOTEL) $(+63$ Mexico $)$	481	27
Longest record length (data yrs) (Station ID)	108 $(29-8535)$	62 $(04-4211)$	88 $(02-6481)$
Average record length (data yrs)	54^{*}	37	36

*not including SNOTEL or Mexico stations

Figure 4.1.3. Plot of percentage of total number of daily stations used in NOAA Atlas 14 Volume 1 versus data years.

Figure 4.1.4. Plot of percentage of hourly stations used in NOAA Atlas 14 Volume 1 versus data years.
\mathbf{N}-minute data. N -minute data are precipitation data measured at a temporal resolution of 5-minutes that can be summed to various " n -minute" durations (10 -minute, 15 -minute, 30 -minute, and 60 minute). Because of the small number of n-minute data available, n-minute precipitation frequencies were estimated by applying a linear scaling to 60 -minute data. The linear scaling factors were developed using ratios of n-minute quantiles to 60 -minute quantiles from 27 co-located n-minute and hourly stations divided into 6 regions (Figure 4.1.5). The ratios were calculated and averaged for each region. Since they were found to be essentially the same regardless of region and frequency, the ratios for each duration were averaged over the 6 regions and all annual exceedance probabilities and then applied to the entire project area.

The ratios are consistent with other studies. Table 4.1 .3 shows the n -minute ratios ($\mathrm{n}-\mathrm{min} / 60-$ min) computed for NOAA Atlas 14 Volume 1 and those reported in NOAA Atlas 2 (Miller et al., 1973) (herein after referred to as NOAA Atlas 2) for $5,10,15$, and 30 minutes. Also shown in Table 4.1.3 are the ratios used by Arkell and Richards (1986), who computed values for a comparable geographic area, but did not include California.

Figure 4.1.5. Regional groupings for n-minute data for NOAA Atlas 14 Volume 1.

Table 4.1.3. N-minute ratios: 5-, 10-, 15 - and 30-Minute to 60 -Minute.

	$\mathbf{5 - m i n}$	$\mathbf{1 0}$-min	$\mathbf{1 5}-\mathrm{min}$	$\mathbf{3 0}$-min
NOAA Atlas 14 Volume 1	$\mathbf{0 . 3 1 8}$	$\mathbf{0 . 4 8 4}$	$\mathbf{0 . 6 0 0}$	$\mathbf{0 . 8 0 8}$
NOAA Atlas 2	0.29	0.45	0.57	0.79
Arkell and Richards, 1986	0.34	0.52	0.62	0.82

SNOTEL data. SNOTEL stations provide precipitation data in the higher elevations where in NOAA Atlas 2 there was no information. The number and quality of the data were insufficient for computing higher order statistical moments directly and so the data were not used in the calculation of regional parameters. Rather, mean annual maxima for the 24 -hour through 60 -day durations at each location were computed for use in analysis and spatial interpolation processes. Precipitation frequency estimates for SNOTEL stations were calculated using the regional growth factors (RGFs), a dimensionless regional frequency distribution parameter derived from the regions in which they resided (Section 4.6.1), combined with the mean of their annual maximum series at the SNOTEL station. The estimates were then used to anchor the spatial distribution of precipitation frequency
residuals that were the basis of the precipitation frequency grids (Section 4.8) to provide better accuracy at higher elevations.

Mexico data. Mexico data were included to provide spatial continuity across the southern border of the project area. The maximum record length of these daily data was 15 years. Annual maximum series were extracted from the data using 13 years as the minimum years of record so that a reasonable number of stations could be included. The data were not directly used in L-moment computations for the project area. The mean annual precipitation and mean annual maxima for the 24 -hour through 60 -day durations were computed and used in the spatial interpolation of the mean annual maxima values, but not the precipitation frequency estimates.

Multi-day/hour durations. Maxima for durations greater than 24-hour were generated by accumulating daily data. The multi-day maxima, 2-day through 60 -day, were extracted in an iterative process where 1-day observations were summed and compared with the value of the previous summation shifted by 1 day. Multi-hour durations, 2 -hour through 48 -hour, were generated by accumulating hourly data. (See Section 4.1.3 for additional details on the annual maximum series and partial duration series extraction process.)

NOAA Atlas 2 data comparison. NOAA Atlas 14 Volume 1 used a total of 2,194 stations, which includes substantially more stations, 76% more, than were available to NOAA Atlas 2 (southeastern California could not be directly compared). Table 4.1 .4 shows a comparison between the total number of stations used in each Atlas for the 4 complete core states, Arizona, Nevada, New Mexico, and Utah. Many new stations also provided information in critical areas, where no data were available to NOAA Atlas 2, including 182 SNOTEL stations and 63 stations in Mexico. NOAA Atlas 2 used data through 1970, whereas NOAA Atlas 14 Volume 1 used data through 2000, vastly increasing the amount of data available. Some stations available for NOAA Atlas 14 Volume 1 had up to 30 more years of record than those used in NOAA Atlas 2. This allowed for the exclusion of shorter, less reliable data records. NOAA Atlas 2 used a minimum of 15 data years, whereas for NOAA Atlas 14 Volume 1 the minimum was increased to 20 data years. Figure 4.1 .6 shows the number of years of record for daily stations used in each Atlas for the 4 core states, Arizona, Nevada, New Mexico, and Utah, (southeastern California could not be directly compared).

Table 4.1.4. Comparison of the total number of stations in Arizona, Nevada, New Mexico, and Utah (southeastern California could not be directly compared) that were used in NOAA Atlas 2 and NOAA Atlas 14 Volume 1.

Data type	NOAA Atlas 2	NOAA Atlas 14 Volume 1	Increase	\% increase
Hourly	180	225	45	25%
Daily	563	835	272	48%
SNOTEL	0	182	182	
Mexico	0	63	63	
Total	$\mathbf{7 4 3}$	$\mathbf{1 3 0 5}$	$\mathbf{5 6 2}$	$\mathbf{7 6 \%}$

Figure 4.1.6. Comparison of the years of record at stations used in Arizona, Nevada, New Mexico, and Utah (southeastern California could not be directly compared) in NOAA Atlas 2 (NA2) and NOAA Atlas 14 Volume 1 (NA14) [Note: Mexico and SNOTEL stations are not included in chart.]

4.1.2. Conversions of data

Daily. Daily data have varying observation times. Maximum 24-hour amounts seldom fall within a single daily observation period. In order to make the daily and hourly data comparable, a conversion was necessary from 'observation day' (constrained observation) to 24 hours (unconstrained observation). Both NOAA Atlas 2 and Technical Paper 40 (Hershfield, 1961) used the empirically derived value of 1.13 to convert daily data to 24 -hour data. Conversion factors for this project were computed using ratios of the 2 -year quantiles computed from annual maxima series at 32 stations with concurrent hourly and daily data in the project area (note: at least 10 of these were first order stations). Time series for concurrent time periods were generated for 24 -hour precipitation values summed from hourly observations and co-located daily precipitation observations. The series were analyzed separately using L-moments. Ratios of 2-year 24-hour to 2-year 1-day quantiles were then generated and averaged. The resulting conversion factor was comparable to results from a regression of daily-hourly annual maxima that occurred on the same day. The regression was not directly used since there were not enough data to produce a reliable result. The conversion factor used in this project was 1.14, which is in close agreement with the conversion factor used in NOAA Atlas 2 and Technical Paper 40 (see Table 4.1.5). Similarly, a 2-day to 48 -hour conversion factor of 1.03 was generated for NOAA Atlas 14 Volume 1. This factor had not been previously calculated in the other studies. All daily and 2-day data, including SNOTEL data, were converted to equivalent 24 -hour and 48 -hour unconstrained values, respectively.

Hourly. In order to make hourly and 60-minute data comparable, a conversion was necessary from the constrained 'clock hour' to unconstrained 60 -minute and from 2 hours to 120 -minute. Conversion factors were computed using ratios of the 2-year quantiles computed from annual maxima series at 12 stations with co-located hourly and n-minute stations in the project area. Time series from concurrent time periods were generated for 60 -minute precipitation values summed from n-minute observations and co-located hourly precipitation observations. The series were analyzed separately using Lmoments. Ratios of 2-year 60 -minute to 2 -year 1-hour quantiles were generated and averaged. The

POINT PRECIPITATION FREQUENCY ESTIMATES FROM NOAA ATLAS 14

Arizona 32.3726 N 110.8809 W 6768 feet
from "Precipitation-Frequency Atlas of the United States" NOAA Atlas 14, Volume 1, Version 4 G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M. Yekta, and D. Riley

NOAA, National Weather Service, Silver Spring, Maryland, 2006
Extracted: Mon May 102010

*These precipitation frequency estimates are based on a partial duration series, ARI is the Average Recurrence Interval.
Please refer to NOAA Allas. 14 Document for more information. NOTE: Formatting forces estimates near zero to appear as zero.

${ }^{*}$ The upper bound of the confidence interval at 90% confidence level is the value which 5% of the simulated quartile values for a given frequency are greater than.
** These precipitation frequency estimates are based on a partial duration series. ARI is the Average Recurrence Interval.
Please refer to NOAA Atlas 14 Document for more information. NOTE: Formatting prevents estimates near zero to appear as zero.

[^0]** These precipitation frequency estimates are based on a partial duration maxima series. ARI is the Average Recurrence interval.

Text version of tables

Mon May 10 11:02:34 2010

Duration					
5-min -	30-min *	3-hr	24-hr	7-day -	30-day
10-min +	60-min	6-hr	48-hr ∇	10-day $*$	45-day -
$15-\mathrm{min} \rightarrow$	120-m-	12-hr	4-day - F-	20-day -	60-day

Maps -

Other Maps/Photographs -

View USGS digital orthophoto quadrangle (DOO) covering this location from TerraServer; USGS Aerial Photograph may also be available from this site. A DOQ is a computer-generated image of an aerial photograph in which image displacement caused by terrain relief and camera tilts has been removed. It combines the image characteristics of a photograph with the geometric qualities of a map. Visit the USGS for more information.

Watershed/Stream Flow Information -

Find the Watershed for this location using the U.S. Environmental Protection Agency's site.

Climate Data Sources -

Precipitation frequency results are based on data from a variety of sources, but largely NCDC. The following links provide general information about observing sites in the area, regardless of if their data was used in this study. For detailed information about the stations used in this study, please refer to NOAA Atlas 14 Document.

Using the National Climatic Data Center's (NCDC) station search engine, locate other climate stations within:

5

Find Natural Resources Conservation Service (NRCS) SNOTEL (SNOwpack TELemetry) stations by visiting the Western Regional Climate Center's state-specific SNOTEL station maps.

Hydrometeorological Design Studies Center
DOC/NOAA/National Weather Service
1325 East-West Highway
1325 East-West Highway
Silver Spring, MD 20910
(301) 713-1669

Questions?: HDSC Questionsronioas, koy
Disclaimer

*These precipitation frequency estimates are based on a partial duration series, ARI is the Average Recurrence Interval.
Flease refer to NOAA Atlas 14.DOcument for more information. NOTE: Formatting forces estimates near zero to appear as zero.

* Upper bound of the $\mathbf{9 0 \%}$ confidence interval Precipitation Frequency Estimates (inches)																		
$\left\lvert\, \begin{array}{\|c\|c} \hline \text { ARI** } \\ \text { (years) } \end{array}\right.$	$\overline{\|c\|} \begin{gathered} 5 \\ \min \end{gathered}$	$\sqrt{\begin{array}{c} 10 \\ \mathrm{~min} \end{array}}$	$\sqrt{\substack{15 \\ \mathrm{~min}}}$	$\underset{\substack{30 \\ \text { min }}}{ }$	$\begin{gathered} 60 \\ \min \end{gathered}$	$\begin{array}{l\|} \hline 120 \\ \mathrm{~min} \end{array}$	$\begin{aligned} & \hline \hline \mathbf{3} \\ & \mathbf{h r} \end{aligned}$	$\begin{aligned} & \hline \mathbf{6} \\ & \mathrm{hr} \end{aligned}$	$\begin{aligned} & \hline \hline \mathbf{1 2} \\ & \mathrm{hr} \end{aligned}$	24	$\begin{aligned} & \hline \overline{\mathbf{4 8}} \\ & \mathrm{hr} \end{aligned}$	$\begin{gathered} \hline \mathbf{4} \\ \text { day } \end{gathered}$	$\begin{gathered} \hline 7 \\ \text { day } \end{gathered}$	$\begin{gathered} 10 \\ \text { day } \end{gathered}$	$\begin{gathered} 20 \\ \text { day } \end{gathered}$	$\begin{gathered} \hline 30 \\ \text { day } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 45 \\ \text { day } \end{array}$	$\begin{gathered} \hline \mathbf{6 0} \\ \text { day } \\ \hline \end{gathered}$
1	0.36	0.55	0.69	0.92	1.14	1.26	1.36	1.60	1.87	1.98	2.26	2.62	3.14	3.57	4.90	6.09	7.55	8.75
2	0.47	0.71	0.88	1.19	1.47	1.62	1.72	2.00	2.34	2.48	2.84	3.29	3.96	4.49	6.16	7.64	9.49	11.02
5	0.61	0.93	1.16	1.55	1.93	2.09	2.20	2.50	2.91	3.12	3.60	4.22	5.12	5.77	7.89	9.63	11.83	13.75
10	0.72	1.09	1.35	1.82	2.26	2.46	2.58	2.92	3.37	3.64	4.22	5.02	6.12	6.87	9.31	11.25	13.67	15.89
25	0.86	1.30	1.62	2.18	2.69	2.95	3.10	3.49	4.02	4.38	5.11	6.19	7.63	8.48	11.38	13.53	16.19	18.80
50	0.96	1.47	1.82	2.45	3.03	3.33	3.52	3.95	4.54	4.96	5.84	7.18	8.93	9.87	13.08	15.37	18.15	21.05
100	1.07	1.63	2.02	2.72	3.37	3.73	3.96	4.45	5.09	15.60	6.62	8.28	10.41	11.43	14.96	17.37	20.24	23.3
200	1.18	1.80	2.23	3.00	3.71	4.14	4.43	4.96	5.68	6.27	7.46	9.49	12.06	13.18	17.05	19.48	22.42	25.82
500	1.33	2.02	2.51	3.37	4.18	4.71	5.09	5.68	6.49	7.24	8.68	11.30	14.55	15.78	20.10	22.54	25.45	29.26
1000	1.45	2.21	2.74	3.69	4.56	5.18	5.65	6.29	7.14	8.02	9.69	12.87	16.75	18.05	22.69	25.05	27.93	32.04

*The upper bound of the confidence interval at 90% confidence level is the value which 5% of the simulated quantile values for a given frequency are greater than.
** These precipitation frequency estimates are based on a partial duration series, ARI is the Average Recurrence Interval.
Please refer to NOAA Avlas 14. Document for more information. NOTE: Formatting prevents estimates near zero to appear as zero.

```* Lower bound of the 90% confidence interval Precipitation Frequency Estimates (inches)```																		
$\begin{aligned} & \mathbf{A R I}^{* *} \\ & \text { (years) } \end{aligned}$	$\begin{gathered} 5 \\ \text { min } \end{gathered}$	$\begin{gathered} 10 \\ \min \end{gathered}$	$\begin{gathered} 15 \\ \min \end{gathered}$	$\begin{gathered} 30 \\ \text { min } \end{gathered}$	$\begin{gathered} 60 \\ \mathrm{~min} \end{gathered}$	$\begin{aligned} & 120 \\ & \text { min } \end{aligned}$	$\begin{gathered} 3 \\ \mathrm{hr} \end{gathered}$	$6$	$\begin{aligned} & 12 \\ & \mathrm{hr} \end{aligned}$	$\begin{aligned} & 24 \\ & \mathrm{hr} \end{aligned}$	$\begin{aligned} & 48 \\ & \mathrm{hr} \end{aligned}$	$\begin{gathered} 4 \\ \text { day } \end{gathered}$	$\begin{gathered} \hline 7 \\ \text { day } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 10 \\ \text { day } \\ \hline \end{array}$	$\begin{gathered} \hline 20 \\ \text { day } \\ \hline \end{gathered}$	$\begin{gathered} 30 \\ \text { day } \\ \hline \end{gathered}$	$\begin{aligned} & 45 \\ & \text { day } \end{aligned}$	$\begin{gathered} 60 \\ \text { day } \\ \hline \end{gathered}$
1	0.28	0.43	0.53	0.72	0.89	1.00	1.08	1.27	1.50	1.63	1.86	2.15	2.56	2.92	4.03	5.07	6.33	7.32
2	0.36	0.56	0.69	0.93	1.15	1.28	1.36	1.59	1.88	2.05	2.34	2.69	3.22	3.66	5.07	6.36	7.95	9.19
5	0.48	0.72	0.90	1.21	1.50	1.65	1.74	1.98	2.32	2.56	2.96	3.44	4.14	4.67	6.44	7.96	9.86	11.44
10	0.56	0.85	1.05	1.42	1.75	1.92	2.02	2.30	2.68	2.97	3.46	4.07	4.92	5.53	7.56	9.27	11.35	13.14
25	0.66	1.00	1.24	1.68	2.07	2.30	2.42	2.73	3.16	3.54	4.14	4.96	6.03	6.74	9.11	11.02	13.29	15.39
50	0.73	1.11	1.38	1.86	2.30	2.57	2.71	3.05	3.53	3.97	4.66	5.66	6.95	7.72	10.33	12.38	14.75	17.07
100	0.80	1.22	1.51	2.04	2.52	2.83	3.00	3.37	3.89	4.41	5.19	6.40	7.92	8.76	11.61	13.76	16.21	18.74
200	0.87	1.32	1.64	2.21	2.73	3.08	3.28	3.69	4.25	4.85	5.73	7.16	8.94	9.84	12.93	15.16	17.64	20.37
500	0.95	1.44	1.79	2.41	2.98	3.40	3.63	4.08	4.70	5.44	6.45	8.19	10.38	11.33	14.69	16.99	19.53	22.47
1000	1.01	1.53	1.90	2.56	3.16	3.64	3.90	4.39	5.04	5.89	6.99	9.02	11.53	12.53	16.05	18.37	20.95	24.04
*The lower   ** These procip	itatio	quer	tim	re	$\begin{aligned} & \text { onf } \\ & \text { on } \end{aligned}$	$\begin{aligned} & \text { elev } \\ & \text { ial du } \end{aligned}$	$\begin{aligned} & \text { the } \\ & \text { in ma } \end{aligned}$	$\begin{aligned} & \text { which } \\ & \text { a serie } \end{aligned}$	of		$\begin{aligned} & \text { uant } \\ & \text { Rect } \end{aligned}$	$\begin{aligned} & \text { alues I } \\ & \text { ice Int } \end{aligned}$	given fre	uency	less			

Please refer to NOAA Atlas 14 Document for more information. NOTE: Formatting prevents estimates near zero to appear as zero.

$$
\begin{aligned}
& \text { Text version of tables } \\
& \text { Partial duration based Point Precipitation Frequency Estimates - Version: } 4 \\
& \left.\qquad \begin{array}{l}
32.3613 \mathrm{~N} 110.8801
\end{array}\right\} 583 \mathrm{ft}
\end{aligned}
$$



Mon May 10 11:06:42 2010

Duration					
5-min -	30-min *	3-hr -	$24-h r$	7-day +	30-day -
10-min +	60-min	6-hr	48-hr	10-day -6	45-day - -ir
$15-\mathrm{min} \rightarrow+$	120-m-	12-hr -	4-day v-	20-day -	60-day



## Maps -



## Other Maps/Photographs -

View USGS digital orthophoto quadrangle (DOO) covering this location from TerraServer; USGS Aerial Photograph may also be available from this site. A DOQ is a computer-generated image of an aerial photograph in which image displacement caused by terrain relief and camera tilts has been removed. It combines the image characteristics of a photograph with the geometric qualities of a map. Visit the USGS for more information.

## Watershed/Stream Flow Information -

Find the Watershed for this location using the U.S. Environmental Protection Agency's site.

## Climate Data Sources -

Precipitation frequency results are based on data from a variety of sources, but largely NCDC. The following links provide general information about observing sites in the area, regardless of if their data was used in this study. For detailed information about the stations used in this study, please refer to NOAA Atlas 14 Document.

Using the National Climatic Data Center's (NCDC) station search engine, locate other climate stations within:
574/20
Find Natural Resources Conservation Service (NRCS) SNOTEL (SNOwpack TELemetry) stations by visiting the Western Regional Climate Center's state-specific SNOTEL station maps.

[^1]

## POINT PRECIPITATION FREQUENCY ESTIMATES FROM NOAA ATLAS 14

Arizona 32.3522 N 110.8906 W 4917 feet
from "Precipitation-Frequency Atlas of the United States" NOAA Atlas 14, Volume 1, Version 4 G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M. Yekta, and D. Riley NOAA, National Weather Service, Silver Spring, Maryland, 2006 Extracted: Mon May 102010

Con	fidenc	ce Lim			ason	lity		ocatio	M	Extract	Oth	May Info.		GIS dat		Maps	Docs	Return to State Map	
Precipitation Frequency Estimates (inches)																			
$\begin{array}{\|c\|} \hline \text { ARI* } \\ \text { (years) } \end{array}$	$\frac{5}{\min }$	$\frac{10}{\min }$	$\frac{15}{\mathrm{~min}}$	$\frac{30}{\min }$	$\underline{60}$	$\frac{120}{\text { min }}$	3 hr	6 hr	$\underline{\underline{12}}$	$\underline{\underline{24}}$	$\underline{\underline{48}}$	4 day	7 day	$\frac{10}{\text { day }}$	$\underline{\underline{20}}$	$\frac{30}{\text { day }}$	45	$\frac{60}{\text { day }}$	
1	0.30	0.46	0.57	0.77	0.96	1.08	1.16	1.36	1.59	1.72	1.96	2.24	2.67	3.04	4.16	5.18	6.44	7.42	
2	0.39	0.60	0.74	1.00	1.24	1.39	1.47	1.71	1.99	2.15	2.46	2.83	3.37	3.83	5.23	6.50	8.07	9.32	
5	0.52	0.79	0.97	1.31	1.62	1.80	1.88	2.14	2.48	2.71	3.11	3.62	4.34	4.89	6.66	8.16	10.04	11.59	
10	0.61	0.93	1.15	1.54	1.91	2.11	2.21	2.50	2.88	3.16	3.65	4.30	5.18	5.81	7.85	9.52	11.57	13.37	
25	0.73	1.11	1.38	1.85	2.29	2.54	2.67	2.99	3.44	3.78	4.40	5.28	6.43	7.15	9.56	11.40	13.63	15.73	
50	0.82	1.25	1.55	2.08	2.58	2.88	3.03	3.39	3.87	4.28	5.00	6.10	7.48	8.28	10.94	$4{ }^{12.90}$	15.21	17.53	
100	0.91	1.39	1.72	2.31	2.86	3.22	3.40	3.81	4.33	4.80	5.63	6.99	8.64	9.52	12.44	14.48	16.84	19.37	
200	1.00	1.52	1.89	2.54	3.15	3.56	3.79	4.24	4.80	5.35	6.29	7.94	9.91	10.87	14.04	416.12	18.49	21.23	
500	1.12	1.70	2.11	2.84	3.52	4.03	4.32	4.82	5.43	6.10	7.21	9.33	11.78	12.83	16.32	18.40	20.72	23.74	
1000	1.21	1.84	2.29	3.08	3.81	4.39	4.75	5.29	5.93	6.69	7.94	10.48	13.36	14.48	18.18	820.21	22.49	25.70	

* These precipitation frequency estimates are based on a partial duration series, ARI is the Average Recurrence Interval.

Please refer to NOAA AHlas 14. Document for more information. NOTE: Formatting forces estimates near zero to appear as zero.

* Upper bound of the $90 \%$ confidence interval Precipitation Frequency Estimates (inches)																		
$\begin{aligned} & \hline \mathbf{A R I * *} \\ & \text { (years) } \end{aligned}$	$\begin{array}{\|c\|} \hline \mathbf{5} \\ \text { min } \end{array}$	$\sqrt{\substack{10 \\ \min }}$	$\begin{gathered} 15 \\ \text { min } \end{gathered}$	$\begin{gathered} \mathbf{3 0} \\ \min \end{gathered}$	$\begin{gathered} 60 \\ \min \end{gathered}$	$\begin{array}{l\|} \hline 120 \\ \text { min } \end{array}$	$\begin{aligned} & \hline \mathbf{3} \\ & \mathbf{h r} \end{aligned}$	$\begin{gathered} \hline 6 \\ \mathrm{hr} \end{gathered}$	$\begin{aligned} & \overline{12} \\ & \mathrm{hr} \end{aligned}$	$\begin{aligned} & \hline 24 \\ & \mathrm{hr} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \hline \mathbf{4 8} \\ & \mathrm{hr} \end{aligned}$	$\begin{gathered} 4 \\ \text { day } \end{gathered}$	$\begin{gathered} \hline 7 \\ \text { day } \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 10 \\ \text { day } \\ \hline \end{array}$	$\begin{gathered} \hline 20 \\ \text { day } \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 30 \\ \text { day } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathbf{4 5} \\ \text { day } \\ \hline \end{array}$	$\begin{gathered} \hline 60 \\ \text { day } \\ \hline \end{gathered}$
1	0.35	0.53	0.65	0.88	1.09	1.22	1.31	1.53	1.78	1.90	2.16	2.49	2.97	3.37	4.59	5.68	7.02	8.11
2	0.45	0.68	0.84	1.14	1.41	1.56	1.65	1.92	2.23	2.38	2.71	3.13	3.75	4.24	5.77	7.13	8.83	10.21
5	0.58	0.89	1.10	1.49	1.84	2.02	2.12	2.40	2.77	2.99	3.43	4.01	4.83	5.43	7.37	8.96	10.98	12.71
10	0.69	1.05	1.30	1.75	2.16	2.38	2.48	2.80	3.21	3.49	4.03	4.75	5.76	6.46	8.70	10.46	12.68	14.67
25	0.82	1.25	1.55	2.09	2.58	2.85	2.99	3.35	3.83	4.19	4.86	5.86	7.17	7.96	10.62	12.56	14.99	17.34
50	0.93	1.41	1.75	2.35	2.91	3.22	3.39	3.80	4.33	4.75	5.55	6.79	8.39	9.25	12.20	14.26	16.78	19.39
100	1.03	1.57	1.95	2.62	3.24	3.61	83	4.28	4.85	5.36	6.29	7.82	9.77	10.71	13.94	16.10	18.69	21.53
200	1.14	1.73	2.15	2.89	3.58	4.01	4.29	4.78	5.41	6.00	7.09	8.96	11.31	12.34	15.87	18.04	20.67	23.73
500	1.28	1.95	2.42	3.26	4.04	4.57	4.93	5.47	6.19	6.92	8.23	10.66	13.62	14.76	18.70	20.86	23.41	26.85
1000	1.40	2.13	2.65	3.56	4.41	5.03	5.47	6.06	6.81	7.67	9.17	12.12	15.67	16.87	21.09	23.16	25.64	29.35

*The upper bound of the confidence interval at $90 \%$ confidence level is the value which $5 \%$ of the simulated quantile values for a given frequency are greater than.
** These precipitation frequency estimates are based on a partial duration series. AR1 is the Average Recurrence Interval.
Please refer to NOAA Allas 14 Document for more information. NOTE: Formatting prevents estimates near zero to appear as zero.

* Lower bound of the $90 \%$ confidence interval Precipitation Frequency Estimates (inches)																		
$\begin{array}{\|l\|} \hline \mathbf{A R I * *} \\ \text { (years) } \end{array}$	$\sqrt{\begin{array}{c} 5 \\ \min \end{array}}$	$\begin{gathered} 10 \\ \min \end{gathered}$	$\sqrt{15}$	$\begin{array}{\|l\|} \hline \mathbf{3 0} \\ \text { min } \end{array}$	$\sqrt{60}$	$\begin{aligned} & 120 \\ & \mathrm{~min} \end{aligned}$	$\begin{gathered} \overline{3} \\ \mathbf{h r} \end{gathered}$	$\begin{gathered} \hline 6 \\ \mathrm{hr} \end{gathered}$	$\begin{aligned} & \overline{12} \\ & \mathrm{hr} \end{aligned}$	$\begin{aligned} & 24 \\ & \mathrm{hr} \end{aligned}$	$48$	$\begin{gathered} 4 \\ \text { day } \end{gathered}$	$\begin{gathered} 7 \\ \text { day } \end{gathered}$	$\begin{aligned} & \hline 10 \\ & \text { day } \end{aligned}$	$\begin{gathered} \hline 20 \\ \text { day } \end{gathered}$	$\begin{gathered} \hline 30 \\ \text { day } \end{gathered}$	$\begin{aligned} & \hline \mathbf{4 5} \\ & \text { day } \end{aligned}$	$\begin{gathered} \hline \mathbf{6 0} \\ \text { day } \end{gathered}$
1	0.27	0.41	0.51	0.69	0.85	0.97	1.04	1.22	1.43	1.57	1.78	2.05	2.43	2.76	3.78	4.74	5.91	6.80
2	0.35	0.53	0.66	0.89	1.10	1.24	1.31	1.52	1.79	1.97	2.24	2.57	3.05	3.46	4.75	5.94	7.41	8.53
5	0.46	0.69	0.86	1.16	1.43	1.59	1.68	1.90	2.21	2.45	2.83	3.28	3.91	4.41	6.03	7.43	9.17	10.60
10	0.53	0.81	1.01	1.35	1.68	1.86	1.95	2.21	2.56	2.85	3.30	3.87	4.64	5.22	7.08	8.64	10.55	12.17
25	0.63	0.96	1.19	1.61	1.99	2.22	2.33	2.62	3.02	3.40	3.95	4.71	5.69	6.34	8.53	10.26	12.35	14.24
50	0.70	1.07	1.33	1.79	2.21	2.49	2.61	2.93	3.37	3.81	4.44	5.37	6.54	7.26	9.66	11.51	13.69	15.78
100	0.77	1.17	1.46	1.96	2.42	2.75	2.89	3.24	3.71	4.23	4.95	6.07	7.45	8.23	10.84	12.78	15.03	17.31
200	0.84	1.27	1.58	2.12	2.63	2.99	3.17	3.55	4.05	4.65	5.45	6.78	8.41	9.24	12.07	14.08	16.33	18.80
500	0.91	1.39	1.73	2.32	2.88	3.30	3.51	3.93	4.48	5.21	6.13	7.75	9.75	10.63	13.70	15.76	18.04	20.71
1000	0.97	1.48	1.83	2.47	3.05	3.53	3.77	4.23	4.80	5.64	6.64	8.53	10.82	11.74	14.96	17.02	19.32	22.13

[^2]** These precipitation frequency estimates are based on a partial duration maxima series. ARI is the Average Recurrence Interval.

Please refer to NOAA Atlas 14 Document for more information. NOTE: Formatting prevents estimates near zero to appear as zero.

## Text version of tables



Mon May 10 11:20:51 2010

Duration									
5-min -	30-min *	3-hr	-	24-hr	-	7-day	-	30-day	-
10-min +	60-min	6-hr	-	48-hr		10-day		4.5-day	-
$15-\mathrm{min} \rightarrow+$	120-m-	12-hr	$\triangle$	4-day		20-day	*	60-day	



Mon May 10 11:20:51 2010


## Maps -



## Other Maps/Photographs -

View USGS digital orthophoto quadrangle (DOO) covering this location from TerraServer; USGS Aerial Photograph may also be available from this site. A DOQ is a computer-generated image of an aerial photograph in which image displacement caused by terrain relief and camera tilts has been removed. It combines the image characteristics of a photograph with the geometric qualities of a map. Visit the USGS for more information.

## Watershed/Stream Flow Information -

Find the Watershed for this location using the U.S. Environmental Protection Agency's site.

## Climate Data Sources -

Precipitation frequency results are based on data from a variety of sources, but largely NCDC. The following links provide general information about observing sites in the area, regardless of if their data was used in this study. For detailed information about the stations used in this study, please refer to NOAA Atlas 14 Document.

Using the National Climatic Data Center's (NCDC) station search engine, locate other climate stations within:
(4ytho

Find Natural Resources Conservation Service (NRCS) SNOTEL (SNOwpack TELemetry) stations by visiting the Western Regional Climate Center's state-specific SNOTEL station maps.

[^3]
## Disclaimer

## POINT PRECIPITATION FREQUENCY ESTIMATES <br> FROM NOAA ATLAS 14

Arizona 32.3412 N 110.8922 W 3782 feet
from "Precipitation-Frequency Atlas of the United States" NOAA Atlas 14, Volume 1, Version 4
G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M. Yekta, and D. Riley

NOAA, National Weather Service, Silver Spring, Maryland, 2006
Extracted: Mon May 102010

Extracted: Mon May 102010																			
Con	nfidence	Lim			eason	ality	Location Maps				Other Info.			GIS data		Maps	Docs	Return to State Map	
Precipitation Frequency Estimates (inches)																			
$\begin{gathered} \text { ARI* } \\ \text { (years) } \end{gathered}$	$\frac{5}{\min }$	$\frac{10}{\min }$	$\frac{15}{\min }$	$\frac{30}{\min }$	$\underline{60}$	$\frac{120}{\min }$	3 hr	6 hr	$\frac{12}{\mathrm{hr}}$	$\underline{\underline{24}}$	$\frac{48}{\mathrm{hr}}$	$\begin{gathered} \frac{4}{4} \\ \underline{\text { day }} \end{gathered}$	7 day	$\frac{10}{10}$	$\frac{20}{\mathrm{day}}$	$\underline{\text { day }}$	$\frac{45}{\text { day }}$	$\frac{60}{\text { day }}$	
1	0.29	0.44	0.55	0.73	0.91	1.05	1.12	1.31	1.52	1.65	1.87	2.13	2.53	2.87	3.89	4.82	5.98	6.86	
2	0.37	0.57	0.70	0.95	1.17	1.34	1.41	1.63	1.90	2.06	2.34	2.69	3.18	3.60	4.88	6.05	7.49	8.60	
5	0.49	0.75	0.93	1.25	1.54	1.73	1.81	2.05	2.36	2.59	2.96	3.43	4.09	4.59	6.21	7.58	9.30	10.68	
10	0.58	0.88	1.09	1.47	1.82	2.04	2.13	2.40	2.75	3.02	3.47	4.07	4.87	5.45	7.31	8.83	10.71	12.30	
25	0.70	1.06	1.31	1.77	2.19	2.46	2.57	2.88	3.28	3.62	4.18	4.99	6.03	6.70	8.89	10.56	12.59	14.46	
50	0.78	1.19	1.48	1.99	2.46	2.79	2.92	3.26	3.69	4.09	4.75	5.75	7.01	7.75	10.17	11.94	14.03	16.10	
100	0.87	1.33	1.65	2.22	2.74	3.12	3.28	3.66	4.13	4.59	5.34	6.59	8.09	8.89	11.55	13.38	15.50	17.76	
200	0.96	1.46	1.81	2.44	3.02	3.45	3.66	4.08	4.58	5.11	5.96	7.48	9.26	10.14	13.03	14.89	16.99	19.44	
500	1.08	1.64	2.03	2.73	3.38	3.90	4.18	4.64	5.18	5.82	6.82	8.77	11.00	11.96	15.13	\| 16.97	18.99	21.69	
1000	1.17	1.78	2.20	2.96	3.67	4.26	4.60	5.10	5.66	6.39	7.51	9.85	12.46	13.48	16.84	18.62	20.56	23.43	

*These precipitation frequency estimates are based on a partial duration series, ARI is the Average Recurrence Interval.
Please refer to NOAA Allas 14. Document for more information. NOTE: Formatting forces estimates near zero to appear as zero.

* Upper bound of the $\mathbf{9 0 \%}$ confidence interval Precipitation Frequency Estimates (inches)																		
$\begin{array}{\|l\|} \hline \hline \text { ARI }{ }^{\star \star} \\ \text { (years) } \end{array}$	$\begin{gathered} 5 \\ \text { min } \end{gathered}$	$\begin{gathered} 10 \\ \hline \min \end{gathered}$	$\begin{gathered} 15 \\ \text { min } \end{gathered}$	$\begin{array}{\|c\|} \hline 30 \\ \mathrm{~min} \end{array}$	$\begin{gathered} 60 \\ \text { min } \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline 120 \\ \mathrm{~min} \end{array}$	$\begin{gathered} \hline \mathbf{3} \\ \mathbf{h r} \end{gathered}$	$\overline{\mathrm{fr}}$	$\begin{aligned} & \hline \hline \mathbf{1 2} \\ & \mathbf{h r} \\ & \hline \end{aligned}$	$\begin{aligned} & 24 \\ & \mathbf{h r} \end{aligned}$	$\begin{aligned} & \hline \hline \mathbf{4 8} \\ & \mathrm{hr} \\ & \hline \end{aligned}$	$\begin{gathered} 4 \\ \text { day } \\ \hline \end{gathered}$	$\begin{gathered} 7 \\ \hline \text { day } \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ \text { day } \\ \hline \end{gathered}$	$\begin{gathered} \hline 20 \\ \text { day } \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{3 0} \\ \text { day } \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{4 5} \\ \text { day } \end{gathered}$	$\begin{gathered} \hline 60 \\ \text { day } \end{gathered}$
1	0.33	0.50	0.62	0.84	1.04	1.18	1.26	1.47	1.70	1.82	2.06	2.37	2.81	3.18	4.29	5.28	6.52	7.49
2	0.42	0.65	0.80	1.08	1.34	1.51	1.59	1.84	2.12	2.28	2.59	2.97	3.53	3.98	5.38	6.62	8.19	9.41
5	0.56	0.85	1.05	1.41	1.75	1.95	2.04	2.31	2.64	2.86	3.27	3.79	4.54	5.09	6.87	8.31	10.16	11.69
10	0.65	1.00	1.24	1.66	2.06	2.29	2.40	2.69	3.07	3.33	3.83	4.49	5.41	6.05	8.09	9.69	11.72	13.4
25	0.79	1.19	1.48	1.99	2.47	2.76	2.89	3.22	3.65	4.00	4.61	5.52	6.71	7.44	9.86	11.62	13.82	15.90
50	0.89	1.35	1.67	2.25	2.78	3.12	3.27	3.65	4.12	4.54	5.26	6.39	7.84	8.64	11.32	13.17	15.45	17.76
100	0.99	1.50	1.87	2.51	3.11	3.50	3.70	4.11	4.62	\|5.12	5.96	7.36	9.12	9.99	12.93	14.85	17.18	19.69
200	1.09	1.66	2.06	2.78	3.44	3.89	4.14	4.60	5.16	5.72	6.70	8.42	10.55	11.50	14.71	16.62	18.96	21.68
500	1.24	1.88	2.33	3.14	3.89	4.43	4.77	5.27	5.90	6.60	7.77	10.01	12.69	13.74	17.31	19.19	21.41	24.47
1000	1.35	2.06	2.55	3.43	4.25	4.88	5.30	5.84	6.50	7.31	8.65	11.38	14.58	15.69	19.51	21.29	23.40	26.70

*The upper bound of the confidence interval at $90 \%$ confidence level is the value which $5 \%$ of the simulated quantile values for a given frequency are greater than.
** These precipitation frequency estimates are based on a partial duration series. ARI is the Average Recurrence Interval.
Please refer to NOAA Atlas 14 . Document for more information. NOTE: Formatting prevents estimates near zero to appear as zero.

* Lower bound of the $\mathbf{9 0 \%}$ confidence interval Precipitation Frequency Estimates (inches)																		
$\begin{array}{\|l\|l\|} \hline \text { ARI** } \\ (\text { (years) } \end{array}$	$\sqrt{\mathbf{5}}$	$\sqrt{\underset{\min }{10}}$	$\begin{gathered} 15 \\ \mathrm{~min} \end{gathered}$	$\begin{gathered} \hline \hline \begin{array}{c} 30 \\ \text { min } \end{array} \end{gathered}$	$\begin{gathered} 60 \\ \min \end{gathered}$	$\begin{aligned} & 120 \\ & \text { min } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \hline \mathbf{3} \\ & \mathbf{h r} \end{aligned}$	$\begin{aligned} & \hline 6 \\ & \mathrm{hr} \end{aligned}$	$\begin{aligned} & \hline \hline \mathbf{1 2} \\ & \mathbf{h r} \end{aligned}$	$\overline{24}$	$\begin{aligned} & \overline{48} \\ & \mathrm{hr} \end{aligned}$	$\begin{gathered} 4 \\ \text { day } \end{gathered}$	$\begin{gathered} 7 \\ \text { day } \end{gathered}$	$\begin{aligned} & \hline 10 \\ & \text { day } \\ & \hline \end{aligned}$	$\begin{gathered} \hline 20 \\ \text { day } \end{gathered}$	$\begin{array}{c\|} \hline \mathbf{3 0} \\ \text { day } \\ \hline \end{array}$	$\begin{aligned} & \hline \mathbf{4 5} \\ & \text { day } \\ & \hline \end{aligned}$	$\begin{gathered} \hline 60 \\ \text { day } \\ \hline \end{gathered}$
1	0.26	0.39	0.48	0.65	0.81	0.93	1.00	1.17	1.36	1.50	1.71	1.95	2.30	2.61	3.54	4.42	5.49	6.29
2	0.33	0.50	0.62	0.84	1.04	1.19	1.26	1.46	1.71	1.89	2.14	2.44	2.88	3.26	4.44	5.53	6.88	7.88
5	0.43	0.66	0.82	1.10	1.36	1.54	1.61	1.83	2.11	2.35	2.70	3.11	3.69	4.15	5.63	6.91	8.51	9.78
10	0.51	0.77	0.96	1.29	1.59	1.80	1.88	2.12	2.44	2.73	3.15	3.67	4.38	4.90	6.61	8.03	9.78	11.22
25	0.60	0.92	1.14	1.53	1.90	2.15	2.25	2.52	2.88	3.25	3.76	4.46	5.35	5.95	7.95	9.52	11.43	13.1
50	0.67	1.02	1.27	1.71	2.11	2.40	2.52	2.82	3.21	3.64	4.22	5.08	6.14	6.81	8.99	10.67	12.65	14.51
100	0.74	1.12	1.39	1.88	2.32	2.66	2.79	3.11	3.54	4.04	4.70	5.73	6.99	7.70	10.09	11.84	13.87	15.90
200	0.80	1.22	1.51	2.04	2.52	2.89	3.05	3.41	3.86	4.45	5.17	6.39	7.88	8.64	11.22	13.02	15.05	17.25
500	0.88	1.34	1.66	2.23	2.76	3.20	3.39	3.78	4.28	4.97	5.81	7.30	9.12	9.92	12.72	14.55	16.59	18.97
1000	0.93	1.42	1.76	2.37	2.93	3.42	3.64	4.07	4.58	5.38	6.29	8.03	10.11	10.95	13.88	15.70	17.73	20.24

[^4]** These precipitation frequency estimates are based on a partial duration maxima series. ARI is the Average Recurrence Interval.

Please refer to NOAA A Allas 14 DOcument for more information. NOTE: Formatting prevents estimates near zero to appear as zero.

## Text version of tables



Mon May 10 11:24:16 2010

Duration					
5-min -	30-min *	3-hr - -	24-hr	7-day +	30-day
10-min +	60-min $\quad$ E	6-hr	48-hr 7	10-day $\rightarrow$	45-day -量-
15-min $\rightarrow$	120-m-	$12-\mathrm{hr}-\triangle$	4-day F	20-day *	60-day -



## Maps -



## Other Maps/Photographs -

View USGS digital orthophoto quadrangle (DOO) covering this location from TerraServer; USGS Aerial Photograph may also be available from this site. A DOQ is a computer-generated image of an aerial photograph in which image displacement caused by terrain relief and camera tilts has been removed. It combines the image characteristics of a photograph with the geometric qualities of a map. Visit the USGS for more information.

## Watershed/Stream Flow Information -

Find the Watershed for this location using the U.S. Environmental Protection Agency's site.

## Climate Data Sources -

Precipitation frequency results are based on data from a variety of sources, but largely NCDC. The following links provide general information about observing sites in the area, regardless of if their data was used in this study. For detailed information about the stations used in this study, please refer to NOAA Atlas 14 Document.

Using the National Climatic Data Center's (NCDC) station search engine, locate other climate stations within:

Find Natural Resources Conservation Service (NRCS) SNOTEL (SNOwpack TELemetry) stations by visiting the Western Regional Climate Center's state-specific SNOTEL station maps.

Hydrometeorological Design Studies Center
Hydrometeorological Design Studies Cen
DOC/NOAA/National Weather Service
1325 East-West Highway
1325 East-West Highway
Silver Spring, MD 20910

## (301) 713-1669

Questions?: HDSCQuestionsonoalagov

## Disclaimer

## POINT PRECIPITATION FREQUENCY ESTIMATES FROM NOAA ATLAS 14

## Arizona 32.3305 N 110.8998 W 2910 feet

from "Precipitation-Frequency Atlas of the United States" NOAA Atlas 14, Volume 1, Version 4 G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M. Yekta, and D. Riley

NOAA, National Weather Service, Silver Spring, Maryland, 2006

*These precipitation frequency estimates are based on a partial duration series. ARI is the Average Recurrence Interval.
Please refer to NOAA Allas. 14 Document for more information. NOTE: Formatting forces estimates near zero to appear as zero.

* Upper bound of the $\mathbf{9 0 \%}$ confidence interval Precipitation Frequency Estimates (inches)																		
$\begin{array}{\|l\|} \hline \hline \text { ARI } \\ \hline \text { (years) } \end{array}$	$\begin{gathered} \mathbf{5} \\ \mathrm{min} \end{gathered}$	$\begin{array}{\|c\|} \hline 10 \\ \min \\ \hline \end{array}$	$\begin{gathered} 15 \\ \text { min } \end{gathered}$	$\begin{gathered} 30 \\ \min \end{gathered}$	$\begin{array}{\|c\|} \hline 60 \\ \min \end{array}$	$\begin{aligned} & \hline \hline \mathbf{1 2 0} \\ & \min \end{aligned}$	$\overline{\mathrm{h}}$	$\begin{aligned} & \hline \hline 6 \\ & \mathrm{hr} \end{aligned}$	$\begin{aligned} & \hline \hline \mathbf{1 2} \\ & \mathbf{h r} \end{aligned}$	$\begin{aligned} & \hline \overline{24} \\ & \mathrm{hr} \end{aligned}$	$\begin{aligned} & \hline \hline \mathbf{4 8} \\ & \mathrm{hr} \end{aligned}$	$\begin{gathered} \hline 4 \\ \text { day } \end{gathered}$	$\begin{gathered} 7 \\ \text { day } \end{gathered}$	$\begin{gathered} 10 \\ \text { day } \end{gathered}$	$\begin{gathered} 20 \\ \text { day } \end{gathered}$	$\begin{gathered} \hline \mathbf{3 0} \\ \text { day } \end{gathered}$	$\begin{aligned} & \hline \hline \mathbf{4 5} \\ & \text { day } \end{aligned}$	$\begin{aligned} & \hline 60 \\ & \text { day } \end{aligned}$
1	0.31	0.48	0.59	0.79	0.98	1.13	1.20	1.40	1.60	1.73	1.95	2.23	2.62	2.96	3.95	4.84	5.95	6.79
2	0.40	0.61	0.76	1.02	1.27	1.45	1.52	1.75	2.01	2.17	2.45	2.79	3.29	3.71	4.95	6.05	7.46	8.52
5	0.53	0.80	1.00	1.34	1.66	1.87	1.95	2.20	2.50	2.72	3.08	3.56	4.21	4.72	6.30	7.58	9.24	10.56
10	0.62	0.95	1.18	1.58	1.96	2.20	2.29	2.56	2.90	3.17	3.60	4.20	5.01	5.60	7.42	8.82	10.63	12.15
25	0.75	1.14	1.41	1.90	2.35	2.65	2.76	3.07	3.45	3.80	4.34	5.16	6.21	6.88	9.03	10.56	12.51	14.30
50	0.85	1.29	1.60	2.15	2.66	3.00	3.14	3.48	3.89	4.30	4.94	5.96	7.24	7.97	10.36	11.96	13.96	15.96
100	0.95	1.44	1.79	2.41	2.98	3.37	3.55	3.92	4.36	4.85	5.58	6.85	8.41	9.21	11.81	13.46	15.48	17.66
200	1.05	1.60	1.98	2.67	3.30	3.75	3.98	4.38	4.87	5.43	6.28	7.84	9.71	10.58	13.42	15.05	17.04	19.41
500	1.19	1.81	2.25	3.02	3.74	4.28	4.59	5.04	5.57	6.26	7.26	9.30	11.66	12.63	15.77	17.35	19.18	21.84
1000	1.30	1.98	2.46	3.31	4.09	4.71	5.10	5.59	6.14	6.92	8.07	10.56	13.39	14.40	17.76	19.21	20.89	23.77

* The upper bound of the confidence interval at $90 \%$ confidence level is the value which $5 \%$ of the simulated quantile values for a given frequency are greater than.
** These precipitation frequency estimates are based on a partial duration series. ARI is the Average Recurrence Interval.
Please refer to NOAA Allas. 14 Document for more information. NOTE: Formatting prevents estimates near zero to appear as zero.

* Lower bound of the $90 \%$ confidence interval Precipitation Frequency Estimates (inches)																		
$\begin{array}{\|l\|} \hline \text { ARI** } \\ \text { (years) } \end{array}$	$\underset{\min }{5}$	$\sqrt{\begin{array}{c} 10 \\ \min \end{array}}$	$\begin{gathered} 15 \\ \text { min } \end{gathered}$	$\begin{array}{\|c} \hline 30 \\ \text { min } \end{array}$	$\begin{array}{\|c} 60 \\ \text { min } \end{array}$	$\begin{array}{\|l} \hline \mathbf{1 2 0} \\ \text { min } \end{array}$	$\begin{aligned} & \hline \overline{3} \\ & \mathrm{hr} \end{aligned}$	$\overline{\mathrm{f}}$	$\begin{aligned} & \overline{12} \\ & \mathrm{hr} \end{aligned}$	$\overline{24}$	$\begin{aligned} & \hline \hline \mathbf{4 8} \\ & \mathrm{hr} \end{aligned}$	$\begin{gathered} 4 \\ \text { day } \end{gathered}$	$\begin{gathered} 7 \\ \hline \text { day } \\ \hline \end{gathered}$	$\begin{aligned} & 10 \\ & \text { day } \end{aligned}$	$\begin{gathered} \hline 20 \\ \text { day } \end{gathered}$	$\begin{array}{\|c\|} \hline \mathbf{3 0} \\ \text { day } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 45 \\ \text { day } \end{array}$	$\begin{gathered} \hline 60 \\ \text { day } \end{gathered}$
1	0.24	0.37	0.46	0.62	0.77	0.90	0.95	1.11	1.29	1.43	1.62	1.84	2.15	2.44	3.27	4.06	5.02	5.72
2	0.31	0.48	0.59	0.80	0.99	1.14	1.21	1.39	1.61	1.80	2.03	2.31	2.70	3.05	4.10	5.08	6.29	7.16
5	0.41	0.62	0.78	1.04	1.29	1.48	1.54	1.74	2.00	2.24	2.56	2.93	3.45	3.86	5.19	6.33	7.77	8.87
10	0.48	0.73	0.91	1.23	1.52	1.73	1.80	2.02	2.31	2.60	2.98	3.45	4.08	4.55	6.08	7.34	8.92	10.16
25	0.57	0.88	1.08	1.46	1.81	2.06	2.16	2.40	2.72	3.09	3.55	4.18	4.98	5.52	7.31	8.69	10.40	11.85
50	0.64	0.98	1.21	1.63	2.02	2.31	2.42	2.68	3.04	3.46	3.98	4.76	5.70	6.30	8.26	9.73	11.49	13.11
100	0.70	1.07	1.33	1.79	2.22	2.56	2.67	2.96	3.34	3.85	4.43	5.36	6.48	7.13	9.26	10.78	12.58	14.34
200	0.77	1.17	1.45	1.95	2.41	2.79	2.93	3.25	3.64	4.22	4.87	5.97	7.29	7.98	10.28	11.85	13.62	15.53
500	0.84	1.28	1.59	2.14	2.65	3.08	3.25	3.60	4.03	4.72	5.45	6.81	8.42	9.15	11.64	13.22	14.97	17.04
1000	0.90	1.36	1.69	2.28	2.82	3.30	3.50	3.88	4.33	5.11	5.90	7.48	9.32	10.09	12.69	14.25	15.97	18.14

[^5]Please refer to NOAA Atlas 14 Document for more information. NOTE: Formatting prevents estimates near zero to appear as zero.

```
Text version of tables
```



Mon May 10 11:27:16 2010

Duration					
5-min -	30-min *	3-hr -	24-hr	7-day -	30-day +
10-min +	60-min	$6-\mathrm{hr}$	48-hr $\nabla$	10-day $\rightarrow$	45-day -量
$15-\mathrm{min} *$ *-	120-m-	12-hr -	4-day -v	20-day *	60-day



## Maps -



## Other Maps/Photographs -

View USGS digital orthophoto quadrangle (DOO) covering this location from TerraServer; USGS Aerial Photograph may also be available from this site. A DOQ is a computer-generated image of an aerial photograph in which image displacement caused by terrain relief and camera tilts has been removed. It combines the image characteristics of a photograph with the geometric qualities of a map. Visit the USGS for more information.

## Watershed/Stream Flow Information -

Find the Watershed for this location using the U.S. Environmental Protection Agency's site.

## Climate Data Sources -

Precipitation frequency results are based on data from a variety of sources, but largely NCDC. The following links provide general information about observing sites in the area, regardless of if their data was used in this study. For detailed information about the stations used in this study, please refer to NOAA Atlas 14 Document.

Using the National Climatic Data Center's (NCDC) station search engine, locate other climate stations within:


Find Natural Resources Conservation Service (NRCS) SNOTEL (SNOwpack TELemetry) stations by visiting the
Western Regional Climate Center's state-specific SNOTEL station maps.

Hydrometeorological Design Studies Center
DOC/NOAA/National Weather Service
1325 East-West Highway
Silver Spring, MD 20910
(301) 713-1669

Questions?: HDSC.Ouestions@noalagoy

## Disclaimer



* These precipitation frequency estimates are based on a partial duration series. ARI is the Average Recurrence Interval.

Please refer to NOAA Atlas 14. Document for more information. NOTE: Formatting forces estimates near zero to appear as zero.

* Upper bound of the $\mathbf{9 0 \%}$ confidence interval Precipitation Frequency Estimates (inches)																		
$\begin{array}{\|l\|l\|} \hline \text { ARI** } \\ \text { (years) } \end{array}$	$\begin{gathered} 5 \\ \text { min } \end{gathered}$	$\begin{gathered} 10 \\ \min \end{gathered}$	$\overline{\begin{array}{\|c} 15 \\ \min \end{array}}$	$\begin{gathered} 30 \\ \hline \min \end{gathered}$	$\begin{gathered} 60 \\ \hline \min \end{gathered}$	$\begin{aligned} & \hline \mathbf{1 2 0} \\ & \text { min } \end{aligned}$	$\begin{aligned} & \hline \overline{3} \\ & \mathbf{h r} \end{aligned}$	$\begin{aligned} & \hline \mathbf{6} \\ & \mathrm{hr} \end{aligned}$	$\begin{aligned} & \overline{\mathrm{Tr}} \end{aligned}$	$\begin{aligned} & 24 \\ & \mathrm{hr} \end{aligned}$	$\begin{aligned} & \hline \mathbf{4 8} \\ & \mathrm{hr} \end{aligned}$	$\begin{gathered} 4 \\ \text { day } \end{gathered}$	$\begin{gathered} 7 \\ \text { day } \end{gathered}$	$\begin{gathered} 10 \\ \text { day } \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ \text { day } \end{gathered}$	$\begin{gathered} \hline 30 \\ \text { day } \end{gathered}$	$\begin{array}{\|c\|} \hline \hline \mathbf{4 5} \\ \text { day } \end{array}$	$\begin{array}{\|c\|} \hline 60 \\ \text { day } \end{array}$
1	0.30	0.46	0.57	0.76	0.94	1.08	1.15	1.32	1.50	1.63	1.82	2.07	2.41	2.71	3.58	4.35	5.32	6.02
2	0.39	0.59	0.73	0.98	1.22	1.38	1.45	1.65	1.88	2.04	2.29	2.59	3.02	3.39	4.48	5.43	6.66	7.55
5	0.51	0.78	0.96	1.29	1.60	1.79	1.86	2.08	2.34	2.56	2.88	3.29	3.85	4.31	5.69	6.78	8.22	9.32
10	0.60	0.91	1.13	1.53	1.89	2.10	2.19	2.43	2.71	2.98	3.36	3.88	4.57	5.09	6.68	7.87	9.44	10.70
25	0.72	1.10	1.36	1.84	2.27	2.53	2.64	2.91	3.23	3.57	4.03	4.75	5.65	6.24	8.11	9.40	11.07	12.56
50	0.82	1.25	1.54	2.08	2.57	2.87	2.99	3.30	3.65	4.04	4.58	5.48	6.57	7.22	9.29	10.62	12.31	13.98
100	0.92	1.40	1.73	2.33	2.89	3.23	39	3.71	4.09	4.55	5.17	6.29	7.62	8.32	10.58	11.94	13.62	15.43
200	1.02	1.55	1.92	2.59	3.20	3.59	3.80	4.16	4.56	5.09	5.80	7.18	8.78	9.55	12.00	13.32	14.94	16.91
500	1.16	1.76	2.18	2.94	3.64	4.11	4.40	4.79	5.22	5.86	6.70	8.50	10.53	11.38	14.08	15.32	16.72	18.96
1000	1.27	1.93	2.39	3.22	3.98	4.53	4.89	5.32	5.75	6.48	7.43	9.65	12.06	12.96	15.83	16.93	18.14	20.56

* The upper bound of the confidence interval at $90 \%$ confidence level is the value which $5 \%$ of the simulated quantile values for a given frequency are greater than.
** These precipitation frequency estimates are based on a parial duration series, ARI is the Average Recurrence Interval.
Please refer to NOAA Allas 14 Document for more information. NOTE: Formatting prevents estimates near zero to appear as zero.

* Lower bound of the $90 \%$ confidence interval Precipitation Frequency Estimates (inches)																		
$\begin{aligned} & \text { ARI** } \\ & \text { (years) } \end{aligned}$	$\begin{gathered} \mathbf{5} \\ \min \end{gathered}$	$\begin{gathered} 10 \\ \min \end{gathered}$	$\begin{gathered} 15 \\ \hline \text { min } \end{gathered}$	$\begin{gathered} 30 \\ \text { min } \end{gathered}$	$\begin{gathered} \hline 60 \\ \min \end{gathered}$	$\begin{aligned} & 120 \\ & \mathrm{~min} \end{aligned}$	$\begin{aligned} & \hline \hline \mathbf{3} \\ & \mathbf{h r} \end{aligned}$	$\begin{gathered} \hline 6 \\ \mathrm{hr} \end{gathered}$	$\begin{aligned} & \hline \mathbf{1 2} \\ & \mathrm{hr} \\ & \hline \end{aligned}$	$\begin{aligned} & 24 \\ & \mathrm{hr} \end{aligned}$	$\begin{aligned} & \hline \hline \mathbf{4 8} \\ & \mathrm{hr} \end{aligned}$	$\begin{gathered} \hline 4 \\ \text { day } \\ \hline \end{gathered}$	$\begin{gathered} \hline 7 \\ \text { day } \\ \hline \hline \end{gathered}$	$\begin{aligned} & \hline \mathbf{1 0} \\ & \text { day } \end{aligned}$	$\begin{gathered} 20 \\ \text { day } \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{3 0} \\ \text { day } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathbf{4 5} \\ & \text { day } \end{aligned}$	$\begin{gathered} 60 \\ \text { day } \end{gathered}$
1	0.23	0.36	0.44	0.59	0.74	0.85	0.91	1.05	1.21	1.35	1.52	1.72	2.00	2.25	2.97	3.66	4.51	5.10
2	0.30	0.46	0.57	0.77	0.95	1.09	1.15	1.31	1.51	1.70	1.91	2.15	2.50	2.80	3.72	4.57	5.64	6.37
5	0.40	0.60	0.75	1.01	1.25	1.41	1.47	1.65	1.87	2.12	2.40	2.73	3.18	3.54	4.70	5.68	6.95	7.87
10	0.47	0.71	0.88	1.18	1.46	1.65	1.72	1.91	2.16	2.46	2.79	3.21	3.75	4.17	5.50	6.58	7.96	9.00
25	0.56	0.84	1.05	1.41	1.75	1.98	2.06	2.27	2.56	2.92	3.32	3.87	4.57	5.04	6.60	7.78	9.26	10.47
50	0.62	0.94	1.17	1.57	1.95	2.21	2.31	2.54	2.85	3.27	3.72	4.40	5.22	5.75	7.45	8.70	10.21	11.56
100	0.68	1.04	1.29	1.74	2.15	2.45	2.55	2.81	3.13	3.62	4.12	4.95	5.92	6.49	8.34	9.62	11.15	12.63
200	0.74	1.13	1.40	1.89	2.34	2.67	2.80	3.08	3.42	3.98	4.53	5.51	6.65	7.26	9.25	10.55	12.04	13.65
500	0.82	1.24	1.54	2.08	2.57	2.95	3.12	3.42	3.78	4.44	5.06	6.27	7.66	8.30	10.45	11.74	13.19	14.92
1000	0.87	1.32	1.64	2.21	2.74	3.16	3.35	3.69	4.05	4.80	5.46	6.87	8.46	9.13	11.37	12.63	14.02	15.84

[^6]** These precipitation frequency estimates are based on a partial duration maxima series. ARI is the Average Recurrence Interval.

## Please refer to NOAA Atlas 14 Document for more information. NOTE: Formating prevents estimates near zero to appear as zero.

Text version of tables


Mon May 10 11:10:15 2010

Duration					
5-min -	30-min $\rightarrow$	3-hr - -	24-hr	7-day +	30-day -
10-min +	60-min	6-hr	48-hr	10-day $*$	45-day - -1
15-min $\rightarrow$	120-m -	$12-h r-\Delta$	4-day -	20-day *	60-day



## Maps -



## Other Maps/Photographs -

View USGS digital orthophoto quadrangle (DOO) covering this location from TerraServer; USGS Aerial Photograph may also be available from this site. A DOQ is a computer-generated image of an aerial photograph in which image displacement caused by terrain relief and camera tilts has been removed. It combines the image characteristics of a photograph with the geometric qualities of a map. Visit the USGS for more information.

## Watershed/Stream Flow Information -

Find the Watershed for this location using the U.S. Environmental Protection Agency's site.

## Climate Data Sources -

Precipitation frequency results are based on data from a variety of sources, but largely NCDC. The following links provide general information about observing sites in the area, regardless of if their data was used in this study. For detailed information about the stations used in this study, please refer to NOAA Atlas 14 Document.

Using the National Climatic Data Center's (NCDC) station search engine, locate other climate stations within:

Find Natural Resources Conservation Service (NRCS) SNOTEL (SNOwpack TELemetry) stations by visiting the Western Regional Climate Center's state-specific SNOTEL station maps.

[^7]
*These precipitation frequency estimates are based on a partial duration series, ARI is the Average Recurrence interval.
Please refer to NOAAA Alas 14 Document for more information. NOTE: Formating forces estimates near zero to appear as zero.

* Upper bound of the $\mathbf{9 0 \%}$ confidence interval Precipitation Frequency Estimates (inches)																		
$\begin{array}{\|l\|} \hline \text { ARI** } \\ \text { (years) } \end{array}$	$\begin{gathered} \mathbf{5} \\ \min \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ \text { min } \end{gathered}$	$\begin{gathered} 15 \\ \mathrm{~min} \\ \hline \end{gathered}$	$\begin{gathered} 30 \\ \text { min } \end{gathered}$	$\begin{gathered} 60 \\ \min \end{gathered}$	$\begin{array}{\|l\|l} \hline 120 \\ \mathrm{~min} \end{array}$	$\begin{gathered} \hline 3 \\ \mathbf{h r} \end{gathered}$	$\begin{aligned} & \hline 6 \\ & \mathrm{hr} \end{aligned}$	$\begin{aligned} & \mathbf{1 2} \\ & \text { hr } \\ & \hline \hline \end{aligned}$	$\begin{aligned} & 24 \\ & \mathrm{hr} \end{aligned}$	$\begin{aligned} & \hline \hline \mathbf{4 8} \\ & \mathrm{hr} \end{aligned}$	$\begin{gathered} \mathbf{4} \\ \text { day } \\ \hline \end{gathered}$	$\begin{gathered} \hline 7 \\ \text { day } \\ \hline \end{gathered}$	$\begin{gathered} \hline 10 \\ \text { day } \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline \hline \text { 20 } \\ \text { day } \\ \hline \end{array}$	$\begin{gathered} \hline \mathbf{3 0} \\ \text { day } \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{4 5} \\ \text { day } \\ \hline \end{gathered}$	$\begin{gathered} \hline 60 \\ \text { day } \\ \hline \end{gathered}$
1	0.29	0.44	0.55	0.74	0.92	1.05	1.11	1.28	1.44	1.57	1.75	1.98	2.29	2.57	3.35	4.05	4.94	5.57
2	0.38	0.57	0.71	0.96	1.18	1.34	1.41	1.60	1.80	1.97	2.19	2.47	2.87	3.21	4.20	5.06	6.18	6.97
5	0.49	0.75	0.93	1.26	1.55	1.74	1.80	2.01	2.25	2.46	2.75	3.13	3.64	4.07	5.33	6.30	7.61	8.59
10	0.58	0.89	1.10	1.48	1.83	2.04	2.12	2.34	2.60	2.87	3.21	3.69	4.31	4.81	6.25	7.30	8.71	9.85
25	0.70	1.07	1.33	1.79	2.21	2.46	2.56	2.81	3.10	3.44	3.84	4.51	5.32	5.88	7.57	8.70	10.20	11.54
50	0.80	1.21	1.50	2.03	2.51	2.79	2.91	3.18	3.50	3.88	4.37	5.20	6.18	6.79	8.66	9.81	11.31	12.82
100	0.90	1.36	1.69	2.28	2.82	3.14	3.29	(3.59	3.92	4.37	4.92	5.96	7.15	7.82	9.86	11.01	12.48	14.13
200	1.00	1.51	1.88	2.53	3.13	3.50	3.69	4.01	4.37	4.89	5.52	6.80	8.23	8.96	11.16	12.27	13.66	15.46
500	1.13	1.72	2.14	2.88	3.56	4.00	4.28	4.62	4.99	5.63	6.36	8.04	9.85	10.65	13.08	14.09	15.23	17.27
1000	1.24	1.89	2.34	3.15	3.90	4.42	4.76	5.14	5.51	6.22	7.05	9.12	11.27	12.12	14.69	15.54	16.46	18.68

* The upper bound of the confidence interval at $90 \%$ confidence level is the value which $5 \%$ of the simulated quantile values for a given frequency are greater than.
** These precipitation frequency estimates are based on a partial duration series. ARI is the Average Recurrence Interval.
Please refer to NOAA Atlas. 14 Document for more information. NOTE: Formatting prevents estimates near zero to appear as zero.

* Lower bound of the $90 \%$ confidence interval Precipitation Frequency Estimates (inches)																		
$\begin{aligned} & \text { ARI** } \\ & \text { (years) } \end{aligned}$	$\sqrt{\begin{array}{c} 5 \\ \text { min } \end{array}}$	$\underset{\mathrm{min}}{\overline{\mathrm{man}}}$	$\begin{gathered} 15 \\ \text { min } \end{gathered}$	$\begin{array}{\|c} \mathbf{3 0} \\ \text { min } \end{array}$	$\begin{gathered} 60 \\ \min \end{gathered}$	$\begin{array}{\|l} 120 \\ \text { min } \end{array}$	$\begin{aligned} & \hline \mathbf{3} \\ & \mathbf{h r} \end{aligned}$	$\overline{\mathrm{f}} \overline{\mathrm{hr}}$	$\begin{aligned} & \hline \hline \mathbf{1 2} \\ & \mathbf{h r} \end{aligned}$	$\begin{aligned} & \hline 24 \\ & \mathrm{hr} \end{aligned}$	$\begin{aligned} & \overline{48} \\ & \mathrm{hr} \end{aligned}$	$\begin{gathered} 4 \\ \text { day } \end{gathered}$	$\widehat{c} \begin{gathered} 7 \\ \text { day } \end{gathered}$	$\begin{gathered} 10 \\ \text { day } \end{gathered}$	$\begin{gathered} \hline 20 \\ \text { day } \end{gathered}$	$\begin{aligned} & \hline \mathbf{3 0} \\ & \text { day } \end{aligned}$	$\begin{aligned} & \hline \mathbf{4 5} \\ & \text { day } \end{aligned}$	$\begin{aligned} & \hline \hline 60 \\ & \text { day } \end{aligned}$
1	0.23	0.35	0.43	0.58	0.72	0.83	0.88	1.01	1.16	1.31	1.46	1.65	1.90	2.13	2.80	3.42	4.20	4.73
2	0.29	0.45	0.55	0.75	0.92	1.06	1.12	1.27	1.45	1.64	1.83	2.07	2.38	2.67	3.50	4.27	5.24	5.90
5	0.39	0.59	0.73	0.98	1.21	1.37	1.43	1.59	1.80	2.05	2.30	2.61	3.02	3.37	4.41	5.30	6.45	7.28
10	0.45	0.69	0.85	1.15	1.42	1.60	1.67	1.85	2.08	2.38	2.67	3.07	3.56	3.96	5.16	6.13	7.38	8.32
25	0.54	0.82	1.02	1.37	1.70	1.92	2.00	2.19	2.45	2.82	3.18	3.70	4.33	4.78	6.18	7.24	8.57	9.67
50	0.60	0.92	1.14	1.53	1.90	2.15	2.24	2.45	2.73	3.16	3.56	4.20	4.94	5.44	6.97	8.08	9.43	10.66
100	0.67	1.01	1.26	1.69	2.10	2.38	2.48	2.71	3.00	3.50	3.95	4.72	5.60	6.13	7.79	8.92	10.28	11.63
200	0.73	1.10	1.37	1.84	2.28	2.60	2.72	2.97	3.27	3.84	4.33	5.25	6.28	6.85	8.63	9.77	11.08	12.55
500	0.80	1.22	1.51	2.03	2.51	2.88	3.03	3.31	3.62	4.29	4.83	5.96	7.22	7.82	9.74	10.86	12.09	13.69
1000	0.85	1.30	1.61	2.16	2.68	3.08	3.25	3.57	3.88	4.63	5.21	6.54	7.96	8.59	10.59	11.66	12.82	14.50

[^8]* These precipitation frequency estimates are based on a partial duration maxima series. ARt is the Average Recurrence Interval.

Please refer to NOAA AllaS 14 Document for more information. NOTE: Formatting prevents estimates near zero to appear as zero.

## Text version of tables



Mon May 10 11:30:08 2010

Duration						
5 -min -	30-min *	3-hr -	24-hr	-	7-day +	30-day -by
10-min -	60-min	6-hr	48-hr	7	$10-\mathrm{day} \rightarrow$	45-day - ${ }^{\text {ar}}$
$15-\mathrm{min} \rightarrow+$	120-m -	12-hr $-\triangle$	4-day	$\pm$	20-day *	60-day - -



Mon May 10 11:30:08 2010

Average Recurrence Interval (years)													

## Maps -



## Other Maps/Photographs -

View USGS digital orthophoto quadrangle (DOO) covering this location from TerraServer; USGS Aerial Photograph may also be available from this site. A DOQ is a computer-generated image of an aerial photograph in which image displacement caused by terrain relief and camera tilts has been removed. It combines the image characteristics of a photograph with the geometric qualities of a map. Visit the USGS for more information.

## Watershed/Stream Flow Information -

Find the Watershed for this location using the U.S. Environmental Protection Agency's site.

## Climate Data Sources -

Precipitation frequency results are based on data from a variety of sources, but largely NCDC. The following links provide general information about observing sites in the area, regardless of if their data was used in this study. For detailed information about the stations used in this study, please refer to NOAA Atlas 14 Document.

Using the National Climatic Data Center's (NCDC) station search engine, locate other climate stations within:
6man
Find Natural Resources Conservation Service (NRCS) SNOTEL (SNOwpack TELemetry) stations by visiting the Western Regional Climate Center's state-specific SNOTEL station maps.

[^9]Disclaimer

# EXISTING-CONDITIONS <br> HYDROLOGIC MODELING FOR THE <br> TUCSON STORMWATER MANAGEMENT STUDY, PHASE II, STORMWATER MASTER PLAN <br> (Task 7, Subtask 7A.3) 

Prepared for:
CITY OF TUCSON
Department of Transportation
County/City Public Works Building
201 North Stone Avenue
Tucson, Arizona 85701

Prepared By:
SIMONS, LI \& ASSOCIATES, INC.
P.O. Box 2712

Tucson, Arizona 85702
In Association With:
Camp Dresser \& McKee Lewis \& Roca
Rillito Consulting Group SWCA, Inc.

December 17, 1993
(Revised November, 1995)


## TABLE 2.4

TEMPORAL DISTRIBUTION OF A DESIGN 3-HOUR THUNDERSTORM

Minutes	Factor*										
1	0.01897	31	0.01046	61	0.00412	91	0.00218	121	0.00135	151	0.00092
2	0.02116	32	0.01006	62	0.00401	92	0.00215	122	0.00133	152	0.00091
3	0.02377	33	0.00968	63	0.00392	93	0.00211	123	0.00131	153	0.00090
4	0.02688	34	0.00932	64	0.00382	94	0.00207	124	0.00130	154	0.00089
5	0.03065	35	0.00898	65	0.00373	95	0.00203	125	0.00128	155	0.00088
6	0.03527	36	0.00866	66	0.00365	96	0.00200	126	0.00126	156	0.00087
7	0.04103	37	0.00835	67	0.00356	97	0.00196	127	0.00124	157	0.00086
8	0.04831	38	0.00807	68	0.00348	98	0.00193	128	0.00123	158	0.00085
9	0.05772	39	0.00779	69	0.00340	99	0.00190	129	0.00121	159	0.00084
10	0.06349	40	0.00753	70	0.00333	100	0.00187	130	0.00119	160	0.00083
11	0.05270	41	0.00729	71	0.00326	101	0.00184	131	0.00118	161	0.00082
12	0.04444	42	0.00705	72	0.00319	102	0.00181	132	0.00116	162	0.00081
13	0.03799	43	0.00683	73	0.00312	103	0.00178	133	0.00115	163	0.00080
14	0.03284	44	0.00661	74	0.00305	104	0.00175	134	0.00113	164	0.00079
15	0.02867	45	0.00641	75	0.00299	105	0.00172	135	0.00112	165	0.00078
16	0.02525	46	0.00622	76	0.00292	106	0.00169	136	0.00110	166	0.00077
17	0.02241	47	0.00603	77	0.00286	107	0.00167	137	0.00109	167	0.00077
18	0.02002	48	0.00585	78	0.00281	108	0.00164	138	0.00108	168	0.00076
19	0.01799	49	0.00568	79	0.00275	109	0.00161	139	0.00106	169	0.00075
20	0.01709	50	0.00552	80	0.00269	110	0.00159	140	0.00105	170	0.00074
21	0.01626	51	0.00537	81	0.00264	111	0.00157	141	0.00104	171	0.00073
22	0.01549	52	0.00522	82	0.00259	112	0.00154	142	0.00102	172	0.00073
23	0,0.1477	53	0.00507	83	0.00254	113	0.00152	143	0.00101	173	0.00072
24	0.01409	54	0.00494	84	0.00249	114	0.00150	144	0.00100	174	0.00071
25	0.01347	55	0.00480	85	0.00244	115	0.00147	145	0.00099	175	0.00070
26	0.01288	56	0.00468	86	0.00240	116	0.00145	146	0.00097	176	0.00070
27	0.01233	57	0.00456	87	0.00235	117	0.00143	147	0.00096	177	0.00069
28	0.01182	58	0.00444	88	0.00231	118	0.00141	148	0.00095	178	0.00068
29	0.01134	59	0.00433	89	0.00227	119	0.00139	149	0.00094	179	0.00068
30	0.01088	60	0.00422	90	0.00222	120	0.00137	150	0.00093	180	0.00067

*Note: To determine incremental amount, multiply factor by the one-hour rainfall depth.

TO:
SLA Working File, Task 7 (File No. COT-37.7.4)
FROM:
REVIEWED BY: Michael E. Zeller, P.E., P.H.


## RE: TEMPORAL DISTRIBUTION FOR A 3-HOUR THUNDERSTORM

An assessment was conducted to ascertain the most appropriate temporal distribution for use in conjunction with the application of a 3 -hour thunderstorm on the small urban watersheds (i.e., generally less than 10 square miles in size) located within the TSMS, Phase II, Stormwater Master Plan Study Area; since these are the watersheds which have their maximum peak discharges occur as the result of short-duration, convective thunderstorms.

The "Rainfall Intensity Relationship" found in the City of Tucson Drainage Standards Manual (1989) was used to first define, on a per-minute basis, the incremental change in rainfall depth for each Return Interval (RD) design thunderstorn event. This relationship is:

$$
\begin{equation*}
i_{\mathrm{RI}}=\frac{4 \mathrm{P}_{1, \mathrm{RI}}}{1+0.05 \mathrm{~T}_{e, \mathrm{RI}}} \tag{1}
\end{equation*}
$$

Where,
$\mathrm{i}_{\mathrm{RI}}=$ Return-Interval rainfall intensity, in inches per hour;
$P_{1, R i}=$ One-Hour Return-Interval rainfall depth, in inches; and,
$T_{c, R I}=$ Return-Interval time of concentration, in minutes.

Recalling that $60\left(P_{t, R I}\right)=i_{t, R I}(t)$, algebraic manipulation yields:

$$
\begin{equation*}
P_{\mathrm{t}, \mathrm{RI}}=\frac{\mathrm{P}_{1.8 \mathrm{I}}(\mathrm{t})}{15+0.75(\mathrm{t})} \tag{2}
\end{equation*}
$$

Where,
$P_{t, R I}=$ Return-Interval accumulative rainfall depth at time $t$, in inches; and, $\mathrm{t}=$ Time, in minutes ( generic substitute for $\mathrm{T}_{\mathrm{c}}$ ).

The per-minute incremental change in rainfall depth is then determined by merely subtracting $P_{t, R I}$ from $P_{t+1, R I}$ (Note: $P_{t+1, R I}=$ rainfall depth at the next incremental minute).

Once the per-minute incremental change in the rainfall is determined, the storm pattern of these one-winute increments can be assigned according to an appropriate temporal distribution for the TSMS, Phase II, Study Area. SLA has developed a temporal distribution for 3 -hour thunderstorms which is adapted from a 1 -hour temporal distribution developed from the extensive data collected from the nearby Walnut Gulch Experimental Watershed, which was established and is monitored by the Agricultural Research Service. A technical paper by Herbert B. Osborn, titled "Storm-Cell Properties Influencing Runoff from Small Watersheds" (1984), provides the following temporal distribution for a 1 -hour thunderstom event:

Time (minutes)	Rainfall (rank order)
from 0 to 6	2
from 6 to 12	1
from 12 to 18	2
from 18 to 24	3
from 24 to 30	4
from 30 to 36	5
from 36 to 42	6
from 42 to 48	6
from 48 to 54	7
from 54 to 60	7

The preceding temporal distribution was then adapted for use as a 3 -hour thunderstorm by adding on a 2 -hour "tail" in accordance with the per-minute incremental change in rainfall depth computed using Equation (1) above.

## DIMENSIONLESS FACTORS FOR ONE-MINUTE INCREMENTS OF 3-HOUR THUNDERSTORM

Time	Factor										
1	0.01897	31.	0.01046	61	0.00412	91	0.00218	121	0.00135	151	0.00092
2	0.02116	32	0.01006	62	0.00401	92	0.00215	122	0.00133	152	0.00091
3	0.02377	33	0.00968	63	0.00392	93	0.00211	123	0.00131	153	0.00090
4	0.02688	34	0.00932	64	0.00382	94	0.00207	124	0.00130	154	0.00089
5	0.03065	35	0.00898	65	0.00373	95	0,00203	125	0.00128	155	0.00088
6	0.03527	36	0.00866	66	0.00365	96	0.00200	126	0.00126	156	0.00087
7	0.04103	37	0.00835	67	0.00356	97	0.00196	127	0.00124	157	0.00086
8	0.04831	38	0.00807	68	0.00348	98	0.00193	128	0.00123	158	0.00085
9	0.05772	39	0.00779	69	0.00340	99	0.00190	129	0.00121	159	0.00084
10	0.06349	40	0.00753	70	0.00333	100	0.00187	130	0.00119	160	0.00083
11	0.05270	41	0.00729	71	0.00326	101	0.00184	131	0.00118	161	0.00082
12	10.04444	42	0.00705	72	0.00319	102	0.00181	132	0.00116	162	0.00081
13	0.03799	43	0.00683	73	0.00312	103	0,00178	133	0.00115	163	0.00080
14	0.03284	44	0.00661	74	0.00305	104	0.00175	134	0.00113	164	0.00079
15	0.02867	45	0.00641	75	0.00299	105	0.00172	135	0.00112	155	0.00078
16	0.02525	46	0.00622	76	0.00292	106	0.00169	136	0.00110	166	0.00977
17	0.02241	47	0.00603	77	0.00286	107	0.00167	137	0.00109	167	0.00077
18	0.02002	48	0.00585	78	0.00281	108	0.00164	138	0.00108	168	0.00076
19	0.01799	49	0.00568	79	0.00275	109	0.00161	139	0.00106	169	0.00075
20	10.01709	50	0.00552	80	0.00269	110	0.00159	140	0.00105	170	0.00074
21	0.01626	51	0.00537	81	0.00264	111	0.00157	141	0.00104	171	0.00073
22	0.01549	52	0.00522	82	0.00259	112	0.00154	142	0.00102	172	0.00073
23	0.01477	53	0.00507	83	0.00254	113	0.00152	143	0.00101	173	0.00072
24.	0.01409	54	0.00494	84	0.00249	114	0.00150	144	0.00100	174	0.00071
25	0.01347	55	0.00480	85	0.00244	115	0.00147	145	0.00099	175	0.00070
26	0.01288	56	0.00468	86	0.00240	116	0.00145	146	0.00097	176	0.00070
27	0.01233	57	0.00456	87	0.00235	117	0.00143	147	0.00096	177	0.00069
28	0.01182	58	0.00444	88	0.00231	118	0.00141	148	0.00095	178	0.00068
29	0.01134	59	0.00433	89	0.00227	119	0.00139	149	0.00094	179	0.00068
30	10.01088	60	0.00422	90	0.00222	120	0.00137	150	0.00093	180	0.00067

To: Mike Zeller, Principal
Simon, Li Associates
Re: Background information for temporal rainfall distribution described by Dr. H. B. Osborn in a 1973 professional paper.

The $30-m i n$ and 60 win point temporal rainfall distributions for thunderstorms in the Southwest shown in Table 1 of paper entitled "Storm-cell properties influencing runoff from small water shads" (Osborn, 1783 , ware based on 25 years of records from a dense network of weighing -type recording raingages located on the 5Q-samile USOA, ARS Walnut Gulch Experimental Watershed in southeastern Arizona. The "front-loaded" distribution is the most common massured on the Walnut Gulch Experimmental watershed in southeastern Arizona. I, and other professionals in our office, use this distribution for estimating flood peaks and volumes for recurrence intervals up to 100 years for small watersheds (up to 30 square miles) in the southwest.

Because of limitations in recording very high intensities with weighing-type raingages, and because of extreme rainfall variability within relatively small areas (less than the approximate ome-mile spacing of the network on Walnut Gulch), 3 minutes is about the minimum duration for estimating thunderstorm rainfall intensities for runoff models. For modals which assume duration e shorter than 3 minutes, values can be interpolated from the "Osborn" model with $3-m i n$ durations, making sure that the maximum intensities and total volume are maintained.

Both the $30-m i n$ and 60 min models were developed for varying recurrence intervals for point rainfall up to 100 years (Table 1). On the Walnut Gulch Watershed high intensity rains of small areal extent lasting about 30 minutes occur quite commonly at some point on the watershed, so the assumption that a $30-m i n$, io o year rain at point within a small watershed will produce a $100-$ year runoff event is quite good. The actual event may last for say 25 minutes, or 35 minutes, but the peaks and volumes will compare favorably with the output from the model storm.

Qeborn: H. B. Storm-cell properties influencing runoff from small watersheds. In, Proc. Transportation Research board 922, NAS, Wash., D.C., DP 24-32, 1983.

Sincerely,


Herbert 0. Osborn, PE, PMD


# Storm-Cell Properties Influencing Runoff from Nits, wo. $\mathbf{c}=1.0 \mathrm{C}$, 1984 , 

## all Watersheds

W\&RBERT R. OSBORN



















 vartable. highointengity bhundecstorm cains (hez). These runcictmerdunim vents co important in highe
 क्dimentation sfacies. evaluations of cange manaqe ment and cenovation progeras, nat atuding on urbanm izing vatersheds. but erpacted peak blocharges and off volumeg for sum evants ace difficult to est ste accurately. In this paper, kinemathecas* de model (EJWeros) was adapted fot use on mmall ( $560 \mathrm{~m} ⿻ \mathrm{mec}$ ) Eanguland subwatershed to investigate the inEluence of thundeztorn zinnsali vamability in tive and space on peak discinate and runcel volutes. The model parameters weta developed with existims
 arated from timulated sinfall digecibucions. The incluance of temporal and spacial vactabinity wat
examined thxough emparison of the generated peak digeharges and cunote volumes.

## WATERSEXD DESVRIFTICK

The Wanut Gulch Experfwental Rangeland watershed, opetcted by she kquicultural hestach secvieq (ARS) of th D. S. Departement of Ngriculeure (0sodi. is located mear Toubstone in southeastern Arizona ( $F i q-$ uce i). The lowec Ewothizds of the samilez watextred is primacily brush covered (whitethorn. crecabce bush. tas bush. and burcoweed: the verpet onemity le peimatily geass covered farama quasses). Towstone fs eencrally lecated on the watershod. The $\$ 60$ mece tudy subwatexshed (63.004) Ifes nexth of pembiton on the Halnut Gulch water= ghed boundary (Figuze 1). Slopes of the study subu varershod vary vp to 14 percenty the fiseag 453
 cined sinh-bottened channely in the lewer pection and beone whle with peocly detined whalow we anturing ehanncis in the upper pertion. Hexdeuts eparate the sandmbetrened channes and wates on
 ubwatershed is beush qouered. and the soils ace prbmarily grevelly wh siley. Lows.

## RHWERLL-RTHOEF NODELTMG

Many ditferant mathemarien medels have been used to cacimate frainage runoff peaks of vobume of both
 sitive nowgh to peparabe the intluenee on cunaft
 sctatsties. In some csses. such decinition is not needed. and the model ean be quite simple tthe ram


tional formula, cox exsmplat. Newerthelest. to blaneify be sienificant chunderntocmerell caineadl pepertite that ingluence runcte cetcical watershed

n be Uiminsead wan tinfall Ls vacied. If must
 cumete so that vatiations in runoct can bettibw usad disectly to the cainfall ingut to the system. In the एanto efgexts bo model the intluences of rainfall varsabilfby on waterbed cunoft bave betn hardicsppod by bhe lack of senaltive (and uncernplicased calncaldmeunete nedel.


 and shasitive we both ratafall and waternhed chacm sesecigticg.

## Model Deserintion



 wateryhth surface quonery am tapagcaphy. (ft pam








 ceptestatative toctamular plan and geaperoldal



 nroughowb उumeace geomotrins weze detempined
 3). The numbera traifente the otder in which each phane was phecod intre the progeman Runote from the vppormost platn along slope ent be olentued inw
dependenty of that E ar all Qther planes. Because the cuncif feco the upeer phane providet the upper boundary fandition cor lower planes, sequential eslcularion it tequired tor complex lopes euch as planes 27 and 28 in pigute 3 . Flows vece routed through eanh chanmel segment by using tho kinexatic aperoximatien to the equations of unstewdy, graduadiy vacled clow.

Vatiablan such as Inclityation and surface roughnesis vect adjusted based on comparisons of hydrom
 Particular attention was paid to surface rock cover (scosion pavoment) mid coughness. tha lattial watecm holding eapacity of the solls. and initial bwi final inflieration catas. Once the apdel had been adm justed. it wait used to generate secles of bydrom geaphs frea mimuleted eaincali inauts.

## Raintall Tnput

The gtormeacil propertiet that would bs sxpectect to influence eunote are the raintall abount and duca-
 space. Thes properties vete examined through a geries at atected inputs.
 celations for small vatersheds betwetn palk dism ehagg and maxinum ralneall toz 30 min. Oa the otelity kamd. Gewin caincidi is a nore comen unit used in wodeling of cainfall and runoft. \$0 both $30=3 m^{3} 60$-ain caintall ducations were used in the \#fulations. Niso. commonly used 2*, 5\%, 10-, and 100 myt expected ralnfali amounts (0.9. 1.2. 1.5. and 2.3 ln . for 30 -min ducaelons. and 1.2. 1.5. 1.9. and 2.9 in. Eor 60 mia durations! vece selected (L).

Temperal and spatial cainecil variabilities wexe
 trated eacly and hate in the event given for esch of the expected 30 and G0-win amounts (Table i). Eachy wrats axe chacactarized by concenctacion of swo-thicdia of the calniali in the ficst onemthite of tha weorat in lake events two-thicds of the raln fall was concontratod in the limb onm-thirs of the

Figury 2. Butailed pax of mbwaterthed 62.004. Whinut Gulch.






Datruian of Stom	Partioger   Stom (min)	Sanfall (inefar) by Frequency (yr)			
		2	\$	10	100
30 mis	0.3	2.3	3.0	4.4	6.9
	54	4.1	4.2	8.2	8.0
	6.9	3.1	4.2	\$. 2	8.0
	$2 \cdot 12$	2.3	3.9	4.9	6.0
	12-15	2.3	3.9	4.9	6.0
	12018	2.0	2.4	3.3	5.9
	18.21	1.7	2.0	2.6	4.0
	21.24	0.9	1.4	3.3	2.9
	20827	0.5	0.4	0.8	12
	8790	0.2	0.3	0.4	0.6
64 min	5-6	2.5	3.2	4.9	6.8
	9.12	3.3	4.2	5.2	8.9
	12-19	2.5	3.8	4.2	6.9
	$1{ }^{19} 2.4$	1.7	2.0	2.6	4.9
	24.30	0.8	1.0	1.3	2.0
	30.36	0.5	0.6	6.8	1.2
	3 mm	0.2	6.3	0.4	0.6
	$4{ }^{4} 4$	0.2	0.3	0.4	0.6
	48.54	0.1	0.2	0.8	0.3
	54.60	0.1	0.2	0.2	0.3


 owb of the nsmulated eventa at thea loxations on
 and of the hemd ot the enbwhterghede point-60-polat

 cafneall velunw vatisa with sterm lectationn
ginallye an ate of the eftect of meatial vaciability on turoti, the whe wh the maximum abseved Eabnall in 25 yt of eecerd on walnut Guich wan centered on the twaty nubwtershed at threx dife ferent locatoms (Flyurg 4 and table 2).

## Model Dutputs

Hytrogeapha vexe gemeratis from mpatially varled


 1 produced qimallicantly grateas peake thon those ated nesz the suthe of at bhe head of the

 profucer slightiy greater pana than that contered at the head of the mbwaterahed (Fhqued 61. 211




30- and 5 Gmin eventg were aidilar in that peaic diso chargea wore vienter when thixiahi whe cencered or
 the autlat ot at the heac of the subwaterghet. All
 was concentrated late in the pent greduced gratater
 teated early in the erent ipiquer 7) prinecily bew cause the maximum intensities wece recocted on a astucated mbwaternhed.

Runofe wlumen wete slgnifleancly highes coe those events centered on the mubutceahed. uhargas groofs volume trom tine late vento was only ulighely greater blan that frem the early twents iflgures 8 and il.

The maximen eweordex penk diswharge EEv the tubum waternhed hos ben 1.250 ft $/ \mathrm{cec}$. Although there
 - peak-diseharge frequency curve the estimated Q100 based on the $25-y \mathrm{y}$ cecoce at other walnut GuLeh atations would be 1.660 Et'/7ec (11). The simulated $60-w i n$. 100-yc event with maximum caintall canteren en the cubwtershed, and ocurcing late in the event produced paik tischatge of 1.900 $\mathrm{Et}^{2} / \mathrm{sec}-400 \mathrm{Ef}^{2} / \mathrm{sec}$ bigher than a cinilar simuLated vent with moimum caireall eonequtrated eacly in the event (Figuze 5 ard Table 3). Intecestimiy. the cecom walnat Gudeh stom when superimeseas in tima near the astlet. in che center. and at the hean Qf the subwatarshed. was oriencad in time and spage that it produced pask diaeharges vacylmg from


Tabo 2. Naximumrninfoll whempimpad on whwatersued
 31 ,

Mitizry   Time	Rainall (in.) by Rain Cake (RG)								
	Centered at RG: 7			Cencered at RG71			Contered at RC, $31^{*}$		
	27	71	31	27	71	31	27	71	31
1413	0	0	0	0	0	0	0	0	0
1415	0.22	0	0	0	0.22	0	-	0	0.2
1416	$\cdots$	0	0	0	-	0	0	0	-
1417	-	0	-	0	*	0	$\bigcirc$	0	$0 \cdot 1$
1418	0.41	-	0.08	-	0.41	0	0.08	0	0.41
1421	-	0.17	-	0.17	-	0	0.15	0.17	-
1423	-	-	0.15	-	\%	0	0.15	-	0.70
1424	0.70	*	-	$\cdots$	0.70	0	-	-	0.70
1436	-	0.23	0.19	0.33	0	0	0.19	0.32	0.7
1427	0.73	-	-	-	0.73	*	-	-	0.73
1429	-	-	*	*	-	0.18	*	-	0.8
1430	0.88	*	-	*	0.98	-	-	-	0.98
1431	-	-	0.23	05	-	-	0.21	Ss	-
1432	-	0.55	-	0.55	*	-	-	0.55	-
1434	$\cdots$	-	-	-	130	0.39	0.5	-	
1435	1.30	-	0.25	-	1.30	-	0.25		1.30
1436		0.90	-	0.90	-	0	-	0.30	*
1439	-	-	$\pm$	*	-	0.68	-	-	-
1840	1.69	$\cdots$	0.58	"	1.69	-	0.58	$\cdots$	1.69
1441	-	1.05	-	1.05	-	"	-	1.05	-
1442	*	-	-	-	*	0.87	-	-	-
1443	185	-	*	-	1.86	-	$\cdots$	*	1.56
14.45	-	-	1.01	*	-	1.03	1.01	-	*
1+46	2.29	*	-	$\cdots$	2.29	-	-	-	2.39
14.47	-	1.70	-	1.70	-	-	*	1.70	-
1449	-	-	-	-	*	1.16	-	-	-
1450	-	-	1.79	*	-	-	1.29	-	-7
1451	2.73	2.33	-	2.33	2.73	-7	-	2.33	2.73
1452	-	-	"	,	*	1.27	*	-70	$\cdots$
1455	3.12	270	1.47	2.70	3.12	1.41	1.47	270	3.12
1458	-	2.84	1.51	2.84	-	-	1.51	284	-
1459	-	-	$\sim$	-	3	1.52	-	-	-
1500	3.35	-	T	*	3.35	-	-	-	3.35
1501	-	"	1.54	-	-	*	1.54	*	-
1504	-	2.89	1.57	2.89	$\cdots$	*	1.57	289	-
1507	3.41		$=$		3.41	1.72	$\cdots$		3.41
1511			$\bigcirc$			1.78	*		
1512			1.60			\%	1.60		
1515						1.86			


 Watnut Gustro

Typa ot $\$ 10 \mathrm{~mm}$	lacavion of Crastoa Subwaterimed	Peak Discharge $\left(\mathrm{it}^{3} /\right.$ see $)$ by Frequency (yr)			
		\%	$\$$	10	100
$3 \mathrm{~S}_{\mathrm{m}} \mathrm{min}$ Eanty					
	Quter	?	125	201	692
	Miduie	1	147	261	1,021
	fiexd	0	90	169	743
Lats	Cuthat	16	15\%	243	458
	Midute	15	174	304	1.145
	Hast	7	114	297	283
60 min察ay					
	Culas	79	337	361	1.184
	Mideta	78	304	498	1,492
	Hesd	37	207	359	1.244
beta	Cunt	137	33	509	1.538
	Mindma	184	4 A	703	1,296
	Meud	72	315	526	1591



 seemed reasontic.
 of camgal on functte avetage rainfald depen ver

 tabned, Mytrograph very generake cem the full
 and ferpated virk thilut peak baned on patially
 Wuinte Gulch.

Type of Stom	Lexatiee of   Eventon   Subwatershed	Runaff Voluege (inn) by Freauseny (ym)			
		*	\$	10	100
30 min					
Eatiy	Oustiat	$<0.01$	0.08	2.15	0.57
	Middie	$<0.01$	0.13	0.22	0.79
	Head	0.00	0.07	0.14	0.54
Late	Outie:	0.02	0.10	0.16	0.60
	Middie	0.01	0.14	0.24	0.79
	Heas	60.01	0.69	0.15	6.37
68 min					
Easiy	Outhat	0.04	0.18	0.30	0.92
	Midule	0.97	0.25	0.20	1.17
	Head	0.03	0.17	0.28	097
Late	Ouster	0.08	0.25	0.39	196
	dindus	0.13	0.13	0.50	1.26
	Howd	0.07	0.74	0.38	1.94

3n cospocally vacled tainfail frobleg 3 m gi. The
 gslatively malz fot the $200-y E$ events lqenectidy about 10 percent galisti. Runoft volumes wece alsw Lesm for the spatially, unitorm caingell fables 4 and 6).

To decermine the incluence of constant caintall cete vectus vaciable one hydecqraphs were qenm - cated frow imulated ppatiadly vecied. bonstantestaf 30- and 60-3in cuents (Tobles 7 and it. Wher peak




 that were not centered an the mebwaterthed.

those gevectited croa enntint inputs wer considerably lowex than those genesuted from time-variable
 uniformly over comin period, the differences between conatant and vazied time inputa vere muen mete
 duced by more than 50 porcent cor events ut all Eceguencles with co-min conctant caineall cates.

## EvaLuntron

inticative differences in hydrograph pats and Qumas genexated fram spatially and temperally vacied cuineall pateqzos wera appacqu when runote patiks and volumes vere compaced. Thece vas strona linear relationship texwen trams contered on the

Fiqure 7. Fask dixcharge from simulated roath with maximum intanitiet conchauntrd ewdy and lett in the axont.


Figure 8. Rumotf veiume frem simulated recren that were encered vertus thota that wert not entered an the mbwaterthed.


Figure 9. Fiunaff volume from simulated storms with intensities concmerated carly mod late in the - vent.

subwatershed and those edntered ness the outlet of at the head of the subwarershed for peak ditmeharges up to $800 \mathrm{ft}^{2} / \mathrm{sec}$ and cunotf volumes up to 0.6 in. (Efjures (am a). Peak alscharges and volumes were 35 to 10 pereent higher cor events centered on the
 cent grater for the evente centered on the sub* Wactubued, wather pathe and volunes were not due enticely co woce raintald Abeve $800 \mathrm{ct}^{\circ} / \mathrm{sec}$ and Q.6 in. events ectrered on the gubwatershed peco cuced constant inccessen in mat diseharge of 300 [t ${ }^{*} / \mathrm{sec}$ anc cunofe volum of 0.22 in. The relam eionships wece as collews:
$Q_{\text {rec }}=1375 Q_{\text {rex }}\left(0<Q_{\text {Mec }}<800\right)$
$Q_{\text {re }}=Q_{\text {mas }}+3001 Q_{\text {mace }}>8000$
Q. $1.375 Q_{m} 10 \subset Q_{\infty}<0.51$
$Q \times Q_{w}+0.32\left(Q_{5} \geqslant 0.6\right)$

```
Whare
 Qec peax ditcharga from ginulated rainfall
 efreered on subwatershod.
 Opng peak dischorge from lmulated raintali
 not centeced on subwaterghad.
 Qe w runcit voluma &ron shmulated cainfall
 centerged gn subwatarghed. and
```



```
 net eanteged on subwhtacghtu.
```







Typer of flam	Puk Discharge ( $\mathrm{f}^{3}$ isec) iqy Frequaney (yt)			
	2	$\$$	17	160
Early	0	119	195	308
Late	2	146	293*	1.040
600min				
Exaly	24	257	422	1390
Late	78	365	82.6	1.748




Type of Sism	Runoll *iume tin.) by Fiequency (y)			
	2	\$	10	100
3 m man				
Exaly	2	0.11	0.15	0.71
Saty	<0.0)	0.13	0.21	0.72
Early	0.92	0.72	0.35	1.12
1-214	0.97	0.29	0.46	1.17

There were also good lineat cotrelations for both peak discharge and runotf volume for the tull range of values given by
$Q_{p s}=1.23 Q_{\text {ma }}$
$Q_{C}=1.25 Q_{0 x}$
Efther Equations 1 whi 2 tapether as Equation 5 alone would give an acceptabie estbace of peak disCharge tor thiz sull watahod but the suggestion Of limit to the lineat celationship could become important with fun lation of Equation 5 could posaibly led to costiy
 sheds.

Thece was also steong linear celationship becueen peak disehatges then waximas tainfall intensities occucred eacly or late in the event (Flqure (8). The celationship was as follewa:
$Q_{m x}=1.25 Q_{8}$
where ORL is the peak dischacge frow maximas inm tansition occuctix late in the event, and Qpa is the peak dischacge crow maximum intensities oceutro Ing eacly in the event. Again, howerec, theze was a waggestion that there may be linit on the linest relacionshbe which could lead so overestimates cop laxger watertheds. Because ralnfall amonnts vere the sarge for each selected stom event. cunott rolo unes vere only mightly qreater for the latemocurcing gents (Fiqure 9).

The influences of equpotal and spatial cainfall paciability on peak discharge tended to be addi-
 peak dischares was 60 percent hiqher chan the $60-$
 charge. The maximup pesic discharges for the lowez-- requancy eqents wete up to 100 percent higher than the winimuma for stock units of the same frequency. obviously, both stocm location and eomporal variability of caintall can sigeificantly affect peak dischaxge.

Assuming spatially uniform caintall on the $550-$



Typer of Sroum	Lscation of Evatan Suprazershed	Prak Diseharye (ftres) by Fraquency (yr)			
		2	5	10	100
$30-\mathrm{min}$	Oundet	0	20	153	617
	Midsta	0	20	200	980
60-min	Had	0	3	123	714
	Oudies	0	3	128	628
	Middla	0	0	163	795
	Hexd	0	0	90	640

 rainfill rater on mbwarnited 63.004 , Whimut Cubets,

Tyore of Stomm	Location of Eveat oo Subwatceshed	Rumat Volume (ix.) by Fraquency (yt)			
		7	5	10	100
30 man	Quiler	0	0.21	0.10	9.52
	ifiecla	0	0.02	0.15	0.72
	Head	0	<0.01	0.09	0.58
60-min	Qutice	0	80.01	0.28	Q. 66
	Midele	0	0	0.14	9.85
	Head	0	0	0.07	Q.6)

ice gubwaterghed seduces pak dischacges by only, rbout 10 peccent. For larger watersheda and therem Sore decteanimg ratnfaliz bveraget, howevez. ascuming
diy uniform calntall coula lead to slgmificant gtimares of pank dinchares. eapectaily when iopreducirm colntain dean not eover the entite wereraned.

An long as aqumeet eatmall duchtiona tra kepe celativaly mogt aqautimg emotanc catnfald rate




 calneal catc wis nedue the piwhlasex patk diaw charge by

Rainfid) vechus rumate xalatonditipa for mimum Lated storms that vere centerev ard net eantacest and moximum intensitien eoncentrated emaly mind late in




 ceuld be gigniticant at runot thrasbovis of for laxge events, The expequlow for cormbined dita vere as follows:

$$
\begin{equation*}
Q=-0.622+0.654 R \quad(S E E=0.020) \tag{2}
\end{equation*}
$$

$$
Q=0.236 \mathrm{R}^{2.8}-0.180 \quad(S E E=0.047)
$$

 gtorm rainfall in inchag. Tbect was sightiy wew





 cainfali. in many feuations. the incrase wculd be Lraportant.

Relationshipg betwean Ewequency and peak dism



Fequency and Tyer of sions	Lecabian of Exent ora Statmentied	Duraion of Sterw			
		30 min		60 min	
		(in.)	Q (in.)	P Civs	Q (in)
2) yr.endy	Qutit	0.77	40.01	1.10	0.04
	Misula	0.44	<0.2i	1.19	0.97
	Heas	0.77	0	1.99	0.05
3 \%r.late	Guther	0.77	0.92	+10	0.08
	Midede	0.34	0.08	8.19	0.13
	Head	Q.7\%	e0.02	1.09	0.07
\$ yr , dauly	Qutiat	1.93	0.08	136	0.18
	Midale	1.12	0.13	1.48	0.25
	Haxd	1.02	0.07	135	0.17
3 ye, leta	Sutiat	1.03	0.10	1.36	0.25
	Mididin	1.12	0.14	1.48	0.33
	Head	1.02	0.99	1.35	0.34
12 yr , Gely	cuver	1.25	0.15	1.60	030
	Midste	1.36	0.2\%	1.75	0.49
	Head	1.24	0.14	159	0.18
$10 \mathrm{yr} . \mathrm{bate}$	Cutlet	128	0.16	1.69	0.39
	Midela	1.36	0.24	1.75	0.50
	Hautim	1.34	0.15	1.59	0.38
100 ye , earily	Outiet	1.80	0.57	2,46	0.97
	Mididla	2.05	0.78	2.69	1.19
	Head	1.99	9.54	2.43	0.77
7, bis	Ouetict	1.80	0.60	2.86	106
	Madir:	2.05	0.79	8.97	1.76
	Meas	1.78	0.57	2.3	1.84

chacge for each chassification tend to plot as stratght lines on leg-normal paper for 5 - to 200 -yr expected caintall anounts (Fiquzes 15 and 16). Ee Cunse the $5=10 \%$ and 100 -yt events plotted at straight lines. it vas essumed that storms for any Erequency greatar than 5 yt would plot on the game lines. The influence of vithinmeotm varisetons is eleacly evident and vall defined fot 5 to 100 mt
 1004 entormat with watily uniform raintail.

Fiequancy and $7 y$ of Storm	30 min Storm		60 mia Storm	
	$P$ (in)	Q cin.	$F$ (im)	Q (m)
2 yt				
Exily	0.78	0	1.09	0.02
Late	0.78	40.91	1.09	0.07
Syt 0.090 .11				
Exily	1.09	0.11	1.42	0.22
Lia	1.09	0.13	1.42	0.29
$10 y 70$				
Early	4.28	0.14	1.70	035
Lat	128	0.41	1.70	0.46
100 yk				
Exily	1.95	0.71	2.68	1.12
Late	1.95	0.72	259	1.15





Fruvency  	Lacation of Everk on Subumarsined	30-ain \$tome		60 min Sroma	
		(in)	Qtant	P (in)	Q (ima)
2 ye	Outlet	0.70	0	1.00	0
	Midde	0.80	0	1.10	0
	Head	0.70	0	1.09	0
5 yt	Outie:	1.00	0.01	1.33	$<0.01$
	Middle	1.10	0.02	1.35	0
	Head	1.00	co.01	1.2\%	0
10 yr	Ourict	1.36	0.10	1.61	0.68
	Middle	137	0.16	1.75	0.18
	Head	1.24	0.09	159	0.07
100 y	Outhet	1.81	0.52	2.41	0.66
	Middle	2.08	0.72	2.64	0.6
	Head	1.78	050	2.38	0.63


 4ecruax

 Whet wer met contered.

 \%erme.

 teorme.


Figcte 15, Peak dixtharge fee rwinfll ferquencien of $2,5,10$, med 100 yr for veloged durtiont and rearm patterat.


Figure 16. Peak dineharye for ctinful froquncien of $2,5,10$ and 100 yr for selectad durxtions and cervorinte.

storms. Even foe spatially unifora cainfalle the relationships ara clearly detined. Foc more frequent events. bowever, peak disharses call oft Eapidiy. For constant caintali cates. theze was mo sunote for 5 my eventu with 60 -min duration and no Guncet for 2 -ye ovents with 30 min dutsion. The curve sot peak diwchasge vectus trequeref for a 560-aere subwatershed, based on walnut Guleh data, would plot near the upere curpe in Elqure 13.

## RECOMENDATYONS

The cegults of this stuey indicated that for sual sembarid cangeland vaterghed (560 actes). the spam tial and temporal distributions of thunderstom Einfall exert an approximately oqual fnfluence on peax discharge from the witerahed and that the in ELuences tend to be aditive. There ace, however, two areas where fucther catearch in needed.

FiEst. storm-runote freguencten se opposed to caineali erequercies need to beatablshed. In this study, the 30 - and $60-\mathrm{min}$, $2 \mathrm{~m}, 5 \mathrm{~m}, 10$. and wogme point cainfall amounty we used to generate peak (facharge (Tiqures 13 and 14). Woweves, these expecte cainfall amounts were deterained incependently fegr the thunderxtora-cell properties, and a wide tame of peak dischacqes was generated Erom only ight point-rainfall depehs. Furtherwote, the celationships between petk dischacye and spatial and equporal varisbilltty may not be linest.

Second. ard equally as lmportant, the celarive importance of storm-celh propertiea with ireteasing watershed size must be established. The rungtc-prom ducimg ares extent of thunderstorm cells is

 cybe freceases. Therefore where the stom is


On ting gther hand, the incluenee of varying the ocurcence of maximum insianity withla the atora ducation la mate Q lan a function of vatexshed


guantitative balyisi of the relactenchipg bem
 here is extremedy difricule feg evecal cosmens. One


 curam and prectuion. Alug. ehannel bbstractions


 cainfash (2)*

The next setp, tharafore wank be to model larger waterthed tequcal wequet wilam by usimg

 piaxity, it whonze possinie to Aating tha lntere Falationsinip\% between whermall proparties and




## REFERENCES

 Convergion fet Sumer Rainfall in Sortheastarm Acizons. In bydrolegy and witer qeamerees of Acizona and the sounhwest Volume 12. Taif. of Arizona, mueson, 1902.
2. U.B. Osborn and E.M. Laursen. Thunderatorm Runoff in Southeastern axizona. Journal of Hydraulies D fusien of kSCE. Vol. 99. 1973. pp. 1129-1245.
3. V.T. Chow. Bydeclogle Determination of Waterway Actas tor Design of Drainage steverures in Small Basimg. Doiv, of rillnois. Debana, Emginaering Experiment gration Bull. $462,1962$.
4. C.T. Wan and ©.R. Johnsen. Hyerolegle Mocelimg of Small watersmeds. huerican sorlety of
 Monergesph. 1932.
5. D.E. Kibler and D.A. Woolhiset. The xinematic cascade as Hyterlogie Model. Colocado state

 Diseributed Einematic Moxiel of uplam faterw

- shedr. colorado state Univ. Fort Collins. nydrolegy Eaper 93. 1977.

7. HeJ. Lane and D.A. Healhiser. Simelttications of Watorshec Geometry ateceting simulation of Surfare Runote. Jourmal of Eyarology, Vol. 35. 1977. pp. 173-190.
8. R.E. Saith. Kinematic Model for Suefact Nine Sedient yield. Trans. NSAE, Vol. 24, \$0. 6. 1992. PE. 1505-1519.

 of मyctundics Divisten of nsuz. Vol. 91, 1965. pg. 2d7-245.
9. E, B, Ospoen. K.J. Wans. and V.A. Mywer, To Useful Rainfall/wherved Relationshipe for Southwestern Fhunderstorns. Tranc. AsAE, Vow.

10. K.M, Reheh, E.B. Oaborth and M, m. Baker. Testg
 and water Resourees of trixona and the goutbm west. Vol. 9. Univ. of Acizona, Tucsone 1579.

## D. 2 - PHYSICAL PARAMETER CALCULATIONS

TR-55 Time of Concentration (Tc), Travel Time (Tt) and Lag Time Worksheet
Project No: 27028 By: jlc/bjk Date: 10/25/2007
Project Name: Finger Rock Wash LOMR
Watershed Subarea ID:
FR-1
Circle One: Tc or Tt computation
Sheet Flow (Applicable to Tc only)

1. Surface description (table 3-1)
2. Manning's roughness coeff, n (table 3-1)
3. Flow Length, $L$ (total $L \leq 300 \mathrm{ft}$ )
4. Two-yr 24-hr rainfall, $\mathrm{P}_{2}$
5. Land slope, s
6. $\mathrm{T}_{\mathrm{t}}=0.007(\mathrm{~nL})^{0.8} /\left(\mathrm{P}_{2}^{0.5}\right)\left(\mathrm{s}^{0.4}\right)$

Segment ID		A	$\begin{aligned} & E L \\ & 2516 \end{aligned}$
Compute $\mathrm{T}_{\mathrm{t}}$		Sht Grass	
		0.15	
	ft	100	10.0414
	in	1.97	
	$\mathrm{ft} / \mathrm{ft}$	0.03	
	hr	0.177	

Shallow Concentrated Flow
Segment ID
7. Surface description (paved or unpaved)
8. Flow Length, L
9. Watercourse Slope, s
10. Average Velocity, V (figure 3-1)
11. $\mathrm{T}_{\mathrm{t}}=\mathrm{L} /(3600 \mathrm{~V})$

Segment ID		B
		U
	ft	180
	$\mathrm{ft} / \mathrm{ft}$	0.083
	$\mathrm{ft} / \mathrm{s}$	4.7
Compute $\mathrm{T}_{\mathrm{t}}$	hr	0.011

Channel Flow
12. Cross Sectional Flow Area, a
13. Wetted Perimeter, $P_{w}$
14. Hydraulic radius, $r=a / P_{w}$
15. Channel Slope, s
16. Manning's roughness coeff, $n$
17. $V=\left(1.49 \mathrm{r}^{0.666} \mathrm{~s}^{0.5} / \mathrm{n}\right.$
18. Flow Length, $L$
19. $T_{t}=L /(3600 \mathrm{~V})$

Compute $\mathrm{T}_{\mathrm{t}}$
Segment ID

- $\mathrm{T}_{1} \mathrm{~L} /(3600 \mathrm{~V})$


2498
20. Watershed or subarea $T_{c}$ or $T_{t}$ (add $T_{t}$ in steps 6, 11, and 19)
hr
min

21. Lag Time $=0.6 \mathrm{~T}_{\mathrm{c}}$

Compute Lag Time
hr
min

0.195
12

```
FHWA Urban Drainage Design Program, HY-22 HYDRAULIC PARAMETERS OF OPEN CHANNELS
```

Trapezoidal, Rectangular, or Triangular X-Section Date: 10/05/2007

```
Project No. :27028
Project Name.:Finger Rock Wash
Computed by :bjk
```

Project Description
FR-1 Tc Calc Using TR-55 - Channel Flow Segment Assume Froude $\#<=1$ for steep mtn stream Adjust Manning's $n$ to calibrate

INPUT PARAMETERS


TR-55 Time of Concentration (Tc), Travel Time (Tt) and Lag Time Worksheet
Project No: $27028 \quad$ By: jlc/bjk Date: $10 / 25 / 2007$
Project Name: $\quad$ Finger Rock Wash LOMR
Watershed Subarea ID: FR-2
Circle One: Tc or Tt computation

Sheet Flow (Applicable to Tc only)

1. Surface description (table 3-1)
2. Manning's roughness coeff, $n$ (table 3-1)
3. Flow Length, $L$ (total $L \leq 300 \mathrm{ft}$ )
4. Two-yr 24-hr rainfall, $\mathrm{P}_{2}$
5. Land slope, s
6. $T_{t}=0.007(n L)^{0.8} /\left(P_{2}^{0.5}\right)\left(\mathrm{s}^{0.4}\right)$ Compute $\mathrm{T}_{\mathrm{t}}$

Segment ID

	Segment ID
	ft
	in
	$\mathrm{ft} / \mathrm{ft}$
Compute $\mathrm{T}_{\mathrm{t}}$	hr

Segment ID
7. Surface description (paved or unpaved)
8. Flow Length, L
9. Watercourse Slope, s
10. Average Velocity, V (figure 3-1)
11. $\mathrm{T}_{\mathrm{t}}=\mathrm{L} /(3600 \mathrm{~V})$

Channel Flow
12. Cross Sectional Flow Area, a
13. Wetted Perimeter, $P_{w}$
14. Hydraulic radius, $r=a / P_{w}$
15. Channel Slope, s
16. Manning's roughness coeff, $n$
17. $V=\left(1.49 r^{0.666} \mathrm{~s}^{0.5} / \mathrm{n}\right.$
18. Flow Length, L
19. $T_{t}=L /(3600 \mathrm{~V})$
20. Watershed or subarea $T_{c}$ or $T_{t}$ (add $T_{t}$ in steps 6, 11, and 19)

Compute Lag Time hr
21. Lag Time $=0.6 \mathrm{~T}_{\mathrm{c}}$

2527

2469

$C$
0.027
0.046
6.79
2156
0.088

Segment ID
$\mathrm{ft}^{2}$
ft
ft ft/ft
$\mathrm{ft} / \mathrm{s}$
ft
hr
hr
min

0.419
25


A
Sht Grass
0.15
100
1.97
0.14
0.096

EC
2637

100/444

2623

$B$
$U$
2714
0.039
3.2
0.236

min

FHWA Urban Drainage Design Program, HY-22 HYDRAULIC PARAMETERS OF OPEN CHANNELS

Trapezoidal, Rectangular, or Triangular X-Section Date: 10/05/2007

Project No. :27028
Project Name.: Finger Rock Wash Computed by :bjk

Project Description
ER-2 TC Calc Using TR-55 - Channel Flow Segment
Assume Froude \#<= 1 for steep mtn stream
Adjust Manning's n to calibrate
INPUT PARAMETERS


TR-55 Time of Concentration (Tc), Travel Time (Tt) and Lag Time Worksheet
Project No: 27028
By: jlc/bjk
Date: 10/25/2007

Project Name: Finger Rock Wash LOMR
Watershed Subarea ID: FR-3
Circle One: Tc or Tt computation
Sheet Flow (Applicable to Tc only)

1. Surface description (table 3-1)
2. Manning's roughness coeff, $n$ (table 3-1)
3. Flow Length, $L$ (total $L \leq 300 \mathrm{ft}$ )
4. Two-yr 24-hr rainfall, $\mathrm{P}_{2}$
5. Land slope, s
6. $\mathrm{T}_{\mathrm{t}}=0.007(\mathrm{~nL})^{0.8} /\left(\mathrm{P}_{2}^{0.5}\right)\left(\mathrm{s}^{0.4}\right)$

Compute $\mathrm{T}_{\mathrm{t}}$
Segment ID

Segment ID		A	$\begin{aligned} & E C \\ & 2691 \end{aligned}$
		Sht Grass	
		0.15	
Compute $\mathrm{T}_{\mathrm{t}}$	ft	100	10.4919
	in	1.97	
	$\mathrm{ft} / \mathrm{ft}$	0.04	
	hr	0.158	
			2687

Shallow Concentrated Flow
7. Surface description (paved or unpaved)
8. Flow Length, L
9. Watercourse Slope, s
10. Average Velocity, V (figure 3-1)
11. $T_{t}=L /(3600 \mathrm{~V})$

Segment ID	
	$B$    ft    $\mathrm{ft} / \mathrm{ft}$   Compute $\mathrm{T}_{\mathrm{t}}$ $\mathrm{ft} / \mathrm{s}$    hr

## Channel Flow

12. Cross Sectional Flow Area, a
13. Wetted Perimeter, $P_{w}$
14. Hydraulic radius, $r=a / P_{w}$
15. Channel Slope, $s$
16. Manning's roughness coeff, $n$
17. $V=\left(1.49 r^{0.666} s^{0.5} / n\right.$
18. Flow Length, $L$
19. $T_{t}=L /(3600 \mathrm{~V})$

Compute $\mathrm{T}_{\mathrm{t}}$
Segment ID
$\mathrm{ft}^{2}$
ft
ft
$\mathrm{ft} / \mathrm{ft}$
$\mathrm{ft} / \mathrm{s}$
ft
20. Watershed or subarea $T_{c}$ or $T_{t}\left(\right.$ add $T_{t}$ in steps 6,11 , and 19)
hr min

$C$
0.028
0.05
7.5
5680
0.210

2670

2509
21. Lag Time $=0.6 \mathrm{~T}_{\mathrm{c}}$

Compute Lag Time
hr
min



TR-55 Time of Concentration (Tc), Travel Time (Tt) and Lag Time Worksheet
Project No: 27028
By: jlc
Date: 10/25/2007
Project Name: Finger Rock Wash LOMR

Watershed Subarea ID: FR-4
Circle One: Tc or Tt computation
Sheet Flow (Applicable to Tc only)

1. Surface description (table 3-1)
2. Manning's roughness coeff, n (table 3-1)
3. Flow Length, $L$ (total $L \leq 300 \mathrm{ft}$ )
4. Two-yr 24-hr rainfall, $\mathrm{P}_{2}$
5. Land slope, s
6. $\mathrm{T}_{\mathrm{t}}=0.007(\mathrm{~nL})^{0.8} /\left(\mathrm{P}_{2}^{0.5}\right)\left(\mathrm{s}^{0.4}\right)$

Compute $\mathrm{T}_{\mathrm{t}}$
Segment ID

Shallow Concentrated Flow

	Segment ID	A	EL
		Smooth	
		0.011	
	ft	300	
	in	2.04	porter
	$\mathrm{ft} / \mathrm{ft}$	0.02	
Compute $\mathrm{T}_{\text {t }}$	t hr	0.061	
			2693

7. Surface description (paved or unpaved)
8. Flow Length, $L$
9. Watercourse Slope, s

Segment ID
10. Average Velocity, V (figure 3-1)
11. $T_{t}=L /(3600 \mathrm{~V})$

Channel Flow
12. Cross Sectional Flow Area, a
13. Wetted Perimeter, $P_{w}$
14. Hydraulic radius, $r=a / P_{w}$
15. Channel Slope, s
16. Manning's roughness coeff, $n$
17. $V=\left(1.49 \mathrm{r}^{0.666} \mathrm{~s}^{0.5} / \mathrm{n}\right.$
18. Flow Length, $L$
19. $T_{t}=L /(3600 \mathrm{~V})$

Segment ID		B
		U
	ft	400
	$\mathrm{ft} / \mathrm{ft}$	0.058
	$\mathrm{ft} / \mathrm{s}$	3.9
Compute $\mathrm{T}_{\mathrm{t}}$	hr	0.028

2670
20. Watershed or subarea $T_{c}$ or $T_{t}$ (add $T_{t}$ in steps 6,11 , and 19)

21. Lag Time $=0.6 \mathrm{~T}_{\mathrm{c}}$

Compute Lag Time
hr
min

0.100
6

FHWA Urban Drainage Design Program, HY-22 HYDRAULIC PARAMETERS OF OPEN CHANNELS

Trapezoidal, Rectangular, or Triangular X-Section Date: 10/05/2007

Project No. :27028
Project Name.: Finger Rock Wash
Computed by :jlc
Project Description
FR-4 Tc Calc Using TR-55 - Channel Flow Segment Assume Froude \# $<=1$ for steep gradient stream Adjust Manning's $n$ to calibrate

INPUT PARAMETERS

| 1. Channel Slope (ft/ft) |  |  |
| :--- | :--- | :--- | :--- |
| 2. Channel Bottom Width (ft) | 0.0410 |  |
| 3. Left Side Slope (Horizontal to 1) | 15.00 |  |
| 4. Right Side Slope (Horizontal to 1) | 10.00 |  |
| 5. Manning's Coefficient | 10.00 |  |
| 6. | Discharge (cfs) | 0.055 |
| 7. Depth of Elow (ft) |  | 185.00 |

OUTPUT RESULTS

Cross Section Area (Sqft)	36.40	
Average Velocity	(ft/sec)	5.08
Top Width (ft)		41.00
Hydraulic Radius (ft)	0.89	
Froude Number		0.95

TR-55 Time of Concentration (Tc), Travel Time (Tt) and Lag Time Worksheet
Project No: $27028 \quad$ By: jlc Date: 10/25/2007
Project Name: Finger Rock Wash LOMR
Watershed Subarea ID: FR-5
Circle One: Tc or Tt computation
Sheet Flow (Applicable to Tc only)

1. Surface description (table 3-1)
2. Manning's roughness coeff, n (table 3-1)
3. Flow Length, $L$ (total $L \leq 300 \mathrm{ft}$ )
4. Two-yr 24-hr rainfall, $\mathrm{P}_{2}$
5. Land slope, s
6. $\mathrm{T}_{\mathrm{t}}=0.007(\mathrm{~nL})^{0.8} /\left(\mathrm{P}_{2}^{0.5}\right)\left(\mathrm{s}^{0.4}\right)$

		A
		Sht Grass
		0.15
	ft	100
	in	2.04
	$\mathrm{ft} / \mathrm{ft}$	0.05
Compute $\mathrm{T}_{\mathrm{t}}$	hr	0.142

E
2774
wontif

2769

2740

2636
20. Watershed or subarea $T_{c}$ or $T_{t}$ (add $T_{t}$ in steps 6, 11, and 19)
hr min

0.333
20

21. Lag Time $=0.6 \mathrm{~T}_{\mathrm{c}}$

Compute Lag Time
hr
min

0.200
12

```
 FHWA Urban Drainage Design Program, HY-22
 HYDRAULIC PARAMETERS OF OPEN CHANNELS
 Trapezoidal, Rectangular, or Triangular X-Section
 Date: 10/05/2007
 Project No. :27028
 Project Name.:Finger Rock Wash
 Computed by :jlc
 Project Description
 FR-5 Tc Calc Using TR-55 - Channel Flow Segment
 Assume Froude # <= 1 for steep gradient stream
 Adjust Manning's n to calibrate
```

INPUT PARAMETERS


TR-55 Time of Concentration (Tc), Travel Time (Tt) and Lag Time Worksheet

Project No:	27028	By: jlc/bjk
Project Name:	Finger Rock Wash LOMR	Date:
	10/25/2007	

## Watershed Subarea ID: FR-6

Circle One: Tc or Tt computation
Sheet Flow (Applicable to Tc only)

1. Surface description (table 3-1)
2. Manning's roughness coeff, n (table 3-1)
3. Flow Length, $L$ (total $L \leq 300 \mathrm{ft}$ )
4. Two-yr 24-hr rainfall, $\mathrm{P}_{2}$
5. Land slope, s
6. $T_{t}=0.007(n L)^{0.8} /\left(P_{2}^{0.5}\right)\left(\mathrm{s}^{0.4}\right)$

Segment ID

Shallow Concentrated Flow

Segment ID		A
		Sht Grass
Compute $\mathrm{T}_{\mathrm{t}}$		0.15
	ft	100
	in	2.04
	$\mathrm{ft} / \mathrm{ft}$	0.16
	hr	0.089

7. Surface description (paved or unpaved)
8. Flow Length, L
9. Watercourse Slope, s
10. Average Velocity, V (figure 3-1)
11. $\mathrm{T}_{\mathrm{t}}=\mathrm{L} /(3600 \mathrm{~V})$

Channel Flow
12. Cross Sectional Flow Area, a
13. Wetted Perimeter, $P_{w}$
14. Hydraulic radius, $r=a / P_{w}$
15. Channel Slope, s
16. Manning's roughness coeff, $n$
17. $V=\left(1.49 r^{0.666} s^{0.5} / n\right.$
18. Flow Length, L
19. $T_{t}=L /(3600 \mathrm{~V})$

Segment ID		B
		U
Compute $\mathrm{T}_{\mathrm{t}}$	ft	1366
	$\mathrm{ft} / \mathrm{ft}$	0.054
	$\mathrm{ft} / \mathrm{s}$	3.7
	hr	0.103

Segment ID

Segment ID		
	$\mathrm{ft}^{2}$	C
	ft	
	ft	
	$\mathrm{ft} / \mathrm{ft}$	0.0279
Compute $\mathrm{T}_{\mathrm{t}}$	ft	0.045
	ft	5.7

2870

2796
$E L$
2886
10.4n14

2694
21. Lag Time $=0.6 \mathrm{~T}_{\mathrm{c}}$

Compute Lag Time

hr	0.222
	13

FHWA Urban Drainage Design Program, HY-22 HYDRAULIC PARAMETERS OF OPEN CHANNELS

Trapezoidal, Rectangular, or Triangular X-Section Date: 10/05/2007

Project No. :27028
Project Name. : Finger Rock Wash Computed by :bjk

Project Description
FR-6 Tc Calc Using TR-55 - Channel Flow Segment Assume Froude \#<= 1 for steep mtn stream Adjust Manning's $n$ to calibrate

INPUT PARAMETERS


Project No: 27028 By: jlc Date: 10/25/2007
Project Name: Finger Rock Wash LOMR
Watershed Subarea ID: FR-7
Circle One: Tc or Tt computation
Sheet Flow (Applicable to Tc only)

1. Surface description (table 3-1)
2. Manning's roughness coeff, n (table 3-1)
3. Flow Length, L (total $\mathrm{L} \leq 300 \mathrm{ft}$ )
4. Two-yr 24-hr rainfall, $\mathrm{P}_{2}$
5. Land slope, s
6. $T_{t}=0.007(n L)^{0.8} /\left(P_{2}^{0.5}\right)\left(\mathrm{s}^{0.4}\right)$

Shallow Concentrated Fiow
7. Surface description (paved or unpaved)
8. Flow Length, $L$
9. Watercourse Slope, s
10. Average Velocity, V (figure 3-1)
11. $T_{t}=L /(3600 \mathrm{~V})$

Segment ID		A	$\begin{aligned} & E L \\ & 2956 \end{aligned}$
Compute $\mathrm{T}_{\mathrm{t}}$		Sht Grass	
		0.15	
	ft	100	NOAM/4
	in	2.17	
	$\mathrm{ft} / \mathrm{ft}$	0.08	
	hr	0.114	

2948
Segment ID

		B
		U
	ft	1860
	ft/ft	0.042
	ft/s	3.4
Compute $\mathrm{T}_{\mathrm{t}}$	hr	0.152

## Channel Flow

12. Cross Sectional Flow Area, a
13. Wetted Perimeter, $P_{w}$
14. Hydraulic radius, $r=a / P_{w}$
15. Channel Slope, s
16. Manning's roughness coeff, $n$
17. $V=\left(1.49 r^{0.666} \mathrm{~s}^{0.5} / \mathrm{n}\right.$
18. Flow Length, $L$
19. $T_{t}=L /(3600 \mathrm{~V})$

Compute $\mathrm{T}_{\mathrm{t}}$


2870

2770
20. Watershed or subarea $T_{c}$ or $T_{t}$ (add $T_{t}$ in steps 6, 11, and 19)
hr
min



TR-55 Time of Concentration (Tc), Travel Time (Tt) and Lag Time Worksheet
Project No: 27028 By: jlc Date: 10/25/2007
Project Name:
Finger Rock Wash LOMR
Watershed Subarea ID:
FR-8
Circle One: Tc or Tt computation
Sheet Flow (Applicable to Tc only)

1. Surface description (table 3-1)
2. Manning's roughness coeff, n (table 3-1)
3. Flow Length, L (total $\mathrm{L} \leq 300 \mathrm{ft}$ )
4. Two-yr 24-hr rainfall, $\mathrm{P}_{2}$
5. Land slope, s
6. $T_{t}=0.007(n L)^{0.8} /\left(P_{2}^{0.5}\right)\left(\mathrm{s}^{0.4}\right)$

Segment ID

A	$E L$
Woods	4120
0.4	
100	
2.17	Mramil
0.8	
0.099	

Shallow Concentrated Flow
7. Surface description (paved or unpaved)
8. Flow Length, L
9. Watercourse Slope, s
10. Average Velocity, V (figure 3-1)
11. $T_{t}=L /(3600 \mathrm{~V})$

Compute $\mathrm{T}_{\mathrm{t}}$
Segment ID

Segment ID		B
		U
	ft	4320
	ft/ft	0.27
	$\mathrm{ft} / \mathrm{s}$	8.3
Compute $\mathrm{T}_{\mathrm{t}}$	hr	0.145

Channel Flow
12. Cross Sectional Flow Area, a
13. Wetted Perimeter, $P_{w}$
14. Hydraulic radius, $r=a / P_{w}$
15. Channel Slope, s

Segment ID		C
Compute $\mathrm{T}_{\mathrm{t}}$	$\mathrm{ft}^{2}$	
	ft	
	ft	
	$\mathrm{ft} / \mathrm{ft}$	0.0379
		0.065
	ft/s	9.6
	ft	2585
	hr	0.075

2892
16. Manning's roughness coeff, $n$
17. $V=\left(1.49 r^{0.666} s^{0.5} / n\right.$
18. Flow Length, L
19. $\mathrm{T}_{\mathrm{t}}=\mathrm{L} /(3600 \mathrm{~V})$

Compute $\mathrm{T}_{\mathrm{t}}$
hr
min

0.319
19

21. Lag Time $=0.6 \mathrm{~T}_{\mathrm{c}}$

Compute Lag Time
hr min

0.191
11




TR-55 Time of Concentration (Tc), Travel Time (Tt) and Lag Time Worksheet
Project No: 27028 By: jlc Date: 10/25/2007
Project Name: Finger Rock Wash LOMR
Watershed Subarea ID:
FR-9
Circle One: Tc or Tt computation



TR-55 Time of Concentration (Tc), Travel Time (Tt) and Lag Time Worksheet
Project No: 27028
By: jlc
Date: 10/25/2007

Project Name:
Finger Rock Wash LOMR
Watershed Subarea ID:
FR-10
Circle One: Tc or Tt computation
Sheet Flow (Applicable to Tc only)

1. Surface description (table 3-1)
2. Manning's roughness coeff, n (table 3-1)
3. Flow Length, L ( (total $\mathrm{L} \leq 300 \mathrm{ft}$ )

	Segment ID	A
		Woods
		0.4
	ft	100
	in	2.38
	$\mathrm{ft} / \mathrm{ft}$	0.4
Compute $\mathrm{T}_{\mathrm{t}}$	t hr	0.125

EC
4. Two-yr 24-hr rainfall, $\mathrm{P}_{2}$
5. Land slope, s
6. $\mathrm{T}_{\mathrm{t}}=0.007(\mathrm{~nL})^{0.8} /\left(\mathrm{P}_{2}^{0.5}\right)\left(\mathrm{s}^{0.4}\right)$

Compute $\mathrm{T}_{\mathrm{t}}$
hr
5920
100.1914

Shallow Concentrated Flow
7. Surface description (paved or unpaved)
8. Flow Length, L
9. Watercourse Slope, s
10. Average Velocity, V (figure 3-1)
11. $\mathrm{T}_{\mathrm{t}}=\mathrm{L} /(3600 \mathrm{~V})$

## Channel Flow

12. Cross Sectional Flow Area, a
13. Wetted Perimeter, $P_{w}$
14. Hydraulic radius, $r=a / P_{w}$
15. Channel Slope, s
16. Manning's roughness coeff, $n$
17. $V=\left(1.49 r^{0.666} \mathrm{~s}^{0.5} / \mathrm{n}\right.$
18. Flow Length, $L$
19. $T_{t}=L /(3600 \mathrm{~V})$

Segment ID
V)

Compute $\mathrm{T}_{\mathrm{t}}$

$B$
$U$
3950
0.44
10.8
0.102

5880

4150
20. Watershed or subarea $T_{c}$ or $T_{t}$ (add $T_{t}$ in steps 6, 11, and 19)
21. Lag Time $=0.6 \mathrm{~T}_{\mathrm{c}}$

Compute Lag Time hr
min

0.198
12

```
 FHWA Urban Drainage Design Program, HY-22
 HYDRAULIC PARAMETERS OF OPEN CHANNELS
 Trapezoidal, Rectangular, or Triangular X-Section
 Date: 10/02/2007
 Project No. :27028
 Project Name.:Finger Rock Wash
 Computed by :jlc
 Project Description
 FR-10 Tc Calc Using TR-55 - Channel Flow Segment
Assume Froude # <= 1 for steep mtn stream
Adjust Manning's n accordingly
INPUT PARAMETERS
\begin{tabular}{llll}
1. Channel Slope (ft/ft) & 0.1590 \\
2. Channel Bottom Width (ft) & & 10.00 \\
3. Left Side Slope (Horizontal to 1) & 1.00 \\
4. Right Side Slope (Horizontal to 1) & 1.00 \\
5. Manning's Coefficient & 0.125 \\
6. Discharge (cfs) & & 1800.00 \\
7. Depth of Flow (ft) & & 7.91
\end{tabular}
OUTPUT RESULTS
\begin{tabular}{llr}
Cross Section Area (Sqft) & 141.67 \\
Average Velocity & (ft/sec) & 12.71 \\
Top Width (ft) & & 25.82 \\
Hydraulic Radius (ft) & 4.38 \\
Froude Number & & 0.96
\end{tabular}
```

TR-55 Time of Concentration (Tc), Travel Time (Tt) and Lag Time Worksheet

Project No:	27028	jlc	Date:	10/25/2007
Project Name:				

Watershed Subarea ID: FR-11
Circle One: Tc or Tt computation

Sheet Flow (Applicable to Tc only)

Segment ID	A
	Woods
	0.4
ft	100
in	2.52
$\mathrm{ft} / \mathrm{ft}$	0.4
Compute $\mathrm{T}_{\mathrm{t}} \quad \mathrm{hr}$	0.122

1. Surface description (table 3-1)
2. Manning's roughness coeff, n (table 3-1)
3. Flow Length, $L$ (total $L \leq 300 \mathrm{ft}$ )
4. Two-yr 24-hr rainfall, $\mathrm{P}_{2}$
5. Land slope, s
6. $T_{t}=0.007(n L)^{0.8} /\left(P_{2}^{0.5}\right)\left(s^{0.4}\right)$

Compute $\mathrm{T}_{\mathrm{t}}$
El
6920

No, 1 ilt

6880

5160
Channel Flow
12. Cross Sectional Flow Area, a
13. Wetted Perimeter, $P_{w}$
14. Hydraulic radius, $r=a / P_{w}$
15. Channel Slope, s
16. Manning's roughness coeff, $n$
17. $V=\left(1.49 r^{0.666} \mathrm{~s}^{0.5} / \mathrm{n}\right.$
18. Flow Length, $L$
19. $T_{t}=L /(3600 \mathrm{~V})$

Compute $\mathrm{T}_{\mathrm{t}}$
20. Watershed or subarea $T_{c}$ or $T_{t}$ (add $T_{t}$ in steps 6,11 , and 19)

Compute Lag Time
hr
min

0.174
10

```
 FHWA Urban Drainage Design Program, HY-22
 HYDRAULIC PARAMETERS OF OPEN CHANNELS
Trapezoidal, Rectangular, or Triangular X-Section
 Date: 10/02/2007
 Project No. :27028
 Project Name.:Einger Rock Wash
 Computed by :jlc
 Project Description
 ER-11 Tc Calc Using TR-55 - Channel Flow Segment
 Assume Froude # <= 1 for steep mtn stream
 Adjust Manning's n accordingly
```

        INPUT PARAMETERS
    

Project No: 27028 By: jlc Date: 10/25/2007
Project Name: Finger Rock Wash LOMR
Watershed Subarea ID:
FR-12
Circle One: Tc or Tt computation
Sheet Flow (Applicable to Tc only)

Segment ID		A	$E 12240$
		Woods	
		0.4	
	ft	100	NOMTH
	in	2.52	
	ft/ft	0.4	
Compute $\mathrm{T}_{\mathrm{t}}$	hr	0.122	7200

Shallow Concentrated Flow
Segment ID
7. Surface description (paved or unpaved)
8. Flow Length, L
9. Watercourse Slope, s
10. Average Velocity, V (figure 3-1)
11. $\mathrm{T}_{\mathrm{t}}=\mathrm{L} /(3600 \mathrm{~V})$

Channel Flow
12. Cross Sectional Fiow Area, a
13. Wetted Perimeter, $P_{w}$
14. Hydraulic radius, $r=a / P_{w}$
15. Channel Slope, s
16. Manning's roughness coeff, $n$
17. $V=\left(1.49 r^{0.666} s^{0.5} / n\right.$
18. Flow Length, $L$
19. $T_{t}=L /(3600 \mathrm{~V})$

Segment ID		B
		U
	ft	1640
	ft/ft	0.27
	$\mathrm{ft} / \mathrm{s}$	8.5
Compute $\mathrm{T}_{\mathrm{t}}$	hr	0.054

6760
20. Watershed or subarea $T_{c}$ or $T_{t}$ (add $T_{t}$ in steps 6, 11, and 19)

hr	0.288
	17

21. Lag Time $=0.6 \mathrm{~T}_{\mathrm{c}}$

Compute Lag Time
hr
min

0.173
10



TR-55 Time of Concentration (Tc), Travel Time (Tt) and Lag Time Worksheet
Project No: $27028 \quad$ By: jlc/bjk Date: 10/25/2007
Project Name: Finger Rock Wash LOMR
Watershed Subarea ID:
FR-61
Circle One: Tc or Tt computation
Sheet Flow (Applicable to Tc only)

1. Surface description (table 3-1)
2. Manning's roughness coeff, $n$ (table 3-1)
3. Flow Length, $L$ (total $L \leq 300 \mathrm{ft}$ )
4. Two-yr 24-hr rainfall, $\mathrm{P}_{2}$
5. Land slope, s
6. $T_{t}=0.007(n L)^{0.8} /\left(P_{2}^{0.5}\right)\left(s^{0.4}\right)$

Compute $\mathrm{T}_{\mathrm{t}}$
Segment ID

Shallow Concentrated Flow
Segment ID
7. Surface description (paved or unpaved)
8. Flow Length, $L$
9. Watercourse Slope, s
10. Average Velocity, V (figure 3-1)
11. $T_{t}=\mathrm{L} /(3600 \mathrm{~V})$

## Channel Flow

12. Cross Sectional Flow Area, a
13. Wetted Perimeter, $P_{w}$
14. Hydraulic radius, $r=a / P_{w}$
15. Channel Slope, s
16. Manning's roughness coeff, $n$
17. $V=\left(1.49 \mathrm{r}^{0.666} \mathrm{~s}^{0.5} / \mathrm{n}\right.$
18. Flow Length, $L$
19. $T_{t}=L /(3600 \mathrm{~V})$
ft
ft
ft/ft
Compute $T_{t}$
$\mathrm{ft} / \mathrm{s}$

Segment ID
Segment ID
$\mathrm{ft}^{2}$
$\mathrm{ft}^{2}$
ft
ft
ft/ft
$\mathrm{ft} / \mathrm{s}$
Compute $\mathrm{T}_{\mathrm{t}}$
ft

A
Sht Grass
0.15
100
2.04
0.06
0.132

$E$
2910

10 AR:4

2904

2810

2694
20. Watershed or subarea $T_{c}$ or $T_{t}$ (add $T_{t}$ in steps 6, 11, and 19)

21. Lag Time $=0.6 \mathrm{~T}_{\mathrm{c}}$

Compute Lag Time
hr
min

0.287
17

```
 FHWA Urban Drainage Design Program, HY-22
 HYDRAULIC PARAMETERS OF OPEN CHANNELS
```

Trapezoidal, Rectangular, or Triangular X-Section
Date: 10/05/2007
Project No. :27028
Project Name.: Finger Rock Wash
Computed by :bjk

Project Description
FR-61 Tc Calc Using TR-55 - Channel Flow Segment Assume Froude $\#<=1$ for steep mtn stream Adjust Manning's $n$ to calibrate

INPUT PARAMETERS


TR-55 Time of Concentration (Tc), Travel Time (Tt) and Lag Time Worksheet
Project No: $27028 \quad$ By: jlc/bjk Date: 10/25/2007
Project Name: Finger Rock Wash LOMR
Watershed Subarea ID: FR-62
Circle One: Tc or Tt computation
Sheet Flow (Applicable to Tc only)

1. Surface description (table 3-1)
2. Manning's roughness coeff, $n$ (table 3-1)
3. Flow Length, $L$ (total $L \leq 300 \mathrm{ft}$ )
4. Two-yr 24-hr rainfall, $\mathrm{P}_{2}$
5. Land slope, s
6. $T_{t}=0.007(n L)^{0.8} /\left(P_{2}^{0.5}\right)\left(s^{0.4}\right)$

Segment ID		A	$\begin{aligned} & E C \\ & 3900 \end{aligned}$
Compute $\mathrm{T}_{\mathrm{t}}$		Sht Grass	
		0.15	
	ft	100	NOAFH
	in	2.17	
	$\mathrm{ft} / \mathrm{ft}$	0.5	
	hr	0.055	

Shallow Concentrated Flow
Segment ID
7. Surface description (paved or unpaved)
8. Flow Length, L
9. Watercourse Slope, s
10. Average Velocity, V (figure 3-1)
11. $T_{t}=L /(3600 \mathrm{~V})$

Compute $T_{t}$
3850

Channel Flow
12. Cross Sectional Flow Area, a
13. Wetted Perimeter, $P_{w}$
14. Hydraulic radius, $r=a / P_{w}$
15. Channel Slope, s
ft $\mathrm{ft} / \mathrm{ft}$

		B
		U
	ft	2527
	ft/ft	0.28
	$\mathrm{ft} / \mathrm{s}$	8.6
Compute $\mathrm{T}_{\mathrm{t}}$	hr	0.082

16. Manning's roughness coeff, $n$
17. $V=\left(1.49 r^{0.666} s^{0.5} / n\right.$
18. Flow Length, $L$
19. $T_{t}=L /(3600 \mathrm{~V})$

Segment ID
Segment ID $\mathrm{ft}^{2}$
$\mathrm{ft}^{2}$
ft
ft
$\mathrm{ft} / \mathrm{ft}$

$C$
0.049
0.068
8.86
6253
0.196

20. Watershed or subarea $T_{c}$ or $T_{t}$ (add $T_{t}$ in steps 6, 11, and 19)
hr


2831
21. Lag Time $=0.6 \mathrm{~T}_{\mathrm{c}}$

Compute Lag Time
hr
$\min$



TR-55 Time of Concentration (Tc), Travel Time (Tt) and Lag Time Worksheet
Project No: $27028 \quad$ By: jlc Date: 10/25/2007

Project Name: Finger Rock Wash LOMR
Watershed Subarea ID: FR-81
Circle One: Tc or Tt computation
Sheet Flow (Applicable to Tc only)

1. Surface description (table 3-1)
2. Manning's roughness coeff, $n$ (table 3-1)
3. Flow Length, $L$ (total $L \leq 300 \mathrm{ft}$ )
4. Two-yr 24-hr rainfall, $\mathrm{P}_{2}$
5. Land slope, s
6. $\mathrm{T}_{\mathrm{t}}=0.007(\mathrm{~nL})^{0.8} /\left(\mathrm{P}_{2}^{0.5}\right)\left(\mathrm{s}^{0.4}\right)$

Segment ID			$\begin{aligned} & E L \\ & 5080 \end{aligned}$
		A	
Compute $\mathrm{T}_{\mathrm{t}}$		Woods	
		0.4	
	ft	100	N0tid
	in	2.17	
	ft/ft	0.6	
	hr	0.111	5020

Shallow Concentrated Flow
7. Surface description (paved or unpaved)
8. Flow Length, L
9. Watercourse Slope, s
10. Average Velocity, V (figure 3-1)
11. $\mathrm{T}_{\mathrm{t}}=\mathrm{L} /(3600 \mathrm{~V})$

Segment ID		B
		U
Compute $\mathrm{T}_{\mathrm{t}}$	ft	3520
	ft/ft	0.5
	$\mathrm{ft} / \mathrm{s}$	11.3
	hr	0.087

3236
Channel Flow
12. Cross Sectional Flow Area, a
13. Wetted Perimeter, $P_{w}$
14. Hydraulic radius, $r=a / P_{w}$
15. Channel Slope, s

Segment ID		C
	ft	
	ft	
	ft	
	$\mathrm{ft} / \mathrm{ft}$	0.074
		0.085
	$\mathrm{ft} / \mathrm{s}$	8.6
Compute $\mathrm{T}_{\mathrm{t}}$	ft	5875
	hr	0.190

2794
20. Watershed or subarea $T_{c}$ or $T_{t}$ (add $T_{t}$ in steps 6, 11, and 19)
hr
min

0.388
23

21. Lag Time $=0.6 \mathrm{~T}_{\mathrm{c}}$

Compute Lag Time

hr	0.233
	14


Project No: 27028
By: jlc
Date: 10/25/2007

Project Name: Finger Rock Wash LOMR
Watershed Subarea ID:
FR-82
Circle One: Tc or Tt computation
Sheet Flow (Applicable to Tc only)

1. Surface description (table 3-1)
2. Manning's roughness coeff, $n$ (table 3-1)
3. Flow Length, $L$ (total $L \leq 300 \mathrm{ft}$ )
4. Two-yr 24-hr rainfall, $\mathrm{P}_{2}$
5. Land slope, s
6. $\mathrm{T}_{\mathrm{t}}=0.007(\mathrm{~nL})^{0.8} /\left(\mathrm{P}_{2}^{0.5}\right)\left(\mathrm{s}^{0.4}\right)$

Shallow Concentrated Flow
7. Surface description (paved or unpaved)
8. Flow Length, L
9. Watercourse Slope, s
10. Average Velocity, V (figure 3-1)
11. $T_{t}=L /(3600 \mathrm{~V})$

Segment ID		A	$\begin{aligned} & E C \\ & 5280 \end{aligned}$
		Woods	
Compute $\mathrm{T}_{\mathrm{t}}$		0.4	
	ft	100	N0, 414
	in	2.28	
	$\mathrm{ft} / \mathrm{ft}$	0.8	
	hr	0.097	

Channel Flow
12. Cross Sectional Flow Area, a
13. Wetted Perimeter, $\mathrm{P}_{\mathrm{w}}$
14. Hydraulic radius, $r=a / P_{w}$
15. Channel Slope, s

Compute $\mathrm{T}_{\mathrm{t}}$
Segment ID

Segment ID		B
		U
	ft	4600
	$\mathrm{ft} / \mathrm{ft}$	0.42
	$\mathrm{ft} / \mathrm{s}$	10.5
Compute $\mathrm{T}_{\mathrm{t}}$	hr	0.122

16. Manning's roughness coeff, n
17. $V=\left(1.49 r^{0.666} s^{0.5} / n\right.$
18. Flow Length, $L$
19. $\mathrm{T}_{\mathrm{t}}=\mathrm{L} /(3600 \mathrm{~V})$

Segment ID		C
	$\mathrm{ft}^{2}$	
	ft	
	ft	
	$\mathrm{ft} / \mathrm{ft}$	0.131
		0.115
Compute $\mathrm{T}_{\mathrm{t}}$	$\mathrm{ft} / \mathrm{s}$	9.8
	ft	2045

3280

3012
20. Watershed or subarea $T_{c}$ or $T_{t}$ (add $T_{t}$ in steps 6, 11, and 19)
hr
min

0.277
17

21. Lag Time $=0.6 \mathrm{~T}_{\mathrm{c}}$

Compute Lag Time

hr	0.166
	10



TR-55 Time of Concentration (Tc), Travel Time (Tt) and Lag Time Worksheet
Project No: 27028 By: jlc Date: 10/25/2007

Project Name: Finger Rock Wash LOMR
Watershed Subarea ID:
FR-91
Circle One: Tc or Tt computation

Sheet Flow (Applicable to Tc only)

1. Surface description (table 3-1)
2. Manning's roughness coeff, $n$ (table 3-1)
3. Flow Length, $L$ (total $L \leq 300 \mathrm{ft}$ )
4. Two-yr 24-hr rainfall, $\mathrm{P}_{2}$
5. Land slope, s
6. $T_{t}=0.007(n L)^{0.8} /\left(P_{2}^{0.5}\right)\left(s^{0.4}\right)$

Segment ID		A
		Short Gr
Compute $\mathrm{T}_{\mathrm{t}}$		0.24
	ft	100
	in	2.28
	ft/ft	0.1
	hr	0.148

$E L$ 3685
Nobri4

3675
Segment ID
hallow Concentrated Flow
7. Surface description (paved or unpaved)
8. Flow Length, L
9. Watercourse Slope, s
10. Average Velocity, $V$ (figure 3-1)
11. $T_{t}=L /(3600 \mathrm{~V})$

Compute $\mathrm{T}_{\mathrm{t}}$

		B
		U
	ft	2460
	ft/ft	0.219
	$\mathrm{ft} / \mathrm{s}$	7.6
Compute $\mathrm{T}_{\mathrm{t}}$	hr	0.090

Channel Flow
12. Cross Sectional Flow Area, a
13. Wetted Perimeter, $P_{w}$
14. Hydraulic radius, $r=a / P_{w}$
15. Channel Slope, s
16. Manning's roughness coeff, $n$
17. $V=\left(1.49 r^{0.666} s^{0.5)} / n\right.$
18. Flow Length, $L$
19. $\mathrm{T}_{\mathrm{t}}=\mathrm{L} /(3600 \mathrm{~V})$

Compute $\mathrm{T}_{\mathrm{t}}$
Segment ID
$\mathrm{ft}^{2}$
ft
ft
$\mathrm{ft} / \mathrm{ft}$
$\mathrm{ft} / \mathrm{s}$
ft
hr

C
0.103
0.095
8.1
1120
0.038

3115
20. Watershed or subarea $T_{c}$ or $T_{t}$ (add $T_{t}$ in steps 6, 11, and 19)

Compute Lag Time
hr
min
hr

21. Lag Time $=0.6 \mathrm{~T}_{\mathrm{c}}$
,


Project No:	27028	By: jlc
Project Name:	Finger Rock Wash LOMR	Date:
	10/25/2007	

Watershed Subarea ID: FR-92
Circle One: Tc or Tt computation
Sheet Flow (Applicable to Tc only)

1. Surface description (table 3-1)
2. Manning's roughness coeff, $n$ (table 3-1)
3. Flow Length, $L$ (total $L \leq 300 \mathrm{ft}$ )
4. Two-yr 24-hr rainfall, $\mathrm{P}_{2}$
5. Land slope, s
6. $\mathrm{T}_{\mathrm{t}}=0.007(\mathrm{~nL})^{0.8} /\left(\mathrm{P}_{2}^{0.5}\right)\left(\mathrm{s}^{0.4}\right)$

Segment ID		A	EL4360
Compute $\mathrm{T}_{\mathrm{t}}$		Woods	
		0.4	
	ft	100	1 NaHt 4
	in	2.28	
	$\mathrm{ft} / \mathrm{ft}$	0.5	
	hr	0.117	4310

Shallow Concentrated Flow
7. Surface description (paved or unpaved)
8. Flow Length, L
9. Watercourse Slope, s
10. Average Velocity, V (figure 3-1)
11. $T_{t}=L /(3600 \mathrm{~V})$

		B
		U
	ft	1440
	ft/ft	0.48
	$\mathrm{ft} / \mathrm{s}$	11.3
Compute $\mathrm{T}_{\mathrm{t}}$	hr	0.035

## Channel Flow

12. Cross Sectional Flow Area, a
13. Wetted Perimeter, $P_{w}$
14. Hydraulic radius, $r=a / P_{w}$
15. Channel Slope, s
16. Manning's roughness coeff, $n$
17. $V=\left(1.49 r^{0.666} \mathrm{~s}^{0.5} / \mathrm{n}\right.$
18. Flow Length, $L$
19. $T_{t}=L /(3600 \mathrm{~V})$

	Segment ID	
	$\mathrm{ft}^{2}$	C
	ft	
	ft	
	$\mathrm{ft} / \mathrm{ft}$	0.115
		0.105
	$\mathrm{ft} / \mathrm{s}$	9.4
Compute $\mathrm{T}_{\mathrm{t}}$	ft	3900
	hr	0.115

3590

3140
20. Watershed or subarea $T_{c}$ or $T_{t}$ (add $T_{t}$ in steps 6, 11, and 19)

hr	0.268
	16

21. Lag Time $=0.6 \mathrm{~T}_{\mathrm{c}}$

Compute Lag Time

hr	0.161
	10

```
 FHWA Urban Drainage Design Program, HY-22
 HYDRAULIC PARAMETERS OF OPEN CHANNELS
 Trapezoidal, Rectangular, or Triangular X-Section
 Date: 10/03/2007
 Project No. :27028
 Project Name.:Finger Rock Wash
 Computed by :jlc
 Project Description
FR-92 Tc Calc Using TR-55 - Channel Flow Segment
Assume Froude # <= 1 for steep mtn streams
Adjust Manning's n to calibrate
```

INPUT PARAMETERS


TR-55 Time of Concentration (Tc), Travel Time (Tt) and Lag Time Worksheet

Project No:	27028	By: jlc	Date:
Project Name:	Finger Rock Wash LOMR		

Watershed Subarea ID: FR-93
Circle One: Tc or Tt computation
Sheet Flow (Applicable to Tc only)

1. Surface description (table 3-1)
2. Manning's roughness coeff, n (table 3-1)
3. Flow Length, $L$ (total $L \leq 300 \mathrm{ft}$ )
4. Two-yr 24-hr rainfall, $\mathrm{P}_{2}$
5. Land slope, s
6. $T_{t}=0.007(n L)^{0.8} /\left(P_{2}^{0.5}\right)\left(s^{0.4}\right)$

Shallow Concentrated Flow
7. Surface description (paved or unpaved)
8. Flow Length, L
9. Watercourse Slope, s
10. Average Velocity, V (figure 3-1)
11. $\mathrm{T}_{\mathrm{t}}=\mathrm{L} /(3600 \mathrm{~V})$

Channel Flow
12. Cross Sectional Flow Area, a
13. Wetted Perimeter, $P_{w}$
14. Hydraulic radius, $r=a / P_{w}$
15. Channel Slope, s
16. Manning's roughness coeff, $n$
17. $V=\left(1.49 r^{0.666} \mathrm{~s}^{0.5} / \mathrm{n}\right.$
18. Flow Length, $L$
19. $T_{t}=L /(3600 \mathrm{~V})$

Compute $\mathrm{T}_{\mathrm{t}}$
Segment ID

Segment ID ${ }_{\text {ft }}$		C
Compute $\mathrm{T}_{\mathrm{t}}$	ft	
	ft	
	$\mathrm{ft} / \mathrm{ft}$	0.24
		0.16
	$\mathrm{ft} / \mathrm{s}$	10.6
	ft	1620
	hr	0.042

20. Watershed or subarea $T_{c}$ or $T_{t}$ (add $T_{t}$ in steps 6,11 , and 19)
hr
min

0.295
18

21. Lag Time $=0.6 \mathrm{~T}_{\mathrm{c}}$

Compute Lag Time

hr	0.177
	11



TR-55 Time of Concentration (Tc), Travel Time (Tt) and Lag Time Worksheet
Project No: 27028 By: jlc Date: 10/25/2007
Project Name: Finger Rock Wash LOMR
Watershed Subarea ID: FR-94
Circle One: Tc or Tt computation
Sheet Flow (Applicable to Tc only)

1. Surface description (table 3-1)
2. Manning's roughness coeff, $n$ (table 3-1)
3. Flow Length, $L$ (total $L \leq 300 \mathrm{ft}$ )
4. Two-yr 24-hr rainfall, $\mathrm{P}_{2}$
5. Land slope, s
6. $T_{t}=0.007(n L)^{0.8} /\left(P_{2}^{0.5}\right)\left(s^{0.4}\right)$

Shallow Concentrated Flow
7. Surface description (paved or unpaved)
8. Flow Length, L
9. Watercourse Slope, s
10. Average Velocity, V (figure 3-1)
11. $\mathrm{T}_{\mathrm{t}}=\mathrm{L} /(3600 \mathrm{~V})$


6600

6380
Channel Flow
12. Cross Sectional Flow Area, a
13. Wetted Perimeter, $\mathrm{P}_{\mathrm{w}}$
14. Hydraulic radius, $r=a / P_{w}$
15. Channel Slope, s
16. Manning's roughness coeff, $n$
17. $V=\left(1.49 r^{0.666} s^{0.5} / \mathrm{n}\right.$
18. Flow Length, $L$
19. $T_{t}=L /(3600 \mathrm{~V})$

Compute $\mathrm{T}_{\mathrm{t}}$
Segment ID

ID	$C$
$\mathrm{ft}^{2}$	
ft	
ft	
$\mathrm{ft} / \mathrm{ft}$	0.278
	0.17
$\mathrm{ft} / \mathrm{s}$	11.3
ft	6110
hr	0.150

4680
20. Watershed or subarea $T_{c}$ or $T_{t}$ (add $T_{t}$ in steps 6, 11, and 19)
hr

21. Lag Time $=0.6 \mathrm{~T}_{\mathrm{c}}$

Compute Lag Time
hr
min
0.167

10
-

```
 FHWA Urban Drainage Design Program, HY-22
 HYDRAULIC PARAMETERS OF OPEN CHANNELS
Trapezoidal, Rectangular, or Triangular X-Section
 Date: 10/03/2007
 Project No. :27028
 Project Name.:Finger Rock Wash
 Computed by :jlc
 Project Description
 FR-94 Tc Calc Using TR-55 - Channel Flow Segment
 Assume Froude # <= 1 for steep mtn streams
 Adjust Manning's n to calibrate
INPUT PARAMETERS
```



TR-55 Time of Concentration (Tc), Travel Time (Tt) and Lag Time Worksheet
Project No: $27028 \quad$ By: jlc Date: 10/25/2007
Project Name: Finger Rock Wash LOMR
Watershed Subarea ID: FR-921
Circle One: Tc or Tt computation
Sheet Flow (Applicable to Tc only)

1. Surface description (table 3-1)
2. Manning's roughness coeff, $n$ (table 3-1)
3. Flow Length, $L$ (total $L \leq 300 \mathrm{ft}$ )
4. Two-yr 24-hr rainfall, $\mathrm{P}_{2}$
5. Land slope, s
6. $\mathrm{T}_{\mathrm{t}}=0.007(\mathrm{~nL})^{0.8} /\left(\mathrm{P}_{2}^{0.5}\right)\left(\mathrm{s}^{0.4}\right)$


Shallow Concentrated Flow
7. Surface description (paved or unpaved)
8. Flow Length, $L$
9. Watercourse Slope, s
10. Average Velocity, V (figure 3-1)
11. $\mathrm{T}_{\mathrm{t}}=\mathrm{L} /(3600 \mathrm{~V})$

Channel Flow
12. Cross Sectional Flow Area, a
13. Wetted Perimeter, $P_{w}$
14. Hydraulic radius, $r=a / P_{w}$
15. Channel Slope, s
16. Manning's roughness coeff, $n$
17. $V=\left(1.49 \mathrm{r}^{0.666} \mathrm{~s}^{0.5} / \mathrm{n}\right.$
18. Flow Length, $L$
19. $T_{t}=L /(3600 \mathrm{~V})$

Compute $T_{t}$
20. Watershed or subarea $T_{c}$ or $T_{t}$ (add $T_{t}$ in steps 6, 11, and 19)
hr
min

$B$
$U$
1240
0.5
11.3
0.030

Segment ID

$C$
0.135
0.11
9.4
4800
0.142

3790

3140
21. Lag Time $=0.6 \mathrm{~T}_{\mathrm{c}}$

Compute Lag Time
hr
min

0.267
16
0.160
10



TR-55 Time of Concentration (Tc), Travel Time (Tt) and Lag Time Worksheet
Project No: 27028
By: jlc
Date: 10/25/2007
Project Name: Finger Rock Wash LOMR
Watershed Subarea ID: FR-922
Circle One: Tc or Tt computation
Sheet Flow (Applicable to Tc only)

1. Surface description (table 3-1)
2. Manning's roughness coeff, $n$ (table 3-1)
3. Flow Length, $L$ (total $L \leq 300 \mathrm{ft}$ )
4. Two-yr 24-hr rainfall, $\mathrm{P}_{2}$
5. Land slope, s
6. $T_{t}=0.007(n L)^{0.8} /\left(P_{2}^{0.5}\right)\left(\mathrm{s}^{0.4}\right)$

Segment ID		A	$\begin{aligned} & E L \\ & 6800 \end{aligned}$
Compute $\mathrm{T}_{\mathrm{t}}$		Woods	
		0.4	
	ft	100	
	in	2.38	NOMA M
	ft/ft	0.5	
	hr	0.115	6750

Shallow Concentrated Flow
7. Surface description (paved or unpaved)
8. Flow Length, L
9. Watercourse Slope, s
10. Average Velocity, V (figure 3-1)
11. $\mathrm{T}_{\mathrm{t}}=\mathrm{L} /(3600 \mathrm{~V})$

		B
		U
	ft	1580
	ft/ft	0.481
	$\mathrm{ft} / \mathrm{s}$	11.3
Compute $\mathrm{T}_{\mathrm{t}}$	hr	0.039

Channel Flow
12. Cross Sectional Flow Area, a
13. Wetted Perimeter, $P_{w}$
14. Hydraulic radius, $r=a / P_{w}$
15. Channel Slope, s
16. Manning's roughness coeff, $n$
17. $V=\left(1.49 \mathrm{r}^{0.666} \mathrm{~s}^{0.5} / \mathrm{n}\right.$
18. Flow Length, L
19. $T_{t}=L /(3600 \mathrm{~V})$

Compute $\mathrm{T}_{\mathrm{t}}$
Segment ID

Segment ID   $\mathrm{ft}^{2}$		C
Compute $\mathrm{T}_{\mathrm{t}}$	ft	
	ft	
	$\mathrm{ft} / \mathrm{ft}$	0.377
		0.19
	$\mathrm{ft} / \mathrm{s}$	10.5
	ft	5620
	hr	0.149

5960

3840
20. Watershed or subarea $T_{c}$ or $T_{t}$ (add $T_{t}$ in steps 6, 11, and 19)

Compute Lag Time
hr
min

0.181
11



## D. 3 - HYDROGRAPH ROUTING DATA

```
27028 FINGER ROCK WASH HEC-1 ROUTING
CROSS-SECTION - FR-12 TO FR-11 1-29-08
\begin{tabular}{lrrrrrrr}
STA: & . 00 & 10.00 & 20.00 & 30.00 & 40.00 & 50.00 & 60.00 \\
ELEV: & 30.00 & 20.00 & 10.00 & .00 & .00 & 10.00 & 20.00 \\
STA: & 70.00 & & & & & & \\
ELEV: & 30.00 & & & & & & \\
& & & & & & & \\
DISCHARGE \(=\) & 770. & WSEL \(=\) & 4.92 & SLOPE \(=\) & .2680
\end{tabular}
```

SECTION AND SUBSECTION HYDRAULIC DATA

	TOTAL SECTION		SUBSECTION \#: 1
DISCHARGE (CFS) =	770.32		$770.32 \times 15.7 \mathrm{fPs}$
VELOCITY (ET/S) =	10.49		$10.49 \times 1.5=15.7 \mathrm{fp}$
AREA (SQUARE FT)	73.45		73.45
TOPWIDTH (FT)	19.84		19.84
DEPTH (ET)	4.92		4.92
HYD. DEPTH (FT)	3.70		3.70
WET. PERIM. (FT)	23.92		23.92
HYD. RADIUS (ET)	3.07		3.07
FROUDE NUMBER	. 96		. 96
MANNINGS N VALUE =	. 1550		. 1550
SUBSECTION $1=$ STATION	. 00	TO	STATION 70.00


27028 FINGER ROCK WASH HEC-1 ROUTING							
CROSS-SECTION		FR-11	FR-10	1-29			
STA:	. 00	10.00	20.00	30.00	40.00	50.00	60.00
ELEV:	30.00	20.00	10.00	. 00	. 00	10.00	20.00
STA:	70.00						
ELEV:	30.00						
DISCH	=	1480.	WSEL			$=$	. 1590

SECTION AND SUBSECTION HYDRAULIC DATA


```
27028 FINGER ROCK WASH HEC-1 ROUTING
CROSS-SECTION - FR-10 TO FR-9 1-29-08
\begin{tabular}{lrrrrrrr}
STA: & . 00 & 10.00 & 20.00 & 30.00 & 40.00 & 50.00 & 60.00 \\
ELEV: & 10.00 & 6.60 & 3.30 & .00 & .00 & 3.30 & 6.60 \\
STA: & 70.00 & & & & & & \\
ELEV: & 10.00 & & & & & & \\
& & & & & & & \\
DISCHARGE \(=\) & 2150. & WSEL \(=\) & 6.55 & SLOPE \(=\) & .0930
\end{tabular}
```

SECTION AND SUBSECTION HYDRAULIC DATA



```
27028 FINGER ROCK WASH HEC-I ROUTING
CROSS-SECTION - FR-93 TO ER-92 1-29-08
\begin{tabular}{lrrrrrrr}
STA: & .00 & 10.00 & 20.00 & 30.00 & 40.00 & 50.00 & 60.00 \\
ELEV: & 15.00 & 10.00 & 5.00 & .00 & .00 & 5.00 & 10.00
\end{tabular}
STA: 70.00
ELEV: 15.00
DISCHARGE = 1325. WSEL = 5.74 SLOPE = . 1210
```

SECTION AND SUBSECTION HYDRAULIC DATA



SECTION AND SUBSECTION HYDRAULIC DATA

	TOTAL SECTION	SUBSECTION \#: 1
DISCHARGE (CES) =	535.00	$535.00 \times 1.5=12.8$ fes
VELOCITY (ET/S) =	8.50	$8.50 \times 1.5=12.8 \mathrm{fps}$
AREA (SQUARE FT)	62.94	62.94
TOPWIDTH (FT)	24.57	24.57
DEPTH (ET)	3.64	3.64
HYD. DEPTH (ET)	2.56	2.56
WET. PERIM. (FT) =	26.29	26.29
HYD. RADIUS (ET) =	2.39	2.39
FROUDE NUMBER =	. 94	. 94
MANNINGS N VALUE =	. 1150	. 1150
SUBSECTION $1=$ STATION	. 00 TO	STATION 70.00

```
27028 FINGER ROCK WASH HEC-1 ROUTING
CROSS-SECTION - FR-92 TO FR-91 1-29-08
\begin{tabular}{lrrrrrrr}
STA: & .00 & 10.00 & 20.00 & 30.00 & 40.00 & 50.00 & 60.00 \\
ELEV: & 15.00 & 10.00 & 5.00 & .00 & .00 & 5.00 & 10.00
\end{tabular}
STA: 70.00
ELEV: 15.00
DISCHARGE = 2275. WSEL = 7.56 SLOPE = .0920
```

SECTION AND SUBSECTION HYDRAULIC DATA


```
27028 FINGER ROCK WASH HEC-1 ROUTING
CROSS-SECTION - ER-9 TO FR-8 1-29-08
\begin{tabular}{lrrrrrrr}
STA: & . 00 & 10.00 & 20.00 & 30.00 & 40.00 & 50.00 & 60.00 \\
ELEV: & 10.00 & 6.60 & 3.30 & .00 & .00 & 3.30 & 6.60 \\
STA: & 70.00 & & & & & & \\
ELEV: & 10.00 & & & & & & \\
\end{tabular}
DISCHARGE \(=\) 4615. \(\quad\) WSEL \(=\quad\) 9.45 \(\quad\) SLOPE \(=\quad .0450\)
```

SECTION AND SUBSECTION HYDRAULIC DATA


```
27028 FINGER ROCK WASH HEC-1 ROUTING
CROSS-SECTION - FR-82 TO FR-81 1-29-08
\begin{tabular}{lrrrrrrr}
STA: & .00 & 10.00 & 20.00 & 30.00 & 40.00 & 50.00 & 60.00 \\
ELEV: & 10.00 & 6.60 & 3.30 & .00 & .00 & 3.30 & 6.60
\end{tabular}
STA: 70.00
ELEV: 10.00
DISCHARGE \(=\) 465. WSEL \(=\) SLOPE \(=3.15\). 0490
```

SECTION AND SUBSECTION HYDRAULIC DATA



SECTION AND SUBSECTION HYDRAULIC DATA


27028 FINGER ROCK WASH HEC-1 ROUTING
CROSS-SECTION - ER-7 TO FR-6 1-29-08

STA:	.00	15.00	57.00	164.00	172.00	219.00	237.00
ELEV:	24.00	20.00	18.00	13.30	14.00	18.00	20.00
STA:	250.00						
ELEV:	24.00						
DISCHARGE $=$	5840.	WSEL $=$	19.25	SLOPE $=$	.0240		

SECTION AND SUBSECTION HYDRAULIC DATA


```
27028 FINGER ROCK WASH HEC-1 ROUTING
CROSS-SECTION - FR-62 TO FR-61 1-29-08
\begin{tabular}{lrrrrrrr}
STA: & .00 & 10.00 & 20.00 & 30.00 & 40.00 & 50.00 & 60.00 \\
ELEV: & 6.00 & 4.00 & 2.00 & .00 & .00 & 2.00 & 4.00
\end{tabular}
STA: 70.00
ELEV: 6.00
DISCHARGE = 550. WSEL = S SOPE = .01 .0320
```

SECTION AND SUBSECTION HYDRAULIC DATA


```
27028 FINGER ROCK WASH HEC-1 ROUTING
CROSS-SECTION - FR-6 TO FR-5 1-29-08
\begin{tabular}{lrrrrrrr}
STA: & .00 & 66.00 & 202.00 & 225.00 & 237.00 & 255.00 & 287.00 \\
ELEV \(:\) & 90.00 & 82.00 & 80.00 & 76.60 & 78.00 & 80.00 & 82.00
\end{tabular}
STA: }320.0
ELEV: 90.00
DISCHARGE = 6410. WSEL = 83.48 SLOPE = .0180
```

SECTION AND SUBSECTION HYDRAULIC DATA


27028 EINGER ROCK WASH HEC-1 ROUTING
CROSS-SECTION - ER-5 TO FR-4 1-29-08

STA:	. 00	50.00	373.00	415.00	425.00	442.00	543.00
ELEV:	30.00	24.00	22.00	18.00	20.00	22.00	26.00
STA:	593.00						
ELEV:	30.00						
DISCHARGE $=$	5650.	WSEL $=$	24.34	SLOPE $=$	.0190		

SECTION AND SUBSECTION HYDRAULIC DATA

	$\begin{array}{r} \text { TOTAL } \\ \text { SECTION } \end{array}$		SUBSECTION \#: 1	
DISCHARGE (CES) =	5650.01		5650.01	
VELOCITY (ET/S) =	7.09		$7.09 \times$	$\times 1.5=10.6$
AREA (SQUARE FT) =	796.82		796.82	
TOPWIDTH (FT)	454.06		454.06	
DEPTH (FT)	6.34		6.34	
HYD. DEPTH (ET)	1.75		1.75	
WET. PERIM. (FT) =	454.64		454.64	
HYD. RADIUS (FT) =	1.75		1.75	
FROUDE NUMBER =	. 94		. 94	
MANNINGS N VALUE $=$	. 0420		. 0420	
SUBSECTION $1=$ STATION	. 00	TO	STATION	N 593.00

```
27028 EINGER ROCK WASH HEC-1 ROUTING
CROSS-SECTION - FR-4 TO FR-3 1-29-08
\begin{tabular}{lrrrrrrr}
STA: & .00 & 50.00 & 140.00 & 164.00 & 172.00 & 197.00 & 270.00 \\
ELEV: & 80.00 & 67.50 & 71.00 & 68.00 & 68.00 & 71.00 & 68.00
\end{tabular}
STA: 333.00
ELEV: 80.00
DISCHARGE = 5490. WSEL = 71.96 SLOPE = .0170
```

SECTION AND SUBSECTION HYDRAULIC DATA


27028 FINGER ROCK WASH HEC-1 ROUTING
CROSS-SECTION - FR-3 TO FR-2 1-29-08

STA:	. 00	38.00	85.00	131.00	142.00	208.00	415.00
ELEV:	90.00	80.00	78.00	77.50	78.00	79.00	80.00
STA:	438.00						
ELEV:	90.00						
DISCHARGE $=$	5130.	WSEL $=$	80.90	SLOPE $=$	.0160		

SECTION AND SUBSECTION HYDRAULIC DATA


```
27028 FINGER ROCK WASH HEC-1 ROUTING
CROSS-SECTION - ER-2 TO FR-1 1-29-08
\begin{tabular}{lrrrrrrr}
STA: & .00 & 20.00 & 150.00 & 365.00 & 377.00 & 390.00 & 403.00 \\
ELEV \(:\) & 52.00 & 46.00 & 43.00 & 42.00 & 42.00 & 46.00 & 49.00
\end{tabular}
STA: 412.00
ELEV: 52.00
DISCHARGE = 4890. WSEL = 44.94 SLOPE = .0180
```

SECTION AND SUBSECTION HYDRAULIC DATA

	$\begin{aligned} & \text { TOTAL } \\ & \text { SECTION } \end{aligned}$		SUBSECTION \#: 1	
DISCHARGE (CFS) =	4890.06		4890.06	
VELOCITY (FT/S) $=$	7.46		$7.46 \times$	$\times 1.5=11.2$
AREA (SQUARE FT) =	655.32		655.32	
TOPWIDTH (ET)	320.60		320.60	
DEPTH (ET)	2.94		2.94	
HYD. DEPTH (ET)	2.04		2.04	
WET. PERIM. (FT) =	321.07		321.07	
HYD. RADIUS (FT) $=$	2.04		2.04	
FROUDE NUMBER =	. 92		. 92	
MANNINGS N VALUE =	. 0430		. 0430	
SUBSECTION $1=$ STATION	. 00	TO	STATION	N 412.00

## D. 4 - RESERVOIR ROUTING DATA




## 2-18-08 <br> HY-8 Culvert Analysis Report 27028 Finger Rock LOMR

Pontatoc Canyon Dr. Crossing HEC-1 Conc. Pt FR-4
Based on OPW As Built Survey Data (1-31-08)

Table 1 - Summary of Culvert Flows at Crossing: 27028 FR-4 Pontatoc Cnyn

Headwater Elevation   (ft)	Total Discharge (cfs)	Culvert 1 Discharge   (cfs)	Roadway Discharge   (cfs)	Iterations
2610.40	0.00	0.00	0.00	1
2614.92	1000.00	1000.00	0.00	1
2617.42	2000.00	2000.00	0.00	1
2618.65	3000.00	2398.33	600.78	5
2619.36	4000.00	2601.31	1398.56	4
2619.93	5000.00	2751.76	2247.97	4
2620.42	6000.00	2876.41	3123.18	4
2620.84	7000.00	2979.50	4020.29	4
2621.23	8000.00	3070.46	4929.35	4
2621.59	9000.00	3152.63	5847.13	4
2621.94	10000.00	3227.92	6771.75	4

Table 2 - Culvert Summary Table: Culvert 1

Total   Discharge   (cfs)	Culvert   Discharge   (cfs)	Headwater   Elevation   (ft)	Inlet Control   Depth (ft)	Outlet   Control   Depth (ft)	Flow   Type	Normal   Depth (ft)	Critical   Depth (ft)	Outlet   Depth (ft)	Tailwater   Depth (ft)	Outlet   Velocity   (ft/s)	Tailwater   Velocity   (ft/s)
0.00	0.00	2610.40	0.000	0.000	0-NF	0.000	0.000	0.000	0.000	0.000	0.000
1000.00	1000.00	2614.92	4.522	0.772	1-S2n	2.759	3.075	2.765	1.172	10.100	5.298
2000.00	2000.00	2617.42	7.023	1.246	$5-\mathrm{S} 2 \mathrm{n}$	4.141	4.429	4.148	1.646	12.031	6.395
3000.00	2398.33	2618.65	8.247	1.596	$5-\mathrm{S2n}$	4.693	4.875	4.695	1.996	12.500	7.113
4000.00	2601.31	2619.36	8.957	1.852	$5-$ S2n	4.989	5.066	4.995	2.252	12.662	7.870
5000.00	2751.76	2619.93	9.522	9.528	2-M2c	5.235	5.204	5.204	2.479	12.841	8.515
6000.00	2876.41	2620.42	10.017	9.776	2-M2c	5.440	5.319	5.319	2.687	13.126	9.079
7000.00	2979.50	2620.84	10.444	9.980	2-M2c	5.614	5.413	5.413	2.879	13.353	9.582
8000.00	3070.46	2621.23	10.833	10.195	2-M2c	5.851	5.497	5.497	3.058	13.546	10.038
9000.00	3152.63	2621.59	11.195	10.385	2-M2c	6.065	5.572	5.572	3.228	13.715	10.456
10000.00	3227.92	2621.94	11.535	10.560	2-M2c	6.261	5.629	5.629	3.388	13.898	10.843

Inlet Elevation (invert): $2610.40 \mathrm{ft}, \quad$ Outlet Elevation (invert): 2609.30 ft
Culvert Length: $70.01 \mathrm{ft}, \quad$ Culvert Slope: 0.0157

## Site Data - Culvert 1

Site Data Option: Culvert Invert Data
Inlet Station: 0.00 ft
Inlet Elevation: 2610.40 ft
Outlet Station: 70.00 ft
Outlet Elevation: 2609.30 ft
Number of Barrels: 7

## Culvert Data Summary - Culvert 1

Barrel Shape: Circular
Barrel Diameter: 7.00 ft
Barrel Material: Corrugated Steel
Barrel Manning's n: 0.0240

Inlet Type: Conventional
Inlet Edge Condition: Mitered to Conform to Slope Inlet Depression: None

Table 3 - Downstream Channel Rating Curve (Crossing: 27028 FR-4 Pontatoc Cnyn)

Flow (cfs)	Water Surface   Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
0.00	2610.00	0.00	0.00	0.00	0.00
1000.00	2611.17	1.17	5.30	3.88	1.04
2000.00	2611.65	1.65	6.40	5.44	1.09
3000.00	2612.00	2.00	7.11	6.60	1.11
4000.00	2612.25	2.25	7.87	7.45	1.14
5000.00	2612.48	2.48	8.52	8.20	1.16
6000.00	2612.69	2.69	9.08	8.89	1.18
7000.00	2612.88	2.88	9.58	9.52	1.20
8000.00	2613.06	3.06	10.04	10.11	1.21
9000.00	2613.23	3.23	10.46	10.67	1.22
10000.00	2613.39	3.39	10.84	11.21	1.24

Tailwater Channel Data-27028 FR-4 Pontatoc Cnyn
Tailwater Channel Option: Irregular Channel
Channel Slope: $\quad 0.0530$
User Defined Channel Cross-Section:

Coord No.	Station (ft)	Elevation (ft)	Manning's n
1	0.00	2628.00	0.0600
2	6.46	2626.00	0.0600
3	13.02	2624.00	0.0600
4	19.58	2622.00	0.0600
5	26.15	2620.00	0.0600
6	46.22	2618.00	0.0600
7	81.67	2616.00	0.0600
8	98.77	2614.00	0.0600
9	115.98	2612.00	0.0600
10	258.20	2610.00	0.0600
11	306.74	2610.00	0.0600
12	347.83	2610.00	0.0600
13	449.40	2612.00	0.0600
14	507.45	2614.00	0.0600
15	534.63	2616.00	0.0600
16	545.92	2618.00	0.0600
17	556.46	2620.00	0.0600
18	564.36	2622.00	0.0600


19	569.87	2624.00	0.0600
20	574.49	2626.00	0.0600
21	579.38	2628.00	0.0600
22	585.00	2630.00	0.0600
23	590.62	2632.00	0.0600
24	596.25	2634.00	0.0600
25	601.87	2636.00	0.0000

Roadway Data for Crossing: 27028 FR-4 Pontatoc Cnyn
Roadway Profile Shape: Irregular Roadway Shape (coordinates) Irregular Roadway Cross-Section:

Coord No.	Station (ft)	Elevation (ft)
1	0.00	2636.41
2	52.00	2632.21
3	102.00	2627.26
4	151.00	2623.09
5	201.00	2620.24
6	250.00	2618.26
7	301.00	2617.44
8	343.00	2617.46
9	398.00	2617.46
10	449.00	2618.30
11	503.00	2620.50
12	554.00	2623.93
13	605.00	2628.32
14	657.00	2634.26
15	707.00	2641.04

Roadway Surface: Paved
Roadway Top Width: 30.00 ft
2-07-08
HY-8 Culvert Analysis Report 27028 Finger Rock LOMR
Sunrise Dr. Crossing HEC-1 Conc. Pt. FR-5
Based on OPW As Built Survey Data (1-31-08)

Table 1 - Summary of Culvert Flows at Crossing: 27058FR5

Headwater Elevation   (ft)	Total Discharge (cfs)	27058FR5(1)   Discharge (cfs)	Roadway Discharge   (cfs)	Iterations
2635.61	0.00	0.00	0.00	1
2637.90	1000.00	1000.00	0.00	1
2639.25	2000.00	2000.00	0.00	1
2640.45	3000.00	3000.00	0.00	1
2641.57	4000.00	4000.00	0.00	1
2642.62	5000.00	5000.00	0.00	1
2643.66	6000.00	6000.00	0.00	1
2644.08	6407.00	6407.00	0.00	1
2645.79	8000.00	8000.00	0.00	1
2646.94	9000.00	9000.00	0.00	1
2648.17	10000.00	10000.00	0.00	1

Table 2 - Culvert Summary Table: 27058FR5(1)

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet   Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
0.00	0.00	2635.61	0.000	0.000	0-NF	0.000	0.000	0.000	0.000	0.000	0.000
1000.00	1000.00	2637.90	2.294	2.294	1-S2n	0.796	1.568	0.800	1.755	13.893	5.300
2000.00	2000.00	2639.25	3.642	3.642	1-S2n	1.214	2.490	1.376	2.477	16.152	6.627
3000.00	3000.00	2640.45	4.841	4.841	1-S2n	1.624	3.263	1.880	3.014	17.734	7.511
4000.00	4000.00	2641.57	5.958	5.958	1-S2n	1.956	3.952	2.350	3.463	18.910	8.170
5000.00	5000.00	2642.62	7.014	7.014	1-S2n	2.289	4.586	2.801	3.854	19.832	8.700
6000.00	6000.00	2643.66	8.050	8.050	5-S2n	2.597	5.179	3.229	4.193	20.646	9.070
6407.00	6407.00	2644.08	8.473	8.473	5-S2n	2.717	5.411	3.401	4.317	20.934	9.188
8000.00	8000.00	2645.79	10.183	10.183	5-S2n	3.187	6.274	4.054	4.756	21.926	9.600
9000.00	9000.00	2646.94	11.332	11.332	5-S2n	3.462	6.786	4.446	5.001	22.490	9.826
10000.00	10000.00	2648.17	12.561	12.561	5-S2n	3.735	7.280	4.830	5.229	23.003	10.033


Culvert Length: 166.04 ft , Culvert Slope: 0.0208

## Site Data - 27058FR5(1)

Site Data Option: Culvert Invert Data
Inlet Station: 0.00 ft
Inlet Elevation: 2635.61 ft
Outlet Station: 166.00 ft
Outlet Elevation: 2632.16 ft
Number of Barrels: 9

## Culvert Data Summary - 27058FR5(1)

Barrel Shape: Concrete Box
Barrel Span: 10.00 ft
Barrel Rise: 8.00 ft
Barrel Material: Concrete

Barrel Manning's n: 0.0120
Inlet Type: Conventional
Inlet Edge Condition: 1:1 Bevel ( $45^{\circ}$ flare) Wingwall
Inlet Depression: None
Table 3 - Downstream Channel Rating Curve (Crossing: 27058FR5)

Flow (cfs)	Water Surface   Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
0.00	2632.00	0.00	0.00	0.00	0.00
1000.00	2633.75	1.75	5.30	3.07	0.81
2000.00	2634.48	2.48	6.63	4.33	0.88
3000.00	2635.01	3.01	7.51	5.27	0.92
4000.00	2635.46	3.46	8.17	6.05	0.94
5000.00	2635.85	3.85	8.70	6.73	0.96
6000.00	2636.19	4.19	9.07	7.33	1.05
6407.00	2636.32	4.32	9.19	7.54	1.05
8000.00	2636.76	4.76	9.60	8.31	1.06
9000.00	2637.00	5.00	9.83	8.74	1.06
10000.00	2637.23	5.23	10.03	9.14	1.07

## Tailwater Channel Data-27058FR5

Tailwater Channel Option: Irregular Channel
Channel Slope:
0.0280

User Defined Channel Cross-Section:

Coord No.	Station (ft)	Elevation (ft)	Manning's n
1	0.00	2670.00	0.0600
2	4.80	2668.00	0.0600
3	11.42	2666.00	0.0600
4	17.83	2664.00	0.0600
5	23.41	2662.00	0.0600
6	33.21	2660.00	0.0600
7	39.16	2658.00	0.0600
8	45.00	2656.00	0.0600
9	50.36	2654.00	0.0600
10	55.21	2652.00	0.0600
11	60.05	2650.00	0.0600
12	67.55	2648.00	0.0600
13	78.72	2646.00	0.0600
14	83.26	2644.00	0.0600
15	87.45	2642.00	0.0600
16	91.24	2640.00	0.0600
17	109.46	2638.00	0.0600


18	142.75	2636.00	0.0600
19	181.01	2636.00	0.0600
20	218.84	2638.00	0.0600
21	234.65	2638.00	0.0600
22	257.00	2636.00	0.0600
23	274.37	2634.00	0.0600
24	303.75	2632.00	0.0600
25	368.68	2632.00	0.0600
26	402.54	2634.00	0.0600
27	412.50	2636.00	0.0600
28	421.66	2638.00	0.0600
29	432.28	2640.00	0.0600
30	443.19	2642.00	0.0600
31	461.79	2642.00	0.0600
32	500.62	2640.00	0.0600
33	545.20	2638.00	0.0600
34	591.32	2636.00	0.0600
35	639.36	2634.00	0.0600
36	648.77	2632.00	0.0600
37	656.51	2632.00	0.0600
38	663.31	2634.00	0.0600
39	666.95	2636.00	0.0600
40	670.60	2638.00	0.0600
41	674.24	2640.00	0.0600
42	678.13	2642.00	0.0600
43	684.79	2644.00	0.0600
44	692.54	2646.00	0.0600
45	700.80	2648.00	0.0600
46	707.52	2650.00	0.0600
47	714.46	2652.00	0.0600
48	722.13	2654.00	0.0600
49	729.37	2656.00	0.0000
4			
1			

## Roadway Data for Crossing: 27058FR5

Roadway Profile Shape: Irregular Roadway Shape (coordinates)
Irregular Roadway Cross-Section:

Coord No.	Station (ft)	Elevation (ft)
1	89.00	2660.37
2	153.00	2657.78
3	203.00	2656.24
4	261.00	2654.44
5	306.00	2653.54
6	357.00	2652.00
7	410.00	2651.74
8	458.00	2651.19
9	510.00	2650.70
10	561.00	2650.20
11	612.00	2649.75
12	667.00	2649.38
13	715.00	2649.33
14	764.00	2649.48
15	819.00	2651.54

Roadway Surface: Paved
Roadway Top Width: 127.00 ft

# HY-8 Culvert Hydraulic Report Skyline Drive Culvert Crossing at Finger Rock Wash Stage-Discharge Analysis 

## Part of the Finger Rock Wash LOMR Project <br> (@ HEC-1 Concentration Point FR-7)

# Combined flow analysis including low-flow and roadway overtopping <br> Culvert site data based on 1-31-08 OPW as-built survey 

Prepared for:
Pima County Regional Flood Control District
97 E Congress St
Tucson, Arizona 85701

Prepared by:
CMG Drainage Engineering, Inc.
3555 N Mountain Ave.
Tucson, Arizona 85719
520-882-4244


Expires 12-31-2009

CMG Project No. 27028
February 19, 2008

Table 1 - Summary of Combined Culvert \& Roadway Overtopping Flows at Crossing:
27028 FR-7 Skyline

Headwater Elevation   (ft)	Total Discharge (cfs)	Culvert 1 Discharge   (cfs)	Roadway Discharge   (cfs)	Iterations
2767.28	0.00	0.00	0.00	1
2769.14	20.00	20.00	0.00	1
2770.09	40.00	40.00	0.00	1
2770.99	60.00	60.00	0.00	1
2771.97	80.00	80.00	0.00	1
2773.15	100.00	100.00	0.00	1
2774.60	120.00	120.00	0.00	1
2776.38	140.00	140.00	0.00	1
2778.50	160.00	160.00	0.00	1
2780.95	180.00	180.00	0.00	1
2783.69	200.00	200.00	0.00	1
2784.74	500.00	207.20	292.68	22
2785.27	1000.00	210.67	789.27	20
2785.93	2000.00	215.01	1784.39	4
2786.42	3000.00	218.18	2780.77	4
2786.84	4000.00	220.78	3778.16	4
2787.19	5000.00	223.02	4776.11	4
2787.51	6000.00	225.01	5774.12	4
2787.81	7000.00	226.81	6772.36	4
2788.08	8000.00	228.46	7767.67	3
2788.33	9000.00	230.00	8769.15	3
2788.57	10000.00	231.44	9768.53	3

## Site Data - Culvert 1

Site Data Option: Culvert Invert Data
Inlet Station: 0.00 ft
Inlet Elevation: 2767.28 ft
Outlet Station: 115.00 ft
Outlet Elevation: 2760.73 ft
Number of Barrels: 1

## Culvert Data Summary - Culvert 1

Barrel Shape: Circular
Barrel Diameter: 4.00 ft
Barrel Material: Corrugated Steel
Barrel Manning's n: 0.0240
Inlet Type: Conventional
Inlet Edge Condition: Thin Edge Projecting
Inlet Depression: None

Table 2 - Culvert Summary Table: Low Flows ( 0 to $\mathbf{2 0 0} \mathbf{c f s}$ )

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outiet   Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet   Velocity (ft/s)	Tailwater Velocity ( $\mathrm{ft} / \mathrm{s}$ )
0.00	0.00	2767.28	0.000	0.000	0-NF	0.000	0.000	0.000	0.000	0.000	0.000
20.00	20.00	2769.14	1.861	0.000	1-S2n	0.874	1.305	0.875	0.822	9.760	2.819
40.00	40.00	2770.09	2.812	0.000	1-S2n	1.254	1.879	1.258	1.054	11.789	3.428
60.00	60.00	2770.99	3.709	0.000	1-S2n	1.559	2.329	1.568	1.202	13.125	3.915
80.00	80.00	2771.97	4.691	0.000	5-S2n	1.828	2.703	1.836	1.326	14.207	4.244
100.00	100.00	2773.15	5.870	0.000	5-S2n	2.087	3.018	2.092	1.433	15.041	4.494
120.00	120.00	2774.60	7.323	0.000	5-S2n	2.337	3.281	2.340	1.528	15.719	4.697
140.00	140.00	2776.38	9.099	0.000	5-S2n	2.595	3.490	2.602	1.614	16.200	4.870
160.00	160.00	2778.50	11.218	0.000	5-S2n	2.865	3.698	2.867	1.692	16.620	5.020
180.00	180.00	2780.95	13.669	0.000	5-S2n	3.171	3.907	3.176	1.765	16.834	5.154
200.00	200.00	2783.69	16.406	12.491	5-S2n	4.000	4.000	4.000	1.834	15.915	5.275

Inlet Elevation (invert): 2767.28 ft , Outlet Elevation (invert): 2760.73 ft
Culvert Length: 115.19 ft , Cuiver Slope: 0.0570

Table 3 - Culvert Summary Table: High Flows ( 0 to $10,000 \mathrm{cfs}$ )

Total   Discharge   (cfs)	Culvert   Discharge   (cfs)	Headwater   Elevation   (ft)	Inlet Control   Depth (ft)	Outlet   Control   Depth (ft)	Flow   Type	Normal   Depth (ft)	Critical   Depth (ft)	Outlet   Depth (ft)	Tailwater   Depth (ft)	Outlet   Velocity   (f/s)	Tailwater   Velocity   (ft/s)
0.00	0.00	2767.28	0.000	0.000	$0-\mathrm{NF}$	0.000	0.000	0.000	0.000	0.000	0.000
500.00	207.20	2784.74	17.462	13.593	$5-S 2 n$	4.000	4.000	4.000	2.559	16.488	6.420
1000.00	210.67	2785.27	17.984	14.139	$5-$ S2n	4.000	4.000	4.000	3.270	16.765	7.605
2000.00	215.01	2785.93	18.649	14.833	$5-S 2 n$	4.000	4.000	4.000	4.174	17.110	9.131
3000.00	218.18	2786.42	19.144	15.350	$5-S 2 n$	4.000	4.000	4.000	4.852	17.362	10.048
4000.00	220.78	2786.84	19.555	15.779	$5-S 2 n$	4.000	4.000	4.000	5.388	17.569	10.522
5000.00	223.02	2787.19	19.913	16.246	$5-S 2 n$	4.000	4.000	4.000	5.834	17.747	10.849
6000.00	225.01	2787.51	20.234	16.970	$5-S 2 n$	4.000	4.000	4.000	6.223	17.906	11.127
7000.00	226.81	2787.81	20.527	17.625	$5-S 2 n$	4.000	4.000	4.000	6.572	18.049	11.370
8000.00	228.46	2788.08	20.798	18.226	$5-S 2 n$	4.000	4.000	4.000	6.889	18.181	11.588
9000.00	230.00	2788.33	21.051	18.777	$5-S 2 n$	4.000	4.000	4.000	7.176	18.303	11.821
10000.00	231.44	2788.57	21.292	19.293	$5-S 2 n$	4.000	4.000	4.000	7.441	18.418	12.078


Inlet Elevation (invert): 2767.28 ft , Outlet Elevation (invert): 2760.73 ft
Culvert Length: $115.19 \mathrm{ft}, \quad$ Culvert Slope: 0.0570
*******************************************************************************************)

Table 4 - Downstream Channel Rating Curve (Crossing: 27028 FR-7 Skyline)

Flow (cfs)	Water Surface   Elev (ft)	Depth (ft)	Velocity (fts)	Shear (psf)	Froude Number
0.00	2759.00	0.00	0.00	0.00	0.00
20.00	2759.82	0.82	2.82	1.23	0.77
40.00	2760.05	1.05	3.43	1.58	0.84
60.00	2760.20	1.20	3.91	1.80	0.91
80.00	2760.33	1.33	4.24	1.99	0.95
100.00	2760.43	1.43	4.49	2.15	0.97
120.00	2760.53	1.53	4.70	2.29	0.98
140.00	2760.61	1.61	4.87	2.42	0.99
160.00	2760.69	1.69	5.02	2.53	1.00
180.00	2760.77	1.77	5.15	2.64	1.01
200.00	2760.83	1.83	5.28	2.75	1.01
500.00	2761.56	2.56	6.42	3.83	1.04
1000.00	2762.27	3.27	7.61	4.90	1.08
2000.00	2763.17	4.17	9.13	6.25	1.13
3000.00	2763.85	4.85	10.05	7.27	1.15
4000.00	2764.39	5.39	10.52	8.07	1.24
5000.00	2764.83	5.83	10.85	8.74	1.23
6000.00	2765.22	6.22	11.13	9.32	1.23
7000.00	2765.57	6.57	11.37	9.84	1.22
8000.00	2765.89	6.89	11.59	10.32	1.21
9000.00	2766.18	7.18	11.82	10.75	1.19
10000.00	2766.44	7.44	12.08	11.14	1.18

Tailwater Channel Data-27028 FR-7 Skyline
Tailwater Channel Option: Irregular Channel
Channel Slope:
0.0240

User Defined Channel Cross-Section:

Coord No.	Station (ft)	Elevation (ft)	Manning's n
1	0.00	2770.00	0.0600
2	37.00	2768.00	0.0600
3	50.00	2766.00	0.0600
4	138.00	2764.00	0.0600
5	160.00	2764.00	0.0600
6	192.00	2762.00	0.0600
7	202.00	2760.00	0.0450
8	216.00	2759.00	0.0450
9	223.00	2760.00	0.0450
10	270.00	2762.00	0.0600
11	290.00	2764.00	0.0600
12	298.00	2766.00	0.0600
13	306.00	2768.00	0.0600
14	314.00	2770.00	0.0000

## Roadway Data for Crossing: 27028 FR-7 Skyline

Roadway Profile Shape: Irregular Roadway Shape (coordinates)
Irregular Roadway Cross-Section:

Coord No.	Station (ft)	Elevation (ft)
1	0.00	2788.00
2	50.00	2787.02
3	105.00	2785.62
4	160.00	2784.70
5	210.00	2784.07
6	266.00	2783.92
7	321.00	2784.05
8	370.00	2784.59
9	425.00	2785.37
10	480.00	2786.60
11	535.00	2788.05

Roadway Surface: Paved
Roadway Top Width: 42.00 ft


$$
\begin{gathered}
\text { 1-22-08 } \\
\text { HY-8 Culvert Analysis Report } \\
27028 \text { Finger Rock LOMR }
\end{gathered}
$$

Playa de Coronado West Crossing (Sta. 3+23) HEC-1 Conc. Pt. FR-9
Based on As-built plans from Summit at Finger Rock LOMR Case No. 04-09-0380P

Table 1 - Summary of Culvert Flows at Crossing: 27028 FR-9 Summit at FR-West

Headwater Elevation   (ft)	Total Discharge (cfs)	Culvert 1 Discharge   (cfs)	Roadway Discharge   (cfs)	Iterations
3063.00	0.00	0.00	0.00	1
3066.59	500.00	500.00	0.00	1
3068.69	1000.00	1000.00	0.00	1
3070.55	1500.00	1500.00	0.00	1
3072.28	2000.00	2000.00	0.00	1
3074.48	2500.00	2500.00	0.00	1
3076.85	3000.00	3000.00	0.00	1
3077.53	3140.00	3140.00	0.00	1
3079.44	4000.00	3476.74	523.14	4
3080.09	4500.00	3582.50	916.89	3
3080.67	5000.00	3676.29	1323.15	3

Table 2-Culvert Summary Table: Culvert 1

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation   (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normai Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
0.00	0.00	3063.00	0.000	0.000	0-NF	0.000	0.000	0.000	0.000	0.000	0.000
500.00	500.00	3066.59	3.587	0.000	1-S2n	1.512	2.161	1.551	0.904	11.778	10.681
1000.00	1000.00	3068.69	5.686	0.000	$1-S 2 n$	2.375	3.410	2.479	1.367	14.661	13.873
1500.00	1500.00	3070.55	7.553	0.000	1-S2n	3.108	4.445	3.289	1.739	16.603	16.133
2000.00	2000.00	3072.28	9.281	0.000	1-S2n	3.782	5.329	4.043	2.062	18.106	17.923
2500.00	2500.00	3074.48	11.482	0.000	5-S2n	4.437	6.117	4.760	2.352	19.385	19.428
3000.00	3000.00	3076.85	13.853	0.119	5-S2n	5.117	6.830	5.495	2.619	20.468	20.739
3140.00	3140.00	3077.53	14.530	0.190	5-S2n	5.316	6.997	5.681	2.690	20.792	21.076
4000.00	3476.74	3079.44	16.438	0.602	5-S2n	5.803	7.399	6.197	3.102	21.441	22.940
4500.00	3582.50	3080.09	17.090	0.824	5-S2n	5.978	7.525	6.355	3.324	21.645	23.900
5000.00	3676.29	3080.67	17.668	1.035	5-S2n	6.134	7.637	6.496	3.535	21.817	24.785

*****************************************************************************

Inlet Elevation (invert): $3063.00 \mathrm{ft}, \quad$ Outlet Elevation (invert): 3060.50 ft
Culvert Length: 52.56 ft , Culvert Slope: 0.0476

## Site Data - Culvert 1

Site Data Option: Culvert Invert Data
Inlet Station: 0.00 ft
Inlet Elevation: 3063.00 ft
Outlet Station: 52.50 ft
Outlet Elevation: 3060.50 ft
Number of Barrels: 1

## Culvert Data Summary - Culvert 1

Barrel Shape: Low-Profile Arch
Barrel Span: 28.08 ft
Barrel Rise: 9.58 ft
Barrel Material: Corrugated Steel

Barrel Manning's n: 0.0350 (top and sides)
Manning's n: 1.4lf (bottom)
Inlet Type: Conventional
Inlet Edge Condition: Square Edge with Headwall
Inlet Depression: None
Table 3 - Downstream Channel Rating Curve (Crossing: 27028 FR-9 Summit at FRWest)

Flow (cfs)	Water Surface   Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
0.00	3060.50	0.00	0.00	0.00	0.00
500.00	3061.40	0.90	10.68	5.64	2.01
1000.00	3061.87	1.37	13.87	8.53	2.14
1500.00	3062.24	1.74	16.13	10.85	2.23
2000.00	3062.56	2.06	17.92	12.87	2.28
2500.00	3062.85	2.35	19.43	14.68	2.33
3000.00	3063.12	2.62	20.74	16.34	2.36
3140.00	3063.19	2.69	21.08	16.79	2.37
4000.00	3063.60	3.10	22.94	19.36	2.42
4500.00	3063.82	3.32	23.90	20.74	2.44
5000.00	3064.03	3.53	24.78	22.06	2.46

Tailwater Channel Data - 27028 FR-9 Summit at FR-West
Tailwater Channel Option: Trapezoidal Channel
Bottom Width: 50.00 ft
Side Slope (H:V): 2.00 (_:1)
Channel Slope: 0.1000
Channel Manning's n: 0.0400
Channel Invert Elevation: 3060.50 ft

## Roadway Data for Crossing: 27028 FR-9 Summit at FR-West

Roadway Profile Shape: Constant Roadway Elevation
Crest Length: 100.00 ft
Crest Elevation: 3078.00 ft
Roadway Surface: Paved
Roadway Top Width: 30.00 ft

# 1-22-08 <br> HY-8 Culvert Analysis Report 27028 Finger Rock LOMR 

Playa de Coronado East Crossing (Sta. 10+72)
HEC-1 Conc. Pt. FR-91
Based on As-built plans from Summit at Finger Rock LOMR Case No. 04-09-0380P

Table 1 - Summary of Culvert Flows at Crossing: 27028 FR-91 Summit at FR-East

Headwater Elevation   (ft)	Total Discharge (cfs)	Culvert 1 Discharge   (cfs)	Roadway Discharge   (cfs)	Iterations
3047.30	0.00	0.00	0.00	1
3050.67	500.00	500.00	0.00	1
3052.64	1000.00	1000.00	0.00	1
3054.40	1500.00	1500.00	0.00	1
3055.92	2000.00	2000.00	0.00	1
3057.59	2500.00	2500.00	0.00	$\mathbf{1}$
3059.55	3000.00	3000.00	0.00	1
3060.76	3290.00	3290.00	0.00	$\mathbf{1}$
3063.97	4000.00	4000.00	0.00	1
3066.71	4500.00	4500.00	0.00	1
3068.11	5000.00	4736.22	263.50	5

Table 2 - Culvert Summary Table: Culvert 1

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (f)	Inlet Control Depth (ft)	Outlet   Control   Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet   Velocity (ft/s)	Tailwater Velocity (ft/s)
0.00	0.00	3047.30	0.000	0.000	O-NF	0.000	0.000	0.000	0.000	0.000	0.000
500.00	500.00	3050.67	3.366	3.366	1-S2n	1.283	2.037	1.327	1.690	12.455	6.820
1000.00	1000.00	3052.64	5.337	5.337	1-S2n	2.032	3.199	2.127	2.541	15.459	8.730
1500.00	1500.00	3054.40	7.099	7.099	1-S2n	2.606	4.175	2.825	3.219	17.447	10.034
2000.00	2000.00	3055.92	8.623	8.623	1-S2n	3.161	5.033	3.481	3.803	18.931	11.048
2500.00	2500.00	3057.59	10.289	10.289	5-S2n	3.667	5.769	4.094	4.323	20.203	11.887
3000.00	3000.00	3059.55	12.246	12.246	5-S2n	4.170	6.461	4.698	4.799	21.304	12.605
3290.00	3290.00	3060.76	13.458	13.458	5-S2n	4.457	6.846	5.025	5.056	21.920	12.984
4000.00	4000.00	3063.97	16.674	16.674	5-S2n	5.171	7.636	5.856	5.647	23.294	13.810
4500.00	4500.00	3066.71	19.414	19.414	5-S2n	5.717	8.132	6.442	6.034	24.220	14.323
5000.00	4736.22	3068.11	20.811	20.811	5-S2n	5.975	8.302	6.710	6.399	24.668	14.798

Inlet Elevation (invert): $3047.30 \mathrm{ft}, \quad$ Outlet Elevation (invert): 3044.20 ft
Culvert Length: $48.10 \mathrm{ft}, \quad$ Culvert Slope: 0.0646

## Site Data - Culvert 1

Site Data Option: Culvert Invert Data
Inlet Station: 0.00 ft
Inlet Elevation: 3047.30 ft
Outlet Station: 48.00 ft
Outlet Elevation: 3044.20 ft
Number of Barrels: 1

## Culvert Data Summary - Culvert 1

Barrel Shape: Low-Profile Arch
Barrel Span: 31.00 ft
Barrel Rise: 10.08 ft
Barrel Material: Corrugated Steel

Barrel Manning's n: 0.0350 (top and sides)
Manning's n: 1.41 f (bottom)
Inlet Type: Conventional
Inlet Edge Condition: Square Edge with Headwall
Inlet Depression: None
Table 3 - Downstream Channel Rating Curve (Crossing: 27028 FR-91 Summit at FREast)

Flow (cfs)	Water Surface   Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
0.00	3044.20	0.00	0.00	0.00	0.00
500.00	3045.89	1.69	6.82	5.27	0.96
1000.00	3046.74	2.54	8.73	7.93	1.02
1500.00	3047.42	3.22	10.03	10.04	1.05
2000.00	3048.00	3.80	11.05	11.86	1.08
2500.00	3048.52	4.32	11.89	13.49	1.09
3000.00	3049.00	4.80	12.60	14.97	1.11
3290.00	3049.26	5.06	12.98	15.78	1.12
4000.00	3049.85	5.65	13.81	17.62	1.13
4500.00	3050.23	6.03	14.32	18.83	1.14
5000.00	3050.60	6.40	14.80	19.97	1.15

## Tailwater Channel Data - 27028 FR-91 Summit at FR-East

Tailwater Channel Option: Trapezoidal Channel
Bottom Width: 40.00 ft
Side Slope (H:V): 2.00 (_:1)
Channel Slope: 0.0500
Channel Manning's n: 0.0650
Channel Invert Elevation: 3044.20 ft

## Roadway Data for Crossing: 27028 FR-91 Summit at FR-East

Roadway Profile Shape: Constant Roadway Elevation
Crest Length: 100.00 ft
Crest Elevation: 3067.20 ft
Roadway Surface: Paved
Roadway Top Width: 30.00 ft

## D. 5 - HEC-1 MODEL INPUT/OUTPUT

*					*
*	FLOOD H	HYDROGRAPH	PACKAGE	( $\mathrm{HEC}-1$ )	*
*		JUN	1998		*
*		VERSION 4.1			*
*					*
*	RUN DATE	E 18FEB08	TIME	17:35:03	*
*					*


*	
*	U.S. ARMY CORPS OF ENGINEERS
*	HYDROLOGIC ENGINEERING CENTER
*	609 SECOND STREET
*	DAVIS, CALIFORNIA 95616
*	(916) 756-1104
*	


$X$	$X$	XXXXXXX	XXXXX			$X$
$X$	$X$	$X$	$X$	$X$		$X X$
$X$	$X$	$X$	$X$		$X X X X X$	$X$
$X X X X X X X$	$X X X X$	$X$		$X X X X$		
$X$	$X$	$X$	$X$			$X$
$X$	$X$	$X$	$X$	$X$		$X$
$X$	$X$	$X X X X X X X$	$X X X X X$		$X X X$	

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

THE DEFINITIONS OE VARTABLES -RTIMP- AND -RTIOR- HAVE CHANGED EROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE.
THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81 . THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE, SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINTTE DIEFERENCE ALGORITHM


ID	EINGER ROCK WASH									
ID	100-YEAR RUNOEF ANALYSIS									
ID	WATERSHED UPSTREAM OF RILLITO CRK FLOODPLAIN									
ID	CMG DRAINAGE ENGINEERING---JLC									
ID	NOAA 14 UPPER 90\% RAINEALL---3-HOUR STORM---TSMS DISTRIBUTION									
ID	AERIAL REDUCTION $=0.84$ EOR 6.3 SQ MI WATERSHED PER ADWR ST STD SS10-07									
ID	SCS RUNOFE METHOD---MODIEIED PULS ROUTTNG									
ID	RESERVOIR ROUTING © PONTATOC CNYN (ER-4), SUNRISE (FR-5), SKYLINE (FR-7),									
ID	SUMMIT AT FINGER ROCK EAST (FR-91) \& WEST (ER-9) CULVERTS PER AS-BUILTS									
ID	FILENAME: 27028-FR100yrHEC-1_2008.02.18.dat									
ID	REVISED 2/18/08									
*DIAGRAM										
IT	2300									
IN	5									
IO	20									
*										
KK	ER-12									
KM	HEADWATERS OF FINGER ROCK WASH (MAIN CHANNEL)									
KM	BASIN FR-12									
BA	0.434									
PB	3.36									
PC	. 00000	.10119	.30604	. 46991	. 55554	. 61728		. 70707	. 74073	. 76923
PC	. 79364	. 81481	. 83333	. 84967	. 86418	. 87719	88	. 89947	. 90909	. 91788
PC	. 92593	. 93334	. 94018	. 94651	. 95238	. 95786		. 96775	. 97223	. 97645
PC	. 98041	. 98416	. 98770	. 99103	. 99419	. 99718	00			
LS	0	86	15							
UD	0.173									
*										
KK	$12 \mathrm{TO11}$									
KM	MODIFIED PULS CHANNEL ROUTING									
KM	FROM NODE ER-12 TO FR-11									
RS	2 ELOW -1									
RC	0.160	0.16	0.16	4000	0.268					
RX		10	20	30	40	50	60	70		
RY	30	2010		0	0	10	20	30		
*										
KK	FR-11									
KM	LOCAL RUNOEF TO FR-11									
KM	BASIN ER-11									
BA	0.480									








PAGE 10

```
 ER-4
 NOCAL RUNOFE TO ER-4
 BASIN FR-4
 2.85
 0-77 25
 CO-4
 COMBINE HYDROGRAPHS
 AT NODE FR-4 (MAIN CHANNEL)
 ES-4
 MODIEIED PULS RESERVOIR ROUTING
 AT NODE FR-4
 lllllll
```

381	SQ	0	1000	2000	3000	4000	5000	6000	7000	8000	9000	
382	SQ	10000										
383	SE	2610.4	2614.9	2617.4	2618.7	2619.4	2619.9	2620.4	2620.8	2621.2	2621.6	
384	SE	2621.9										
385	KK	4 TO										
386	KM	MODIEI	D PULS	CHANNEL	ROUTING							
387	KM	FROM	DE FR-4	T0 FR-3	(MAIN C	HANNEL)						
388	RS	4	ELOW	-1								
389	RC	0.06	0.045	0.06	5940	0.017						
390	RX	0	50	140	164	172	197	270	333			
391	RY $*$	80	67.5	71	68	68	71	68	80			
392	KK	FR-3										
393	KM	LOCAL	RUNOFF	O FR-3								
394	KM	BASIN	R-3									
395	BA	0.317										
396	PB	2.76										
397	LS	0	77	25								
398	UD	. 234										
	*											
399	KK	CO-3										
400	KM	COMBIN	HYDROC	RAPHS								
401	KM	AT NOD	ER-2	MAIN CHA	NNEL)							
402	$\mathrm{HC}$	2										
					HEC-1	INPUT						PAGE 11
LINE	ID.	. 1	2	3	4.		6.	. 7	. 8	.	. . 10	
403	KK	3T02										
404	KM	MODIFI	ED PULS	CHANNEL	ROUTING							
405	KM	FROM	ODE FR-3	TO ER-2	(MAIN	HANNEL)						
406	RS	2	FLOW	-1								
407	RC	0.055	0.045	0.055	2465	0.016						
408	RX	0	38	85	131	142	208	415	438			
409	RY	90	80	78	77.5	78	79	80	90			
410	KK	FR-2										
411	KM	LOCAL	RUNOEE	( FR-2								
412	KM	BASIN	FR-2									
413	BA	0.175										
414	PB	2.76										
415	LS	0	77	15								
416	$\begin{aligned} & \text { UD } \\ & \text { * } \end{aligned}$	. 252										
417	KK	CO-2										
418	KM	COMBIN	HYDROG	RAPHS								
419	KM	AT NOD	ER-2	MAIN CHA	NNEI)							
420	$\mathrm{HC}$	2										
421	KK	$2 \mathrm{TO1}$										
422	KM	MODIFI	ED PULS	CHANNEL	ROUTING							
423	KM	FROM	ODE ER-2	TO FR-1	(MAIN	HANNEL)						
424	RS	2	FLOW	-1								
425	RC	0.05	0.04	0.05	2300	0.018						
426	RX	0	20	150	365	377	390	403	412			
427	RY	52	46	43	42	42	46	49	52			
428	KK	ER-1										
429	KM	LOCAL	Runoem	O FR-1								
430	KM	BASIN	FR-1									
431	BA	0.083										
432	PB	2.76										
433	LS	0	77	10								
434	*	. 195										
435	KK	CO-1										
436	KM	COMBIN	HYDROG	RAPHS								
437	KM	AT NOD	ER-1	MAIN CHA	NNEL)							
438	KM	AT ALV	ERNON ROA									
439	HC	2										
440	ZZ.											

```
1
INPUT
IINE
SCHEMATIC DIAGRAM OF STREAM NETWORK
```

```
(V) ROUTING (--->) DIVERSION OR PUMP FLOW
```

(V) ROUTING (--->) DIVERSION OR PUMP FLOW
(.) CONNECTOR (<---) RETURN OF DIVERTED OR PUMPED FLOW
(.) CONNECTOR (<---) RETURN OF DIVERTED OR PUMPED FLOW
FR-12
FR-12
V
V
12TO11
12TO11
FR-11
FR-11
CO-11 ............
CO-11 ............
V
V
11TO10
11TO10
ER-10
ER-10
CO-10 ...........
CO-10 ...........
V
V
10T09
10T09
. FR-9
. FR-9
CO-9 ............
CO-9 ............
V-9
V-9
RコS
RコS
FR-94
V
94T093
FR-93
CO-93 ...........
V
93T092
ER-92
CO-92 ...........
ER-922
V
922921
FR-921
CO-921..........
CO-92A. . . . . . . . . .
CO-92A..........
92T091
FR-91

```


\begin{tabular}{|c|c|c|}
\hline * & & * \\
\hline * & U.S. ARMY CORPS OE ENGINEERS & * \\
\hline * & HYDROLOGIC ENGINEERING CENTER & * \\
\hline * & 609 SECOND STREET & * \\
\hline * & DAVIS, CALIFORNIA 95616 & * \\
\hline * & (916) 756-1104 & * \\
\hline * & & * \\
\hline
\end{tabular}

14 IO
\begin{tabular}{ccll}
OUTPUT CONTROL VARIABLES & & \\
IPRNT & 2 & PRINT CONTROL \\
IPLOT & 0 & PLOT CONTROL \\
QSCAL & 0. & HYDROGRAPH PLOT SCALE
\end{tabular}

IT
\begin{tabular}{crrl}
HYDROGRAPH TIME & DATA & & \\
NMIN & & 2 & MINUTES IN COMPUTATION INTERVAL \\
IDATE & 1 & 0 & STARTING DATE \\
ITIME & & 0000 & STARTING TIME \\
NQ & & 300 & NUMBER OF HYDROGRAPH ORDINATES \\
NDDATE & 1 & 0 & ENDING DATE \\
NDTIME & & 0958 & ENDING TIME \\
ICENT & & 19 & CENTURY MARK
\end{tabular}

\footnotetext{
COMPUTATION INTERVAL . 03 HOURS
}

\section*{TOTAL TIME BASE 9.97 HOURS}

ENGLISH JNITS
DRAINAGE AREA SQUARE MILES
PRECIPITATION DEPTH INCHES
LENGTH, ELEVATION
FLOW
STORAGE VOLUME ACRE-FEET
SUREACE AREA ACRES
TEMPERATURE
DEGREES FAHRENHEIT

25 UD SCS DIMENSIONLESS UNITGRAPH
TLAG \(\quad .17\) LAG

UNIT HYDROGRAPH
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{9}{|c|}{UNIT HYDROGRAPH} \\
\hline & \multicolumn{9}{|c|}{28 END-OF-PERIOD ORDINATES} \\
\hline 92. & 278. & 577. & 910. & 1080. & 1099. & 1004. & 855. & 643. & 464. \\
\hline 346. & 265. & 201. & 149. & 112. & 84. & 62. & 47. & 36. & 27. \\
\hline 20. & 15. & 12. & 9. & 7. & 5. & 3. & 1. & & \\
\hline
\end{tabular}

TOTAL RAINFALL \(=3.36\), TOTAL LOSS \(=1.18\), TOTAL EXCESS \(=2.18\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{PEAK ELOW}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{TIME}} & \multicolumn{4}{|c|}{MAXIMUM AVERAGE FLOW} \\
\hline & & & & 6-HR & 24-HR & 72-HR & 9.97-HR \\
\hline + & (CFS) & (HR) & & & & & \\
\hline \multicolumn{8}{|c|}{(CFS)} \\
\hline + & 811. & . 40 & & 1.02. & 61. & 61. & 61. \\
\hline & & & (INCHES) & 2.183 & 2.183 & 2.183 & 2.183 \\
\hline & & & (AC-ET) & 51. & 51. & 51. & 51. \\
\hline
\end{tabular}

CUMULATIVE AREA \(=.43\) SQ MI

*** WARNING *** MODIEIED PULS ROUTING MAY BE NUMERICALLY UNSTABLE EOR OUTFLOWS BETWEEN 15362. TO 36364.
THE ROUTED HYDROGRAPH SHOULD BE EXAMINED FOR OSCILLATIONS OR OUTELOWS GREATER THAN PEAK INFLOWS.
this can be corrected by decreasing the time interval or increasing storage (use a longer reach.)

HYDROGRAPH AT STATION 12 TO11

DA MON HRMN ORD OUTELOW STORAGE STAGE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 0000 & 1 & 0. & . 0 & . 0 & * & 1 & 0320 & 101 & 21. \\
\hline 0002 & 2 & 0. & . 0 & . 0 & * & 1 & 0322 & 102 & 18. \\
\hline 0004 & 3 & 0. & . 0 & . 0 & * & 1 & 0324 & 103 & 15. \\
\hline 0006 & 4 & 1. & . 0 & . 0 & * & 1 & 0326 & 104 & 13. \\
\hline 0008 & 5 & 4. & . 0 & 1 & * & 1 & 0328 & 105 & 11. \\
\hline 0010 & 6 & 9. & . 1 & . 1 & * & 1 & 0330 & 106 & 9. \\
\hline 0012 & 7 & 21. & . 2 & . 3 & * & 1 & 0332 & 107 & 8. \\
\hline 0014 & 8 & 44. & . 4 & . 7 & * & 1 & 0334 & 108 & 6. \\
\hline 0016 & 9 & 88. & . 7 & 1.3 & * & 1 & 0336 & 109 & 5. \\
\hline 0018 & 10 & 188. & 1.2 & 2.1 & * & 1 & 0338 & 110 & 4. \\
\hline 0020 & 11 & 317. & 1.8 & 3.0 & * & 1 & 0340 & 111 & 3. \\
\hline 0022 & 12 & 456. & 2.4 & 3.7 & * & 1 & 0342 & 112 & 3. \\
\hline 0024 & 13 & 592. & 2.8 & 4.3 & * & 1 & 0344 & 113 & 2. \\
\hline 0026 & 14 & 684. & 3.2 & 4.7 & * & 1 & 0346 & 114 & 2. \\
\hline 0028 & 15 & 742. & 3.3 & 4.9 & * & 1 & 0348 & 115 & 1. \\
\hline 0030 & 16 & 761. & 3.4 & 4.9 & * & 1 & 0350 & 116 & 1 \\
\hline 0032 & 17 & 749. & 3.4 & 4.9 & * & 1 & 0352 & 117 & 1 \\
\hline 0034 & 18 & 720. & 3.3 & 4.8 & * & 1 & 0354 & 118 & 1 \\
\hline 0036 & 19 & 684. & 3.2 & 4.7 & * & 1 & 0356 & 119 & 0 \\
\hline 0038 & 20 & 647. & 3.0 & 4.5 & * & 1 & 0358 & 120 & 0 \\
\hline 0040 & 21 & 607. & 2.9 & 4.3 & * & I & 0400 & 121 & 0 \\
\hline 0042 & 22 & 568. & 2.7 & 4.2 & * & 1 & 0402 & 122 & 0 \\
\hline 0044 & 23 & 529. & 2.6 & 4.0 & * & 1 & 0404 & 123 & 0. \\
\hline 0046 & 24 & 492. & 2.5 & 3.8 & * & 1 & 0406 & 124 & 0 \\
\hline 0048 & 25 & 458. & 2.3 & 3.7 & * & 1 & 0408 & 125 & 0. \\
\hline 0050 & 26 & 427 & 2.2 & 3.5 & * & 1 & 0410 & 126 & \\
\hline
\end{tabular}

\section*{HYDROGRAPH AT STATION FR-11}

TOTAL RAINEALL \(=3.36\), TOTAL LOSS \(=1.25\), TOTAL EXCESS \(=2.11\)
PEAK FLOW TIME MAXIMUM AVERAGE FLOW
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & & & & & & \\
\hline & & & & 6-HR & 24-HR & 72-HR & 9.97-HR \\
\hline + & (CES) & (HR) & & & & & \\
\hline & & & \multirow[t]{2}{*}{(CES)} & & & & \\
\hline \multirow[t]{3}{*}{+} & \multirow[t]{3}{*}{854.} & . 40 & & 109. & 66. & 66. & 66. \\
\hline & & & (INCHES) & 2.113 & 2.113 & 2.113 & 2.113 \\
\hline & & & (\(\mathrm{AC}-\mathrm{ET}\)) & 54. & 54. & 54. & 54. \\
\hline & & & CUMULAT & AREA \(=\) & 8 SQ & & \\
\hline
\end{tabular}

42 HC HYDROGRAPH COMBINATION
ICOMP 2 NUMBER OF HYDROGRAPHS TO COMBINE

HYDROGRAPH AT STATION CO-11
SUM OF 2 HYDROGRAPHS
\begin{tabular}{|c|}
\hline & & & & * & & & & & & * & & & & & & * & & & & & \\
\hline DA MON & HRMN & ORD & ELOW & * & DA & MON & HRMN & ORD & ELOW & * & DA & MON & HRMN & ORD & FLOW & * & DA & MON & HRMN & ORD & FLOW \\
\hline & & & & * & & & & & & * & & & & & & * & & & & & \\
\hline 1 & 0000 & 1 & 0. & * & 1 & & 0230 & 76 & 105. & * & 1 & & 0500 & 151 & 0. & * & 1 & & 0730 & 226 & 0. \\
\hline 1 & 0002 & 2 & 1. & * & 1 & & 0232 & 77 & 103. & * & 1 & & 0502 & 152 & 0. & * & 1 & & 0732 & 227 & 0. \\
\hline 1 & 0004 & 3 & 6. & * & 1 & & 0234 & 78 & 100. & * & 1 & & 0504 & 153 & 0. & * & 1 & & 0734 & 228 & 0. \\
\hline 1 & 0006 & 4 & 17. & * & 1 & & 0236 & 79 & 97. & * & 1 & & 0506 & 154 & 0. & * & 1 & & 0736 & 229 & 0. \\
\hline 1 & 0008 & 5 & 45. & * & 1 & & 0238 & 80 & 95. & * & 1 & & 0508 & 155 & 0. & * & 1 & & 0738 & 230 & 0. \\
\hline 1 & 0010 & 6 & 102. & * & 1 & & 0240 & 81 & 93. & * & 1 & & 0510 & 156 & 0. & * & 1 & & 0740 & 231 & 0. \\
\hline 1 & 0012 & 7 & 201. & * & 1 & & 0242 & 82 & 90. & * & 1 & & 0512 & 157 & 0. & * & 1 & & 0742 & 232 & 0. \\
\hline 1 & 0014 & 8 & 351. & * & 1 & & 0244 & 83 & 88. & * & 1 & & 0514 & 158 & 0. & * & 1 & & 0744 & 233 & 0. \\
\hline 1 & 0016 & 9 & 545. & * & 1 & & 0246 & 84 & 86. & * & 1 & & 0516 & 159 & 0. & * & 1 & & 0746 & 234 & 0. \\
\hline 1 & 0018 & 10 & 794. & * & 1 & & 0248 & 85 & 84. & * & 1 & & 0518 & 160 & 0. & * & 1 & & 0748 & 235 & 0. \\
\hline 1 & 0020 & 11 & 1048. & * & 1 & & 0250 & 86 & 82. & * & 1 & & 0520 & 161. & 0 . & * & 1 & & 0750 & 236 & 0. \\
\hline 1 & 0022 & 12 & 1282. & * & 1 & & 0252 & 87 & 80. & * & 1 & & 0522 & 162 & 0. & * & 1 & & 0752 & 237 & 0. \\
\hline 1 & 0024 & 13 & 1447. & * & 1 & & 0254 & 88 & 78. & * & 1 & & 0524 & 163 & 0. & * & 1 & & 0754 & 238 & 0. \\
\hline 1 & 0026 & 14 & 1535. & * & 1 & & 0256 & 89 & 77. & * & 1 & & 0526 & 164 & 0. & * & 1 & & 0756 & 239 & 0. \\
\hline 1 & 0028 & 15 & 1563. & * & 1 & & 0258 & 90 & 75. & * & 1 & & 0528 & 165 & 0 . & * & 1 & & 0758 & 240 & 0. \\
\hline 1 & 0030 & 16 & 1537. & * & 1 & & 0300 & 91 & 73. & * & 1 & & 0530 & 166 & 0. & * & 1 & & 0800 & 241 & 0. \\
\hline 1 & 0032 & 17 & 1475. & * & 1 & & 0302 & 92 & 71. & * & 1 & & 0532 & 167 & 0. & * & 1 & & 0802 & 242 & 0. \\
\hline 1. & 0034 & 18 & 1397. & * & 1 & & 0304 & 93 & 69. & * & 1 & & 0534 & 168 & 0. & * & 1 & & 0804 & 243 & 0. \\
\hline 1 & 0036 & 19 & 1315. & * & 1 & & 0306 & 94 & 65. & * & 1 & & 0536 & 169 & 0. & * & 1 & & 0806 & 244 & 0. \\
\hline 1 & 0038 & 20 & 1233. & * & 1 & & 0308 & 95 & 60. & * & 1 & & 0538 & 170 & 0 . & * & 1 & & 0808 & 245 & 0. \\
\hline 1 & 0040 & 21 & 1153. & * & 1 & & 0310 & 96 & 54. & * & 1 & & 0540 & 171 & 0 . & * & 1 & & 0810 & 246 & 0. \\
\hline 1 & 0042 & 22 & 1075. & * & 1 & & 0312 & 97 & 48. & * & 1 & & 0542 & 172 & 0 . & * & 1 & & 0812 & 247 & 0. \\
\hline 1 & 0044 & 23 & 1002. & * & 1 & & 0314 & 98 & 42. & * & 1 & & 0544 & 173 & 0. & * & 1 & & 0814 & 248 & 0. \\
\hline 1 & 0046 & 24 & 934. & * & 1 & & 0316 & 99 & 36. & * & 1 & & 0546 & 174 & 0. & * & 1 & & 0816 & 249 & 0. \\
\hline 1 & 0048 & 25 & 870. & * & 1 & & 0318 & 100 & 31. & * & 1 & & 0548 & 175 & 0. & * & 1 & & 0818 & 250 & 0. \\
\hline 1 & 0050 & 26 & 812. & * & 1 & & 0320 & 101 & 26. & * & 1 & & 0550 & 176 & 0. & * & 1 & & 0820 & 251 & 0. \\
\hline 1 & 0052 & 27 & 759. & * & 1 & & 0322 & 102 & 22. & * & 1 & & 0552 & 177 & 0. & * & 1 & & 0822 & 252 & 0. \\
\hline 1 & 0054 & 28 & 710. & * & 1 & & 0324 & 103 & 19. & * & 1 & & 0554 & 178 & 0. & * & 1 & & 0824 & 253 & 0. \\
\hline 1 & 0056 & 29 & 666. & * & 1 & & 0326 & 104 & 15. & * & 1 & & 0556 & 179 & 0. & * & 1 & & 0826 & 254 & 0. \\
\hline 1 & 0058 & 30 & 628. & * & 1 & & 0328 & 105 & 13. & * & 1 & & 0558 & 180 & 0. & * & 1 & & 0828 & 255 & 0. \\
\hline 1 & 0100 & 31 & 594. & * & 1 & & 0330 & 106 & 10. & * & 1 & & 0600 & 181 & 0. & * & 1 & & 0830 & 256 & 0. \\
\hline 1 & 0102 & 32 & 561. & * & 1 & & 0332 & 107 & 9. & * & 1 & & 0602 & 182 & 0. & * & 1 & & 0832 & 257 & 0. \\
\hline 1 & 0104 & 33 & 529. & * & 1 & & 0334 & 108 & 7. & * & 1 & & 0604 & 183 & 0. & * & 1 & & 0834 & 258 & 0. \\
\hline 1 & 0106 & 34 & 500. & * & 1 & & 0336 & 109 & 6. & * & 1 & & 0606 & 184 & 0. & * & 1 & & 0836 & 259 & 0. \\
\hline 1 & 0108 & 35 & 472. & * & 1 & & 0338 & 110 & 4. & * & 1 & & 0608 & 185 & 0 . & * & 1 & & 0838 & 260 & 0. \\
\hline 1 & 0110 & 36 & 447. & * & 1 & & 0340 & 111 & 4. & * & 1 & & 0610 & 186 & 0. & * & 1 & & 0840 & 261 & 0. \\
\hline 1 & 0112 & 37 & 423. & * & 1 & & 0342 & 112 & 3. & * & 1 & & 0612 & 187 & 0 . & * & 1 & & 0842 & 252 & 0. \\
\hline 1 & 0114 & 38 & 401. & * & 1 & & 0344 & 113 & 2. & * & 1 & & 0614 & 188 & 0. & * & 1 & & 0844 & 263 & 0. \\
\hline 1 & 0116 & 39 & 381. & * & 1 & & 0346 & 114 & 2. & * & 1 & & 0616 & 189 & 0 . & * & 1 & & 0846 & 264 & 0. \\
\hline 1 & 0118 & 40 & 362. & * & 1 & & 0348 & 115 & 1. & * & 1 & & 0618 & 190 & 0. & * & 1 & & 0848 & 265 & 0. \\
\hline 1 & 0120 & 41 & 345. & * & 1 & & 0350 & 116 & 1. & * & 1 & & 0620 & 191 & 0 . & * & 1 & & 0850 & 266 & 0. \\
\hline 1 & 0122 & 42 & 328. & * & 1 & & 0352 & 117 & 1. & * & 1 & & 0622 & 192 & 0. & * & 1 & & 0852 & 267 & 0. \\
\hline 1 & 0124 & 43 & 313. & * & 1 & & 0354 & 118 & 1. & * & & & 0624 & 193 & 0. & * & 1 & & 0854 & 268 & 0. \\
\hline 1 & 0126 & 44 & 299. & * & 1 & & 0356 & 119 & 0. & * & 1 & & 0626 & 194 & 0. & * & 1 & & 0856 & 269 & 0. \\
\hline 1 & 0128 & 45 & 286. & * & 1 & & 0358 & 120 & 0. & * & 1 & & 0628 & 195 & 0. & * & 1 & & 0858 & 270 & 0. \\
\hline 1 & 0130 & 46 & 274. & * & 1 & & 0400 & 121 & 0. & * & 1 & & 0630 & 196 & 0. & * & 1 & & 0900 & 271 & 0. \\
\hline 1 & 0132 & 47 & 263. & * & 1 & & 0402 & 122 & 0. & * & 1 & & 0632 & 197 & 0. & * & 1 & & 0902 & 272 & 0. \\
\hline 1 & 0134 & 48 & 252. & * & 1 & & 0404 & 123 & 0. & * & 1 & & 0634 & 198 & 0. & * & 1 & & 0904 & 273 & 0. \\
\hline 1 & 0136 & 49 & 242. & * & 1 & & 0406 & 124 & 0. & * & 1 & & 0636 & 199 & 0. & * & 1 & & 0906 & 274 & 0. \\
\hline 1 & 0138 & 50 & 232. & * & 1 & & 0408 & 125 & 0. & * & 1 & & 0638 & 200 & 0. & * & 1 & & 0908 & 275 & 0. \\
\hline 1 & 0140 & 51 & 223. & * & 1 & & 0410 & 126 & 0. & * & 1 & & 0640 & 201 & 0. & * & 1 & & 0910 & 276 & 0. \\
\hline 1 & 0142 & 52 & 215. & * & 1 & & 0412 & 127 & 0. & * & 1 & & 0642 & 202 & 0. & * & 1 & & 0912 & 277 & 0. \\
\hline 1 & 0144 & 53 & 207. & * & 1 & & 0414 & 128 & 0. & * & 1 & & 0644 & 203 & 0. & * & 1 & & 0914 & 278 & 0. \\
\hline 1 & 0146 & 54 & 201. & * & 1 & & 0416 & 129 & 0. & * & 1 & & 0646 & 204 & 0. & * & 1 & & 0916 & 279 & 0. \\
\hline 1 & 0148 & 55 & 195. & * & 1 & & 0418 & 130 & 0. & * & 1 & & 0648 & 205 & 0. & * & 1 & & 0918 & 280 & 0. \\
\hline 1 & 0150 & 56 & 190. & * & 1 & & 0420 & 131 & 0. & * & & & 0650 & 206 & 0. & * & 1 & & 0920 & 281 & 0. \\
\hline 1 & 0152 & 57 & 185. & * & 1 & & 0422 & 132 & 0. & * & & & 0652 & 207 & 0. & * & 1 & & 0922 & 282 & 0. \\
\hline
\end{tabular}

46 RS
STORAGE ROUTING
\begin{tabular}{crl}
AGE ROUTING & & \\
NSTPS & 2 & NUMBER OF SUBREACHES \\
ITYP & FLOW & TYPE OF INITIAL CONDITION \\
RSVRIC & -1.00 & INITIAL CONDITION \\
\(X\) & .00 & WORKING R AND D COEFFICIENT
\end{tabular}

47 RC
NORMAL DEPTH CHANNEL
\begin{tabular}{rrl}
ANL & .125 & LEFT OVERBANK N-VALUE \\
ANCH & .125 & MAIN CHANNEL N-VALUE \\
ANR & .125 & RIGHT OVERBANK N-VALUE \\
RLNTH & 4720. & REACH LENGTH \\
SEL & .1590 & ENERGY SLOPE \\
ELMAX & .0 & MAX. ELEV. FOR STORAGE/OUTFLOW CALCULATION
\end{tabular}

CROSS-SECTION DATA

DA MON HRMN ORD OUTELOW STORAGE STAGE * DA MON HRMN ORD OUTELOW STORAGE
STAGE *
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 0000 & 1 & 0. & . 0 & . 0 & * & 1 & 0320 & 101 \\
\hline 0002 & 2 & 0. & . 0 & . 0 & * & 1 & 0322 & 102 \\
\hline 0004 & 3 & 0. & . 0 & . 0 & * & 1 & 0324 & 103 \\
\hline 0006 & 4 & 1. & . 0 & . 0 & * & 1 & 0326 & 104 \\
\hline 0008 & 5 & 2. & . 0 & . 0 & * & 1 & 0328 & 105 \\
\hline 0010 & 6 & 6. & . 1 & . 1 & * & 1 & 0330 & 106 \\
\hline 0012 & 7 & 15. & . 1 & . 2 & * & 1 & 0332 & 107 \\
\hline 0014 & 8 & 33. & . 3 & . 5 & * & 1 & 0334 & 108 \\
\hline 0016 & 9 & 70. & . 7 & 1.1 & * & 1 & 0336 & 109 \\
\hline 0018 & 10 & 161. & 1.3 & 2.0 & * & 1 & 0338 & 110 \\
\hline 0020 & 11 & 320. & 2.2 & 3.1 & * & 1 & 0340 & 111 \\
\hline 0022 & 12 & 551. & 3.2 & 4.1 & * & 1 & 0342 & 112 \\
\hline 0024 & 13 & 805. & 4.2 & 5.1 & * & 1 & 0344 & 113 \\
\hline 0026 & 14 & 1052. & 5.1 & 5.9 & * & 1 & 0346 & 114 \\
\hline 0028 & 15 & 1254. & 5.9 & 6.5 & * & 1 & 0348 & 115 \\
\hline 0030 & 16 & 1394. & 6.3 & 6.9 & * & 1 & 0350 & 116 \\
\hline 0032 & 17 & 1464. & 6.6 & 7.1 & * & 1 & 0352 & 117 \\
\hline 0034 & 18 & 1479. & 6.6 & 7.1 & * & 1 & 0354 & 118 \\
\hline 0036 & 19 & 1453. & 6.5 & 7.0 & * & 1 & 0356 & 119 \\
\hline 0038 & 20 & 1401. & 6.3 & 6.9 & * & 1 & 0358 & 120 \\
\hline 0040 & 21 & 1335. & 6.1 & 6.7 & * & 1 & 0400 & 121 \\
\hline 0042 & 22 & 1261. & 5.9 & 6.5 & * & 1 & 0402 & 122 \\
\hline 0044 & 23 & 1187. & 5.6 & 6.4 & * & 1 & 0404 & 123 \\
\hline 0046 & 24 & 1119. & 5.4 & 6.1 & * & 1 & 0406 & 124 \\
\hline 0048 & 25 & 1052. & 5.1 & 5.9 & * & 1 & 0408 & 125 \\
\hline 0050 & 26 & 985. & 4.9 & 5.7 & * & 1 & 0410 & 126 \\
\hline 0052 & 27 & 921. & 4.7 & 5.5 & * & 1 & 0412 & 127 \\
\hline 0054 & 28 & 860. & 4.4 & 5.3 & * & 1 & 0414 & 128 \\
\hline 0056 & 29 & 804. & 4.2 & 5.1 & * & 1 & 0416 & 129 \\
\hline 0058 & 30 & 752. & 4.0 & 4.9 & * & 1 & 0418 & 130 \\
\hline 0100 & 31 & 707. & 3.9 & 4.8 & * & 1 & 0420 & 131 \\
\hline 0102 & 32 & 669. & 3.7 & 4.7 & * & 1 & 0422 & 132 \\
\hline 0104 & 33 & 635. & 3.6 & 4.5 & * & 1 & 0424 & 133 \\
\hline 0106 & 34 & 601. & 3.4 & 4.4 & * & 1 & 0426 & 134 \\
\hline 0108 & 35 & 568. & 3.3 & 4.2 & * & 1 & 0428 & 135 \\
\hline 0110 & 36 & 537. & 3.1 & 4.1 & * & 1 & 0430 & 136 \\
\hline 0112 & 37 & 508. & 3.0 & 3.9 & * & 1 & 0432 & 137 \\
\hline 0114 & 38 & 480. & 2.9 & 3.8 & * & 1 & 0434 & 138 \\
\hline 0116 & 39 & 455. & 2.8 & 3.7 & * & 1 & 0436 & 139 \\
\hline 0118 & 40 & 431. & 2.7 & 3.6 & * & 1 & 0438 & 140 \\
\hline 0120 & 41 & 408. & 2.6 & 3.5 & * & 1 & 0440 & 141 \\
\hline 0122 & 42 & 387. & 2.5 & 3.4 & * & 1 & 0442 & 142 \\
\hline 0124 & 43 & 368. & 2.4 & 3.3 & * & 1 & 0444 & 143 \\
\hline 0126 & 44 & 351. & 2.3 & 3.2 & * & 1. & 0446 & 144 \\
\hline 0128 & 45 & 335. & 2.3 & 3.2 & * & 1 & 0448 & 145 \\
\hline 0130 & 46 & 323. & 2.2 & 3.1 & * & 1 & 0450 & 146 \\
\hline 0132 & 47 & 311. & 2.1 & 3.0 & * & 1 & 0452 & 147 \\
\hline 0134 & 48 & 299. & 2.1 & 2.9 & * & 1 & 0454 & 148 \\
\hline 0136 & 49 & 287. & 2.0 & 2.8 & * & 1 & 0456 & 149 \\
\hline 0138 & 50 & 275. & 1.9 & 2.8 & * & 1 & 0458 & 150 \\
\hline 0140 & 51 & 264. & 1.9 & 2.7 & * & 1 & 0500 & 151 \\
\hline 0142 & 52 & 253. & 1.8 & 2.6 & * & 1 & 0502 & 152 \\
\hline 0144 & 53 & 243. & 1.8 & 2.5 & * & 1 & 0504 & 153 \\
\hline 0146 & 54 & 234. & 1.7 & 2.5 & * & 1 & 0506 & 154 \\
\hline 0148 & 55 & 225. & 1.7 & 2.4 & * & 1 & 0508 & 155 \\
\hline 0150 & 56 & 217. & 1.6 & 2.4 & * & 1. & 0510 & 156 \\
\hline 0152 & 57 & 210. & 1.6 & 2.3 & * & 1 & 0512 & 157 \\
\hline 0154 & 58 & 203. & 1.5 & 2.3 & * & 1 & 0514 & 158 \\
\hline 0156 & 59 & 197. & 1.5 & 2.2 & * & 1 & 0516 & 159 \\
\hline 0158 & 60 & 191. & 1.5 & 2.2 & * & 1 & 0518 & 160 \\
\hline 0200 & 61 & 185. & 1.4 & 2.1 & * & 1 & 0520 & 161 \\
\hline 0202 & 62 & 180. & 1.4 & 2.1 & * & 1 & 0522 & 162 \\
\hline 0204 & 63 & 174. & 1.4 & 2.1 & * & 1 & 0524 & 163 \\
\hline 0206 & 64 & 169. & 1.4 & 2.0 & * & 1 & 0526 & 164 \\
\hline 0208 & 65 & 164. & 1.3 & 2.0 & * & 1 & 0528 & 165 \\
\hline 0210 & 66 & 159. & 1.3 & 2.0 & * & 1 & 0530 & 166 \\
\hline 0212 & 67 & 154. & 1.3 & 1.9 & * & 1 & 0532 & 167 \\
\hline 0214 & 68 & 149. & 1.2 & 1.9 & * & 1 & 0534 & 168 \\
\hline 0216 & 69 & 145. & 1.2 & 1.9 & * & 1 & 0536 & 169 \\
\hline 0218 & 70 & 140. & 1.2 & 1.8 & * & 1. & 0538 & 170 \\
\hline 0220 & 71 & 136. & 1.2 & 1.8 & * & 1 & 0540 & 171 \\
\hline 0222 & 72 & 132. & 1.2 & 1.8 & * & 1 & 0542 & 172 \\
\hline 0224 & 73 & 129. & 1.1 & 1.8 & - & 1 & 0544 & 173 \\
\hline 0226 & 74 & 125. & 1.1 & 1.7 & * & 1 & 0546 & 174 \\
\hline 0228 & 75 & 121. & 1.1 & 1.7 & * & 1 & 0548 & 175 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline & \\
\hline 0644 & \\
\hline & \\
\hline 648 & \\
\hline 65 & \\
\hline 65 & \\
\hline 65 & \\
\hline 656 & \\
\hline & \\
\hline 700 & \\
\hline 702 & \\
\hline 704 & \\
\hline 706 & \\
\hline 708 & \\
\hline 0710 & 216 \\
\hline 0712 & \\
\hline 714 & \\
\hline & \\
\hline 718 & \\
\hline 720 & \\
\hline 0722 & 222 \\
\hline & 223 \\
\hline 726 & \\
\hline & \\
\hline 730 & 226 \\
\hline 732 & \\
\hline 734 & \\
\hline 73 & \\
\hline 38 & \\
\hline 740 & \\
\hline 742 & 232 \\
\hline & \\
\hline 754 & 238 \\
\hline 756 & 239 \\
\hline & 240 \\
\hline & \\
\hline & \\
\hline & \\
\hline 806 & \\
\hline 80 & 245 \\
\hline 10 & 246 \\
\hline & \\
\hline & \\
\hline & \\
\hline 81 & \\
\hline 2 & \\
\hline & 2 \\
\hline & \\
\hline , & 254 \\
\hline 28 & \\
\hline 830 & 256 \\
\hline 832 & 2 \\
\hline 84 & 2 \\
\hline 836 & 25 \\
\hline 38 & 26 \\
\hline 40 & 261 \\
\hline 842 & 26 \\
\hline 84 & 26 \\
\hline 88 & 26 \\
\hline 888 & 26 \\
\hline 850 & 266 \\
\hline 852 & 267 \\
\hline 854 & \\
\hline 856 & \\
\hline 858 & 270 \\
\hline 900 & \\
\hline 902 & 272 \\
\hline 904 & 27 \\
\hline 906 & 7 \\
\hline & \\
\hline
\end{tabular}

\begin{tabular}{|c|}
\hline 1 & 0230 & 76 & 118. & 1.1 & 1.7 & * & 1 & 0550 & 176 & 0. & . 0 & . 0 & * & 1 & 0910 & 276 & 0. & . 0 & . 0 \\
\hline 1 & 0232 & 77 & 115. & 1.1 & 1.7 & * & 1 & 0552 & 177 & 0 . & . 0 & . 0 & * & 1 & 0912 & 277 & 0. & . 0 & . 0 \\
\hline 1 & 0234 & 78 & 112. & 1.0 & 1.6 & * & 1 & 0554 & 178 & 0. & . 0 & . 0 & * & 1 & 0914 & 278 & 0. & . 0 & . 0 \\
\hline 1 & 0236 & 79 & 109. & 1.0 & 1.6 & * & 1 & 0556 & 179 & 0. & . 0 & . 0 & * & 1 & 0916 & 279 & 0. & . 0 & . 0 \\
\hline 1 & 0238 & 80 & 106. & 1.0 & 1.6 & * & 1 & 0558 & 180 & 0. & . 0 & . 0 & * & 1 & 0918 & 280 & 0. & . 0 & . 0 \\
\hline 1 & 0240 & 81 & 103. & 1.0 & 1.6 & * & 1 & 0600 & 181 & 0. & . 0 & . 0 & * & 1 & 0920 & 281 & 0. & . 0 & . 0 \\
\hline 1 & 0242 & 82 & 101. & 1.0 & 1.6 & * & 1 & 0602 & 182 & 0. & . 0 & . 0 & * & 1 & 0922 & 282 & 0. & . 0 & . 0 \\
\hline 1 & 0244 & 83 & 100. & 1.0 & 1.6 & * & 1 & 0604 & 183 & 0. & . 0 & . 0 & * & 1 & 0924 & 283 & 0. & . 0 & . 0 \\
\hline 1 & 0246 & 84 & 99. & 1.0 & 1.5 & * & 1 & 0606 & 184 & 0. & . 0 & . 0 & * & 1 & 0926 & 284 & 0. & . 0 & . 0 \\
\hline 1 & 0248 & 85 & 97. & . 9 & 1.5 & * & 1 & 0608 & 185 & 0. & . 0 & . 0 & * & 1 & 0928 & 285 & 0. & . 0 & . 0 \\
\hline 1 & 0250 & 86 & 95. & . 9 & 1.5 & * & 1 & 0610 & 186 & 0. & . 0 & . 0 & * & 1 & 0930 & 286 & 0. & . 0 & . 0 \\
\hline 1 & 0252 & 87 & 94. & . 9 & 1.5 & * & 1 & 0612 & 187 & 0. & . 0 & . 0 & * & 1 & 0932 & 287 & 0. & . 0 & . 0 \\
\hline 1 & 0254 & 88 & 92. & . 9 & 1.4 & * & 1 & 0614 & 188 & 0. & . 0 & . 0 & * & 1 & 0934 & 288 & 0. & . 0 & . 0 \\
\hline 1 & 0256 & 89 & 90. & . 9 & 1.4 & * & 1 & 0616 & 189 & 0. & . 0 & . 0 & * & 1 & 0936 & 289 & 0. & . 0 & . 0 \\
\hline 1 & 0258 & 90 & 88. & . 9 & 1.4 & * & 1 & 0618 & 190 & 0. & . 0 & . 0 & * & 1 & 0938 & 290 & 0. & . 0 & . 0 \\
\hline 1 & 0300 & 91 & 86. & . 8 & 1.3 & * & 1 & 0620 & 191 & 0. & . 0 & . 0 & * & 1 & 0940 & 291 & 0. & . 0 & . 0 \\
\hline 1 & 0302 & 92 & 84. & . 8 & 1.3 & * & 1 & 0622 & 192 & 0. & . 0 & . 0 & * & 1 & 0942 & 292 & 0. & . 0 & . 0 \\
\hline 1 & 0304 & 93 & 82. & . 8 & 1.3 & * & 1 & 0624 & 193 & 0. & . 0 & . 0 & * & 1 & 0944 & 293 & 0. & . 0 & . 0 \\
\hline 1 & 0306 & 94 & 81. & . 8 & 1.3 & * & 1 & 0626 & 194 & 0. & . 0 & . 0 & * & 1 & 0946 & 294 & 0. & . 0 & . 0 \\
\hline 1 & 0308 & 95 & 78. & . 8 & 1.2 & * & 1 & 0628 & 195 & 0. & . 0 & . 0 & * & 1 & 0948 & 295 & 0. & . 0 & . 0 \\
\hline 1 & 0310 & 96 & 76. & . 7 & 1.2 & * & 1 & 0630 & 196 & 0. & . 0 & . 0 & * & 1 & 0950 & 296 & 0. & . 0 & . 0 \\
\hline 1 & 0312 & 97 & 73. & . 7 & 1.1 & * & 1 & 0632 & 197 & 0. & . 0 & . 0 & * & 1 & 0952 & 297 & 0. & . 0 & . 0 \\
\hline 1 & 0314 & 98 & 70. & . 7 & 1.1 & * & 1 & 0634 & 198 & 0. & . 0 & . 0 & * & 1 & 0954 & 298 & 0. & . 0 & . 0 \\
\hline 1 & 0316 & 99 & 67. & . 7 & 1.0 & * & 1 & 0636 & 199 & 0. & . 0 & . 0 & * & 1 & 0956 & 299 & 0. & . 0 & . 0 \\
\hline 1 & 0318 & 100 & 63. & . 6 & 1.0 & * & 1 & 0638 & 200 & 0. & . 0 & . 0 & * & 1 & 0958 & 300 & 0. & . 0 & . 0 \\
\hline & & & & & & * & & & & & & & * & & & & & & \\
\hline
\end{tabular}

\(\qquad\)

50 KK

Subbasin runofe data
53 BA
\begin{tabular}{ccc}
SUBBASIN CHARACTERISTICS \\
TAREA & .56 SUBBASIN AREA
\end{tabular}

PRECIPITATION DATA
STORM 3.22 BASIN TOTAL PRECIPITATION
INCREMENTAL PRECIPITATION PATTERN
\begin{tabular}{llllllllll}
.04 & .04 & .06 & .08 & .08 & .07 & .07 & .05 & .03 & .03 \\
.02 & .02 & .02 & .02 & .02 & .02 & .02 & .01 & .01 & .01 \\
.01 & .01 & .01 & .01 & .01 & .01 & .01 & .01 & .01 & .01 \\
.01 & .01 & .01 & .01 & .01 & .01 & .01 & .00 & .00 & .00 \\
.00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 \\
.00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 \\
.00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 \\
.00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 \\
.00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 0432 & 137 & . 00 & . 00 & .00 & 0. & * & 1 & 0932 & 287 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0434 & 138 & . 00 & .00 & . 00 & 0. & * & 1 & 0934 & 288 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0436 & 139 & .00 & . 00 & . 00 & 0. & * & 1 & 0936 & 289 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0438 & 140 & .00 & . 00 & . 00 & 0. & * & 1 & 0938 & 290 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0440 & 141 & . 00 & . 00 & . 00 & 0. & * & 1 & 0940 & 291 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0442 & 142 & .00 & .00 & .00 & 0. & * & 1 & 0942 & 292 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0444 & 143 & . 00 & . 00 & . 00 & 0. & * & 1 & 0944 & 293 & .00 & . 00 & . 00 & 0. \\
\hline 1 & 0446 & 144 & . 00 & . 00 & . 00 & 0. & * & 1 & 0946 & 294 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0448 & 145 & . 00 & . 00 & . 00 & 0. & * & 1 & 0948 & 295 & .00 & .00 & . 00 & 0. \\
\hline 1 & 0450 & 146 & . 00 & . 00 & . 00 & 0. & * & 1 & 0950 & 296 & .00 & . 00 & . 00 & 0. \\
\hline 1 & 0452 & 147 & . 00 & . 00 & . 00 & 0. & * & 1 & 0952 & 297 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0454 & 148 & . 00 & . 00 & . 00 & 0. & * & 1 & 0954 & 298 & .00 & . 00 & . 00 & 0. \\
\hline 1. & 0456 & 149 & .00 & .00 & . 00 & 0. & * & 1 & 0956 & 299 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0458 & 150 & . 00 & . 00 & . 00 & 0. & * & 1 & 0958 & 300 & . 00 & . 00 & . 00 & 0. \\
\hline
\end{tabular}

\(\qquad\)
PEAK ELOW
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PEAK ELOW & TIME & & \multicolumn{4}{|c|}{MAXIMUM AVERAGE FLOW} \\
\hline & & & 6-HR & 24-HR & 72-HR & 9.97-HR \\
\hline + (CES) & (HR) & & & & & \\
\hline \multicolumn{7}{|c|}{(CES)} \\
\hline + 2235. & . 53 & & 324. & 195. & 195. & 195. \\
\hline & & (INCHES) & 2.045 & 2.045 & 2.045 & 2.045 \\
\hline & & (\(\mathrm{AC}-\mathrm{FT}\)) & 161. & 161. & 161. & 161. \\
\hline & & Cumulat & REA \(=\) & 7 SQ M & & \\
\hline
\end{tabular}

MODIEIED PULS CHANNEL ROUTING FROM NODE FR-10 TO FR-9
HYDROGRAPH ROUTING DATA
64 RS
STORAGE ROUTING

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PEAK FLOW & TIME & & \multicolumn{4}{|c|}{MAXIMUM AVERAGE FLOW} \\
\hline & & & 6-HR & \(24-H R\) & 72-HR & 9.97-HR \\
\hline + (CFS) & (HR) & & & & & \\
\hline \multicolumn{7}{|c|}{(CFS)} \\
\hline + 2155. & . 60 & & 324. & 195. & 195. & 195. \\
\hline & & (INCHES) & 2.045 & 2.045 & 2.045 & 2.045 \\
\hline & & (\(\mathrm{AC}-\mathrm{FT}\)) & 161. & 161. & 161. & 161. \\
\hline PEAK STORAGE & TTME & & & MAXIMUM AVERAGE & Storage & \\
\hline & & & 6-HR & 24-HR & 72-HR & 9.97-HR \\
\hline + (\(\mathrm{AC}-\mathrm{FT}\)) & (HR) & & & & & \\
\hline 8. & . 60 & & 2. & 1. & 1. & 1. \\
\hline PEAK Stage & TIME & & \multicolumn{4}{|c|}{MAXIMUM AVERAGE STAGE} \\
\hline & & & 6-HR & 24-HR & \(72-\mathrm{HR}\) & 9.97-HR \\
\hline + (FEET) & (HR) & & & & & \\
\hline 6.05 & . 60 & & 1.72 & 1.04 & 1.04 & 1.04 \\
\hline & & CUMULAT & AREA \(=\) & 1.47 SQ MI & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DA MON & HRMN & ORD & RAIN & LOSS & EXCESS & COMP Q & * & DA MON & HRMN & ORD & RAIN & LOSS & EXCESS & COMP Q \\
\hline 1 & 0000 & 1 & . 00 & . 00 & . 00 & 0. & * & 1 & 0500 & 151 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0002 & 2 & . 13 & . 12 & . 01 & 0. & * & 1 & 0502 & 152 & . 00 & . 00 & .00 & 0. \\
\hline 1 & 0004 & 3 & . 13 & . 12 & . 01 & 1. & * & 1 & 0504 & 153 & .00 & . 00 & . 00 & 0. \\
\hline 1 & 0006 & 4 & . 19 & .17 & . 02 & 2. & * & 1 & 0506 & 154 & . 00 & . 00 & . 00 & 0 . \\
\hline 1 & 0008 & 5 & . 25 & . 18 & . 07 & 7. & * & 1 & 0508 & 155 & . 00 & . 00 & .00 & 0. \\
\hline 1 & 0010 & 6 & . 25 & . 14 & . 11 & 17. & * & 1 & 0510 & 156 & .00 & . 00 & .00 & 0 . \\
\hline 1 & 0012 & 7 & . 20 & . 09 & . 11 & 36. & * & 1 & 0512 & 157 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0014 & 8 & . 20 & . 08 & . 13 & 67. & * & 1 & 0514 & 158 & .00 & . 00 & .00 & 0. \\
\hline 1 & 0016 & 9 & . 16 & . 05 & . 10 & 105. & * & 1 & 0516 & 159 & .00 & . 00 & . 00 & 0. \\
\hline 1 & 0018 & 10 & .11 & . 03 & . 07 & 145. & * & 1 & 0518 & 160 & .00 & .00 & .00 & 0 . \\
\hline 1 & 0020 & 11 & .11 & . 03 & . 08 & 180. & * & 1 & 0520 & 161 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0022 & 12 & . 08 & . 02 & . 06 & 207. & * & 1 & 0522 & 162 & . 00 & .00 & . 00 & 0 . \\
\hline 1 & 0024 & 13 & . 08 & . 02 & . 06 & 221. & * & 1 & 0524 & 163 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0026 & 14 & . 07 & . 02 & . 05 & 224. & * & 1 & 0526 & 164 & . 00 & .00 & .00 & 0. \\
\hline 1 & 0028 & 15 & . 06 & . 01 & . 05 & 219. & * & 1 & 0528 & 165 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0030 & 16 & . 06 & . 01 & . 05 & 210. & * & 1 & 0530 & 166 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0032 & 17 & . 05 & . 01 & . 04 & 198. & * & 1 & 0532 & 167 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0034 & 18 & . 05 & . 01 & . 04 & 186. & * & 1 & 0534 & 168 & .00 & . 00 & .00 & 0. \\
\hline 1 & 0036 & 19 & . 05 & . 01 & . 04 & 174. & * & 1 & 0536 & 169 & .00 & . 00 & .00 & 0 . \\
\hline 1 & 0038 & 20 & . 04 & . 01 & . 03 & 163. & * & 1 & 0538 & 170 & .00 & . 00 & .00 & 0. \\
\hline 1 & 0040 & 21 & . 04 & . 01 & . 03 & 152. & * & 1 & 0540 & 171 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0042 & 22 & . 04 & . 01 & . 03 & 142. & * & 1 & 0542 & 172 & . 00 & .00 & .00 & 0. \\
\hline 1 & 0044 & 23 & . 04 & . 01 & . 03 & 133. & * & 1 & 0544 & 173 & . 00 & . 00 & . 00 & 0 . \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 0046 & 24 & ． 03 & ． 01 & ． 03 & 124. & ＊ & 1 & 0546 & 174 & ． 00 & ． 00 & ． 00 \\
\hline 0048 & 25 & ． 03 & ． 01 & ． 02 & 116. & ＊ & 1 & 0548 & 175 & ． 00 & ． 00 & ． 00 \\
\hline 0050 & 26 & ． 03 & ． 01 & ． 02 & 109. & ＊ & 1 & 0550 & 176 & ． 00 & ． 00 & ． 00 \\
\hline 0052 & 27 & ． 03 & ． 00 & ． 02 & 102. & ＊ & 1. & 0552 & 177 & ． 00 & ． 00 & ． 00 \\
\hline 0054 & 28 & ． 03 & ． 00 & ． 02 & 96. & ＊ & 1 & 0554 & 178 & ． 00 & ． 00 & ． 00 \\
\hline 0056 & 29 & ． 02 & ． 00 & ． 02 & 90. & ＊ & 1 & 0556 & 179 & ． 00 & ． 00 & ． 00 \\
\hline 0058 & 30 & ． 02 & ． 00 & ． 02 & 85. & ＊ & 1 & 0558 & 180 & ． 00 & ． 00 & ． 00 \\
\hline 0100 & 31 & ． 02 & ． 00 & ． 02 & 80. & ＊ & 1 & 0600 & 181 & ． 00 & ． 00 & ． 00 \\
\hline 0102 & 32 & ． 02 & ． 00 & ． 02 & 76. & ＊ & 1 & 0602 & 182 & ． 00 & ． 00 & ． 00 \\
\hline 0104 & 33 & ． 02 & ． 00 & ． 02 & 71. & ＊ & 1 & 0604 & 183 & ． 00 & ． 00 & ． 00 \\
\hline 0106 & 34 & ． 02 & ． 00 & ． 02 & 67. & ＊ & 1 & 0606 & 184 & ． 00 & ． 00 & ． 00 \\
\hline 0108 & 35 & ． 02 & ． 00 & ． 02 & 64. & ＊ & 1 & 0608 & 185 & ． 00 & ． 00 & ． 00 \\
\hline 0110 & 36 & ． 02 & ． 00 & ． 02 & 60. & ＊ & 1 & 0610 & 186 & ． 00 & ． 00 & ． 00 \\
\hline 0112 & 37 & ． 02 & ． 00 & ． 01 & 57. & ＊ & 1 & 0612 & 187 & ． 00 & ． 00 & ． 00 \\
\hline 0114 & 38 & ． 02 & ． 00 & ． 01 & 55. & ＊ & 1 & 0614 & 188 & ． 00 & ． 00 & ． 00 \\
\hline 0116 & 39 & ． 02 & ． 00 & ． 01 & 52. & ＊ & 1 & 0616 & 189 & ． 00 & ． 00 & ． 00 \\
\hline 0118 & 40 & ． 01 & ． 00 & ． 01 & 50. & ＊ & 1 & 0618 & 190 & ． 00 & ． 00 & ． 00 \\
\hline 0120 & 41 & ． 01 & ． 00 & ． 01 & 47. & ＊ & 1 & 0620 & 191 & ． 00 & ． 00 & ． 00 \\
\hline 0122 & 42 & ． 01 & ． 00 & ． 01 & 45. & ＊ & 1 & 0622 & 192 & ． 00 & ． 00 & ． 00 \\
\hline 0124 & 43 & ． 01 & ． 00 & ． 01 & 43. & ＊ & 1 & 0624 & 193 & ． 00 & ． 00 & ． 00 \\
\hline 0126 & 44 & ． 01 & ． 00 & ． 01 & 41. & ＊ & 1 & 0626 & 194 & ． 00 & ． 00 & ． 00 \\
\hline 0128 & 45 & ． 01 & ． 00 & ． 01 & 40. & ＊ & 1 & 0628 & 195 & ． 00 & ． 00 & ． 00 \\
\hline 0130 & 46 & ． 01 & ． 00 & ． 01 & 38. & ＊ & 1 & 0630 & 196 & ． 00 & ． 00 & ． 00 \\
\hline 0132 & 47 & ． 01 & ． 00 & ． 01 & 37. & ＊ & 1 & 0632 & 197 & ． 00 & ． 00 & ． 00 \\
\hline 0134 & 48 & ． 01 & ． 00 & ． 01 & 35. & ＊ & 1 & 0634 & 198 & ． 00 & ． 00 & ． 00 \\
\hline 0136 & 49 & ． 01 & ． 00 & ． 01 & 34. & ＊ & 1 & 0636 & 199 & ． 00 & ． 00 & ． 00 \\
\hline 0138 & 50 & ． 01 & ． 00 & ． 01 & 32. & ＊ & 1 & 0638 & 200 & ． 00 & ． 00 & ． 00 \\
\hline 0140 & 51 & ． 01 & ． 00 & ． 01 & 31. & ＊ & 1 & 0640 & 201 & ． 00 & ． 00 & ． 00 \\
\hline 0142 & 52 & ． 01 & ． 00 & ． 01 & 30. & ＊ & 1 & 0642 & 202 & ． 00 & ． 00 & ． 00 \\
\hline 0144 & 53 & ． 01 & ． 00 & ． 01 & 29. & ＊ & 1 & 0644 & 203 & ． 00 & ． 00 & ． 00 \\
\hline 0146 & 54 & ． 01 & ． 00 & ． 01 & 28. & ＊ & 1 & 0646 & 204 & ． 00 & ． 00 & ． 00 \\
\hline 0148 & 55 & ． 01 & ． 00 & ． 01 & 27. & ＊ & 1 & 0648 & 205 & ． 00 & ． 00 & ． 00 \\
\hline 0150 & 56 & ． 01 & ． 00 & ． 01 & 26. & ＊ & 1 & 0650 & 206 & ． 00 & ． 00 & ． 00 \\
\hline 0152 & 57 & ． 01 & ． 00 & ． 01 & 25. & ＊ & 1 & 0652 & 207 & ． 00 & ． 00 & ． 00 \\
\hline 0154 & 58 & ． 01 & ． 00 & ． 01 & 24. & ＊ & 1 & 0654 & 208 & ． 00 & ． 00 & ． 00 \\
\hline 0156 & 59 & ． 01 & ． 00 & ． 01 & 24. & ＊ & 1 & 0656 & 209 & ． 00 & ． 00 & ． 00 \\
\hline 0158 & 60 & ． 01 & ． 00 & ． 01 & 23. & ＊ & 1 & 0658 & 210 & ． 00 & ． 00 & ． 00 \\
\hline 0200 & 61 & ． 01 & ． 00 & ． 01 & 22. & ＊ & 1 & 0700 & 211. & ． 00 & ． 00 & ． 00 \\
\hline 0202 & 62 & ． 01 & ． 00 & ． 01 & 21. & ＊ & 1 & 0702 & 212 & ． 00 & ． 00 & ． 00 \\
\hline 0204 & 63 & ． 01 & ． 00 & ． 01 & 21. & ＊ & 1 & 0704 & 213 & ． 00 & ． 00 & ． 00 \\
\hline 0206 & 64 & ． 01 & ． 00 & ． 01 & 20. & ＊ & 1 & 0706 & 214 & ． 00 & ． 00 & ． 00 \\
\hline 0208 & 65 & ． 01 & ． 00 & ． 01 & 20. & ＊ & 1 & 0708 & 215 & ． 00 & ． 00 & ． 00 \\
\hline 0210 & 66 & ． 01 & ． 00 & ． 01 & 19. & ＊ & 1 & 0710 & 216 & ． 00 & ． 00 & ． 00 \\
\hline 0212 & 67 & ． 01 & ． 00 & ． 01 & 18. & ＊ & 1 & 0712 & 217 & ． 00 & ． 00 & ． 00 \\
\hline 0214 & 68 & ． 01 & ． 00 & ． 01 & 18. & ＊ & 1 & 0714 & 218 & ． 00 & ． 00 & ． 00 \\
\hline 0216 & 69 & ． 01 & ． 00 & ． 00 & 17. & ＊ & 1 & 0716 & 219 & ． 00 & ． 00 & ． 00 \\
\hline 0218 & 70 & ． 01 & ． 00 & ． 00 & 17. & ＊ & 1 & 0718 & 220 & ． 00 & ． 00 & ． 00 \\
\hline 0220 & 71 & ． 01 & ． 00 & ． 00 & 17. & ＊ & 1 & 0720 & 221 & ． 00 & ． 00 & ． 00 \\
\hline 0222 & 72 & ． 01 & ． 00 & ． 00 & 16. & ＊ & 1 & 0722 & 222 & ． 00 & ． 00 & ． 00 \\
\hline 0224 & 73 & ． 01 & ． 00 & ． 00 & 16. & ＊ & 1 & 0724 & 223 & ． 00 & ． 00 & ． 00 \\
\hline 0226 & 74 & ． 01 & ． 00 & ． 00 & 15. & ＊ & 1 & 0726 & 224 & ． 00 & ． 00 & ． 00 \\
\hline 0228 & 75 & ． 00 & ． 00 & ． 00 & 15. & ＊ & 1 & 0728 & 225 & ． 00 & ． 00 & ． 00 \\
\hline 0230 & 76 & ． 00 & ． 00 & ． 00 & 15. & ＊ & 1 & 0730 & 226 & ． 00 & ． 00 & ． 00 \\
\hline 0232 & 77 & ． 00 & ． 00 & ． 00 & 14. & ＊ & 1 & 0732 & 227 & ． 00 & ． 00 & ． 00 \\
\hline 0234 & 78 & ． 00 & ． 00 & ． 00 & 14. & ＊ & 1 & 0734 & 228 & ． 00 & ． 00 & ． 00 \\
\hline 0236 & 79 & ． 00 & ． 00 & ． 00 & 13. & ＊ & 1 & 0736 & 229 & ． 00 & ． 00 & ． 00 \\
\hline 0238 & 80 & ． 00 & ． 00 & ． 00 & 13. & ＊ & 1 & 0738 & 230 & ． 00 & ． 00 & ． 00 \\
\hline 0240 & 81 & ． 00 & ． 00 & ． 00 & 13. & ＊ & 1 & 0740 & 231 & ． 00 & ． 00 & ． 00 \\
\hline 0242 & 82 & ． 00 & ． 00 & ． 00 & 13. & ＊ & 1 & 0742 & 232 & ． 00 & ． 00 & ． 00 \\
\hline 0244 & 83 & ． 00 & ． 00 & ． 00 & 12. & ＊ & 1 & 0744 & 233 & ． 00 & ． 00 & ． 00 \\
\hline 0246 & 84 & ． 00 & ． 00 & ． 00 & 12. & ＊ & 1 & 0746 & 234 & ． 00 & ． 00 & ． 00 \\
\hline 0248 & 85 & ． 00 & ． 00 & ． 00 & 12. & ＊ & 1 & 0748 & 235 & ． 00 & ． 00 & ． 00 \\
\hline 0250 & 86 & ． 00 & ． 00 & ． 00 & 11. & ＊ & 1 & 0750 & 236 & ． 00 & ． 00 & ． 00 \\
\hline 0252 & 87 & ． 00 & ． 00 & ． 00 & 11. & ＊ & 1 & 0752 & 237 & ． 00 & ． 00 & ． 00 \\
\hline 0254 & 88 & ． 00 & ． 00 & ． 00 & 11. & ＊ & 1 & 0754 & 238 & ． 00 & ． 00 & ． 00 \\
\hline 0256 & 89 & ． 00 & ． 00 & ． 00 & 11. & ＊ & 1 & 0756 & 239 & ． 00 & ． 00 & ． 00 \\
\hline 0258 & 90 & ． 00 & ． 00 & ． 00 & 10. & ＊ & 1 & 0758 & 240 & ． 00 & ． 00 & ． 00 \\
\hline 0300 & 91 & ． 00 & ． 00 & ． 00 & 10. & ＊ & 1 & 0800 & 241 & ． 00 & ． 00 & ． 00 \\
\hline 0302 & 92 & ． 00 & ． 00 & ． 00 & 10. & ＊ & 1 & 0802 & 242 & ． 00 & ． 00 & ． 00 \\
\hline 0304 & 93 & ． 00 & ． 00 & ． 00 & 9. & ＊ & 1 & 0804 & 243 & ． 00 & ． 00 & ． 00 \\
\hline 0306 & 94 & ． 00 & ． 00 & ． 00 & 9. & ＊ & 1 & 0806 & 244 & ． 00 & ． 00 & ． 00 \\
\hline 0308 & 95 & ． 00 & ． 00 & ． 00 & 8. & ＊ & 1 & 0808 & 245 & ． 00 & ． 00 & ． 00 \\
\hline 0310 & 96 & ． 00 & ． 00 & ． 00 & 6. & ＊ & 1 & 0810 & 246 & ． 00 & ． 00 & ． 00 \\
\hline 0312 & 97 & ． 00 & ． 00 & ． 00 & 5. & ＊ & 1 & 0812 & 247 & ． 00 & ． 00 & ． 00 \\
\hline 0314 & 98 & ． 00 & ． 00 & ． 00 & 4. & ＊ & 1 & 0814 & 248 & ． 00 & ． 00 & ． 00 \\
\hline 0316 & 99 & ． 00 & ． 00 & ． 00 & 3. & ＊ & 1 & 0816 & 249 & ． 00 & ． 00 & ． 00 \\
\hline 0318 & 100 & ． 00 & ． 00 & ． 00 & 2. & ＊ & 1 & 0818 & 250 & ． 00 & ． 00 & ． 00 \\
\hline 0320 & 101 & ． 00 & ． 00 & ． 00 & 2. & ＊ & 1 & 0820 & 251 & ． 00 & ． 00 & ． 00 \\
\hline 0322 & 102 & ． 00 & ． 00 & ． 00 & 1. & ＊ & 1 & 0822 & 252 & ． 00 & ． 00 & ． 00 \\
\hline 0324 & 103 & ． 00 & ． 00 & ． 00 & 1. & ＊ & 1 & 0824 & 253 & ． 00 & ． 00 & ． 00 \\
\hline 0326 & 104 & ． 00 & ． 00 & ． 00 & 1. & ＊ & 1 & 0826 & 254 & ． 00 & ． 00 & ． 00 \\
\hline
\end{tabular}
1
1

COMBINE HYDROGRAPHS AT NODE ER-9 (MAIN CHANNEL)

78 HC
HYDROGRAPH COMBINATION
ICOMP
2 NUMBER OE HYDROGRAPHS TO COMBINE

\section*{COMPUTED STORAGE-OUTFLOW-ELEVATION DATA}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline STORAGE & . 00 & . 01 & . 03 & . 05 & . 10 & . 15 & . 25 & . 31 & . 46 & . 50 \\
\hline OUTELOW & . 00 & 277.77 & 416.66 & 500.00 & 833.33 & 1000.00 & 1342.09 & 1500.00 & 1911.75 & 2000.00 \\
\hline ELEVATION & 3063.00 & 3065.00 & 3066.00 & 3066.60 & 3068.00 & 3068.70 & 3070.00 & 3070.60 & 3072.00 & 3072.30 \\
\hline STORAGE & . 70 & . 77 & . 86 & 1.05 & 1.23 & 1.37 & 1.49 & 1.85 & 2.03 & \\
\hline OUTFLOW & 2386.36 & 2500.00 & 2604.17 & 2812.51 & 3000.00 & 3140.00 & 3366.33 & 4000.00 & 4271.64 & \\
\hline ELEVATION & 3074.00 & 3074.50 & 3075.00 & 3076.00 & 3076.90 & 3077.50 & 3078.00 & 3079.40 & 3080.00 & \\
\hline \multicolumn{11}{|l|}{\multirow[t]{3}{*}{NG *** MODIFIED PULS ROUTING MAY BE NUMERICALİY UNSTABLE FOR OUTELOWS BETWEEN
THE ROUTED HYDROGRAPH SHOULD BE EXAMINED FOR OSCILLATIONS OR OUTFLOWS GREATER THAN PEAK 4272
THIS CAN BE CORRECTED BY DECREASING THE TIME INTERVAL OR INCREASING STORAGE (USE A LONGER RE}} \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline
\end{tabular}

\section*{HYDROGRA.PH AT STATION RES-9}

DA MON HRMN ORD OUTFLOW STORAGE STAGE * DA MON HRMN ORD OUTELOW STORAGE STAGE * DA MON HRMN ORD OUTFLOW STORAGE STAGE

\begin{tabular}{|c|}
\hline 1 & 0244 & 83 & 177. & . 0 & 3064.3 & * & 1 & 0604 & 183 & 0. & . 0 & 3063.0 & * & 1 & 0924 & 283 & 0. & . 0 & 3063.0 \\
\hline 1 & 0246 & 84 & 173. & . 0 & 3064.2 & * & 1 & 0606 & 184 & 0 . & . 0 & 3063.0 & * & 1 & 0926 & 284 & 0. & . 0 & 3063.0 \\
\hline 1 & 0248 & 85 & 169. & . 0 & 3064.2 & * & 1 & 0608 & 185 & 0 . & . 0 & 3063.0 & * & 1 & 0928 & 285 & 0. & . 0 & 3063.0 \\
\hline 1 & 0250 & 86 & 165. & . 0 & 3064.2 & * & 1 & 0610 & 186 & 0. & . 0 & 3063.0 & * & 1 & 0930 & 286 & 0. & . 0 & 3063.0 \\
\hline 1 & 0252 & 87 & 162. & . 0 & 3064.2 & * & 1 & 0612 & 187 & 0. & . 0 & 3063.0 & * & 1 & 0932 & 287 & 0. & . 0 & 3063.0 \\
\hline 1 & 0254 & 88 & 158. & . 0 & 3064.1 & * & 1 & 0614 & 188 & 0 . & . 0 & 3063.0 & * & 1 & 0934 & 288 & 0. & . 0 & 3063.0 \\
\hline 1 & 0256 & 89 & 155. & . 0 & 3064.1 & * & 1 & 0616 & 189 & 0 . & . 0 & 3063.0 & * & 1 & 0936 & 289 & 0. & . 0 & 3063.0 \\
\hline 1 & 0258 & 90 & 152. & . 0 & 3064.1 & * & 1 & 0618 & 190 & 0 . & . 0 & 3063.0 & * & 1 & 0938 & 290 & 0. & . 0 & 3063.0 \\
\hline 1 & 0300 & 91 & 149. & . 0 & 3064.1 & * & 1 & 0620 & 191 & 0 . & . 0 & 3063.0 & * & 1 & 0940 & 291 & 0. & . 0 & 3063.0 \\
\hline 1 & 0302 & 92 & 146. & . 0 & 3064.0 & * & 1 & 0622 & 192 & 0 . & . 0 & 3063.0 & * & 1 & 0942 & 292 & 0. & . 0 & 3063.0 \\
\hline 1 & 0304 & 93 & 143. & . 0 & 3064.0 & * & 1 & 0624 & 193 & 0 . & . 0 & 3063.0 & * & 1 & 0944 & 293 & 0. & . 0 & 3063.0 \\
\hline 1 & 0306 & 94 & 139. & . 0 & 3064.0 & * & 1 & 0626 & 194 & 0 . & . 0 & 3063.0 & * & 1 & 0946 & 294 & 0. & . 0 & 3063.0 \\
\hline 1 & 0308 & 95 & 135. & . 0 & 3064.0 & * & 1 & 0628 & 195 & 0 . & . 0 & 3063.0 & * & 1 & 0948 & 295 & 0. & . 0 & 3063.0 \\
\hline 1 & 0310 & 96 & 130. & . 0 & 3063.9 & * & 1 & 0630 & 196 & 0 . & . 0 & 3063.0 & * & 1 & 0950 & 296 & 0. & . 0 & 3063.0 \\
\hline 1 & 0312 & 97 & 126. & . 0 & 3063.9 & * & 1 & 0632 & 197 & 0 . & . 0 & 3063.0 & * & 1 & 0952 & 297 & 0. & . 0 & 3063.0 \\
\hline 1 & 0314 & 98 & 120. & . 0 & 3063.9 & * & 1 & 0634 & 198 & 0. & . 0 & 3063.0 & * & 1 & 0954 & 298 & 0. & . 0 & 3063.0 \\
\hline 1 & 0316 & 99 & 115. & . 0 & 3063.8 & * & 1 & 0636 & 199 & 0. & . 0 & 3063.0 & * & 1 & 0956 & 299 & 0. & . 0 & 3063.0 \\
\hline 1 & 0318 & 100 & 109. & . 0 & 3063.8 & * & 1 & 0638 & 200 & 0. & . 0 & 3063.0 & * & 1 & 0958 & 300 & 0. & . 0 & 3063.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline PEAK FLOW & TIME & & \multicolumn{3}{|c|}{MAXIMUM AVERAGE FLOW} \\
\hline & & & 6-HR & 24-HR 72-HR & 9.97-HR \\
\hline \(+\quad(\mathrm{CES})\) & (HR) & & & & \\
\hline & & (CES) & & & \\
\hline + 2324. & . 60 & & 354. & 213.213. & 213. \\
\hline & & (INCHES) & 2.025 & \(2.025 \quad 2.025\) & 2.025 \\
\hline & & (AC-ET) & 176. & 176.176. & 176. \\
\hline PEAK STORAGE & TIME & & & MAXIMUM AVERAGE STORAGE & \\
\hline & & & \(6-H \mathrm{R}\) & \(24-\mathrm{HR}\) - 72-HR & \(9.97-H R\) \\
\hline \(+(A C-F T)\) & (HR) & & & & \\
\hline 1. & . 60 & & 0. & 0.0 & 0. \\
\hline PEAK STAGE & TIME & & & MAXIMUM AVERAGE STAGE & \\
\hline & & & 6-HR & 24-HR 72-HR & 9.97-HR \\
\hline + (EEET) & (HR) & & & & \\
\hline 3073.73 & . 60 & & 3065.01 & \(3064.21 \quad 3064.21\) & 3064.21 \\
\hline & & CUMULAT & AREA = & 1.63 SQ MI & \\
\hline
\end{tabular}

KK
```

SUBBASIN CHARACTERISTICS
TAREA . 46 SUBBASIN AREA

```
 PRECIPITATION DATA
 STORM 3.33 BASIN TOTAL PRECIPITATION
 20 PI
 INCREMENTAL PRECIPITATION PATTERN
\begin{tabular}{llllllllll}
.04 & .04 & .06 & .08 & .08 & .07 & .07 & .05 & .03 & .03 \\
.02 & .02 & .02 & .02 & .02 & .02 & .02 & .01 & .01 & .01 \\
.01 & .01 & .01 & .01 & .01 & .01 & .01 & .01 & .01 & .01 \\
.01 & .01 & .01 & .01 & .01 & .01 & .01 & .00 & .00 & .00 \\
.00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 \\
.00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 \\
.00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 \\
.00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 \\
.00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00
\end{tabular}

SCS LOSS RATE
STRTL . 33 INITIAL ABSTRACTION
CRVNBR 86.00 CURVE NUMBER
RTIMP \(\quad 10.00\) PERCENT IMPERVIOUS AREA

96 UD
SCS DIMENSIONLESS UNITGRAPH

TLAG
.17 LAG
\(\qquad\)
UNIT HYDROGRAPH
\begin{tabular}{rrrrrrrrr}
\\
& & & & 27 END-OF-PERIOD ORDINATES \\
106. & 324. & 676. & 1035. & 1208. & 1209. & 1074. & 888. & 642. \\
344. & 262. & 194. & 145. & 108. & 80. & 59. & 44. & 33. \\
18. & 14. & 11. & 8. & 6. & 3. & 1. & & 25.
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DA MON & HRMN & ORD & RAIN & LOSS & EXCESS & COMP Q & * & & MON & HRMN & ORD & RAIN & LOSS & EXCESS & COMP 2 \\
\hline 1 & 0000 & 1 & . 00 & . 00 & . 00 & 0. & * & 1 & & 0500 & 151 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0002 & 2 & . 13 & . 12 & . 01 & 1. & * & 1 & & 0502 & 152 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0004 & 3 & . 13 & . 12 & . 01 & 6. & * & 1 & & 0504 & 153 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0006 & 4 & . 20 & . 17 & . 03 & 17. & * & 1 & & 0506 & 154 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0008 & 5 & . 27 & . 18 & . 09 & 43. & * & 1 & & 0508 & 155 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0010 & 6 & . 27 & . 14 & . 14 & 96. & * & 1 & & 0510 & 156 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0012 & 7 & . 22 & . 09 & . 13 & 187. & * & 1 & & 0512 & 157 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0014 & 8 & . 22 & . 07 & . 14 & 315. & * & 1 & & 0514 & 158 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0016 & 9 & . 17 & . 05 & . 12 & 466. & * & 1 & & 0516 & 159 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0018 & 10 & . 11 & . 03 & . 08 & 611. & * & 1 & & 0518 & 160 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0020 & 11 & . 11 & . 03 & . 09 & 729. & * & 1 & & 0520 & 161 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0022 & 12 & . 08 & . 02 & . 06 & 804. & * & 1 & & 0522 & 162 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0024 & 13 & . 08 & . 02 & . 06 & 830. & * & 1 & & 0524 & 163 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0026 & 14 & . 07 & . 02 & . 06 & 818. & * & 1 & & 0526 & 164 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0028 & 15 & . 07 & . 01 & . 05 & 783. & * & 1 & & 0528 & 165 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0030 & 16 & . 07 & . 01 & . 05 & 735. & * & 1 & & 0530 & 166 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0032 & 17 & . 05 & . 01 & . 04 & 685. & * & 1 & & 0532 & 167 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0034 & 18 & . 05 & . 01 & . 04 & 637. & * & 1. & & 0534 & 168 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0036 & 19 & . 05 & . 01 & . 04 & 592. & * & 1 & & 0536 & 169 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0038 & 20 & . 04 & . 01 & . 04 & 550. & * & 1 & & 0538 & 170 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0040 & 21 & . 04 & . 01 & . 04 & 511. & * & 1 & & 0540 & 171 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0042 & 22 & . 04 & . 01 & . 03 & 476. & * & 1 & & 0542 & 172 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0044 & 23 & . 04 & . 01 & . 03 & 443. & * & 1 & & 0544 & 173 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0046 & 24 & . 04 & . 01 & . 03 & 413. & * & 1 & & 0546 & 174 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0048 & 25 & . 03 & . 01 & . 03 & 386. & * & 1 & & 0548 & 175 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0050 & 26 & . 03 & . 01 & . 03 & 361. & * & 1 & & 0550 & 176 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0052 & 27 & . 03 & . 00 & . 02 & 338. & * & 1 & & 0552 & 177 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0054 & 28 & . 03 & . 00 & . 02 & 317. & * & 1 & & 0554 & 178 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0056 & 29 & . 03 & . 00 & . 02 & 298. & * & 1 & & 0556 & 179 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0058 & 30 & . 02 & . 00 & . 02 & 280. & * & 1 & & 0558 & 180 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0100 & 31 & . 02 & . 00 & . 02 & 264. & * & 1 & & 0600 & 181 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0102 & 32 & . 02 & . 00 & . 02 & 248. & * & 1 & & 0602 & 182 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0104 & 33 & . 02 & . 00 & . 02 & 234. & * & 1 & & 0604 & 183 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0106 & 34 & . 02 & . 00 & . 02 & 222. & * & 1 & & 0606 & 184 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0108 & 35 & . 02 & . 00 & . 02 & 210. & * & 1 & & 0608 & 185 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0110 & 36 & . 02 & . 00 & . 02 & 199. & * & 1 & & 0610 & 186 & . 00 & . 00 & . 00 & 0. \\
\hline 1. & 0112 & 37 & . 02 & . 00 & . 01 & 189. & * & 1 & & 0612 & 187 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0114 & 38 & . 02 & . 00 & . 01 & 180. & * & 1 & & 0614 & 188 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0116 & 39 & . 02 & . 00 & . 01 & 171. & * & 1 & & 0616 & 189 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0118 & 40 & . 02 & . 00 & . 01 & 1.64. & * & 1 & & 0618 & 190 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0120 & 41 & . 02 & . 00 & . 01 & 156. & * & 1 & & 0620 & 191 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0122 & 42 & . 01 & . 00 & . 01 & 149. & * & 1 & & 0622 & 192 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0124 & 43 & . 01 & . 00 & . 01 & 143. & * & 1 & & 0624 & 193 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0126 & 44 & . 01 & . 00 & . 01 & 137. & * & 1 & & 0626 & 194 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0128 & 45 & . 01 & . 00 & . 01 & 131. & * & 1 & & 0628 & 195 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0130 & 46 & . 01 & . 00 & . 01 & 126. & * & 1. & & 0630 & 196 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0132 & 47 & . 01 & . 00 & . 01 & 121. & * & 1 & & 0632 & 197 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0134 & 48 & . 01 & . 00 & . 01 & 116. & * & 1 & & 0634 & 198 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0136 & 49 & . 01 & . 00 & . 01 & 112. & * & 1 & & 0636 & 199 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0138 & 50 & . 01 & . 00 & . 01 & 107. & * & 1 & & 0638 & 200 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0140 & 51 & . 01 & . 00 & . 01 & 103. & * & 1 & & 0640 & 201 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0142 & 52 & . 01 & . 00 & . 01 & 100. & * & 1 & & 0642 & 202 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0144 & 53 & . 01 & . 00 & . 01 & 96. & * & 1 & & 0644 & 203 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0146 & 54 & . 01 & . 00 & . 01 & 93. & * & 1 & & 0646 & 204 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0148 & 55 & . 01 & . 00 & . 01 & 90. & * & 1 & & 0648 & 205 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0150 & 56 & . 01 & . 00 & . 01 & 87. & * & 1 & & 0650 & 206 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0152 & 57 & . 01 & . 00 & . 01 & 84. & * & 1 & & 0652 & 207 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0154 & 58 & . 01 & . 00 & . 01 & 81. & * & 1 & & 0654 & 208 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0156 & 59 & . 01 & . 00 & . 01 & 78. & * & 1 & & 0656 & 209 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0158 & 60 & . 01 & . 00 & . 01 & 76. & * & 1 & & 0658 & 210 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0200 & 61 & . 01 & . 00 & . 01 & 73. & * & 1 & & 0700 & 211 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0202 & 62 & . 01 & . 00 & . 01 & 71. & * & 1 & & 0702 & 212 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0204 & 63 & . 01 & . 00 & . 01 & 69. & * & 1 & & 0704 & 213 & . 00 & . 00 & . 00 & 0. \\
\hline
\end{tabular}

\footnotetext{
HYDROGRAPH AT STATION \(94 T 093\)
}

104 KK

SUBBASIN RUNOEF DATA

107 BA
\begin{tabular}{cc}
SUBBASIN CHARACTERISTICS \\
TAREA & .38 SUBBASIN AREA
\end{tabular}

PRECIPITATION DATA
108 PB
20 PI
INCREMENTAL PRECIPITATION PATTERN
\begin{tabular}{llllllllll}
.04 & .04 & .06 & .08 & .08 & .07 & .07 & .05 & .03 & .03 \\
.02 & .02 & .02 & .02 & .02 & .02 & .02 & .01 & .01 & .01 \\
.01 & .01 & .01 & .01 & .01 & .01 & .01 & .01 & .01 & .01 \\
.01 & .01 & .01 & .01 & .01 & .01 & .01 & .00 & .00 & .00 \\
.00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 \\
.00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 \\
.00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 \\
.00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 \\
.00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00
\end{tabular}

109 LS

110 JD
SCS DIMENSIONLESS UNITGRAPH
TLAG . 18 LAG
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{9}{|c|}{NIT HYDROGRAPH} \\
\hline 77. & 231. & 477. & 762. & 919. & 948. & 881. & 759. & 591. & 423. \\
\hline 318. & 244. & 186. & 138. & 105. & 80. & 60. & 45. & 34. & 26. \\
\hline 20. & 15. & 11. & 9. & 7. & 5. & 3. & 2. & 0. & \\
\hline
\end{tabular}

\section*{HYDROGRAPH AT STATION FR-93}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DA MON & HRMN & ORD & RAIN & LOSS & EXCESS & COMP Q & * & DA MON & HRMN & ORD & RAIN & LOSS & EXCESS & COMP Q \\
\hline 1 & 0000 & 1 & . 00 & . 00 & . 00 & 0. & * & 1 & 0500 & 151 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0002 & 2 & . 13 & . 13 & . 01 & 1. & * & 1 & 0502 & 152 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0004 & 3 & . 13 & . 13 & . 01 & 2. & * & 1 & 0504 & 153 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0006 & 4 & . 20 & . 18 & . 02 & 6. & * & 1 & 0506 & 154 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0008 & 5 & . 27 & . 19 & . 08 & 20. & * & 1 & 0508 & 155 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0010 & 6 & . 27 & . 14 & . 13 & 51. & * & 1 & 0510 & 156 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0012 & 7 & . 22 & . 09 & . 13 & 109. & * & 1 & 0512 & 157 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0014 & 8 & . 22 & . 08 & . 14 & 197. & * & 1 & 0514 & 158 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0016 & 9 & . 17 & . 05 & . 11 & 308. & * & 1 & 0516 & 159 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0018 & 10 & . 11 & . 03 & . 08 & 421. & * & 1 & 0518 & 160 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0020 & 11 & . 11 & . 03 & . 08 & 521. & * & 1 & 0520 & 161 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0022 & 12 & . 08 & . 02 & . 06 & 592. & * & 1 & 0522 & 162 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0024 & 13 & . 08 & . 02 & . 06 & 630. & * & 1 & 0524 & 163 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0026 & 14 & . 07 & . 02 & . 06 & 635. & * & 1 & 0526 & 164 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0028 & 15 & . 07 & . 01 & . 05 & 619. & * & 1 & 0528 & 165 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0030 & 16 & . 07 & . 01 & . 05 & 589. & * & 1 & 0530 & 166 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0032 & 17 & . 05 & . 01 & . 04 & 554. & * & 1 & 0532 & 167 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0034 & 18 & . 05 & . 01 & . 04 & 519. & * & 1 & 0534 & 168 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0036 & 19 & . 05 & . 01 & . 04 & 485. & * & 1 & 0536 & 169 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0038 & 20 & . 04 & . 01 & . 04 & 452. & * & 1 & 0538 & 170 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0040 & 21 & . 04 & . 01 & . 04 & 422. & * & 1 & 0540 & 171 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0042 & 22 & . 04 & . 01 & . 03 & 394. & * & 1 & 0542 & 172 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0044 & 23 & . 04 & . 01 & . 03 & 368. & * & 1 & 0544 & 173 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0046 & 24 & . 04 & . 01 & . 03 & 343. & * & 1 & 0546 & 174 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0048 & 25 & . 03 & . 01 & . 03 & 321. & * & & 0548 & 175 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0050 & 26 & . 03 & . 01 & . 03 & 300. & * & 1 & 0550 & 176 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0052 & 27 & . 03 & . 00 & . 02 & 282. & * & 1 & 0552 & 177 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0054 & 28 & . 03 & . 00 & . 02 & 264. & * & 1 & 0554 & 178 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0056 & 29 & . 03 & . 00 & . 02 & 248. & * & 1 & 0556 & 179 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0058 & 30 & . 02 & . 00 & . 02 & 234. & * & 1 & 0558 & 180 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0100 & 31 & . 02 & . 00 & . 02 & 220. & * & 1 & 0600 & 181 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0102 & 32 & . 02 & . 00 & . 02 & 208. & * & 1 & 0602 & 182 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0104 & 33 & . 02 & . 00 & . 02 & 196. & * & 1 & 0604 & 183 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0106 & 34 & . 02 & . 00 & . 02 & 185. & * & 1 & 0606 & 184 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0108 & 35 & . 02 & . 00 & . 02 & 175. & * & 1 & 0608 & 185 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0110 & 36 & . 02 & . 00 & . 02 & 166. & * & 1 & 0610 & 186 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0112 & 37 & . 02 & . 00 & . 01 & 158. & * & 1 & 0612 & 187 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0114 & 38 & . 02 & . 00 & . 01 & 150. & * & 1 & 061.4 & 188 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0116 & 39 & . 02 & . 00 & . 01 & 143. & * & 1 & 0616 & 189 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0118 & 40 & . 02 & . 00 & . 01 & 136. & * & 1 & 0618 & 190 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0120 & 41 & . 02 & . 00 & . 01 & 130. & * & 1 & 0620 & 191 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0122 & 42 & . 01 & . 00 & . 01 & 124. & * & 1 & 0622 & 192 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0124 & 43 & . 01 & . 00 & . 01 & 119. & * & 1 & 0624 & 193 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0126 & 44 & . 01 & . 00 & . 01 & 113. & * & 1 & 0626 & 194 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0128 & 45 & . 01 & . 00 & . 01 & 109. & * & 1 & 0628 & 195 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0130 & 46 & . 01 & . 00 & . 01 & 104. & * & 1 & 0630 & 196 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0132 & 47 & . 01 & . 00 & . 01 & 100. & * & 1 & 0632 & 197 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0134 & 48 & . 01 & . 00 & . 01 & 96. & * & 1 & 0634 & 198 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0136 & 49 & . 01 & . 00 & . 01 & 92. & * & 1 & 0636 & 199 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0138 & 50 & . 01 & . 00 & . 01 & 89. & * & 1 & 0638 & 200 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0140 & 51 & . 01 & . 00 & . 01 & 86. & * & 1 & 0640 & 201 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0142 & 52 & . 01 & . 00 & . 01 & 82. & * & 1 & 0642 & 202 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0144 & 53 & . 01 & . 00 & . 01 & 80. & * & 1 & 0644 & 203 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0146 & 54 & . 01 & . 00 & . 01 & 77. & * & 1 & 0646 & 204 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0148 & 55 & . 01 & . 00 & . 01 & 74. & * & 1 & 0648 & 205 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0150 & 56 & . 01 & . 00 & . 01 & 72. & * & 1 & 0650 & 206 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0152 & 57 & . 01 & . 00 & . 01 & 69. & * & 1 & 0652 & 207 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0154 & 58 & . 01 & . 00 & . 01 & 67. & * & 1 & 0654 & 208 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0156 & 59 & . 01 & . 00 & . 01 & 65. & * & & 0656 & 209 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0158 & 60 & . 01 & . 00 & . 01 & 63. & * & 1 & 0658 & 210 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0200 & 61 & . 01 & . 00 & . 01 & 61. & * & 1 & 0700 & 211 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0202 & 62 & . 01 & . 00 & . 01 & 59. & * & & 0702 & 212 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0204 & 63 & . 01 & . 00 & . 01 & 57. & * & 1 & 0704 & 213 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0206 & 64 & . 01 & . 00 & . 01 & 55. & * & 1 & 0706 & 214 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0208 & 65 & . 01 & . 00 & . 01 & 54. & * & 1 & 0708 & 215 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0210 & 66 & . 01 & . 00 & . 01 & 52. & * & 1 & 0710 & 21.6 & . 00 & . 00 & . 00 & 0. \\
\hline
\end{tabular}

\begin{tabular}{lllllllllllllll}
1 & 0454 & 148 & .00 & .00 & .00 & 0. & \(*\) & 1 & 0954 & 298 & .00 & .00 & .00 & 0. \\
1 & 0456 & 149 & .00 & .00 & .00 & 0. & \(*\) & 1 & 0956 & 299 & .00 & .00 & .00 & 0. \\
1 & 0458 & 150 & .00 & .00 & .00 & 0. & \(*\) & 1 & 0958 & 300 & .00 & .00 & .00 & 0.
\end{tabular}

114 HC HYDROGRAPH COMBINATION ICOMP 2 NUMBER OF HYDROGRAPHS TO COMBINE

HYDROGRAPH AT STATION CO-93
SUM OF 2 HYDROGRAPHS

ELMAX
. 0 MAX. ELEV. FOR STORAGE/OUTFLOW CALCULATION

\footnotetext{
HYDROGRAPH AT STATION
\(93 T 092\)
}

DA MON HRMN ORD OUTFLOW STORAGE STAGE * DA MON HRMN ORD OJTELOW STORAGE STAGE * DA MON HRMN ORD OUTFLOW STORAGE STAGE

122 KK
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{**************} \\
\hline * & & * \\
\hline * & FR-92 & * \\
\hline * & & \\
\hline \multicolumn{3}{|l|}{**************} \\
\hline
\end{tabular}
```

LOCAL RUNOFF TO FR-92
BASIN ER-92

```

SUBBASIN RUNOFE DATA

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 0006 & 4 & 4. & * & 1 & 0236 & 79 & 119. & * & 1 & 0506 & 154 & 0. & * & 1 & 0736 & 229 & 0. \\
\hline 1 & 0008 & 5 & 13. & * & 1 & 0238 & 80 & 116. & * & 1 & 0508 & 155 & 0. & * & 1 & 0738 & 230 & 0. \\
\hline 1 & 0010 & 6 & 33. & * & 1 & 0240 & 81 & 113. & * & 1 & 0510 & 156 & 0. & * & 1 & 0740 & 231 & 0. \\
\hline 1 & 0012 & 7 & 72. & * & 1 & 0242 & 82 & 110. & * & 1 & 0512 & 157 & 0. & * & 1 & 0742 & 232 & 0. \\
\hline 1 & 0014 & 8 & 134. & * & 1 & 0244 & 83 & 107. & * & 1 & 0514 & 158 & 0. & * & 1 & 0744 & 233 & 0. \\
\hline 1 & 0016 & 9 & 217. & * & 1 & 0246 & 84 & 105. & * & 1 & 0516 & 159 & 0. & * & 1 & 0746 & 234 & 0. \\
\hline 1 & 0018 & 10 & 347. & * & 1 & 0248 & 85 & 102. & * & 1 & 0518 & 160 & 0. & * & 1 & 0748 & 235 & 0. \\
\hline 1 & 0020 & 11 & 524. & * & 1 & 0250 & 86 & 100. & * & 1 & 0520 & 161 & 0. & * & 1 & 0750 & 236 & 0 \\
\hline 1 & 0022 & 12 & 746. & * & 1 & 0252 & 87 & 97. & * & 1 & 0522 & 162 & 0. & * & 1 & 0752 & 237 & 0 \\
\hline 1 & 0024 & 13 & 992. & * & 1 & 0254 & 88 & 95. & * & 1 & 0524 & 163 & 0. & * & 1 & 0754 & 238 & 0 \\
\hline 1 & 0026 & 14 & 1230. & * & 1 & 0256 & 89 & 93. & * & 1 & 0526 & 164 & 0. & * & 1 & 0756 & 239 & 0. \\
\hline 1 & 0028 & 15 & 1437. & * & 1 & 0258 & 90 & 91. & * & 1 & 0528 & 165 & 0. & * & 1 & 0758 & 240 & 0. \\
\hline 1 & 0030 & 16 & 1558. & * & 1 & 0300 & 91 & 88. & * & 1 & 0530 & 166 & 0. & * & 1 & 0800 & 241 & 0. \\
\hline 1 & 0032 & 17 & 1601. & * & 1 & 0302 & 92 & 86. & * & 1 & 0532 & 167 & 0. & * & 1 & 0802 & 242 & 0. \\
\hline 1 & 0034 & 18 & 1589. & * & 1 & 0304 & 93 & 84. & * & 1 & 0534 & 168 & 0. & * & 1 & 0804 & 243 & 0. \\
\hline 1 & 0036 & 19 & 1541. & * & 1 & 0306 & 94 & 81. & * & 1 & 0536 & 169 & 0 . & * & 1 & 0806 & 244 & 0. \\
\hline 1 & 0038 & 20 & 1472. & * & 1 & 0308 & 95 & 77. & * & 1 & 0538 & 170 & 0. & * & 1 & 0808 & 245 & 0. \\
\hline 1 & 0040 & 21 & 1393. & * & 1 & 0310 & 96 & 73. & * & 1 & 0540 & 171 & 0. & * & 1 & 0810 & 246 & 0. \\
\hline 1 & 0042 & 22 & 1310. & * & 1 & 0312 & 97 & 68. & * & 1 & 0542 & 172 & 0. & * & 1 & 0812 & 247 & 0. \\
\hline 1 & 0044 & 23 & 1229. & * & 1 & 0314 & 98 & 64. & * & 1 & 0544 & 173 & 0. & * & 1 & 0814 & 248 & 0. \\
\hline 1 & 0046 & 24 & 1151. & * & 1 & 0316 & 99 & 59. & * & 1 & 0546 & 174 & 0. & * & 1 & 0816 & 249 & 0. \\
\hline 1 & 0048 & 25 & 1083. & * & 1 & 0318 & 100 & 55. & * & 1 & 0548 & 175 & 0. & * & 1 & 0818 & 250 & 0. \\
\hline 1 & 0050 & 26 & 1023. & * & 1 & 0320 & 101 & 50. & * & 1 & 0550 & 176 & 0. & * & 1 & 0820 & 251 & 0. \\
\hline 1 & 0052 & 27 & 962. & * & 1 & 0322 & 102 & 46. & * & 1 & 0552 & 177 & 0. & * & 1 & 0822 & 252 & 0. \\
\hline 1 & 0054 & 28 & 904. & * & 1 & 0324 & 103 & 42. & * & 1 & 0554 & 178 & 0. & * & 1 & 0824 & 253 & 0. \\
\hline 1 & 0056 & 29 & 849. & * & 1 & 0326 & 104 & 39. & * & 1 & 0556 & 179 & 0. & * & 1 & 0826 & 254 & 0. \\
\hline 1 & 0058 & 30 & 798. & * & 1 & 0328 & 105 & 36. & * & 1 & 0558 & 180 & 0. & * & 1 & 0828 & 255 & 0. \\
\hline 1 & 0100 & 31 & 752. & * & 1 & 0330 & 106 & 34. & * & 1 & 0600 & 181 & 0. & * & 1 & 0830 & 256 & 0. \\
\hline 1 & 0102 & 32 & 710. & * & 1 & 0332 & 107 & 32. & * & 1 & 0602 & 182 & 0. & * & 1 & 0832 & 257 & 0. \\
\hline 1 & 0104 & 33 & 670. & * & 1 & 0334 & 108 & 30. & * & 1 & 0604 & 183 & 0. & * & 1 & 0834 & 258 & 0. \\
\hline 1 & 0106 & 34 & 632. & * & 1 & 0336 & 109 & 28. & * & 1 & 0606 & 184 & 0. & * & 1 & 0836 & 259 & 0. \\
\hline 1 & 0108 & 35 & 596. & * & 1 & 0338 & 110 & 26. & * & 1 & 0608 & 185 & 0. & * & 1 & 0838 & 260 & 0. \\
\hline 1 & 0110 & 36 & 563. & * & 1 & 0340 & 111 & 24. & * & 1 & 0610 & 186 & 0. & * & 1 & 0840 & 261 & 0. \\
\hline 1 & 0112 & 37 & 533. & * & 1 & 0342 & 112 & 22. & * & 1 & 0612 & 187 & 0. & * & 1 & 0842 & 262 & 0. \\
\hline 1 & 0114 & 38 & 505. & * & 1 & 0344 & 113 & 20. & * & 1 & 0614 & 188 & 0. & * & 1 & 0844 & 263 & 0. \\
\hline 1 & 0116 & 39 & 482. & * & 1 & 0346 & 114 & 18. & * & 1 & 0616 & 189 & 0. & * & 1 & 0846 & 264 & 0. \\
\hline 1 & 0118 & 40 & 460. & * & 1 & 0348 & 115 & 16. & * & 1 & 0618 & 190 & 0. & * & 1 & 0848 & 265 & 0. \\
\hline 1 & 0120 & 41 & 438. & * & 1 & 0350 & 116 & 15. & * & 1 & 0620 & 191 & 0. & * & 1 & 0850 & 266 & 0 . \\
\hline 1 & 0122 & 42 & 418. & * & 1 & 0352 & 117 & 13. & * & 1 & 0622 & 192 & 0. & * & 1 & 0852 & 267 & 0 . \\
\hline 1 & 0124 & 43 & 398. & * & 1 & 0354 & 118 & 12. & * & 1 & 0624 & 193 & 0. & * & 1 & 0854 & 268 & 0 . \\
\hline 1 & 0126 & 44 & 380. & * & 1 & 0356 & 119 & 10. & * & 1 & 0626 & 194 & 0. & * & 1 & 0856 & 269 & 0 . \\
\hline 1 & 0128 & 45 & 363. & * & 1 & 0358 & 120 & 9. & * & 1 & 0628 & 195 & 0. & * & 1 & 0858 & 270 & 0. \\
\hline 1 & 0130 & 46 & 347. & * & 1 & 0400 & 121 & 8. & * & 1 & 0630 & 196 & 0. & * & 1 & 0900 & 271 & 0. \\
\hline 1 & 01.32 & 47 & 331. & * & 1 & 0402 & 122 & 7. & * & 1 & 0632 & 197 & 0. & * & 1 & 0902 & 272 & 0. \\
\hline 1 & 0134 & 48 & 317. & * & 1 & 0404 & 123 & 6. & * & 1 & 0634 & 198 & 0. & * & 1 & 0904 & 273 & 0. \\
\hline 1 & 0136 & 49 & 304. & * & 1 & 0406 & 124 & 6. & * & 1 & 0636 & 199 & 0. & * & 1 & 0906 & 274 & 0. \\
\hline 1 & 0138 & 50 & 292. & * & 1 & 0408 & 125 & 5. & * & 1 & 0638 & 200 & 0. & * & 1 & 0908 & 275 & 0. \\
\hline 1 & 0140 & 51 & 282. & * & 1 & 0410 & 126 & 4. & * & 1 & 0640 & 201 & 0. & * & 1 & 0910 & 276 & 0. \\
\hline 1 & 0142 & 52 & 272. & * & 1 & 0412 & 127 & 4. & * & 1 & 0642 & 202 & 0. & * & 1 & 0912 & 277 & 0. \\
\hline 1 & 0144 & 53 & 262. & * & 1 & 0414 & 128 & 3. & * & 1 & 0644 & 203 & 0. & * & 1 & 0914 & 278 & 0. \\
\hline 1 & 0146 & 54 & 253. & * & 1 & 0416 & 129 & 3. & * & 1 & 0646 & 204 & 0. & * & 1 & 0916 & 279 & 0. \\
\hline 1 & 01.48 & 55 & 244. & * & 1 & 0418 & 130 & 2. & * & 1 & 0648 & 205 & 0. & * & 1 & 0918 & 280 & 0. \\
\hline 1 & 0150 & 56 & 236. & * & 1 & 0420 & 131. & 2. & * & 1 & 0650 & 206 & 0. & * & 1 & 0920 & 281 & 0. \\
\hline 1 & 0152 & 57 & 228. & * & 1 & 0422 & 132 & 2. & * & 1 & 0652 & 207 & 0. & * & 1 & 0922 & 282 & 0. \\
\hline 1 & 0154 & 58 & 220. & * & 1 & 0424 & 133 & 1. & * & 1 & 0654 & 208 & 0. & * & 1 & 0924 & 283 & 0. \\
\hline 1 & 0156 & 59 & 212. & * & 1 & 0426 & 134 & 1. & * & 1 & 0656 & 209 & 0. & * & 1 & 0926 & 284 & 0. \\
\hline 1 & 0158 & 60 & 205. & * & 1 & 0428 & 135 & 1. & * & 1 & 0658 & 210 & 0. & * & 1 & 0928 & 285 & 0. \\
\hline 1 & 0200 & 61 & 199. & * & 1 & 0430 & 136 & 1. & * & 1 & 0700 & 211 & 0. & * & 1 & 0930 & 286 & 0. \\
\hline 1 & 0202 & 62 & 192. & * & 1 & 0432 & 137 & 1. & * & 1 & 0702 & 212 & 0. & * & 1 & 0932 & 287 & 0. \\
\hline 1 & 0204 & 63 & 186. & * & 1 & 0434 & 138 & 1. & * & 1 & 0704 & 213 & 0. & * & 1 & 0934 & 288 & 0. \\
\hline 1 & 0206 & 64 & 180. & * & 1 & 0436 & 139 & 1. & * & 1 & 0706 & 214 & 0. & * & 1 & 0936 & 289 & 0 . \\
\hline 1 & 0208 & 65 & 174. & * & 1 & 0438 & 140 & 0 . & * & 1 & 0708 & 215 & 0. & * & 1 & 0938 & 290 & 0. \\
\hline 1 & 0210 & 66 & 169. & * & 1 & 0440 & 141 & 0. & * & 1 & 0710 & 216 & 0. & * & 1 & 0940 & 291 & 0 . \\
\hline 1 & 0212 & 67 & 163. & * & 1 & 0442 & 142 & 0 . & * & 1 & 0712 & 217 & 0. & * & 1 & 0942 & 292 & 0. \\
\hline 1 & 0214 & 68 & 158. & * & 1 & 0444 & 143 & 0 . & * & 1 & 0714 & 218 & 0. & * & 1 & 0944 & 293 & 0. \\
\hline 1 & 0216 & 69 & 154. & * & 1 & 0446 & 144 & 0 . & * & 1 & 0716 & 219 & 0. & * & 1 & 0946 & 294 & 0. \\
\hline 1 & 0218 & 70 & 149. & * & 1 & 0448 & 145 & 0 . & * & 1 & 0718 & 220 & 0. & * & 1 & 0948 & 295 & 0. \\
\hline 1 & 0220 & 71 & 145. & * & 1 & 0450 & 146 & 0 . & * & 1 & 0720 & 221 & 0. & * & 1 & 0950 & 296 & 0. \\
\hline 1 & 0222 & 72 & 141. & * & 1 & 0452 & 147 & 0 . & * & 1 & 0722 & 222 & 0. & * & 1 & 0952 & 297 & 0. \\
\hline 1 & 0224 & 73 & 138. & * & 1 & 0454 & 148 & 0 . & * & 1 & 0724 & 223 & 0. & * & 1 & 0954 & 298 & 0. \\
\hline 1 & 0226 & 74 & 134. & * & 1 & 0456 & 149 & 0 . & * & 1 & 0726 & 224 & 0. & * & 1 & 0956 & 299 & 0. \\
\hline 1 & 0228 & 75 & 131. & * & 1 & 0458 & 150 & 0. & * & 1 & 0728 & 225 & 0. & * & 1 & 0958 & 300 & 0. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{PEAK FLOW}} & \multirow[t]{2}{*}{TIME} & & \multicolumn{4}{|c|}{MAXIMUM AVERAGE FIOW} \\
\hline & & & & 6-HR & \(24-H R\) & 72-HR & 9.97-HR \\
\hline + & (CFS) & (HR) & & & & & \\
\hline \multicolumn{8}{|c|}{(CFS)} \\
\hline + & 1601. & . 53 & & 230. & 139. & 139. & 139. \\
\hline & & & (INCHES) & 2.008 & 2.008 & 2.008 & 2.008 \\
\hline
\end{tabular}
(AC-ET)
114.
114.
114.
114.
CUMULATIVE AREA \(=1.07 \mathrm{SQ}\) MI

TOTAL RAINFALL \(=3.22\), TOTAL LOSS \(=1.23\), TOTAL EXCESS \(=1.99\)


```

141 KK
*****************
MODIEIED PULS CHANNEL ROUTING
EROM NODE FR-922 TO FR-921

```

HYDROGRAPH ROJJTING DATA
144 RS \begin{tabular}{lrl}
STORAGE ROUTING & & \\
& NSTPS & 3 \\
ITYP & NLOMBER OF SUBREACHES \\
& RSVRE OF INITIAL CONDITION \\
& X & -1.00 INITIAL CONDITION \\
& & .00 WORKING R AND D COEFFICIENT
\end{tabular}

145 RC NORMAL DEPTH CHANNEL
\begin{tabular}{rrl}
ANL & .115 & LEFT OVERBANK N-VALUE \\
ANCH & .115 & MAIN CHANNEL N-VALUE \\
ANR & .115 & RIGHT OVERBANK N-VALUE \\
RLNTH & 5100. & REACH LENGTH \\
SEL & .1350 & ENERGY SLOPE \\
ELMAX & .0 & MAX. ELEV. FOR STORAGE/OJTELOW CALCULATION
\end{tabular}

CROSS-SECTION DATA
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 147 RY & ELEVATION & --- LE & ERBANK
10.00 & + --- & MAIN
.00 & . & + 5.00 & HT OVE
10.00 & 15.00 \\
\hline 146 RX & DISTANCE & . 00 & 10.00 & 20.00 & 30.00 & 40.00 & 50.00 & 60.00 & 70.00 \\
\hline
\end{tabular}

COMPUTED STORAGE-OUTFLOW-ELEVATION DATA
\begin{tabular}{rrrrrrrrrrr}
\\
STORAGE & & .00 & 1.07 & 2.43 & 4.09 & 6.03 & 8.27 & 10.80 & 13.62 & 16.73 \\
OUTTELOW & .00 & 33.51 & 112.78 & 236.21 & 406.80 & 628.37 & 904.89 & 1290.52 & 1770.03 & 2324.33 \\
ELEVATION & .00 & .79 & 1.58 & 2.37 & 3.16 & 3.95 & 4.74 & 5.53 & 6.32 & 7.11 \\
& & & & & & & & & \\
STORAGE & 23.84 & 27.83 & 32.11 & 36.68 & 41.55 & 46.70 & 52.15 & 57.89 & 63.92 & 70.25 \\
OUTFLOW & 2957.42 & 3672.92 & 4474.33 & 5365.00 & 6348.25 & 7427.29 & 8605.31 & 9885.43 & 11270.75 & 12764.31 \\
ELEVATION & 7.89 & 8.68 & 9.47 & 10.26 & 11.05 & 11.84 & 12.63 & 13.42 & 14.21 & 15.00
\end{tabular}

\footnotetext{
HYDROGRAPH AT STATION FR-921
}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 0324 & 103 & . 00 & . 00 & . 00 & 1. & * & 1 & 0824 & 253 & . 00 & . 00 & . 00 & 0. \\
\hline 0326 & 104 & . 00 & . 00 & . 00 & 1. & * & 1 & 0826 & 254 & . 00 & . 00 & . 00 & 0. \\
\hline 0328 & 105 & . 00 & .00 & . 00 & 1. & * & 1 & 0828 & 255 & . 00 & . 00 & . 00 & 0 . \\
\hline 0330 & 106 & . 00 & . 00 & .00 & 0. & * & 1 & 0830 & 256 & . 00 & . 00 & . 00 & 0. \\
\hline 0332 & 107 & . 00 & . 00 & .00 & 0 . & * & 1 & 0832 & 257 & . 00 & . 00 & . 00 & 0 . \\
\hline 0334 & 108 & . 00 & .00 & . 00 & 0 . & * & 1 & 0834 & 258 & . 00 & . 00 & . 00 & 0. \\
\hline 0336 & 109 & .00 & .00 & .00 & 0 . & * & 1 & 0836 & 259 & . 00 & . 00 & . 00 & 0 . \\
\hline 0338 & 110 & . 00 & . 00 & . 00 & 0. & * & 1 & 0838 & 260 & . 00 & . 00 & . 00 & 0. \\
\hline 0340 & 111 & . 00 & . 00 & . 00 & 0 . & * & 1 & 0840 & 261 & . 00 & . 00 & . 00 & 0. \\
\hline 0342 & 112 & . 00 & . 00 & . 00 & 0. & * & 1 & 0842 & 262 & . 00 & . 00 & . 00 & 0. \\
\hline 0344 & 113 & .00 & . 00 & . 00 & 0. & * & 1 & 0844 & 263 & . 00 & . 00 & .00 & 0. \\
\hline 0346 & 114 & .00 & .00 & .00 & 0 . & * & 1 & 0846 & 264 & . 00 & . 00 & . 00 & 0. \\
\hline 0348 & 115 & . 00 & . 00 & .00 & 0 . & * & 1 & 0848 & 265 & .00 & . 00 & .00 & 0. \\
\hline 0350 & 116 & .00 & . 00 & .00 & 0 . & * & 1 & 0850 & 266 & . 00 & . 00 & . 00 & 0. \\
\hline 0352 & 117 & . 00 & . 00 & .00 & 0 . & * & 1 & 0852 & 267 & . 00 & . 00 & . 00 & 0. \\
\hline 0354 & 118 & .00 & .00 & .00 & 0 . & * & 1 & 0854 & 268 & . 00 & . 00 & . 00 & 0 . \\
\hline 0356 & 119 & . 00 & . 00 & . 00 & 0 . & * & 1 & 0856 & 269 & . 00 & . 00 & . 00 & 0. \\
\hline 0358 & 120 & . 00 & .00 & .00 & 0. & * & 1 & 0858 & 270 & . 00 & . 00 & . 00 & 0. \\
\hline 0400 & 121 & . 00 & .00 & . 00 & 0 . & * & 1 & 0900 & 271 & . 00 & . 00 & . 00 & 0. \\
\hline 0402 & 122 & .00 & .00 & . 00 & 0. & * & 1 & 0902 & 272 & . 00 & . 00 & . 00 & 0. \\
\hline 0404 & 123 & . 00 & .00 & .00 & 0 . & * & 1 & 0904 & 273 & . 00 & . 00 & . 00 & 0. \\
\hline 0406 & 124 & . 00 & .00 & . 00 & 0 . & * & 1 & 0906 & 274 & . 00 & . 00 & . 00 & 0. \\
\hline 0408 & 125 & . 00 & . 00 & . 00 & 0 . & * & 1 & 0908 & 275 & . 00 & . 00 & . 00 & 0. \\
\hline 0410 & 126 & . 00 & . 00 & . 00 & 0 . & * & 1 & 0910 & 276 & .00 & . 00 & . 00 & 0. \\
\hline 0412 & 127 & . 00 & .00 & .00 & 0 . & * & 1 & 0912 & 277 & . 00 & . 00 & . 00 & 0. \\
\hline 0414 & 128 & . 00 & . 00 & . 00 & 0 . & * & 1 & 0914 & 278 & .00 & . 00 & . 00 & 0. \\
\hline 0416 & 129 & . 00 & . 00 & .00 & 0. & * & 1 & 0916 & 279 & . 00 & . 00 & . 00 & 0. \\
\hline 0418 & 130 & . 00 & . 00 & . 00 & 0. & * & 1 & 0918 & 280 & . 00 & .00 & . 00 & 0. \\
\hline 0420 & 131 & . 00 & .00 & .00 & 0 . & * & 1 & 0920 & 281 & . 00 & . 00 & . 00 & 0. \\
\hline 0422 & 132 & . 00 & .00 & . 00 & 0. & * & 1 & 0922 & 282 & .00 & . 00 & . 00 & 0. \\
\hline 0424 & 133 & . 00 & . 00 & . 00 & 0 . & * & 1 & 0924 & 283 & . 00 & . 00 & . 00 & 0. \\
\hline 0426 & 134 & . 00 & . 00 & . 00 & 0. & * & 1 & 0926 & 284 & . 00 & .00 & . 00 & 0. \\
\hline 0428 & 135 & .00 & . 00 & . 00 & 0. & * & 1 & 0928 & 285 & .00 & . 00 & . 00 & 0. \\
\hline 0430 & 136 & . 00 & . 00 & . 00 & 0 . & * & 1 & 0930 & 286 & .00 & . 00 & .00 & 0. \\
\hline 0432 & 137 & . 00 & . 00 & .00 & 0. & * & 1 & 0932 & 287 & . 00 & . 00 & . 00 & 0. \\
\hline 0434 & 138 & . 00 & . 00 & . 00 & 0 . & * & 1 & 0934 & 288 & . 00 & . 00 & . 00 & 0. \\
\hline 0436 & 139 & . 00 & . 00 & . 00 & 0. & * & 1 & 0936 & 289 & . 00 & . 00 & . 00 & 0. \\
\hline 0438 & 140 & . 00 & . 00 & . 00 & 0 . & * & 1 & 0938 & 290 & . 00 & . 00 & . 00 & 0. \\
\hline 0440 & 141 & . 00 & . 00 & . 00 & 0 . & * & 1 & 0940 & 291 & . 00 & . 00 & . 00 & 0. \\
\hline 0442 & 142 & . 00 & . 00 & . 00 & 0. & * & 1 & 0942 & 292 & . 00 & . 00 & . 00 & 0. \\
\hline 0444 & 143 & . 00 & . 00 & . 00 & 0 . & * & 1 & 0944 & 293 & . 00 & . 00 & . 00 & 0. \\
\hline 0446 & 144 & . 00 & . 00 & . 00 & 0 . & * & 1 & 0946 & 294 & . 00 & . 00 & . 00 & 0. \\
\hline 0448 & 145 & . 00 & . 00 & . 00 & 0. & * & 1 & 0948 & 295 & . 00 & . 00 & . 00 & 0. \\
\hline 0450 & 146 & .00 & . 00 & . 00 & 0. & * & 1 & 0950 & 296 & . 00 & .00 & . 00 & 0. \\
\hline 0452 & 147 & . 00 & .00 & .00 & 0. & * & 1 & 0952 & 297 & . 00 & .00 & . 00 & 0. \\
\hline 0454 & 148 & . 00 & . 00 & . 00 & 0. & * & 1 & 0954 & 298 & . 00 & .00 & .00 & 0. \\
\hline 0456 & 149 & . 00 & .00 & . 00 & 0. & * & 1 & 0956 & 299 & . 00 & . 00 & . 00 & 0. \\
\hline 0458 & 150 & . 00 & . 00 & . 00 & 0 . & * & 1 & 0958 & 300 & . 00 & . 00 & . 00 & 0. \\
\hline
\end{tabular}

TOTAL RAINFALL \(=3.22\), TOTAL LOSS \(=1.34\), TOTAL EXCESS \(=1.88\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{PEAK ELOW}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{TIME}} & \multicolumn{4}{|c|}{MAXIMUM AVERAGE FLOW} \\
\hline & & & & 6-HR & 24-HR & 72-HR & 9.97-HR \\
\hline + & (CES) & (HR) & & & & & \\
\hline \multicolumn{8}{|c|}{(CES)} \\
\hline + & 337. & . 40 & & 43. & 26. & 26. & 26. \\
\hline & & & (INCHES) & 1.880 & 1.880 & 1.880 & 1.880 \\
\hline & & & (\(\mathrm{AC}-\mathrm{ET}\)) & 21. & 21. & 21. & 21. \\
\hline \multicolumn{8}{|c|}{CUMULATIVE AREA \(=\). 21 SQ MI} \\
\hline
\end{tabular}

155 KK

158 HC HYDROGRAPH COMBINATION

ICOMP

HYDROGRAPH AT STATION CO-92A
SUM OF 2 HYDROGRAPHS

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 0110 & 36 & 841. & * & 1 & 0340 & 111 & 33. & * & 1 & 0610 & 186 & 0. & * & 1 & 0840 & 261 & 0. \\
\hline 0112 & 37 & 796. & * & 1 & 0342 & 112 & 30. & * & 1 & 0612 & 187 & 0. & * & 1 & 0842 & 262 & 0. \\
\hline 0114 & 38 & 755. & * & 1 & 0344 & 113 & 27. & * & 1 & 0614 & 188 & 0 . & * & 1 & 0844 & 263 & 0. \\
\hline 0116 & 39 & 718. & * & 1 & 0346 & 114 & 24. & * & 1 & 0616 & 189 & 0 . & * & 1 & 0846 & 264 & 0. \\
\hline 0118 & 40 & 684. & * & 1 & 0348 & 115 & 22. & * & 1 & 0618 & 190 & 0 . & * & 1 & 0848 & 265 & 0. \\
\hline 0120 & 41 & 651. & * & 1 & 0350 & 116 & 19. & * & 1 & 0620 & 191 & 0 . & * & 1 & 0850 & 266 & 0. \\
\hline 0122 & 42 & 621. & * & 1 & 0352 & 117 & 17. & * & 1 & 0622 & 192 & 0. & * & 1 & 0852 & 267 & 0. \\
\hline 0124 & 43 & 591. & * & 1 & 0354 & 118 & 15. & * & 1 & 0624 & 193 & 0. & * & 1 & 0854 & 268 & 0. \\
\hline 0126 & 44 & 564. & * & 1 & 0356 & 119 & 13. & * & 1 & 0626 & 194 & 0. & * & 1 & 0856 & 269 & 0. \\
\hline 0128 & 45 & 539. & * & 1 & 0358 & 120 & 12. & * & 1 & 0628 & 195 & 0. & * & 1 & 0858 & 270 & 0. \\
\hline 0130 & 46 & 515. & * & 1 & 0400 & 121 & 10. & * & 1 & 0630 & 196 & 0. & * & 1 & 0900 & 271 & 0. \\
\hline 0132 & 47 & 494. & \(\star\) & 1 & 0402 & 122 & 9. & * & 1 & 0632 & 197 & 0. & * & 1 & 0902 & 272 & 0. \\
\hline 0134 & 48 & 474. & * & 1 & 0404 & 123 & 8. & * & 1 & 0634 & 198 & 0 . & * & 1 & 0904 & 273 & 0. \\
\hline 0136 & 49 & 455. & * & 1 & 0406 & 124 & 7. & * & 1 & 0636 & 199 & 0. & * & 1 & 0906 & 274 & 0. \\
\hline 0138 & 50 & 437. & * & 1 & 0408 & 125 & 6. & * & 1 & 0638 & 200 & 0. & * & 1 & 0908 & 275 & 0. \\
\hline 0140 & 51 & 422. & * & 1 & 0410 & 126 & 5. & * & 1 & 0640 & 201 & 0. & * & 1 & 0910 & 276 & 0. \\
\hline 0142 & 52 & 407. & * & 1 & 0412 & 127 & 4. & * & 1 & 0642 & 202 & 0. & * & 1 & 0912 & 277 & 0. \\
\hline 0144 & 53 & 392. & * & 1 & 0414 & 128 & 4. & * & 1 & 0644 & 203 & 0. & * & 1 & 0914 & 278 & 0. \\
\hline 0146 & 54 & 378. & * & 1 & 0416 & 129 & 3. & * & 1 & 0646 & 204 & 0. & * & 1 & 0916 & 279 & 0. \\
\hline 0148 & 55 & 365. & * & 1 & 0418 & 130 & 3. & * & 1 & 0648 & 205 & 0. & * & 1 & 0918 & 280 & 0. \\
\hline 0150 & 56 & 352. & * & 1 & 0420 & 131 & 2. & * & 1 & 0650 & 206 & 0. & * & 1 & 0920 & 281 & 0. \\
\hline 0152 & 57 & 340 . & * & 1 & 0422 & 132 & 2. & * & 1 & 0652 & 207 & 0. & * & 1 & 0922 & 282 & 0. \\
\hline 0154 & 58 & 328. & * & 1 & 0424 & 133 & 2. & * & 1 & 0654 & 208 & 0. & * & 1 & 0924 & 283 & 0. \\
\hline 0156 & 59 & 317. & * & 1 & 0426 & 134 & 1. & * & 1 & 0656 & 209 & 0. & * & 1 & 0926 & 284 & 0. \\
\hline 0158 & 60 & 306. & \(\star\) & 1 & 0428 & 135 & 1. & * & 1 & 0658 & 210 & 0. & * & 1 & 0928 & 285 & 0. \\
\hline 0200 & 61 & 296. & * & 1 & 0430 & 136 & 1. & * & 1 & 0700 & 211 & 0. & * & 1 & 0930 & 286 & 0. \\
\hline 0202 & 62 & 286. & \(\star\) & 1 & 0432 & 137 & 1. & * & 1 & 0702 & 212 & 0. & * & 1 & 0932 & 287 & 0. \\
\hline 0204 & 63 & 277. & * & 1 & 0434 & 138 & 1. & * & 1 & 0704 & 213 & 0. & * & 1 & 0934 & 288 & 0. \\
\hline 0206 & 64 & 268. & * & 1 & 0436 & 139 & 1. & * & 1 & 0706 & 214 & 0. & * & 1 & 0936 & 289 & 0. \\
\hline 0208 & 65 & 259. & * & 1 & 0438 & 140 & 1. & * & 1 & 0708 & 215 & 0. & * & 1 & 0938 & 290 & 0. \\
\hline 0210 & 66 & 251. & * & 1 & 0440 & 141 & 0. & * & 1 & 0710 & 21.6 & 0. & * & 1 & 0940 & 291 & 0. \\
\hline 0212 & 67 & 244. & * & 1 & 0442 & 142 & 0. & * & 1 & 0712 & 217 & 0. & * & 1 & 0942 & 292 & 0. \\
\hline 0214 & 68 & 236. & * & 1 & 0444 & 143 & 0. & * & 1 & 0714 & 218 & 0. & * & 1 & 0944 & 293 & 0. \\
\hline 0216 & 69 & 229. & * & 1 & 0446 & 144 & 0. & * & 1 & 0716 & 219 & 0. & * & 1 & 0946 & 294 & 0. \\
\hline 0218 & 70 & 222. & * & 1 & 0448 & 145 & 0. & * & 1 & 0718 & 220 & 0. & * & 1 & 0948 & 295 & 0. \\
\hline 0220 & 71 & 216. & * & 1 & 0450 & 146 & 0. & * & 1 & 0720 & 221 & 0. & * & 1 & 0950 & 296 & 0. \\
\hline 0222 & 72 & 210. & * & 1 & 0452 & 147 & 0. & * & 1 & 0722 & 222 & 0. & * & 1 & 0952 & 297 & 0. \\
\hline 0224 & 73 & 205. & * & 1 & 0454 & 148 & 0. & * & 1 & 0724 & 223 & 0. & * & 1 & 0954 & 298 & 0. \\
\hline 0226 & 74 & 200. & * & 1 & 0456 & 149 & 0. & * & 1 & 0726 & 224 & 0. & * & 1 & 0956 & 299 & 0. \\
\hline 0228 & 75 & 195. & * & 1 & 0458 & 150 & 0. & * & 1 & 0728 & 225 & 0. & * & 1 & 0958 & 300 & 0. \\
\hline & & & * & & & & & * & & & & & * & & & & \\
\hline
\end{tabular}
PEAK FLOW
\begin{tabular}{lrcccr}
TIME & & \multicolumn{4}{c}{ MAXIMUM AVERAGE FLOW } \\
(HR) & & \(6-\mathrm{HR}\) & \(24-\mathrm{HR}\) & \(72-\mathrm{HR}\) & \(9.97-\mathrm{HR}\) \\
& (CES) & & & & \\
.53 & (INCHES) & 346. & 208. & 208. & 208. \\
& (AC-FT) & 172. & 1.987 & 1.987 & 1.987 \\
& & & 172. & 172. & 1.72.
\end{tabular}
CUMULATIVE AREA \(=1.62 \mathrm{SQ}\) MI
\begin{tabular}{|c|c|}
\hline * & \\
\hline * & 92T091 \\
\hline * & \\
\hline
\end{tabular}
MODIFIED PULS CHANNEL ROUTING
EROM NODE FR-92 TO FR-91 (MAIN CHANNEL PONTATOC CANYON)
HYDROGRAPH ROUTING DATA
167 RS
\begin{tabular}{crl}
STORAGE ROUTING & & \\
NSTPS & 1 & NUMBER OF SUBREACHES \\
ITYP & FLOW & TYPE OF INITIAL. CONDITION \\
RSVRIC & -1.00 & INITIAL CONDITION \\
X & .00 WORKING R AND D COEFFICIENT
\end{tabular}
168 RC
NORMAL DEPTH CHANNEL
\begin{tabular}{rrl}
ANL & .095 & LEFT OVERBANK N-VALUE \\
ANCH & .095 & MAIN CHANNEL N-VALUE \\
ANR & .095 & RIGHT OVERBANK N-VALUE \\
RLNTH & 1520. & REACH LENGTH \\
SEL & .0920 & ENERGY SLORE
\end{tabular}

\section*{ELMAX}
. 0 MAX. ELEV. FOR STORAGE/OUTFLOW CALCULATION
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 170 RY & \multicolumn{11}{|l|}{} \\
\hline 169 RX & \multicolumn{2}{|l|}{distance} & . 10. & \multicolumn{2}{|c|}{20.00} & \multicolumn{2}{|l|}{040.00} & \multicolumn{2}{|l|}{60.00 7} & & \\
\hline & \multicolumn{11}{|c|}{***} \\
\hline \multicolumn{12}{|c|}{COMPUTED STORAGE-OUTFLOW-ELEVATION DATA} \\
\hline \multirow[t]{3}{*}{} & Storage & . 00 & . 32 & . 72 & 1.22 & 1. 80 & 2.46 & 3.22 & 4.06 & 4.99 & 6.00 \\
\hline & OUTELOW & . 00 & 33.48 & 112.70 & 236.05 & 406.52 & 627.94 & 904.27 & 1289.63 & 1768.81 & 2322.73 \\
\hline & ELEVATION & . 00 & . 79 & 1.58 & 2.37 & 3.16 & 3.95 & 4.74 & 5.53 & 6.32 & 7.11 \\
\hline \multirow[t]{3}{*}{} & StORAGE & 7.10 & 8.29 & 9.57 & 10.93 & 12.38 & 13.92 & 15.54 & 17.25 & 19.05 & 20.94 \\
\hline & OUTELOW & 2955.38 & 3670.40 & 4471.25 & 5361.32 & 6343.88 & 7422.18 & 8599.39 & 9878.63 & 11263.00 & 12755.53 \\
\hline & ELEVATION & 7.89 & 8.68 & 9.47 & 10.26 & 11.05 & 11.84 & 12.63 & 13.42 & 14.21 & 15.00 \\
\hline
\end{tabular}

\footnotetext{
*** WARNING *** MODIEIED PULS ROUTING MAY BE NUMERICALLY UNSTABLE FOR OUTFLOWS BETWEEN 8599. TO 12756.
THE ROUTED HYDROGRAPH SHOULD BE EXAMINED FOR OSCILLATIONS OR OUTFLOWS GREATER THAN PEAK INELOWS.
THIS CAN BE CORRECTED BY DECREASING THE TIME INTERVAL OR INCREASING STORAGE (USE A LONGER REACH.)
}

HYDROGRAPH AT STATION 92TO91

DA MON HRMN ORD OUTFLOW STORAGE STAGE * DA MON HRMN ORD OUTFLOW STORAGE STAGE * DA MON HRMN ORD OUTELOW STORAGE STAGE
\begin{tabular}{|c|}
\hline 1 & 0000 & 1 & 0. & . 0 & . 0 & * & 1 & 0320 & 101 & 87. & . 6 & 1.3 & * & 1 & 0640 & 201 & 0. & . 0 & . 0 \\
\hline 1 & 0002 & 2 & 0. & . 0 & . 0 & * & 1 & 0322 & 102 & 81. & . 6 & 1.3 & * & 1 & 0642 & 202 & 0. & . 0 & . 0 \\
\hline 1 & 0004 & 3 & 0. & . 0 & . 0 & * & 1 & 0324 & 103 & 75. & . 5 & 1.2 & * & 1 & 0644 & 203 & 0. & . 0 & . 0 \\
\hline 1 & 0006 & 4 & 1. & . 0 & . 0 & * & 1 & 0326 & 104 & 69. & . 5 & 1.1 & * & 1 & 0646 & 204 & 0. & . 0 & . 0 \\
\hline 1 & 0008 & 5 & 5. & . 0 & . 1 & * & 1 & 0328 & 105 & 64. & . 5 & 1.1 & * & 1 & 0648 & 205 & 0. & . 0 & . 0 \\
\hline 1 & 0010 & 6 & 14. & . 1 & . 3 & * & 1 & 0330 & 106 & 59. & . 4 & 1.0 & * & 1 & 0650 & 206 & 0. & . 0 & . 0 \\
\hline 1 & 0012 & 7 & 35. & . 3 & . 8 & * & 1 & 0332 & 107 & 54. & . 4 & 1.0 & * & 1 & 0652 & 207 & 0. & . 0 & . 0 \\
\hline 1 & 0014 & 8 & 101. & . 7 & 1.5 & * & 1 & 0334 & 108 & 50. & . 4 & 1.0 & * & 1 & 0654 & 208 & 0. & . 0 & . 0 \\
\hline 1 & 0016 & 9 & 215. & 1.1 & 2.2 & * & 1 & 0336 & 109 & 47. & . 4 & . 9 & * & 1 & 0656 & 209 & 0. & . 0 & . 0 \\
\hline 1 & 0018 & 10 & 380. & 1.7 & 3.0 & * & 1 & 0338 & 110 & 43. & . 4 & . 9 & * & 1 & 0658 & 210 & 0. & . 0 & . 0 \\
\hline 1 & 0020 & 11 & 606. & 2.4 & 3.9 & * & 1 & 0340 & 111 & 39. & . 3 & . 8 & * & 1 & 0700 & 211 & 0. & . 0 & . 0 \\
\hline 1 & 0022 & 12 & 893. & 3.2 & 4.7 & * & 1 & 0342 & 112 & 36. & . 3 & . 8 & * & 1 & 0702 & 212 & 0. & . 0 & . 0 \\
\hline 1 & 0024 & 13 & 1262. & 4.0 & 5.5 & * & 1 & 0344 & 113 & 33. & . 3 & . 8 & * & 1 & 0704 & 213 & 0. & . 0 & . 0 \\
\hline 1 & 0026 & 14 & 1633. & 4.7 & 6.1 & * & 1 & 0346 & 114 & 31. & . 3 & . 7 & * & 1 & 0706 & 214 & 0. & . 0 & . 0 \\
\hline 1 & 0028 & 15 & 1956. & 5.3 & 6.6 & * & 1 & 0348 & 115 & 29. & . 3 & . 7 & * & 1 & 0708 & 215 & 0. & . 0 & . 0 \\
\hline 1 & 0030 & 16 & 2196. & 5.8 & 6.9 & * & 1 & 0350 & 116 & 27. & . 3 & . 6 & * & 1 & 0710 & 216 & 0. & . 0 & . 0 \\
\hline 1 & 0032 & 17 & 2326. & 6.0 & 7.1 & * & 1 & 0352 & 117 & 25. & . 2 & . 6 & * & 1 & 0712 & 217 & 0. & . 0 & . 0 \\
\hline 1 & 0034 & 18 & 2364. & 6.1 & 7.2 & * & 1 & 0354 & 118 & 23. & . 2 & . 5 & * & 1 & 0714 & 218 & 0. & . 0 & . 0 \\
\hline 1 & 0036 & 19 & 2329. & 6.0 & 7.1 & * & 1 & 0356 & 119 & 20. & . 2 & . 5 & * & 1 & 0716 & 219 & 0. & . 0 & . 0 \\
\hline 1 & 0038 & 20 & 2252. & 5.9 & 7.0 & * & 1 & 0358 & 120 & 18. & . 2 & . 4 & * & 1 & 0718 & 220 & 0. & . 0 & . 0 \\
\hline 1 & 0040 & 21 & 2148. & 5.7 & 6.9 & * & 1 & 0400 & 121 & 17. & . 2 & . 4 & * & 1 & 0720 & 221 & 0. & . 0 & . 0 \\
\hline 1 & 0042 & 22 & 2031. & 5.5 & 6.7 & * & 1 & 0402 & 122 & 15. & . 1 & . 3 & * & 1 & 0722 & 222 & 0. & . 0 & . 0 \\
\hline 1 & 0044 & 23 & 1911. & 5.2 & 6.5 & * & 1 & 0404 & 123 & 13. & . 1 & . 3 & * & 1 & 0724 & 223 & 0. & . 0 & . 0 \\
\hline 1 & 0046 & 24 & 1794. & 5.0 & 6.4 & * & 1 & 0406 & 124 & 12. & . 1 & . 3 & * & 1 & 0726 & 224 & 0. & . 0 & . 0 \\
\hline 1 & 0048 & 25 & 1688. & 4.8 & 6.2 & * & 1 & 0408 & 125 & 10. & . 1 & . 2 & * & 1 & 0728 & 225 & 0. & . 0 & . 0 \\
\hline 1 & 0050 & 26 & 1591. & 4.6 & 6.0 & * & 1 & 0410 & 126 & 9. & . 1 & . 2 & * & 1 & 0730 & 226 & 0. & . 0 & . 0 \\
\hline 1 & 0052 & 27 & 1498. & 4.5 & 5.9 & * & 1 & 0412 & 127 & 8. & . 1 & . 2 & * & 1 & 0732 & 227 & 0. & . 0 & . 0 \\
\hline 1 & 0054 & 28 & 1407. & 4.3 & 5.7 & * & 1 & 0414 & 128 & 7. & . 1 & . 2 & * & 1 & 0734 & 228 & 0. & . 0 & . 0 \\
\hline 1 & 0056 & 29 & 1321. & 4.1 & 5.6 & * & 1 & 0416 & 129 & 6. & . 1 & . 1 & * & 1 & 0736 & 229 & 0. & . 0 & . 0 \\
\hline 1 & 0058 & 30 & 1244. & 4.0 & 5.4 & * & 1 & 0418 & 130 & 5. & . 1 & . 1 & * & 1 & 0738 & 230 & 0. & . 0 & . 0 \\
\hline 1 & 0100 & 31 & 1172. & 3.8 & 5.3 & * & 1 & 0420 & 131 & 5. & . 0 & . 1 & * & 1 & 0740 & 231 & 0. & . 0 & . 0 \\
\hline 1 & 0102 & 32 & 1105. & 3.7 & 5.1 & * & 1 & 0422 & 132 & 4. & . 0 & . 1 & * & 1 & 0742 & 232 & 0. & . 0 & . 0 \\
\hline 1 & 0104 & 33 & 1043. & 3.5 & 5.0 & * & 1 & 0424 & 133 & 3. & . 0 & . 1 & * & 1 & 0744 & 233 & 0. & . 0 & . 0 \\
\hline 1 & 0106 & 34 & 986. & 3.4 & 4.9 & * & 1 & 0426 & 134 & 3. & . 0 & . 1 & * & 1 & 0746 & 234 & 0. & . 0 & . 0 \\
\hline 1 & 0108 & 35 & 931. & 3.3 & 4.8 & * & 1 & 0428 & 135 & 3. & . 0 & . 1 & * & 1 & 0748 & 235 & 0. & . 0 & . 0 \\
\hline 1 & 0110 & 36 & 883. & 3.2 & 4.7 & * & 1 & 0430 & 136 & 2. & . 0 & . 1 & * & 1 & 0750 & 236 & 0. & . 0 & . 0 \\
\hline 1 & 0112 & 37 & 840. & 3.0 & 4.6 & * & 1 & 0432 & 137 & 2. & . 0 & . 0 & * & 1 & 0752 & 237 & 0. & . 0 & . 0 \\
\hline 1 & 0114 & 38 & 796. & 2.9 & 4.4 & * & 1 & 0434 & 138 & 2. & . 0 & . 0 & * & 1 & 0754 & 238 & 0. & . 0 & . 0 \\
\hline 1 & 0116 & 39 & 756. & 2.8 & 4.3 & * & 1 & 0436 & 139 & 1. & . 0 & . 0 & * & 1 & 0756 & 239 & 0. & . 0 & . 0 \\
\hline 1 & 0118 & 40 & 719. & 2.7 & 4.2 & * & 1 & 0438 & 140 & 1. & . 0 & .0 & * & 1 & 0758 & 240 & 0. & . 0 & . 0 \\
\hline 1 & 0120 & 41 & 685. & 2.6 & 4.1 & * & 1 & 0440 & 141 & 1. & . 0 & . 0 & * & 1 & 0800 & 241 & 0. & . 0 & . 0 \\
\hline 1 & 0122 & 42 & 652. & 2.5 & 4.0 & * & 1 & 0442 & 142 & 1. & . 0 & .0 & * & 1 & 0802 & 242 & 0. & . 0 & . 0 \\
\hline 1 & 0124 & 43 & 622. & 2.4 & 3.9 & * & 1 & 0444 & 143 & 1. & . 0 & . 0 & * & 1 & 0804 & 243 & 0. & . 0 & . 0 \\
\hline 1 & 0126 & 44 & 594. & 2.4 & 3.8 & * & 1 & 0446 & 144 & 1. & . 0 & . 0 & * & 1 & 0806 & 244 & 0. & . 0 & . 0 \\
\hline 1 & 0128 & 45 & 567. & 2.3 & 3.7 & * & 1 & 0448 & 145 & 1. & . 0 & . 0 & * & 1 & 0808 & 245 & 0. & . 0 & . 0 \\
\hline 1. & 0130 & 46 & 542. & 2.2 & 3.6 & * & 1 & 0450 & 146 & 0. & . 0 & . 0 & * & 1 & 0810 & 246 & 0. & . 0 & . 0 \\
\hline 1 & 0132 & 47 & 518. & 2.1 & 3.6 & * & 1 & 0452 & 147 & 0. & . 0 & . 0 & * & 1 & 0812 & 247 & 0. & . 0 & . 0 \\
\hline 1 & 0134 & 48 & 497. & 2.1 & 3.5 & * & 1 & 0454 & 148 & 0. & . 0 & . 0 & * & 1 & 0814 & 248 & 0. & . 0 & . 0 \\
\hline 1 & 0136 & 49 & 476. & 2.0 & 3.4 & * & 1 & 0456 & 149 & 0. & . 0 & . 0 & * & 1 & 0816 & 249 & 0. & . 0 & . 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 0138 & 50 & 457. & 2.0 & 3.3 & 1 & 0458 & 150 & 0. & . 0 & . 0 & * & 1 & 0818 & 250 & 0. & . 0 & . 0 \\
\hline 1 & 0140 & 51 & 440. & 1.9 & 3.3 & 1 & 0500 & 151 & 0. & . 0 & . 0 & * & 1 & 0820 & 251 & 0. & . 0 & . 0 \\
\hline 1 & 0142 & 52 & 424. & 1.9 & 3.2 & & 0502 & 152 & 0. & . 0 & . 0 & * & 1 & 0822 & 252 & 0. & . 0 & . 0 \\
\hline 1 & 0144 & 53 & 408. & 1.8 & 3.2 & 1 & 0504 & 153 & 0. & . 0 & . 0 & * & 1 & 0824 & 253 & 0. & . 0 & . 0 \\
\hline 1 & 0146 & 54 & 395. & 1.8 & 3.1 & 1 & 0506 & 154 & 0. & . 0 & . 0 & * & 1 & 0826 & 254 & 0. & . 0 & . 0 \\
\hline 1 & 0148 & 55 & 381. & 1.7 & 3.0 & 1 & 0508 & 155 & 0. & . 0 & . 0 & * & 1 & 0828 & 255 & 0. & . 0 & . 0 \\
\hline 1 & 0150 & 56 & 368. & 1.7 & 3.0 & 1 & 0510 & 156 & 0. & . 0 & . 0 & * & 1 & 0830 & 256 & 0. & . 0 & . 0 \\
\hline 1 & 0152 & 57 & 355. & 1.6 & 2.9 & 1 & 0512 & 157 & 0. & . 0 & . 0 & * & 1 & 0832 & 257 & 0. & . 0 & . 0 \\
\hline 1 & 0154 & 58 & 343. & 1.6 & 2.9 * & 1 & 0514 & 158 & 0. & . 0 & . 0 & * & 1 & 0834 & 258 & 0. & . 0 & . 0 \\
\hline 1 & 0156 & 59 & 331. & 1.5 & 2.8 * & 1 & 0516 & 159 & 0. & . 0 & . 0 & * & 1 & 0836 & 259 & 0. & . 0 & . 0 \\
\hline 1 & 0158 & 60 & 320. & 1.5 & 2.8 & 1 & 0518 & 160 & 0. & . 0 & . 0 & * & 1 & 0838 & 260 & 0. & . 0 & . 0 \\
\hline 1 & 0200 & 61 & 309. & 1.5 & 2.7 * & 1 & 0520 & 161 & 0. & . 0 & . 0 & * & 1 & 0840 & 261 & 0. & . 0 & . 0 \\
\hline 1 & 0202 & 62 & 299. & 1.4 & 2.7 & 1 & 0522 & 162 & 0. & . 0 & . 0 & * & 1 & 0842 & 262 & 0. & . 0 & . 0 \\
\hline 1 & 0204 & 63 & 289. & 1.4 & 2.6 * & 1 & 0524 & 163 & 0. & . 0 & . 0 & * & 1 & 0844 & 263 & 0. & . 0 & . 0 \\
\hline 1 & 0206 & 64 & 279. & 1.4 & 2.6 * & 1 & 0526 & 164 & 0. & . 0 & . 0 & * & 1 & 0846 & 264 & 0. & . 0 & . 0 \\
\hline 1 & 0208 & 65 & 270. & 1.3 & 2.5 * & 1 & 0528 & 165 & 0. & . 0 & . 0 & * & 1 & 0848 & 265 & 0. & . 0 & . 0 \\
\hline 1 & 0210 & 66 & 262. & 1.3 & 2.5 * & 1 & 0530 & 166 & 0. & . 0 & . 0 & * & 1 & 0850 & 266 & 0. & . 0 & . 0 \\
\hline 1 & 0212 & 67 & 253. & 1.3 & 2.4 * & 1 & 0532 & 167 & 0. & . 0 & . 0 & * & 1 & 0852 & 267 & 0. & . 0 & . 0 \\
\hline 1 & 0214 & 68 & 246. & 1.3 & 2.4 * & 1 & 0534 & 168 & 0. & . 0 & . 0 & * & 1 & 0854 & 268 & 0. & . 0 & . 0 \\
\hline 1 & 0216 & 69 & 238. & 1.2 & 2.4 & 1 & 0536 & 169 & 0. & . 0 & . 0 & * & 1 & 0856 & 269 & 0. & . 0 & . 0 \\
\hline 1 & 0218 & 70 & 231. & 1.2 & 2.3 & 1 & 0538 & 170 & 0. & . 0 & . 0 & * & 1 & 0858 & 270 & 0. & . 0 & . 0 \\
\hline 1 & 0220 & 71 & 225. & 1.2 & 2.3 * & 1 & 0540 & 171 & 0. & . 0 & . 0 & * & 1 & 0900 & 271 & 0. & . 0 & . 0 \\
\hline 1 & 0222 & 72 & 219. & 1.1 & 2.3 * & 1 & 0542 & 172 & 0. & . 0 & . 0 & * & 1 & 0902 & 272 & 0. & . 0 & . 0 \\
\hline 1 & 0224 & 73 & 213. & 1.1 & 2.2 * & 1 & 0544 & 173 & 0. & . 0 & . 0 & * & 1 & 0904 & 273 & 0. & . 0 & . 0 \\
\hline 1 & 0226 & 74 & 207. & 1.1 & 2.2 * & 1 & 0546 & 174 & 0. & . 0 & . 0 & * & 1 & 0906 & 274 & 0. & . 0 & . 0 \\
\hline 1 & 0228 & 75 & 202. & 1.1 & 2.2 * & 1 & 0548 & 175 & 0. & . 0 & . 0 & * & 1 & 0908 & 275 & 0. & . 0 & . 0 \\
\hline 1 & 0230 & 76 & 197. & 1.1 & 2.1 * & 1 & 0550 & 176 & 0. & . 0 & . 0 & * & 1 & 0910 & 276 & 0. & . 0 & . 0 \\
\hline 1 & 0232 & 77 & 192. & 1.0 & 2.1 * & 1 & 0552 & 177 & 0. & . 0 & . 0 & * & 1 & 0912 & 277 & 0. & . 0 & . 0 \\
\hline 1 & 0234 & 78 & 187. & 1.0 & 2.1 * & 1 & 0554 & 178 & 0. & . 0 & . 0 & * & 1 & 0914 & 278 & 0. & . 0 & . 0 \\
\hline 1 & 0236 & 79 & 183. & 1.0 & 2.0 * & 1 & 0556 & 179 & 0. & . 0 & . 0 & * & 1 & 0916 & 279 & 0. & . 0 & . 0 \\
\hline 1 & 0238 & 80 & 178. & 1.0 & 2.0 * & 1 & 0558 & 180 & 0. & . 0 & . 0 & * & 1 & 0918 & 280 & 0. & . 0 & . 0 \\
\hline 1 & 0240 & 81 & 173. & 1.0 & 2.0 * & 1 & 0600 & 181 & 0. & . 0 & . 0 & * & 1 & 0920 & 281 & 0. & . 0 & . 0 \\
\hline 1 & 0242 & 82 & 169. & 1.0 & 1.9 * & & 0602 & 182 & 0. & . 0 & . 0 & * & 1 & 0922 & 282 & 0. & . 0 & . 0 \\
\hline 1 & 0244 & 83 & 165. & . 9 & 1.9 * & 1 & 0604 & 183 & 0. & . 0 & . 0 & * & 1 & 0924 & 283 & 0. & . 0 & . 0 \\
\hline 1 & 0246 & 84 & 161. & . 9 & 1.9 * & 1 & 0606 & 184 & 0. & . 0 & . 0 & * & 1 & 0926 & 284 & 0. & . 0 & . 0 \\
\hline 1 & 0248 & 85 & 157. & . 9 & 1.9 * & 1 & 0608 & 185 & 0. & . 0 & . 0 & * & 1 & 0928 & 285 & 0. & . 0 & . 0 \\
\hline 1 & 0250 & 86 & 154. & . 9 & 1.8 * & 1 & 0610 & 186 & 0. & . 0 & . 0 & * & 1 & 0930 & 286 & 0. & . 0 & . 0 \\
\hline 1 & 0252 & 87 & 151. & . 9 & 1.8 * & 1 & 0612 & 187 & 0. & . 0 & . 0 & * & 1 & 0932 & 287 & 0. & . 0 & . 0 \\
\hline 1 & 0254 & 88 & 147. & . 9 & 1.8 * & 1 & 0614 & 188 & 0. & . 0 & . 0 & * & 1 & 0934 & 288 & 0. & . 0 & . 0 \\
\hline 1 & 0256 & 89 & 144. & . 9 & 1.8 * & 1 & 0616 & 189 & 0. & . 0 & . 0 & * & 1 & 0936 & 289 & 0. & . 0 & . 0 \\
\hline 1 & 0258 & 90 & 141. & . 8 & 1.8 * & 1 & 0618 & 190 & 0. & . 0 & . 0 & * & 1 & 0938 & 290 & 0. & . 0 & . 0 \\
\hline 1 & 0300 & 91 & 138. & . 8 & 1.7 * & 1 & 0620 & 191 & 0. & . 0 & . 0 & * & 1 & 0940 & 291 & 0. & . 0 & . 0 \\
\hline 1 & 0302 & 92 & 135. & . 8 & 1.7 * & 1 & 0622 & 192 & 0. & . 0 & . 0 & * & 1 & 0942 & 292 & 0. & . 0 & . 0 \\
\hline 1 & 0304 & 93 & 132. & . 8 & 1.7 * & 1 & 0624 & 193 & 0. & . 0 & . 0 & * & 1 & 0944 & 293 & 0. & . 0 & . 0 \\
\hline 1 & 0306 & 94 & 128. & . 8 & 1.7 * & 1 & 0626 & 194 & 0. & . 0 & . 0 & * & 1 & 0946 & 294 & 0. & . 0 & . 0 \\
\hline 1 & 0308 & 95 & 123. & . 8 & 1.6 * & 1 & 0628 & 195 & 0. & . 0 & . 0 & * & 1 & 0948 & 295 & 0. & . 0 & . 0 \\
\hline 1 & 0310 & 96 & 118. & . 7 & 1.6 * & 1 & 0630 & 196 & 0. & . 0 & . 0 & * & 1 & 0950 & 296 & 0. & . 0 & . 0 \\
\hline 1 & 0312 & 97 & 112. & . 7 & 1.6 * & & 0632 & 197 & 0. & . 0 & . 0 & * & 1 & 0952 & 297 & 0. & . 0 & . 0 \\
\hline 1 & 0314 & 98 & 106. & . 7 & 1.5 & 1 & 0634 & 198 & 0. & . 0 & . 0 & * & 1 & 0954 & 298 & 0. & . 0 & . 0 \\
\hline 1 & 0316 & 99 & 100. & . 7 & 1.5 * & & 0636 & 199 & 0. & . 0 & . 0 & * & 1 & 0956 & 299 & 0. & . 0 & . 0 \\
\hline 1. & 0318 & 100 & 94. & . 6 & 1.4 * & & 0638 & 200 & 0. & . 0 & . 0 & * & 1 & 0958 & 300 & 0. & . 0 & . 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PEAK FLOW & TTME & & \multicolumn{4}{|c|}{MAXIMUM AVERAGE FLOW} \\
\hline & & & 6-HR & 24-HR & 72-HR & 9.97-HR \\
\hline + (CFS) & (HR) & & & & & \\
\hline \multicolumn{7}{|c|}{(CES)} \\
\hline \multirow[t]{3}{*}{+ 2364.} & . 57 & & 346. & 208. & 208. & 208. \\
\hline & & (INCHES) & 1.987 & 1.987 & 1.987 & 1.987 \\
\hline & & (\(\mathrm{AC}-\mathrm{FT}\)) & 172. & 172. & 172. & 172. \\
\hline \multirow[t]{2}{*}{PEAK STORAGE} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{TIME}} & \multirow[b]{2}{*}{6-HR} & \multicolumn{3}{|l|}{MAXIMUM AVERAGE STIORAGE} \\
\hline & & & & 24-HR & 72-HR & \multirow[t]{2}{*}{9.97-HR} \\
\hline + (AC-FT) & \multicolumn{2}{|l|}{(HR)} & & & & \\
\hline 6. & . 57 & & 1. & 1. & 1. & 1. \\
\hline \multirow[t]{2}{*}{FEAK STAGE} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{TIME}} & & \multicolumn{3}{|l|}{MAXIMUM AVERAGE STAGE} \\
\hline & & & 6-HR & \(24-\mathrm{HR}\) & 72-HR & 9.97-HR \\
\hline + (FEET) & \multicolumn{2}{|l|}{(HR)} & & & & \\
\hline 7.16 & . 57 & & 1.93 & 1.16 & 1.16 & 1.16 \\
\hline & & CUMULAT & AREA \(=\) & 1.62 SQ MI & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DA MON & HRMN & ORD & RAIN & LOSS & EXCESS & COMP Q & * & DA & MON & HRMN & ORD & RAIN & LOSS & EXCESS & COMP Q \\
\hline 1 & 0000 & 1 & . 00 & . 00 & . 00 & 0. & * & 1 & & 0500 & 151 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0002 & 2 & . 13 & . 11 & . 01 & 0. & * & 1 & & 0502 & 152 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0004 & 3 & . 13 & . 11 & . 01 & 1. & * & 1 & & 0504 & 153 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0006 & 4 & . 19 & . 16 & . 03 & 4. & * & 1 & & 0506 & 154 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0008 & 5 & . 25 & . 17 & . 08 & 10. & * & 1 & & 0508 & 155 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0010 & 6 & . 25 & . 13 & . 12 & 21. & * & 1 & & 0510 & 156 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0012 & 7 & . 20 & . 09 & . 12 & 40. & * & 1 & & 0512 & 157 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0014 & 8 & . 20 & . 07 & . 13 & 68. & * & 1 & & 0514 & 158 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0016 & 9 & . 16 & . 05 & . 11 & 101. & * & 1 & & 0516 & 159 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0018 & 10 & . 11 & . 03 & . 08 & 133. & * & 1 & & 0518 & 160 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0020 & 11 & . 11 & . 03 & . 08 & 159. & * & 1 & & 0520 & 161 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0022 & 12 & . 08 & . 02 & . 06 & 175. & * & 1 & & 0522 & 162 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0024 & 13 & . 08 & . 02 & . 06 & 181. & * & 1 & & 0524 & 163 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0026 & 14 & . 07 & . 02 & . 05 & 179. & * & 1 & & 0526 & 164 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0028 & 15 & . 06 & . 01 & . 05 & 172. & * & 1 & & 0528 & 165 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0030 & 16 & . 06 & . 01 & . 05 & 161. & * & 1 & & 0530 & 166 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0032 & 17 & . 05 & . 01 & . 04 & 151. & * & 1 & & 0532 & 167 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0034 & 18 & . 05 & . 01 & . 04 & 140. & * & 1 & & 0534 & 168 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0036 & 19 & . 05 & . 01 & . 04 & 131. & * & 1 & & 0536 & 169 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0038 & 20 & . 04 & . 01 & . 03 & 121. & * & 1 & & 0538 & 170 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0040 & 21 & . 04 & . 01 & . 03 & 113. & * & 1 & & 0540 & 171 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0042 & 22 & . 04 & . 01 & . 03 & 105. & * & 1 & & 0542 & 172 & . 00 & . 00 & . 00 & 0. \\
\hline 1. & 0044 & 23 & . 04 & . 01 & . 03 & 98. & * & 1 & & 0544 & 173 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0046 & 24 & . 03 & . 01 & . 03 & 92. & * & 1 & & 0546 & 174 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0048 & 25 & . 03 & . 01 & . 03 & 86. & * & 1 & & 0548 & 175 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0050 & 26 & . 03 & . 01 & . 03 & 80. & * & 1 & & 0550 & 176 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0052 & 27 & . 03 & . 00 & . 02 & 75. & * & 1 & & 0552 & 177 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0054 & 28 & . 03 & . 00 & . 02 & 70. & * & 1 & & 0554 & 178 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0056 & 29 & . 02 & . 00 & . 02 & 66. & * & 1 & & 0556 & 179 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0058 & 30 & . 02 & . 00 & . 02 & 62. & * & 1 & & 0558 & 180 & . 00 & . 00 & . 00 & 0. \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 0342 & 112 & . 00 & . 00 & . 00 & 0. & * & 1 & 0842 & 262 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0344 & 113 & . 00 & . 00 & . 00 & 0. & * & 1 & 0844 & 263 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0346 & 114 & . 00 & . 00 & . 00 & 0. & * & 1 & 0846 & 264 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0348 & 115 & . 00 & . 00 & . 00 & 0. & * & 1 & 0848 & 265 & .00 & . 00 & . 00 & 0. \\
\hline 1 & 0350 & 116 & .00 & . 00 & . 00 & 0. & * & 1 & 0850 & 266 & . 00 & . 00 & . 00 & 0 . \\
\hline 1 & 0352 & 117 & . 00 & . 00 & . 00 & 0. & * & 1 & 0852 & 267 & . 00 & . 00 & . 00 & 0 . \\
\hline 1 & 0354 & 118 & . 00 & . 00 & . 00 & 0. & * & 1 & 0854 & 268 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0356 & 119 & . 00 & . 00 & . 00 & 0. & * & 1 & 0856 & 269 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0358 & 120 & . 00 & . 00 & . 00 & 0. & * & 1 & 0858 & 270 & . 00 & .00 & . 00 & 0. \\
\hline 1 & 0400 & 121 & . 00 & . 00 & . 00 & 0 . & * & 1 & 0900 & 271 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0402 & 122 & . 00 & . 00 & . 00 & 0 . & * & 1 & 0902 & 272 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0404 & 123 & . 00 & . 00 & . 00 & 0 . & * & 1 & 0904 & 273 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0406 & 124 & . 00 & . 00 & . 00 & 0 . & * & 1 & 0906 & 274 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0408 & 125 & . 00 & . 00 & . 00 & 0 . & * & 1 & 0908 & 275 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0410 & 126 & . 00 & . 00 & . 00 & 0 . & * & 1 & 0910 & 276 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0412 & 127 & .00 & . 00 & . 00 & 0 . & * & 1 & 0912 & 277 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0414 & 128 & .00 & . 00 & . 00 & 0 . & * & 1 & 0914 & 278 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0416 & 129 & . 00 & .00 & . 00 & 0 . & * & 1 & 0916 & 279 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0418 & 130 & . 00 & . 00 & . 00 & 0 . & * & 1 & 0918 & 280 & . 00 & . 00 & . 00 & 0 \\
\hline 1 & 0420 & 131 & .00 & . 00 & . 00 & 0. & * & 1 & 0920 & 281 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0422 & 132 & . 00 & . 00 & . 00 & 0 . & * & 1 & 0922 & 282 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0424 & 133 & . 00 & . 00 & . 00 & 0. & * & 1 & 0924 & 283 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0426 & 134 & . 00 & . 00 & . 00 & 0 . & * & 1 & 0926 & 284 & .00 & . 00 & . 00 & 0. \\
\hline 1 & 0428 & 135 & . 00 & . 00 & . 00 & 0. & * & 1 & 0928 & 285 & . 00 & . 00 & .00 & 0. \\
\hline 1 & 0430 & 136 & . 00 & .00 & . 00 & 0. & * & 1 & 0930 & 286 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0432 & 137 & . 00 & . 00 & . 00 & 0. & * & 1 & 0932 & 287 & .00 & . 00 & . 00 & 0 . \\
\hline 1 & 0434 & 138 & . 00 & . 00 & . 00 & 0. & * & 1 & 0934 & 288 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0436 & 139 & . 00 & . 00 & . 00 & 0 . & * & 1 & 0936 & 289 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0438 & 140 & . 00 & .00 & . 00 & 0. & * & 1 & 0938 & 290 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0440 & 141 & . 00 & . 00 & . 00 & 0. & * & 1 & 0940 & 291 & . 00 & . 00 & .00 & 0. \\
\hline 1 & 0442 & 142 & . 00 & . 00 & . 00 & 0. & * & 1 & 0942 & 292 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0444 & 143 & . 00 & . 00 & . 00 & 0 . & * & 1 & 0944 & 293 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0446 & 144 & . 00 & . 00 & . 00 & 0. & * & 1 & 0946 & 294 & . 00 & .00 & . 00 & 0. \\
\hline 1 & 0448 & 145 & . 00 & . 00 & . 00 & 0. & * & 1 & 0948 & 295 & . 00 & . 00 & .00 & 0. \\
\hline 1 & 0450 & 146 & . 00 & . 00 & . 00 & 0. & * & 1 & 0950 & 296 & . 00 & . 00 & .00 & 0. \\
\hline 1 & 0452 & 147 & . 00 & . 00 & . 00 & 0. & * & 1 & 0952 & 297 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0454 & 148 & . 00 & . 00 & . 00 & 0. & * & 1 & 0954 & 298 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0456 & 149 & . 00 & . 00 & . 00 & 0 . & * & 1 & 0956 & 299 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0458 & 150 & . 00 & . 00 & . 00 & 0 . & * & 1 & 0958 & 300 & . 00 & . 00 & . 00 & 0. \\
\hline
\end{tabular}

\(\mapsto+\)
0000 000
-
\[
0 \quad \begin{aligned}
& * \\
& 0
\end{aligned}
\]
0.
0.
2.
\begin{tabular}{ll}
\(*\) & \\
\(*\) & 1 \\
\(*\) & 1 \\
\(*\) & 1
\end{tabular}
\begin{tabular}{ll}
& \\
0230 & 76 \\
0232 & 77 \\
0234 & 78
\end{tabular}
\begin{tabular}{lll}
& \(*\) & \\
208. & \(*\) & 1 \\
203. & \(*\) & 1 \\
198. & \(*\) & 1 \\
193. & \(*\) & 1
\end{tabular}
\begin{tabular}{lll}
& \(*\) & \\
0. & \(*\) & 1 \\
0. & \(*\) & 1
\end{tabular}
\begin{tabular}{llll}
0500 & 151 & 0. & \(*\) \\
0502 & 152 & 0. & \(*\) \\
0504 & 153 & 0. & \(*\) \\
0506 & 154 & 0. & \(*\)
\end{tabular}

\footnotetext{
\(\therefore \circ\)

}
\begin{tabular}{lrrrrrr}
(CFS) & (HR) & & & & \\
2504. & & (CFS) & 369. & 222. & 222. & 222. \\
& .57 & (INCHES) & 1.981 & 1.981 & 1.981 & 1.981 \\
& & (AC-FT) & 183. & 183. & 183. & 183. \\
& & & & &
\end{tabular}

\footnotetext{
*** WARNING *** MODIEIED PULS ROUTING MAY BE NUMERICALLY UNSTABLE FOR OUTFLOWS BETWEEN \(\quad\) OOOO.
} THE ROUTED HYDROGRAPH SHOULD BE EXAMINED FOR OSCILLATIONS OR OUTELOWS GREATER THAN PEAK INELOWS. THIS CAN BE CORRECTED BY DECREASING THE TIME INTERVAL OR INCREASING STORAGE (USE A LONGER REACH.)
```

HYDROGRAPH AT STATION RES-91

```

DA MON HRMN ORD OUTELOW STORAGE STAGE * DA MON HRMN ORD OUTFLOW STORAGE STAGE * DA MON HRMN ORD OUTFLOW STORAGE STAGE
\begin{tabular}{|c|}
\hline 1 & 0000 & 1 & 0. & . 0 & 3047.3 & * & 1 & 0320 & & 89. & . 0 & 3047.9 & * & 1 & 0640 & 201 & 0. & . 0 & 3047.3 \\
\hline 1 & 0002 & 2 & -0. & . 0 & 3047.3 & * & 1 & 0322 & 102 & 82. & . 0 & 3047.9 & * & 1 & 0642 & 202 & 0. & . 0 & 3047.3 \\
\hline 1 & 0004 & 3 & 2. & . 0 & 3047.3 & * & 1 & 0324 & 103 & 76. & . 0 & 3047.8 & * & 1 & 0544 & 203 & 0. & . 0 & 3047.3 \\
\hline 1 & 0006 & 4 & 5. & . 0 & 3047.3 & * & 1 & 0326 & 104 & 69. & . 0 & 3047.8 & * & 1 & 0646 & 204 & 0. & . 0 & 3047.3 \\
\hline 1 & 0008 & 5 & 14. & . 0 & 3047.4 & * & 1 & 0328 & 105 & 64. & . 0 & 3047.7 & * & 1 & 0648 & 205 & 0. & . 0 & 3047.3 \\
\hline 1 & 0010 & 6 & 34. & . 0 & 3047.5 & * & 1 & 0330 & 106 & 59. & . 0 & 3047.7 & * & 1 & 0650 & 206 & 0. & . 0 & 3047.3 \\
\hline 1 & 0012 & 7 & 75. & . 0 & 3047.8 & * & 1 & 0332 & 107 & 55. & . 0 & 3047.7 & * & 1 & 0652 & 207 & 0. & . 0 & 3047.3 \\
\hline 1 & 0014 & 8 & 167. & . 0 & 3048.4 & * & 1 & 0334 & 108 & 50. & . 0 & 3047.6 & * & 1 & 0654 & 208 & 0. & . 0 & 3047.3 \\
\hline 1 & 0016 & 9 & 313. & . 0 & 3049.4 & * & 1 & 0336 & 109 & 47. & . 0 & 3047.6 & * & 1 & 0656 & 209 & 0. & . 0 & 3047.3 \\
\hline 1 & 0018 & 10 & 505. & . 0 & 3050.7 & * & 1 & 0338 & 110 & 43. & . 0 & 3047.6 & * & 1 & 0658 & 210 & 0. & . 0 & 3047.3 \\
\hline 1 & 0020 & 11 & 748. & . 1 & 3051.6 & * & 1 & 0340 & 111 & 40. & . 0 & 3047.6 & * & 1 & 0700 & 211 & 0. & . 0 & 3047.3 \\
\hline 1 & 0022 & 12 & 1049. & . 1 & 3052.8 & * & 1 & 0342 & 112 & 36. & . 0 & 3047.5 & & 1 & 0702 & 212 & 0. & . 0 & 3047.3 \\
\hline 1 & 0024 & 13 & 1390. & . 2 & 3054.0 & * & 1 & 0344 & 113 & 33. & . 0 & 3047.5 & * & 1 & 0704 & 213 & 0. & . 0 & 3047.3 \\
\hline
\end{tabular}

196 KK
\begin{tabular}{|c|c|}
\hline * & \\
\hline * & 9708 \\
\hline * & \\
\hline
\end{tabular}
MODIFIED PULS CHANNEL ROUTING
FROM NODE FR-9 TO FR-8 (MAIN CHANNEL)

HYDROGRAPH ROUTING DATA

\begin{tabular}{crr}
0000 & 1 & 0. \\
0002 & 2 & 0. \\
0004 & 3 & 0. \\
0006 & 4 & 0. \\
0008 & 5 & 0. \\
0010 & 6 & 1. \\
0012 & 7 & 3. \\
0014 & 8 & 8. \\
0016 & 9 & 23. \\
0018 & 10 & 77. \\
0020 & 11 & 197. \\
0022 & 12 & 429. \\
0024 & 13 & 847. \\
0026 & 14 & 1427. \\
0028 & 15 & 2113. \\
0030 & 16 & 2840. \\
0032 & 17 & 3517. \\
0034 & 18 & 4060. \\
0036 & 19 & 4432. \\
0038 & 20 & 4629. \\
0040 & 21 & 4681. \\
0042 & 22 & 4620. \\
0044 & 23 & 4485. \\
0046 & 24 & 4300. \\
0048 & 25 & 4088. \\
0050 & 26 & 3871. \\
0052 & 27 & 3657. \\
0054 & 28 & 3448. \\
0056 & 29 & 3252. \\
0058 & 30 & 3062. \\
0100 & 31 & 2881. \\
0102 & 32 & 2715. \\
0104 & 33 & 2557. \\
0106 & 34 & 2411. \\
0108 & 35 & 2279. \\
0110 & 36 & 2153. \\
0112 & 37 & 2036. \\
0114 & 38 & 1931. \\
0116 & 39 & 1833. \\
0118 & 40 & 1739. \\
0120 & 41 & 1650. \\
0 & &
\end{tabular}.
\begin{tabular}{|c|c|c|}
\hline . 0 & . 0 & 1 \\
\hline . 0 & . 0 & * \\
\hline . 0 & . 0 & * \\
\hline . 0 & . 0 & * 1 \\
\hline . 0 & . 0 & * 1 \\
\hline . 0 & . 0 & * 1 \\
\hline . 0 & . 1 & * \\
\hline . 1 & . 2 & * 1 \\
\hline . 4 & . 6 & 1 \\
\hline . 9 & 1.2 & * 1 \\
\hline 1.7 & 2.0 & 1 \\
\hline 3.0 & 3.0 & 1 \\
\hline 4.7 & 4.0 & * 1 \\
\hline 6.7 & 5.0 & * 1 \\
\hline 8.9 & 6.0 & 1 \\
\hline 11.0 & 6.8 & * 1 \\
\hline 12.9 & 7.5 & * 1 \\
\hline 14.3 & 7.9 & * 1 \\
\hline 15.3 & 8.3 & * 1 \\
\hline 15.8 & 8.4 & 1 \\
\hline 15.9 & 8.5 & 1 \\
\hline 15.8 & 8.4 & * 1 \\
\hline 15.4 & 8.3 & 1 \\
\hline 15.0 & 8.1 & 1 \\
\hline 14.4 & 8.0 & * 1 \\
\hline 13.8 & 7.8 & 1 \\
\hline 13.3 & 7.6 & * 1 \\
\hline 12.7 & 7.4 & * 1 \\
\hline 12.2 & 7.2 & 1 \\
\hline 11.6 & 7.0 & 1 \\
\hline 11.1 & 6.8 & 1 \\
\hline 10.6 & 6.7 & 1 \\
\hline 10.2 & 6.5 & 1 \\
\hline 9.8 & 6.3 & * 1 \\
\hline 9.4 & 6.2 & * 1 \\
\hline 9.0 & 6.0 & 1 \\
\hline 8.6 & 5.9 & 1 \\
\hline 8.3 & 5.7 & 1 \\
\hline 8.0 & 5.6 & 1 \\
\hline 7.7 & 5.5 & * 1 \\
\hline 7.4 & 5.3 & * 1 \\
\hline
\end{tabular}
\begin{tabular}{lll}
0320 & 101 & 240. \\
0322 & 102 & 228. \\
0324 & 103 & 217. \\
0326 & 104 & 207. \\
0328 & 105 & 195. \\
0330 & 106 & 184. \\
0332 & 107 & 172. \\
0334 & 108 & 161. \\
0336 & 109 & 150. \\
0338 & 110 & 140. \\
0340 & 111 & 130. \\
0342 & 112 & 122. \\
0344 & 113 & 114. \\
0346 & 114 & 106. \\
0348 & 115 & 99. \\
0350 & 116 & 92. \\
0352 & 117 & 85. \\
0354 & 118 & 79. \\
0356 & 119 & 72. \\
0358 & 120 & 67. \\
0400 & 121 & 62. \\
0402 & 122 & 57. \\
0404 & 123 & 54. \\
0406 & 124 & 50. \\
0408 & 125 & 46. \\
0410 & 126 & 43. \\
0412 & 127 & 40. \\
0414 & 128 & 37. \\
0416 & 129 & 34. \\
0418 & 130 & 31. \\
0420 & 131 & 28. \\
0422 & 132 & 26. \\
0424 & 133 & 24. \\
0426 & 134 & 22. \\
0428 & 135 & 20. \\
0430 & 136 & 19. \\
0432 & 137 & 17. \\
0434 & 138 & 17. \\
0436 & 139 & 16. \\
0438 & 140 & 15. \\
0440 & 141 & 14. \\
& &
\end{tabular}
\begin{tabular}{lll}
0640 & 201 \\
0642 & 202 \\
0644 & 203 \\
0646 & 204 \\
0648 & 205 \\
0650 & 206 \\
0652 & 207 \\
0654 & 208 \\
0656 & 209 \\
0658 & 210 \\
0700 & 211 \\
0702 & 212 \\
0704 & 213 \\
0706 & 214 \\
0708 & 215 \\
0710 & 216 \\
0712 & 217 \\
0714 & 218 \\
0716 & 219 \\
0718 & 220 \\
0720 & 221 \\
0722 & 222 \\
0724 & 223 \\
0726 & 224 \\
0728 & 225 \\
0730 & 226 \\
0732 & 227 \\
0734 & 228 \\
0736 & 229 \\
0738 & 230 \\
0740 & 231 \\
0742 & 232 \\
0744 & 233 \\
0746 & 234 \\
0748 & 235 \\
0750 & 236 \\
0752 & 237 \\
0754 & 238 \\
0756 & 239 \\
0758 & 240 \\
0800 & 241
\end{tabular}
000000000000000000900000000000000000000

\footnotetext{
00000000000000000000000009000000000000000
}

\(206 \mathrm{BA} \quad\)\begin{tabular}{cc}
SUBBASIN CHARACTERISTICS \\
TAREA & \(.59 \quad\) SUBBASIN AREA \\
& \\
& \\
&
\end{tabular}

209 UD SCS DIMENSIONLESS UNITGRAPH
ILAG . 19 LAG
UNIT HYDROGRAPH
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{9}{|c|}{UNIT HYDROGRAPH} \\
\hline & \multicolumn{9}{|c|}{31 END-OF-PERIOD ORDINATES} \\
\hline 100. & 296. & 607. & 1002. & 1283. & 1372. & 1344. & 1200. & 1013. & 764. \\
\hline 570. & 437. & 342. & 266. & 200. & 156. & 121. & 93. & 71. & 54. \\
\hline 42. & 33. & 25. & 19. & 15. & 12. & 10. & 7. & 5. & 3. \\
\hline
\end{tabular}
```

HYDROGRAPH AT STATION ER-8

```


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 0324 & 103 & . 00 & . 00 & . 00 & 5 & * & 1 & 0824 & 253 & . 00 & . 00 & . 00 & 0 . \\
\hline 1 & 0326 & 104 & .00 & . 00 & . 00 & 4. & * & 1 & 0826 & 254 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0328 & 105 & . 00 & . 00 & . 00 & 3. & * & 1 & 0828 & 255 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0330 & 106 & . 00 & . 00 & . 00 & 2. & * & 1 & 0830 & 256 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0332 & 107 & . 00 & . 00 & . 00 & 2. & * & 1 & 0832 & 257 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0334 & 108 & . 00 & . 00 & . 00 & 1. & * & 1 & 0834 & 258 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0336 & 109 & . 00 & . 00 & . 00 & 1. & * & 1 & 0836 & 259 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0338 & 110 & .00 & . 00 & . 00 & 1. & * & 1 & 0838 & 260 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0340 & 111 & . 00 & . 00 & . 00 & 1. & * & 1 & 0840 & 261 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0342 & 112 & .00 & .00 & . 00 & 0. & * & 1 & 0842 & 262 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0344 & 113 & . 00 & . 00 & . 00 & 0 . & * & 1 & 0844 & 263 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0346 & 114 & . 00 & . 00 & . 00 & 0 . & * & 1 & 0846 & 264 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0348 & 115 & .00 & . 00 & . 00 & 0. & * & 1 & 0848 & 265 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0350 & 11.6 & . 00 & . 00 & . 00 & 0. & * & 1 & 0850 & 266 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0352 & 117 & .00 & . 00 & . 00 & 0. & * & 1 & 0852 & 267 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0354 & 118 & .00 & . 00 & .00 & 0 . & * & 1 & 0854 & 268 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0356 & 119 & .00 & . 00 & . 00 & 0. & * & 1 & 0856 & 269 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0358 & 120 & .00 & . 00 & . 00 & 0. & * & 1 & 0858 & 270 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0400 & 121 & . 00 & .00 & . 00 & 0. & * & 1 & 0900 & 271 & . 00 & .00 & . 00 & 0. \\
\hline 1 & 0402 & 122 & . 00 & . 00 & . 00 & 0 . & * & 1 & 0902 & 272 & . 00 & .00 & . 00 & 0. \\
\hline 1 & 0404 & 123 & .00 & . 00 & . 00 & 0. & * & 1 & 0904 & 273 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0406 & 124 & .00 & . 00 & . 00 & 0. & * & 1 & 0906 & 274 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0408 & 125 & .00 & . 00 & . 00 & 0. & * & 1 & 0908 & 275 & . 00 & . 00 & . 00 & 0. \\
\hline , & 0410 & 126 & . 00 & . 00 & . 00 & 0. & * & 1 & 0910 & 276 & . 00 & .00 & . 00 & 0. \\
\hline 1 & 0412 & 127 & .00 & . 00 & . 00 & 0. & * & 1 & 0912 & 277 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0414 & 128 & . 00 & . 00 & . 00 & 0. & * & 1 & 0914 & 278 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0416 & 129 & . 00 & . 00 & . 00 & 0. & * & 1 & 0916 & 279 & .00 & .00 & . 00 & 0. \\
\hline 1 & 0418 & 130 & . 00 & .00 & . 00 & 0. & * & 1 & 0918 & 280 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0420 & 131 & .00 & . 00 & . 00 & 0. & * & 1 & 0920 & 281 & . 00 & . 00 & .00 & 0. \\
\hline 1 & 0422 & 132 & .00 & . 00 & . 00 & 0. & * & 1 & 0922 & 282 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0424 & 133 & . 00 & . 00 & . 00 & 0. & * & 1 & 0924 & 283 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0426 & 134 & . 00 & .00 & . 00 & 0 . & * & 1 & 0926 & 284 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0428 & 135 & . 00 & . 00 & . 00 & 0. & * & 1 & 0928 & 285 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0430 & 136 & .00 & .00 & . 00 & 0. & * & 1 & 0930 & 286 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0432 & 137 & .00 & . 00 & . 00 & 0. & * & 1 & 0932 & 287 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0434 & 138 & .00 & . 00 & . 00 & 0. & * & 1 & 0934 & 288 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0436 & 139 & . 00 & . 00 & . 00 & 0. & * & 1 & 0936 & 289 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0438 & 140 & .00 & . 00 & . 00 & 0. & * & 1 & 0938 & 290 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0440 & 141 & . 00 & . 00 & . 00 & 0. & * & 1 & 0940 & 291 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0442 & 142 & . 00 & . 00 & . 00 & 0. & * & 1 & 0942 & 292 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0444 & 143 & . 00 & . 00 & . 00 & 0. & * & 1 & 0944 & 293 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0446 & 144 & .00 & . 00 & .00 & 0. & * & 1 & 0946 & 294 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0448 & 145 & . 00 & . 00 & . 00 & 0. & * & 1 & 0948 & 295 & . 00 & .00 & . 00 & 0. \\
\hline 1 & 0450 & 146 & .00 & . 00 & . 00 & 0. & * & 1 & 0950 & 296 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0452 & 147 & . 00 & . 00 & . 00 & 0. & * & 1 & 0952 & 297 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0454 & 148 & .00 & .00 & . 00 & 0. & * & 1 & 0954 & 298 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0456 & 149 & . 00 & . 00 & . 00 & 0. & * & 1 & 0956 & 299 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0458 & 150 & .00 & .00 & .00 & 0 . & * & 1 & 0958 & 300 & . 00 & . 00 & . 00 & 0. \\
\hline
\end{tabular}

TOTAL RAINFALL \(=2.98\), TOTAL LOSS \(=1.13\), TOTAL EXCESS \(=1.85\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PEAK FLOW & TIME & & \multicolumn{4}{|c|}{MAXIMUM AVERAGE FLOW} \\
\hline & & & 6-HR & 24-HR & 72-HR & 9.97-HR \\
\hline + (CFS) & (HR) & & & & & \\
\hline \multicolumn{7}{|c|}{(CFS)} \\
\hline + 887. & . 43 & & 118. & 71. & 71. & 71. \\
\hline & & (INCHES) & 1.853 & 1.853 & 1.853 & 1.853 \\
\hline & & (\(\mathrm{AC}-\mathrm{FT}\)) & 59. & 59. & 59. & 59. \\
\hline & & CUMULAT & AREA \(=\) & 9 SQ & & \\
\hline
\end{tabular}

SUBBASIN RUNOFE DATA
\(218 \mathrm{BA} \quad\) SUBBASIN CHARACTERISTICS

PRECIPITATION DATA
219 PB STORM 2.98 BASIN TOTAL PRECIPITATION
20 PI INCREMENTAL PRECIPITATION PATTERN
\begin{tabular}{llllllllll}
.04 & .04 & .06 & .08 & .08 & .07 & .07 & .05 & .03 & .03 \\
.02 & .02 & .02 & .02 & .02 & .02 & .02 & .01 & .01 & .01 \\
.01 & .01 & .01 & .01 & .01 & .01 & .01 & .01 & .01 & .01 \\
.01 & .01 & .01 & .01 & .01 & .01 & .01 & .00 & .00 \\
.00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 \\
.00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 \\
.00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 \\
.00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 \\
.00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00
\end{tabular}

220 LS
SCS LOSS RATE
\begin{tabular}{rrl}
STRTL & .35 & INITIAL ABSTRACTION \\
CRVNBR & 85.00 & CURVE NUMBER \\
RTIMP & 15.00 & PERCENT IMPERVIOUS AREA
\end{tabular}

221 UD SCS DIMENSIONLESS UNITGRAPH
TLAG . 17 LAG

 HYDROGRAPH AT STATION 82 TO81

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 0414 & 128 & 2. & . 0 & . 1 * & 1 & 0734 & 228 \\
\hline 0416 & 129 & 1. & . 0 & . 1 * & 1 & 0736 & 229 \\
\hline 0418 & 130 & 1. & . 0 & . 0 * & 1 & 0738 & 230 \\
\hline 0420 & 131 & 1. & . 0 & . 0 * & 1 & 0740 & 231 \\
\hline 0422 & 132 & 1. & . 0 & . 0 * & 1 & 0742 & 232 \\
\hline 0424 & 133 & 1. & . 0 & . 0 * & 1 & 0744 & 233 \\
\hline 0426 & 134 & 1. & . 0 & . 0 * & 1 & 0746 & 234 \\
\hline 0428 & 135 & 1. & . 0 & . 0 * & 1 & 0748 & 235 \\
\hline 0430 & 136 & 1. & . 0 & . 0 * & 1 & 0750 & 236 \\
\hline 0432 & 137 & 0. & . 0 & . 0 * & 1 & 0752 & 237 \\
\hline 0434 & 138 & 0. & . 0 & . 0 * & 1 & 0754 & 238 \\
\hline 0436 & 139 & 0. & . 0 & . 0 * & 1 & 0756 & 239 \\
\hline 0438 & 140 & 0. & . 0 & . 0 * & 1 & 0758 & 240 \\
\hline 0440 & 141 & 0. & . 0 & . 0 * & 1 & 0800 & 241 \\
\hline 0442 & 142 & 0. & . 0 & . 0 * & 1 & 0802 & 242 \\
\hline 0444 & 143 & 0. & . 0 & . 0 * & 1 & 0804 & 243 \\
\hline 0446 & 144 & 0. & . 0 & . 0 * & 1 & 0806 & 244 \\
\hline 0448 & 145 & 0. & . 0 & . 0 * & 1 & 0808 & 245 \\
\hline 0450 & 146 & 0. & . 0 & . 0 * & 1 & 0810 & 246 \\
\hline 0452 & 147 & 0. & . 0 & . 0 * & 1 & 0812 & 247 \\
\hline 0454 & 148 & 0. & . 0 & . 0 * & 1 & 0814 & 248 \\
\hline 0456 & 149 & 0. & . 0 & . 0 * & 1 & 0816 & 249 \\
\hline 0458 & 150 & 0. & . 0 & . 0 * & 1 & 0818 & 250 \\
\hline 0500 & 151 & 0. & . 0 & . 0 * & 1 & 0820 & 251 \\
\hline 0502 & 152 & 0. & . 0 & . 0 * & 1 & 0822 & 252 \\
\hline 0504 & 153 & 0. & . 0 & . 0 * & 1 & 0824 & 253 \\
\hline 0506 & 154 & 0. & . 0 & . 0 * & 1 & 0826 & 254 \\
\hline 0508 & 155 & 0. & . 0 & . 0 * & 1 & 0828 & 255 \\
\hline 0510 & 156 & 0. & . 0 & . 0 * & 1 & 0830 & 256 \\
\hline 0512 & 157 & 0. & . 0 & . 0 * & 1 & 0832 & 257 \\
\hline 0514 & 158 & 0. & . 0 & . 0 * & 1 & 0834 & 258 \\
\hline 0516 & 159 & 0. & . 0 & . 0 * & 1 & 0836 & 259 \\
\hline 0518 & 160 & 0. & . 0 & . 0 * & 1 & 0838 & 260 \\
\hline 0520 & 161 & 0. & . 0 & . 0 * & 1 & 0840 & 261 \\
\hline 0522 & 162 & 0. & . 0 & . 0 * & 1 & 0842 & 262 \\
\hline 0524 & 163 & 0. & . 0 & . 0 * & 1 & 0844 & 263 \\
\hline 0526 & 164 & 0. & . 0 & . 0 * & 1 & 0846 & 264 \\
\hline 0528 & 165 & 0. & . 0 & . 0 * & 1 & 0848 & 265 \\
\hline 0530 & 166 & 0. & . 0 & . 0 * & 1 & 0850 & 266 \\
\hline 0532 & 167 & 0. & . 0 & . 0 * & 1 & 0852 & 267 \\
\hline 0534 & 168 & 0. & . 0 & . 0 * & 1 & 0854 & 268 \\
\hline 0536 & 169 & 0. & . 0 & . 0 * & 1 & 0856 & 269 \\
\hline 0538 & 170 & 0 . & . 0 & . 0 * & 1 & 0858 & 270 \\
\hline 0540 & 171 & 0. & . 0 & . 0 * & 1 & 0900 & 271 \\
\hline 0542 & 172 & 0. & . 0 & . 0 * & 1 & 0902 & 272 \\
\hline 0544 & 173 & 0. & . 0 & . 0 * & 1 & 0904 & 273 \\
\hline 0546 & 174 & 0. & . 0 & . 0 * & 1 & 0906 & 274 \\
\hline 0548 & 175 & 0 . & . 0 & . 0 * & 1 & 0908 & 275 \\
\hline 0550 & 1.76 & 0 . & . 0 & . 0 * & 1 & 0910 & 276 \\
\hline 0552 & 177 & 0. & . 0 & . 0 * & 1 & 0912 & 277 \\
\hline 0554 & 178 & 0. & . 0 & . 0 * & 1 & 0914 & 278 \\
\hline 0556 & 179 & 0. & . 0 & . 0 * & 1 & 0916 & 279 \\
\hline 0558 & 180 & 0 . & . 0 & . 0 * & 1 & 0918 & 280 \\
\hline 0600 & 181 & 0 . & . 0 & . 0 * & 1 & 0920 & 281 \\
\hline 0602 & 182 & 0. & . 0 & . 0 * & 1 & 0922 & 282 \\
\hline 0604 & 183 & 0 . & . 0 & . 0 * & 1 & 0924 & 283 \\
\hline 0606 & 184 & 0 . & . 0 & . 0 * & 1 & 0926 & 284 \\
\hline 0608 & 185 & 0. & . 0 & . 0 * & 1 & 0928 & 285 \\
\hline 0610 & 186 & 0 . & . 0 & . 0 * & 1 & 0930 & 286 \\
\hline 0612 & 187 & 0. & . 0 & . 0 * & 1 & 0932 & 287 \\
\hline 0614 & 188 & 0. & . 0 & . 0 * & 1 & 0934 & 288 \\
\hline 0616 & 189 & 0. & . 0 & . 0 * & 1 & 0936 & 289 \\
\hline 0618 & 190 & 0. & . 0 & . 0 * & 1 & 0938 & 290 \\
\hline 0620 & 191 & 0. & . 0 & . 0 * & 1 & 0940 & 291 \\
\hline 0622 & 192 & 0 . & . 0 & . 0 * & 1 & 0942 & 292 \\
\hline 0624 & 193 & 0. & . 0 & . 0 * & 1 & 0944 & 293 \\
\hline 0626 & 194 & 0. & . 0 & . 0 * & 1 & 0946 & 294 \\
\hline 0628 & 195 & 0. & . 0 & . 0 * & 1 & 0948 & 295 \\
\hline 0630 & 196 & 0. & . 0 & . 0 * & 1 & 0950 & 296 \\
\hline 0632 & 197 & 0. & . 0 & . 0 * & 1 & 0952 & 297 \\
\hline 0634 & 198 & 0 . & . 0 & . 0 * & 1 & 0954 & 298 \\
\hline 0636 & 199 & 0. & . 0 & . 0 * & 1 & 0956 & 299 \\
\hline 0638 & 200 & 0. & . 0 & . 0 * & 1 & 0958 & 300 \\
\hline
\end{tabular}

\footnotetext{
0.
0.
0.
0.
o
}

\section*{HYDROGRAPH AT STATION ER-81}

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{888888888988} \\
\hline \multicolumn{2}{|l|}{} \\
\hline & \\
\hline & \\
\hline & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline & \\
\hline & * \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{} \\
\hline & \\
\hline & \\
\hline & 为 \\
\hline
\end{tabular}

TOTAL RAINFALL \(=2.98\), TOTAL LOSS \(=1.13\), TOTAL EXCESS \(=1.85\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{PEAK ELOW}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{TIME}} & \multicolumn{4}{|c|}{MAXIMUM AVERAGE ELOW} \\
\hline & & & & 6-HR & 24-HR & 72-HR & 9.97-HR \\
\hline + & (CES) & (HR) & & & & & \\
\hline \multicolumn{8}{|c|}{(CFS)} \\
\hline + & 430. & . 50 & & 62. & 38. & 38. & 38. \\
\hline & & & (INCHES) & 1.853 & 1.853 & 1.853 & 1.853 \\
\hline & & & (\(\mathrm{AC}-\mathrm{FT}\)) & 31. & 31. & 31. & 31. \\
\hline \multicolumn{8}{|c|}{CUMULATIVE AREA \(=\quad .31 \mathrm{SQ} \mathrm{MI}\)} \\
\hline
\end{tabular}

239 HC HYDROGRAPH COMBINATION ICOMP NUMBER OE HYDROGRAPHS TO COMBINE

HYDROGRAPH AT STATION CO-81
SUM OF 2 HYDROGRAPHS
\begin{tabular}{|c|}
\hline & & & & * & & & & & * & & & & & * & & & & & \\
\hline DA MON & HRMN & ORD & ELOW & * & DA MON & HRMN & ORD & FLOW & * & DA MON & HRMN & ORD & ELOW & * & DA & MON & HRMN & ORD & FLOW \\
\hline & & & & * & & & & & * & & & & & * & & & & & \\
\hline 1 & 0000 & 1 & 0. & * & 1 & 0230 & 76 & 68. & * & 1 & 0500 & 151 & 0. & * & 1. & & 0730 & 226 & 0. \\
\hline 1 & 0002 & 2 & 1. & * & 1 & 0232 & 77 & 67. & * & 1 & 0502 & 152 & 0 . & * & 1 & & 0732 & 227 & 0. \\
\hline 1 & 0004 & 3 & 3. & * & 1 & 0234 & 78 & 65. & * & 1 & 0504 & 153 & 0. & * & 1 & & 0734 & 228 & 0. \\
\hline 1 & 0006 & 4 & 8. & * & 1 & 0236 & 79 & 63. & * & 1 & 0506 & 154 & 0. & * & 1 & & 0736 & 229 & 0. \\
\hline 1 & 0008 & 5 & 19. & * & 1 & 0238 & 80 & 62. & * & 1 & 0508 & 155 & 0. & * & 1 & & 0738 & 230 & 0. \\
\hline 1 & 0010 & 6 & 39. & * & 1 & 0240 & 81 & 60. & * & 1 & 0510 & 156 & 0. & * & 1 & & 0740 & 231 & 0. \\
\hline 1 & 0012 & 7 & 70. & * & 1 & 0242 & 82 & 59. & * & 1 & 0512 & 157 & 0. & * & 1 & & 0742 & 232 & 0. \\
\hline 1 & 0014 & 8 & 114. & * & 1 & 0244 & 83 & 57. & * & 1 & 0514 & 158 & 0. & * & 1 & & 0744 & 233 & 0. \\
\hline 1 & 0016 & 9 & 173. & * & 1 & 0246 & 84 & 56. & * & 1 & 0516 & 159 & 0. & * & 1 & & 0746 & 234 & 0. \\
\hline 1 & 0018 & 10 & 248. & * & 1 & 0248 & 85 & 54. & * & 1 & 0518 & 160 & 0 . & * & 1 & & 0748 & 235 & 0. \\
\hline 1 & 0020 & 11 & 343. & * & 1 & 0250 & 86 & 53. & * & 1 & 0520 & 161 & 0. & * & 1 & & 0750 & 236 & 0. \\
\hline 1 & 0022 & 12 & 456. & * & 1 & 0252 & 87 & 52. & * & 1 & 0522 & 162 & 0 . & * & 1 & & 0752 & 237 & 0. \\
\hline 1 & 0024 & 13 & 574. & * & 1 & 0254 & 88 & 51. & * & 1 & 0524 & 163 & 0. & * & 1 & & 0754 & 238 & 0. \\
\hline 1 & 0026 & 14 & 682. & * & 1 & 0256 & 89 & 49. & * & 1 & 0526 & 164 & 0 . & * & 1 & & 0756 & 239 & 0. \\
\hline 1 & 0028 & 15 & 771. & * & 1 & 0258 & 90 & 48. & * & 1 & 0528 & 165 & 0. & * & 1 & & 0758 & 240 & 0. \\
\hline 1 & 0030 & 16 & 827. & * & 1 & 0300 & 91 & 47. & * & 1 & 0530 & 166 & 0. & * & 1 & & 0800 & 241 & 0. \\
\hline 1 & 0032 & 17 & 852. & * & 1 & 0302 & 92 & 46. & * & 1 & 0532 & 167 & 0. & * & 1 & & 0802 & 242 & 0. \\
\hline 1 & 0034 & 18 & 845. & * & 1 & 0304 & 93 & 45. & * & 1 & 0534 & 168 & 0. & * & 1 & & 0804 & 243 & 0. \\
\hline 1 & 0036 & 19 & 818. & * & 1 & 0306 & 94 & 43. & * & 1 & 0536 & 169 & 0. & * & 1 & & 0806 & 244 & 0. \\
\hline 1 & 0038 & 20 & 780. & * & 1 & 0308 & 95 & 41. & * & 1 & 0538 & 170 & 0. & * & 1 & & 0808 & 245 & 0. \\
\hline 1 & 0040 & 21 & 740. & * & 1 & 0310 & 96 & 39. & * & 1 & 0540 & 171 & 0. & * & 1 & & 0810 & 246 & 0. \\
\hline 1 & 0042 & 22 & 702. & * & 1 & 0312 & 97 & 36. & * & 1 & 0542 & 172 & 0. & * & 1 & & 0812 & 247 & 0. \\
\hline 1 & 0044 & 23 & 665. & * & 1 & 0314 & 98 & 33. & * & 1 & 0544 & 173 & 0. & * & 1 & & 0814 & 248 & 0. \\
\hline 1 & 0046 & 24 & 627. & * & 1 & 0316 & 99 & 30. & * & 1 & 0546 & 174 & 0. & * & 1 & & 0816 & 249 & 0. \\
\hline 1 & 0048 & 25 & 590. & * & 1 & 0318 & 100 & 27. & * & 1 & 0548 & 175 & 0. & * & 1 & & 0818 & 250 & 0. \\
\hline 1 & 0050 & 26 & 554. & * & 1 & 0320 & 101 & 24. & * & 1 & 0550 & 176 & 0. & * & 1 & & 0820 & 251 & 0. \\
\hline 1 & 0052 & 27 & 520. & * & 1 & 0322 & 102 & 22. & * & 1 & 0552 & 177 & 0. & * & 1 & & 0822 & 252 & 0. \\
\hline 1 & 0054 & 28 & 488. & * & 1 & 0324 & 103 & 19. & \(\star\) & 1 & 0554 & 178 & 0. & * & 1 & & 0824 & 253 & 0. \\
\hline 1 & 0056 & 29 & 460. & * & 1 & 0326 & 104 & 18. & * & 1 & 0556 & 179 & 0. & * & 1 & & 0826 & 254 & 0. \\
\hline 1 & 0058 & 30 & 433. & * & 1 & 0328 & 105 & 16. & * & 1 & 0558 & 180 & 0. & * & 1 & & 0828 & 255 & 0. \\
\hline 1 & 0100 & 31 & 408. & * & 1 & 0330 & 106 & 15. & * & 1 & 0600 & 181 & 0. & * & 1 & & 0830 & 256 & 0. \\
\hline 1 & 0102 & 32 & 384. & * & 1 & 0332 & 107 & 14. & * & 1 & 0602 & 182 & 0. & * & 1 & & 0832 & 257 & 0. \\
\hline 1 & 0104 & 33 & 362. & * & 1 & 0334 & 108 & 13. & * & 1 & 0604 & 183 & 0. & * & 1 & & 0834 & 258 & 0. \\
\hline 1 & 0106 & 34 & 341. & * & 1 & 0336 & 109 & 12. & * & 1 & 0606 & 184 & 0 . & * & 1 & & 0836 & 259 & 0. \\
\hline 1 & 0108 & 35 & 322. & * & 1 & 0338 & 110 & 11. & * & 1 & 0608 & 185 & 0. & * & 1 & & 0838 & 260 & 0. \\
\hline 1 & 0110 & 36 & 306. & * & 1 & 0340 & 111 & 10. & \(\star\) & 1 & 0610 & 186 & 0. & * & 1 & & 0840 & 261 & 0. \\
\hline 1 & 0112 & 37 & 290. & * & 1 & 0342 & 112 & 9. & * & 1 & 0612 & 187 & 0. & * & 1 & & 0842 & 262 & 0. \\
\hline 1 & 0114 & 38 & 275. & * & 1 & 0344 & 113 & 9. & * & 1 & 0614 & 188 & 0. & * & 1 & & 0844 & 263 & 0. \\
\hline 1 & 0116 & 39 & 261. & * & 1 & 0346 & 114 & 8. & * & 1 & 0616 & 189 & 0. & * & 1 & & 0846 & 264 & 0. \\
\hline 1 & 0118 & 40 & 248. & * & 1 & 0348 & 115 & 7. & * & 1 & 0618 & 190 & 0. & * & 1 & & 0848 & 265 & 0. \\
\hline 1 & 0120 & 41 & 236. & * & 1 & 0350 & 116 & 6. & * & 1 & 0620 & 191 & 0. & * & 1 & & 0850 & 266 & 0. \\
\hline 1 & 0122 & 42 & 224. & * & 1 & 0352 & 117 & 6. & * & 1 & 0622 & 192 & 0. & * & 1 & & 0852 & 267 & 0. \\
\hline 1 & 0124 & 43 & 213. & * & 1 & 0354 & 118 & 5. & * & 1 & 0624 & 193 & 0. & * & 1 & & 0854 & 268 & 0. \\
\hline 1 & 0126 & 44 & 203. & * & 1 & 0356 & 119 & 5. & * & 1 & 0626 & 194 & 0. & * & 1 & & 0856 & 269 & 0. \\
\hline 1 & 0128 & 45 & 194. & * & 1 & 0358 & 120 & 4. & * & 1 & 0628 & 195 & 0. & * & 1. & & 0858 & 270 & 0. \\
\hline 1 & 0130 & 46 & 186. & * & 1 & 0400 & 121 & 4. & * & 1 & 0630 & 196 & 0. & * & 1 & & 0900 & 271 & 0. \\
\hline 1 & 0132 & 47 & 178. & * & 1 & 0402 & 122 & 3. & * & 1 & 0632 & 197. & 0. & * & 1 & & 0902 & 272 & 0. \\
\hline 1 & 0134 & 48 & 171. & * & 1 & 0404 & 123 & 3. & * & 1 & 0634 & 198 & 0. & * & 1 & & 0904 & 273 & 0. \\
\hline 1 & 0136 & 49 & 165. & * & 1 & 0406 & 124 & 3. & * & 1 & 0636 & 199 & 0. & * & 1 & & 0906 & 274 & 0. \\
\hline 1 & 0138 & 50 & 158. & * & 1 & 0408 & 125 & 2. & * & 1 & 0638 & 200 & 0. & * & 1 & & 0908 & 275 & 0. \\
\hline 1 & 0140 & 51 & 152. & * & 1 & 0410 & 126 & 2. & * & 1 & 0640 & 201 & 0. & * & 1 & & 0910 & 276 & 0. \\
\hline 1 & 0142 & 52 & 146. & * & 1 & 0412 & 127 & 2. & * & 1 & 0642 & 202 & 0. & * & 1 & & 0912 & 277 & 0 . \\
\hline 1 & 0144 & 53 & 141. & * & 1 & 0414 & 128 & 2. & * & 1 & 0644 & 203 & 0. & * & 1 & & 0914 & 278 & 0. \\
\hline 1 & 0146 & 54 & 135. & * & 1 & 0416 & 129 & 1. & * & 1 & 0646 & 204 & 0. & * & 1 & & 0916 & 279 & 0. \\
\hline 1 & 0148 & 55 & 130. & * & 1 & 0418 & 130 & 1. & * & 1 & 0648 & 205 & 0. & * & 1 & & 0918 & 280 & 0. \\
\hline 1 & 0150 & 56 & 125. & * & 1 & 0420 & 131 & 1. & * & 1 & 0650 & 206 & 0. & * & 1 & & 0920 & 281 & 0. \\
\hline 1 & 0152 & 57 & 121. & * & 1 & 0422 & 132 & 1. & * & 1 & 0652 & 207 & 0. & * & 1 & & 0922 & 282 & 0. \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 0042 & 22 & 5885. & * & 1 & 0312 & 97 & 337. & * & 1 & 0542 & 172 & 1. & * & 1 & 0812 & 247 & 0. \\
\hline 1 & 0044 & 23 & 5675. & * & 1 & 0314 & 98 & 321. & * & 1 & 0544 & 173 & 1 & * & 1 & 0814 & 248 & 0. \\
\hline 1 & 0046 & 24 & 5418. & * & 1 & 0316 & 99 & 304. & * & 1 & 0546 & 174 & 1. & * & 1 & 0816 & 249 & 0. \\
\hline 1 & 0048 & 25 & 5136. & * & 1 & 0318 & 100 & 288. & * & 1 & 0548 & 175 & 1. & * & 1 & 0818 & 250 & 0. \\
\hline 1 & 0050 & 26 & 4854. & * & 1 & 0320 & 101 & 272. & * & 1 & 0550 & 176 & 1. & * & 1 & 0820 & 251 & 0. \\
\hline 1 & 0052 & 27 & 4578. & * & 1 & 0322 & 102 & 256. & * & 1 & 0552 & 177 & 1. & * & 1 & 0822 & 252 & 0. \\
\hline 1 & 0054 & 28 & 4314. & * & 1 & 0324 & 103 & 241. & * & 1 & 0554 & 178 & 1. & * & 1 & 0824 & 253 & 0. \\
\hline 1 & 0056 & 29 & 4066. & * & 1 & 0326 & 104 & 228. & * & 1 & 0556 & 179 & 0. & * & 1 & 0826 & 254 & 0. \\
\hline 1 & 0058 & 30 & 3828. & * & 1 & 0328 & 105 & 214. & * & 1 & 0558 & 180 & 0. & * & 1 & 0828 & 255 & 0. \\
\hline 1 & 0100 & 31 & 3602. & * & 1 & 0330 & 106 & 201. & * & 1 & 0600 & 181 & 0. & * & 1 & 0830 & 256 & 0. \\
\hline 1 & 0102 & 32 & 3395. & * & 1 & 0332 & 107 & 188. & * & 1 & 0602 & 182 & 0. & * & 1 & 0832 & 257 & 0. \\
\hline 1 & 0104 & 33 & 3198. & * & 1 & 0334 & 108 & 175. & * & 1 & 0604 & 183 & 0. & * & 1 & 0834 & 258 & 0. \\
\hline 1 & 0106 & 34 & 3015. & * & 1 & 0336 & 109 & 163. & * & 1 & 0606 & 184 & 0 . & * & 1 & 0836 & 259 & 0. \\
\hline 1 & 0108 & 35 & 2850. & * & 1 & 0338 & 110 & 151. & * & 1 & 0608 & 185 & 0. & * & 1 & 0838 & 260 & 0. \\
\hline 1 & 0110 & 36 & 2695. & * & 1 & 0340 & 111 & 141. & * & 1 & 0610 & 186 & 0. & * & 1 & 0840 & 261 & 0. \\
\hline 1 & 0112 & 37 & 2550. & * & 1 & 0342 & 112 & 131. & * & 1 & 0612 & 187 & 0. & * & 1 & 0842 & 262 & 0. \\
\hline 1 & 0114 & 38 & 2418. & * & 1 & 0344 & 113 & 123. & * & 1 & 0614 & 188 & 0. & * & 1 & 0844 & 263 & 0. \\
\hline 1 & 0116 & 39 & 2296. & * & 1 & 0346 & 114 & 114. & * & 1 & 0616 & 189 & 0. & * & 1 & 0846 & 264 & 0. \\
\hline 1 & 0118 & 40 & 2179. & * & 1 & 0348 & 115 & 106. & * & 1 & 0618 & 190 & 0. & * & 1 & 0848 & 265 & 0. \\
\hline 1 & 0120 & 41 & 2069. & * & 1 & 0350 & 116 & 98. & * & 1 & 0620 & 191 & 0. & * & 1 & 0850 & 266 & 0. \\
\hline 1 & 0122 & 42 & 1968. & * & 1 & 0352 & 117 & 91. & * & 1 & 0622 & 192 & 0. & * & 1 & 0852 & 267 & 0. \\
\hline 1 & 0124 & 43 & 1875. & * & 1 & 0354 & 118 & 84. & * & 1 & 0624 & 193 & 0. & * & 1 & 0854 & 268 & 0. \\
\hline 1 & 0126 & 44 & 1787. & * & 1 & 0356 & 119 & 77. & * & 1 & 0626 & 194 & 0. & * & 1 & 0856 & 269 & 0. \\
\hline 1 & 0128 & 45 & 1704. & * & 1 & 0358 & 120 & 71. & * & 1 & 0628 & 195 & 0. & * & 1 & 0858 & 270 & 0. \\
\hline 1 & 0130 & 46 & 1627. & * & 1 & 0400 & 121 & 65. & * & 1 & 0630 & 196 & 0 . & * & 1 & 0900 & 271 & 0. \\
\hline 1 & 0132 & 47 & 1555. & * & 1 & 0402 & 122 & 61. & * & 1 & 0632 & 197 & 0. & * & 1 & 0902 & 272 & 0. \\
\hline 1 & 0134 & 48 & 1490. & * & 1 & 0404 & 123 & 57. & * & 1 & 0634 & 198 & 0. & * & 1 & 0904 & 273 & 0. \\
\hline 1 & 0136 & 49 & 1427. & * & 1 & 0406 & 124 & 53. & * & 1 & 0636 & 199 & 0. & * & 1 & 0906 & 274 & 0. \\
\hline 1 & 0138 & 50 & 1368. & * & 1 & 0408 & 125 & 49. & * & 1 & 0638 & 200 & 0. & * & 1 & 0908 & 275 & 0. \\
\hline 1 & 0140 & 51 & 1314. & * & 1 & 0410 & 126 & 45. & * & 1 & 0640 & 201 & 0. & * & 1 & 0910 & 276 & 0. \\
\hline 1 & 0142 & 52 & 1264. & * & 1 & 0412 & 127 & 42. & * & 1 & 0642 & 202 & 0. & * & 1 & 0912 & 277 & 0. \\
\hline 1 & 0144 & 53 & 1217. & * & 1 & 0414 & 128 & 38. & * & 1 & 0644 & 203 & 0. & * & 1 & 0914 & 278 & 0. \\
\hline 1 & 0146 & 54 & 1173. & * & 1 & 0416 & 129 & 35. & * & 1 & 0646 & 204 & 0. & * & 1 & 0916 & 279 & 0. \\
\hline 1 & 0148 & 55 & 1132. & * & 1 & 0418 & 130 & 32. & * & 1 & 0648 & 205 & 0. & * & 1 & 0918 & 280 & 0. \\
\hline 1 & 0150 & 56 & 1092. & * & 1 & 0420 & 131 & 30. & * & 1 & 0650 & 206 & 0. & * & 1 & 0920 & 281 & 0. \\
\hline 1 & 0152 & 57 & 1053. & * & 1 & 0422 & 132 & 27. & * & 1 & 0652 & 207 & 0. & * & 1 & 0922 & 282 & 0. \\
\hline 1 & 0154 & 58 & 1015. & * & 1 & 0424 & 133 & 25. & * & 1 & 0654 & 208 & 0. & * & 1 & 0924 & 283 & 0. \\
\hline 1 & 0156 & 59 & 979. & * & 1 & 0426 & 134 & 23. & * & 1 & 0656 & 209 & 0. & * & 1 & 0926 & 284 & 0. \\
\hline 1 & 0158 & 60 & 945. & * & 1 & 0428 & 135 & 21. & * & 1 & 0658 & 210 & 0. & * & 1 & 0928 & 285 & 0. \\
\hline 1 & 0200 & 61 & 913. & * & 1 & 0430 & 136 & 19. & * & 1 & 0700 & 211 & 0. & * & 1 & 0930 & 286 & 0. \\
\hline 1 & 0202 & 62 & 883. & * & 1 & 0432 & 137 & 18. & * & 1 & 0702 & 212 & 0. & * & 1 & 0932 & 287 & 0. \\
\hline 1 & 0204 & 63 & 856. & * & 1 & 0434 & 138 & 17. & * & 1 & 0704 & 213 & 0. & * & 1 & 0934 & 288 & 0. \\
\hline 1 & 0206 & 64 & 830. & * & 1 & 0436 & 139 & 16. & * & 1 & 0706 & 214 & 0 . & * & 1 & 0936 & 289 & 0. \\
\hline 1 & 0208 & 65 & 805. & * & 1 & 0438 & 140 & 16. & * & 1 & 0708 & 215 & 0. & * & 1 & 0938 & 290 & 0. \\
\hline 1 & 0210 & 66 & 780. & * & 1 & 0440 & 141 & 15. & * & 1 & 0710 & 216 & 0 . & * & 1 & 0940 & 291 & 0. \\
\hline 1 & 0212 & 67 & 756. & * & 1 & 0442 & 142 & 14. & * & 1 & 0712 & 217 & 0. & * & 1 & 0942 & 292 & 0. \\
\hline 1 & 0214 & 68 & 733. & * & 1 & 0444 & 143 & 13. & * & 1 & 0714 & 218 & 0. & * & 1 & 0944 & 293 & 0. \\
\hline 1 & 0216 & 69 & 711. & * & 1 & 0446 & 144 & 12. & * & 1 & 0716 & 219 & 0. & * & 1 & 0946 & 294 & 0. \\
\hline 1 & 0218 & 70 & 690. & * & 1 & 0448 & 145 & 11. & * & 1 & 0718 & 220 & 0. & * & 1 & 0948 & 295 & 0. \\
\hline 1 & 0220 & 71 & 669. & * & 1 & 0450 & 146 & 11. & * & 1 & 0720 & 221 & 0 . & * & 1 & 0950 & 296 & 0. \\
\hline 1 & 0222 & 72 & 650. & * & 1 & 0452 & 147 & 10. & * & 1 & 0722 & 222 & 0 . & * & 1 & 0952 & 297 & 0. \\
\hline 1 & 0224 & 73 & 631. & * & 1 & 0454 & 148 & 9. & * & 1 & 0724 & 223 & 0 . & * & 1 & 0954 & 298 & 0. \\
\hline 1 & 0226 & 74 & 615. & * & 1 & 0456 & 149 & 9. & * & 1 & 0726 & 224 & 0 . & * & 1 & 0956 & 299 & 0. \\
\hline 1 & 0228 & 75 & 601. & * & 1 & 0458 & 150 & 8. & * & 1 & 0728 & 225 & 0 . & * & 1 & 0958 & 300 & 0. \\
\hline & & & & * & & & & & * & & & & & & & & & \\
\hline
\end{tabular}

\section*{HYDROGRAPH ROUTING DATA}

\(\qquad\)

HYDROGRAPH AT STATION 8TO7

DA MON HRMN ORD OUTFLOW STORAGE
\begin{tabular}{rrrr}
1 & 0000 & 1 & 0. \\
1 & 0002 & 2 & 0. \\
1 & 0004 & 3 & 1. \\
1 & 0006 & 4 & 4. \\
1 & 0008 & 5 & 12. \\
1 & 0010 & 6 & 37. \\
1 & 0012 & 7 & 82. \\
1 & 0014 & 8 & 183. \\
1 & 0016 & 9 & 332. \\
1 & 0018 & 10 & 537. \\
1 & 0020 & 11 & 806. \\
1 & 0022 & 12 & 1158. \\
1 & 0024 & 13 & 1639. \\
1 & 0026 & 14 & 2272. \\
1 & 0028 & 15 & 3016. \\
1 & 0030 & 16 & 3803. \\
1 & 0032 & 17 & 4557. \\
1 & 0034 & 18 & 5193. \\
1 & 0036 & 19 & 5659. \\
1 & 0038 & 20 & 5925. \\
1 & 0040 & 21 & 6015. \\
1 & 0042 & 22 & 5968. \\
1 & 0044 & 23 & 5821. \\
1 & 0046 & 24 & 5606. \\
1 & 0048 & 25 & 5348. \\
1 & 0050 & 26 & 5080. \\
1 & 0052 & 27 & 4806. \\
1 & 0054 & 28 & 4535. \\
1 & 0056 & 29 & 4275. \\
1 & 0058 & 30 & 4038. \\
1 & 0100 & 31 & 3804. \\
1 & 0102 & 32 & 3583. \\
1 & 0104 & 33 & 3376. \\
1 & 0106 & 34 & 3189. \\
1 & 0108 & 35 & 3013. \\
1 & 0110 & 36 & 2847. \\
1 & 0112 & 37 & 2692. \\
1 & 0114 & 38 & 2549. \\
1 & 0116 & 39 & 2424. \\
1 & & & \\
1 & 0.
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline . 0 & 75.0 & * 1 \\
\hline . 0 & 75.0 & * 1 \\
\hline . 0 & 75.1 & * 1 \\
\hline .1 & 75.2 & * 1 \\
\hline . 2 & 75.5 & * 1 \\
\hline . 5 & 75.7 & * 1 \\
\hline . 9 & 76.0 & * 1 \\
\hline 1.5 & 76.3 & * 1 \\
\hline 2.3 & 76.6 & * 1 \\
\hline 3.3 & 77.0 & * 1 \\
\hline 4.4 & 77.4 & * 1 \\
\hline 5.8 & 77.7 & * 1 \\
\hline 7.5 & 78.2 & * 1 \\
\hline 9.4 & 78.6 & * 1 \\
\hline 11.4 & 79.1 & * 1 \\
\hline 13.4 & 79.5 & * 1 \\
\hline 15.1 & 79.9 & * 1 \\
\hline 16.6 & 80.2 & * 1 \\
\hline 17.6 & 80.4 & * 1 \\
\hline 18.2 & 80.5 & * 1 \\
\hline 18.4 & 80.5 & * 1 \\
\hline 18.3 & 80.5 & * 1 \\
\hline 18.0 & 80.4 & * 1 \\
\hline 17.5 & 80.3 & * 1 \\
\hline 16.9 & 80.2 & * 1 \\
\hline 16.3 & 80.1 & * 1 \\
\hline 15.7 & 80.0 & * 1 \\
\hline 15.1 & 79.9 & * 1 \\
\hline 14.5 & 79.7 & * 1 \\
\hline 13.9 & 79.6 & * 1 \\
\hline 13.4 & 79.5 & * 1 \\
\hline 12.8 & 79.4 & * 1 \\
\hline 12.3 & 79.3 & * 1 \\
\hline 11.8 & 79.2 & * 1 \\
\hline 11.4 & 79.1 & * 1 \\
\hline 10.9 & 79.0 & * 1 \\
\hline 10.5 & 78.9 & * 1 \\
\hline 10.2 & 78.8 & * 1 \\
\hline 9.8 & 78.7 & * 1 \\
\hline
\end{tabular}
\(\qquad\)

PEAK FLOW

\section*{time}
\(+\quad\) (CFS)

PEAK Storage time
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & 6-HR & 24-HR & 72-HR & 9.97-HR \\
\hline + & (\(\mathrm{AC}-\mathrm{FT}\)) & (HR) & & & & \\
\hline & 18. & . 67 & 4. & 2. & 2. & 2. \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{PEAK StAge}} & \multirow[t]{2}{*}{TIME} & \multicolumn{4}{|c|}{MAXIMUM AVERAGE STAGE} \\
\hline & & & 6-HR & 24-HR & 72-HR & 9.97-HR \\
\hline + & (FEET) & (HR) & & & & \\
\hline & 80.52 & . 67 & 76.84 & 76.11 & 76.11 & 76.11 \\
\hline
\end{tabular}

CUMULATIVE AREA \(=4.59 \mathrm{SQ}\) MI

HYDROGRAPH AT STATION ER-7

\(\qquad\)
TOTAL RAINEALL \(=2.98\), TOTAL LOSS \(=1.49\), TOTAL EXCESS \(=1.49\)
PEAK FLOW
+ (CFS)
TIME

MAXIMUM AVERAGE E'LOW
\(24-\mathrm{HR}\)
\(72-\mathrm{HR}\)
\(+\quad\) (CFS)
(HR) (CFS)
\(+\quad 180\).
\begin{tabular}{rrrrrr}
& & & & & \\
& (CFS) & & 28. & 17. & 17. \\
& (INCHES) & 1.488 & 1.488 & 1.488 & 1.488 \\
& (AC-FT) & 14. & 14. & 14. & 14.
\end{tabular}

CUMULATIVE AREA \(=\quad .17 \mathrm{SQ} \mathrm{MI}\)

259 KK

COMBINE HYDROGRAPHS
AT NODE FR-7 (MAIN CHANNEL)
UPSTREAM OE CULVERT AT SKYLINE ROAD

\begin{tabular}{llllllllllllllllll}
0216 & 69 & 764. & \(*\) & 1 & 0446 & 144 & 16. & \(*\) & 1 & 0716 & 219 & 0. & \(*\) & 1 & 0946 & 294 & 0. \\
0218 & 70 & 741. & \(*\) & 1 & 0448 & 145 & 15. & \(*\) & 1 & 0718 & 220 & 0. & \(*\) & 1 & 0948 & 295 & 0. \\
0220 & 71 & 719. & \(*\) & 1 & 0450 & 146 & 14. & \(*\) & 1 & 0720 & 221 & 0. & \(*\) & 1 & 0950 & 296 & 0. \\
0222 & 72 & 698. & \(*\) & 1 & 0452 & 147 & 13. & \(*\) & 1 & 0722 & 222 & 0. & \(*\) & 1 & 0952 & 297 & 0. \\
0224 & 73 & 678. & \(*\) & 1 & 0454 & 148 & 12. & \(*\) & 1 & 0724 & 223 & 0. & \(*\) & 1 & 0954 & 298 & 0. \\
0226 & 74 & 658. & \(*\) & 1 & 0456 & 149 & 12. & \(*\) & 1 & 0726 & 224 & 0. & \(*\) & 1 & 0956 & 299 & 0. \\
0228 & 75 & 641. & \(*\) & 1 & 0458 & 150 & 11. & \(*\) & 1 & 0728 & 225 & 0. & \(*\) & 1 & 0958 & 300 & 0.
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PEAK FLOW & \multirow[t]{2}{*}{TIME} & \multicolumn{5}{|r|}{\multirow[t]{2}{*}{6-HR MAXIMUM AVERAGE FLOW}} \\
\hline & & & & 24-HR & 72-HR & 9.97-HR \\
\hline (CES) & (HR) & & & & & \\
\hline \multicolumn{7}{|c|}{(CFS)} \\
\hline \multirow[t]{4}{*}{6162.} & \multirow[t]{4}{*}{. 67} & & 994. & 599. & 599. & 599. \\
\hline & & (INCHES) & 1.940 & 1.940 & 1.940 & 1.940 \\
\hline & & (\(\mathrm{AC}-\mathrm{FT}\)) & 493. & 493. & 493. & 493. \\
\hline & & CUMULAT & AREA \(=\) & 77 SQ & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|c|}{**************} \\
\hline & & * * & & & & & & & & & & \\
\hline \multirow[t]{7}{*}{264} & \multirow[t]{6}{*}{KK} & * RES-7 * & & & & & & & & & & \\
\hline & & * & & & & & & & & & & \\
\hline & & \multicolumn{11}{|l|}{**************} \\
\hline & & \multicolumn{11}{|c|}{\multirow[t]{3}{*}{\begin{tabular}{l}
MODIFIED PULS RESERVOIR ROUTING AT NODE FR-7 \\
SKYLINE DR CULVERT CROSSING
\end{tabular}}} \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & , & \multicolumn{11}{|l|}{HYDROGRAFH ROUTING DATA} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{5}{*}{268 RS}} & \multicolumn{11}{|l|}{STORAGE ROUTING} \\
\hline & & \multicolumn{2}{|l|}{NSTPS} & 1 NUMBER & Subreac & & & & & & & \\
\hline & & \multicolumn{2}{|r|}{ITYP E} & \(V\) TYPE OF & INITIAI C & NDITION & & & & & & \\
\hline & & \multicolumn{2}{|r|}{RSVRIC 2767} & 0 INITIAL & CONDITION & & & & & & & \\
\hline & & \multicolumn{2}{|r|}{X} & 0 WORKING & AND D CO & FICIENT & & & & & & \\
\hline \multirow[t]{2}{*}{269} & \multirow[t]{2}{*}{SA} & \multirow[t]{2}{*}{AREA} & . 0 & . 2 & \multirow[t]{2}{*}{1.2} & \multirow[t]{2}{*}{2.0} & \multirow[t]{2}{*}{2.8} & \multirow[t]{2}{*}{3.5} & \multirow[t]{2}{*}{4.1} & \multirow[t]{2}{*}{4.7} & \multirow[t]{2}{*}{5.4} & \multirow[t]{2}{*}{6.1} \\
\hline & & & 6.7 & 7.8 & & & & & & & & \\
\hline \multirow[t]{2}{*}{271} & \multirow[t]{2}{*}{SE} & \multirow[t]{2}{*}{Elevation} & 2767.30 & 2770.00 & \multirow[t]{2}{*}{2772.00} & \multirow[t]{2}{*}{2774.00} & \multirow[t]{2}{*}{2776.00} & \multirow[t]{2}{*}{2778.00} & \multirow[t]{2}{*}{2780.00} & \multirow[t]{2}{*}{2782.00} & \multirow[t]{2}{*}{2784.00} & \multirow[t]{2}{*}{2786.00} \\
\hline & & & 2788.00 & 2790.00 & & & & & & & & \\
\hline \multirow[t]{2}{*}{273} & \multirow[t]{2}{*}{SQ} & \multirow[t]{2}{*}{DISCHARGE} & 0. & 20. & 40. & 60. & 80. & 100. & 120. & 140. & & \\
\hline & & & 200. & 500. & 1000. & 2000. & 3000. & 4000. & 5000. & 6000. & 7000. & \[
8000 .
\] \\
\hline \multirow[t]{2}{*}{275} & \multirow[t]{2}{*}{SE} & \multirow[t]{2}{*}{ELEVATION} & 2767.30 & 2769.10 & 2770.10 & 2771.00 & 2772.00 & 2773.20 & 2774.60 & 2776.40 & 2778.50 & 2781.00 \\
\hline & & & 2783.70 & 2784.60 & 2785.10 & 2785.70 & 2786.20 & 2786.50 & 2786.90 & 2787.20 & 2787.50 & 2787.70 \\
\hline
\end{tabular} COMPUTED STORAGE-ELEVATION DATA
\begin{tabular}{rrrrrrrrrr}
\\
STORAGE & . 00 & .18 & 1.44 & 4.62 & 9.42 & 15.71 & 23.31 & 32.12 & 42.24 \\
ELEVATION & 2767.30 & 2770.00 & 2772.00 & 2774.00 & 2776.00 & 2778.00 & 2780.00 & 2782.00 & 2784.00 \\
& & & & & & & & & \\
STORAGE & 66.67 & 81.16 & & & & & & \\
ELEVATION & 2788.00 & 2790.00 & & & & & &
\end{tabular}
\begin{tabular}{rrrrrrrrrrr}
\\
STORAGE & .00 & .05 & .18 & .20 & .56 & 1.44 & 3.15 & 4.62 & 5.90 & 9.42 \\
OUTFLOW & .00 & 20.00 & 38.00 & 40.00 & 60.00 & 80.00 & 100.00 & 111.43 & 120.00 & 1355.56 \\
ELEVATION & 2767.30 & 2769.10 & 2770.00 & 2770.10 & 2771.00 & 2772.00 & 2773.20 & 2774.00 & 2774.60 & 2776.00 \\
STORAGE & 10.57 & 15.71 & 17.50 & 23.31 & 27.57 & 32.12 & 40.62 & 42.24 & 45.56 & 48.42 \\
OUTELOW & 140.00 & 155.24 & 160.00 & 172.00 & 180.00 & 187.41 & 200.00 & 300.00 & 500.00 & 1000.00 \\
ELEVATION & 2776.40 & 2778.00 & 2778.50 & 2780.00 & 2781.00 & 2782.00 & 2783.70 & 2784.00 & 2784.60 & 2785.10 \\
STORAGE & 51.97 & 53.80 & 55.03 & 56.91 & 59.44 & 61.38 & 63.34 & 64.67 & 66.67 & 81.16 \\
OUTFLOW & 2000.00 & 2600.10 & 3000.00 & 4000.00 & 5000.00 & 6000.00 & 7000.00 & 8000.00 & 9500.61 & 19503.05 \\
ELEVATION & 2785.70 & 2786.00 & 2786.20 & 2786.50 & 2786.90 & 2787.20 & 2787.50 & 2787.70 & 2788.00 & 2790.00
\end{tabular}

WARNING *** MODIFIED PULS ROUTING MAY BE NUMERICALLY UNSTABLE FOR OUTELOWS BETWEEN 7000. TO 9501

THE ROUTED HYDROGRAPH SHOULD BE EXAMINED FOR OSCILLATIONS OR OUTELOWS GREATER THAN REAK INFLOWS. this can be corrected by decreasing the time interval or increasing storage (use a Longer reach.

DA MON HRMN ORD OUTFLOW STORAGE STAGE * DA MON HRMN ORD OUTFLOW STORAGE STAGE * DA MON HRMN ORD OUTFLOW STORAGE STAGE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 0000 & 1 & 0. & . 0 & 2767.3 * & * 1 & 0320101 & 381. & 43.6 & 2784.2 & * & 1 & 0640 & 201 & 119. & 5.7 & 2774.5 \\
\hline 1 & 0002 & 2 & 0. & . 0 & 2767.3 * & * 1 & 0322102 & 368. & 43.4 & 2784.2 & * & 1 & 0642 & 202 & 116. & 5.4 & 2774.3 \\
\hline 1 & 0004 & 3 & 1. & . 0 & 2767.4 * & * 1 & 0324103 & 354. & 43.1 & 2784.2 & * & 1 & 0644 & 203 & 114. & 5.0 & 2774.2 \\
\hline 1 & 0006 & 4 & 5. & . 0 & 2767.7 * & * 1 & 0326104 & 340. & 42.9 & 2784.1 & * & 1 & 0646 & 204 & 112. & 4.7 & 2774.1 \\
\hline 1 & 0008 & 5 & 12. & . 0 & 2768.4 * & * 1 & 0328105 & 326. & 42.7 & 2784.1 & * & 1 & 0648 & 205 & 110. & 4.4 & 2773.9 \\
\hline 1 & 0010 & 6 & 25. & . 1 & 2769.4 * & * 1 & 0330106 & 312. & 42.4 & 2784.0 & * & 1 & 0650 & 206 & 108. & 4.1 & 2773.7 \\
\hline 1 & 0012 & 7 & 42. & . 2 & 2770.2 * & * 1 & 0332107 & 298. & 42.2 & 2784.0 & * & 1 & 0652 & 207 & 105. & 3.8 & 2773.6 \\
\hline 1 & 0014 & 8 & 60. & . 6 & 2771.0 * & * 1 & 0334108 & 284. & 42.0 & 2784.0 & * & 1 & 0654 & 208 & 103. & 3.5 & 2773.4 \\
\hline 1 & 0016 & 9 & 76. & 1.3 & 2771.8 * & * 1 & 0336109 & 271. & 41.8 & 2783.9 & * & 1 & 0656 & 209 & 101. & 3.3 & 2773.3 \\
\hline 1 & 0018 & 10 & 92. & 2.5 & 2772.7 * & * 1 & 0338110 & 257. & 41.5 & 2783.9 & * & 1 & 0658 & 210 & 98. & 3.0 & 2773.1 \\
\hline 1 & 0020 & 11 & 109. & 4.4 & 2773.9 * & * 1 & 0340111 & 244. & 41.3 & 2783.8 & * & 1 & 0700 & 211 & 95. & 2.7 & 2772.9 \\
\hline 1 & 0022 & 12 & 125. & 7.1 & 2775.1 * & * 1 & 0342112 & 231. & 41.1 & 2783.8 & * & 1 & 0702 & 212 & 92. & 2.5 & 2772.7 \\
\hline 1 & 0024 & 13 & 141. & 11.0 & 2776.5 * & * 1 & 0344113 & 218. & 40.9 & 2783.8 & * & 1 & 0704 & 213 & 89. & 2.2 & 2772.5 \\
\hline 1 & 0026 & 14 & 157. & 16.5 & 2778.2 * & * 1 & 0346114 & 206. & 40.7 & 2783.7 & * & 1 & 0706 & 214 & 86. & 2.0 & 2772.4 \\
\hline 1 & 0028 & 15 & 173. & 23.8 & 2780.1 * & * 1 & 0348115 & 200. & 40.5 & 2783.7 & * & 1 & 0708 & 215 & 84. & 1.7 & 2772.2 \\
\hline 1 & 0030 & 16 & 189. & 33.2 & 2782.2 * & * 1 & 0350116 & 200. & 40.3 & 2783.6 & * & 1 & 0710 & 216 & 81. & 1.5 & 2772.1 \\
\hline 1 & 0032 & 17 & 426. & 44.3 & 2784.4 * & * 1 & 0352117 & 199. & 40.1 & 2783.6 & * & 1 & 0712 & 217 & 77. & 1.3 & 2771.8 \\
\hline 1 & 0034 & 18 & 2661. & 54.0 & 2786.0 * & * 1 & 0354118 & 199. & 39.8 & 2783.5 & * & 1 & 0714 & 218 & 72. & 1.1 & 2771.6 \\
\hline 1 & 0036 & 19 & 4846. & 59.1 & 2786.8 * & * 1 & 0356119 & 198. & 39.5 & 2783.5 & * & 1 & 0716 & 219 & 68. & . 9 & 2771.4 \\
\hline 1 & 0038 & 20 & 5737. & 60.9 & 2787.1 * & * 1 & 0358120 & 198. & 39.2 & 2783.4 & * & 1 & 0718 & 220 & 64. & . 7 & 2771.2 \\
\hline 1 & 0040 & 21 & 6056. & 61.5 & 2787.2 * & * 1 & 0400121 & 197. & 38.9 & 2783.4 & * & 1 & 0720 & 221 & 60. & . 6 & 2771.0 \\
\hline 1 & 0042 & 22 & 6121. & 61.6 & 2787.2 * & * 1 & 0402122 & 197. & 38.6 & 2783.3 & * & 1 & 0722 & 222 & 51. & . 4 & 2770.6 \\
\hline 1 & 0044 & 23 & 6046. & 61.5 & 2787.2 * & * 1 & 0404123 & 196. & 38.2 & 2783.2 & * & 1 & 0724 & 223 & 44. & . 3 & 2770.3 \\
\hline 1 & 0046 & 24 & 5876. & 61.1 & 2787.2 * & * 1 & 0406124 & 196. & 37.9 & 2783.2 & * & 1 & 0726 & 224 & 35. & . 2 & 2769.9 \\
\hline 1 & 0048 & 25 & 5645. & 60.7 & 2787.1 * & * 1 & 0408125 & 195. & 37.5 & 2783.1 & * & 1 & 0728 & 225 & 24. & . 1 & 2769.3 \\
\hline 1 & 0050 & 26 & 5381. & 60.2 & 2787.0 * & * 1 & 0410126 & 195. & 37.2 & 2783.0 & * & 1 & 0730 & 226 & 12. & . 0 & 2768.3 \\
\hline 1 & 0052 & 27 & 5106. & 59.6 & 2786.9 * & * 1 & 0412127 & 194. & 36.8 & 2782.9 & * & 1 & 0732 & 227 & 4. & . 0 & 2767.6 \\
\hline 1 & 0054 & 28 & 4855. & 59.1 & 2786.8 * & * 1 & 0414128 & 194. & 36.4 & 2782.9 & * & 1 & 0734 & 228 & 1. & . 0 & 2767.4 \\
\hline 1 & 0056 & 29 & 4606. & 58.4 & 2786.7 * & * 1 & 0416129 & 193. & 36.0 & 2782.8 & * & 1 & 0736 & 229 & 0. & . 0 & 2767.3 \\
\hline 1 & 0058 & 30 & 4353. & 57.8 & 2786.6 * & * 1 & 0418130 & 193. & 35.6 & 2782.7 & * & 1 & 0738 & 230 & 0. & . 0 & 2767.3 \\
\hline 1 & 0100 & 31 & 4109. & 57.2 & 2786.5 * & * 1 & 0420131 & 192. & 35.2 & 2782.6 & * & 1 & 0740 & 231 & 0. & . 0 & 2767.3 \\
\hline 1 & 0102 & 32 & 3848. & 56.6 & 2786.5 * & * 1 & 0422132 & 191. & 34.8 & 2782.5 & * & 1 & 0742 & 232 & 0. & . 0 & 2767.3 \\
\hline 1 & 0104 & 33 & 3600 . & 56.2 & 2786.4 * & * 1 & 0424133 & 191. & 34.3 & 2782.4 & * & 1 & 0744 & 233 & 0. & . 0 & 2767.3 \\
\hline 1 & 0106 & 34 & 3392. & 55.8 & 2786.3 * & * 1 & 0426134 & 190. & 33.9 & 2782.4 & * & 1 & 0746 & 234 & 0. & . 0 & 2767.3 \\
\hline 1 & 0108 & 35 & 3203. & 55.4 & 2786.3 * & * 1 & 0428135 & 189. & 33.5 & 2782.3 & * & 1 & 0748 & 235 & 0. & . 0 & 2767.3 \\
\hline 1 & 0110 & 36 & 3027. & 55.1 & 2786.2 * & * 1 & 0430136 & 189. & 33.0 & 2782.2 & * & 1 & 0750 & 236 & 0. & . 0 & 2767.3 \\
\hline 1 & 0112 & 37 & 2899. & 54.7 & 2786.1 * & * 1 & 0432137 & 188. & 32.6 & 2782.1 & * & 1 & 0752 & 237 & 0. & . 0 & 2767.3 \\
\hline 1 & 0114 & 38 & 2763. & 54.3 & 2786.1 * & * 1 & 0434138 & 187. & 32.1 & 2782.0 & * & 1 & 0754 & 238 & 0. & . 0 & 2767.3 \\
\hline 1 & 0116 & 39 & 2627. & 53.9 & 2786.0 * & * 1 & 0436139 & 187. & 31.7 & 2781.9 & * & 1 & 0756 & 239 & 0. & . 0 & 2767.3 \\
\hline 1 & 0118 & 40 & 2496. & 53.5 & 2785.9 * & * 1 & 0438140 & 186. & 31.2 & 2781.8 & * & 1 & 0758 & 240 & 0. & . 0 & 2767.3 \\
\hline 1 & 0120 & 41 & 2371. & 53.1 & 2785.9 * & * 1 & 0440141 & 185. & 30.8 & 2781.7 & * & 1 & 0800 & 241 & 0. & . 0 & 2767.3 \\
\hline 1 & 0122 & 42 & 2252. & 52.7 & 2785.8 * & * 1 & 0442142 & 184. & 30.3 & 2781.6 & * & 1 & 0802 & 242 & 0. & . 0 & 2767.3 \\
\hline 1 & 0124 & 43 & 2140. & 52.4 & 2785.8 * & * 1 & 0444143 & 184. & 29.8 & 2781.5 & * & 1 & 0804 & 243 & 0. & . 0 & 2767.3 \\
\hline 1 & 0126 & 44 & 2036. & 52.1 & 2785.7 * & * 1 & 0446144 & 183. & 29.4 & 2781.4 & * & 1 & 0806 & 244 & 0. & . 0 & 2767.3 \\
\hline 1 & 0128 & 45 & 1946. & 51.8 & 2785.7 * & * 1 & 0448145 & 182. & 28.9 & 2781.3 & * & 1 & 0808 & 245 & 0. & . 0 & 2767.3 \\
\hline 1 & 0130 & 46 & 1864. & 51.5 & 2785.6 * & * 1 & 0450146 & 181. & 28.5 & 2781.2 & * & 1 & 0810 & 246 & 0. & . 0 & 2767.3 \\
\hline 1 & 0132 & 47 & 1784. & 51.2 & 2785.6 * & * 1 & 0452147 & 181. & 28.0 & 2781.1 & * & 1 & 0812 & 247 & 0. & . 0 & 2767.3 \\
\hline 1 & 0134 & 48 & 1706. & 50.9 & 2785.5 * & * 1 & 0454148 & 180. & 27.5 & 2781.0 & * & 1 & 0814 & 248 & 0. & . 0 & 2767.3 \\
\hline 1 & 0136 & 49 & 1633. & 50.7 & 2785.5 * & * 1 & 0456149 & 179. & 27.1 & 2780.9 & * & 1 & 0816 & 249 & 0. & . 0 & 2767.3 \\
\hline 1 & 0138 & 50 & 1563. & 50.4 & 2785.4 * & * 1 & 0458150 & 178. & 26.6 & 2780.8 & * & 1 & 0818 & 250 & 0. & . 0 & 2767.3 \\
\hline 1 & 0140 & 51 & 1497. & 50.2 & 2785.4 * & * 1 & 0500151 & 177. & 26.2 & 2780.7 & * & 1 & 0820 & 251 & 0. & . 0 & 2767.3 \\
\hline 1 & 0142 & 52 & 1435. & 50.0 & 2785.4 * & * 1 & 0502152 & \(\pm 76\). & 25.7 & 2780.6 & * & 1 & 0822 & 252 & 0. & . 0 & 2767.3 \\
\hline 1 & 0144 & 53 & 1378. & 49.8 & 2785.3 * & * 1 & 0504153 & 176. & 25.2 & 2780.5 & * & 1 & 0824 & 253 & 0. & .0 & 2767.3 \\
\hline 1 & 0146 & 54 & 1325. & 49.6 & 2785.3 * & * 1 & 0506154 & 175. & 24.8 & 2780.3 & * & 1 & 0826 & 254 & 0. & . 0 & 2767.3 \\
\hline 1 & 0148 & 55 & 1277. & 49.4 & 2785.3 * & * 1 & 0508155 & 174. & 24.3 & 2780.2 & * & 1 & 0828 & 255 & 0. & . 0 & 2767.3 \\
\hline 1 & 0150 & 56 & 1232. & 49.2 & 2785.2 * & * 1 & 0510156 & 173. & 23.9 & 2780.1 & * & 1 & 0830 & 256 & 0. & . 0 & 2767.3 \\
\hline 1 & 0152 & 57 & 1190. & 49.1 & 2785.2 * & * 1 & 0512157 & 172. & 23.4 & 2780.0 & * & 1 & 0832 & 257 & 0. & . 0 & 2767.3 \\
\hline 1 & 0154 & 58 & 1148. & 48.9 & 2785.2 * & * 1 & 0514158 & 171. & 23.0 & 2779.9 & * & 1 & 0834 & 258 & 0. & . 0 & 2767.3 \\
\hline 1 & 0156 & 59 & 1108. & 48.8 & 2785.2 * & * 1 & 0516159 & 170. & 22.5 & 2779.8 & * & 1 & 0836 & 259 & 0. & . 0 & 2767.3 \\
\hline 1 & 0158 & 60 & 1069. & 48.7 & 2785.1 * & * 1 & 0518160 & 169. & 22.1 & 2779.7 & * & 1 & 0838 & 260 & 0. & . 0 & 2767.3 \\
\hline 1 & 0200 & 61 & 1031. & 48.5 & 2785.1 * & * 1 & 0520161 & 169. & 21.6 & 2779.6 & * & 1 & 0840 & 261 & 0. & . 0 & 2767.3 \\
\hline 1 & 0202 & 62 & 997. & 48.4 & 2785.1 * & * 1 & 0522162 & 168. & 21.2 & 2779.4 & * & 1 & 0842 & 262 & 0. & . 0 & 2767.3 \\
\hline 1 & 0204 & 63 & 973. & 48.3 & 2785.1 * & * 1 & 0524163 & 167. & 20.7 & 2779.3 & * & 1 & 0844 & 263 & 0. & . 0 & 2767.3 \\
\hline 1 & 0206 & 64 & 946. & 48.1 & 2785.0 * & * 1 & 0526164 & 166. & 20.3 & 2779.2 & * & 1 & 0846 & 264 & 0. & . 0 & 2767.3 \\
\hline 1 & 0208 & 65 & 919. & 48.0 & 2785.0 * & * 1 & 0528165 & 165. & 19.8 & 2779.1 & * & 1 & 0848 & 265 & 0. & . 0 & 2767.3 \\
\hline 1 & 0210 & 66 & 892. & 47.8 & 2785.0 * & * 1 & 0530166 & 164. & 19.4 & 2779.0 & * & 1 & 0850 & 266 & 0. & . 0 & 2767.3 \\
\hline 1 & 0212 & 67 & 865. & 47.7 & 2785.0 * & * 1 & 0532167 & 163. & 19.0 & 2778.9 & * & 1 & 0852 & 267 & 0. & . 0 & 2767.3 \\
\hline 1 & 0214 & 68 & 840. & 47.5 & 2784.9 * & * 1 & 0534168 & 162. & 18.5 & 2778.8 & * & 1 & 0854 & 268 & 0. & . 0 & 2767.3 \\
\hline 1 & 0216 & 69 & 815. & 47.4 & 2784.9 * & * 1 & 0536169 & 161. & 18.1 & 2778.7 & * & 1 & 0856 & 269 & 0. & . 0 & 2767.3 \\
\hline 1 & 0218 & 70 & 791. & 47.2 & 2784.9 * & * 1 & 0538170 & 160. & 17.6 & 2778.5 & & 1 & 0858 & 270 & 0. & . 0 & 2767.3 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline 1 & 0220 & 71 & 767. & 47.1 & 2784.9 & * & 1 & 0540 & 171 & 159. & 17.2 & 2778.4 & * & 1 & 0900 & 271 & 0. & . 0 & 2767.3 \\
\hline 1 & 0222 & 72 & 745. & 47.0 & 2784.8 & * & I & 0542 & 172 & 158. & 16.8 & 2778.3 & * & 1 & 0902 & 272 & 0. & . 0 & 2767.3 \\
\hline 1 & 0224 & 73 & 723. & 46.8 & 2784.8 & * & 1 & 0544 & 173 & 157. & 16.4 & 2778.2 & * & 1 & 0904 & 273 & 0. & . 0 & 2767.3 \\
\hline 1 & 0226 & 74 & 701. & 46.7 & 2784.8 & * & 1 & 0546 & 174 & 156. & 15.9 & 2778.1 & * & 1 & 0906 & 274 & 0. & . 0 & 2767.3 \\
\hline 1 & 0228 & 75 & 681. & 46.6 & 2784.8 & * & 1 & 0548 & 175 & 155. & 15.5 & 2777.9 & * & 1 & 0908 & 275 & 0. & . 0 & 2767.3 \\
\hline 1 & 0230 & 76 & 663. & 46.5 & 2784.8 & * & 1 & 0550 & 176 & 153. & 15.1 & 2777.8 & * & 1 & 0910 & 276 & 0. & . 0 & 2767.3 \\
\hline 1 & 0232 & 77 & 645. & 46.4 & 2784.7 & * & 1 & 0552 & 177 & 152. & 14.7 & 2777.7 & * & 1 & 0912 & 277 & 0. & . 0 & 2767.3 \\
\hline 1 & 0234 & 78 & 629. & 46.3 & 2784.7 & * & 1 & 0554 & 178 & 151. & 14.3 & 2777.5 & * & 1 & 0914 & 278 & 0. & . 0 & 2767.3 \\
\hline 1 & 0236 & 79 & 613. & 46.2 & 2784.7 & * & 1 & 0556 & 179 & 150. & 13.8 & 2777.4 & * & 1 & 0916 & 279 & 0. & . 0 & 2767.3 \\
\hline 1 & 0238 & 80 & 597. & 46.1 & 2784.7 & * & 1 & 0558 & 180 & 149. & 13.4 & 2777.3 & * & 1 & 0918 & 280 & 0. & . 0 & 2767.3 \\
\hline 1 & 0240 & 81 & 582. & 46.0 & 2784.7 & * & 1 & 0600 & 181 & 147. & 13.0 & 2777.2 & * & 1 & 0920 & 281 & 0. & . 0 & 2767.3 \\
\hline 1 & 0242 & 82 & 568. & 45.9 & 2784.7 & * & 1 & 0602 & 182 & 146. & 12.6 & 2777.0 & * & 1 & 0922 & 282 & 0. & . 0 & 2767.3 \\
\hline 1 & 0244 & 83 & 553. & 45.9 & 2784.7 & * & 1 & 0604 & 183 & 145. & 12.2 & 2776.9 & * & 1 & 0924 & 283 & 0. & . 0 & 2767.3 \\
\hline 1 & 0246 & 84 & 539. & 45.8 & 2784.6 & * & 1 & 0606 & 184 & 144. & 11.8 & 2776.8 & * & 1 & 0926 & 284 & 0. & . 0 & 2767.3 \\
\hline 1 & 0248 & 85 & 526. & 45.7 & 2784.6 & * & 1 & 0608 & 185 & 143. & 11.5 & 2776.7 & * & 1 & 0928 & 285 & 0. & . 0 & 2767.3 \\
\hline 1 & 0250 & 86 & 513. & 45.6 & 2784.6 & * & 1 & 0610 & 186 & 141. & 11.1 & 2776.6 & * & 1 & 0930 & 286 & 0. & . 0 & 2767.3 \\
\hline 1 & 0252 & 87 & 500. & 45.6 & 2784.6 & * & 1 & 0612 & 187 & 140. & 10.7 & 2776.4 & * & 1 & 0932 & 287 & 0. & . 0 & 2767.3 \\
\hline 1 & 0254 & 88 & 495. & 45.5 & 2784.6 & * & 1 & 0614 & 188 & 139. & 10.3 & 2776.3 & * & 1 & 0934 & 288 & 0. & . 0 & 2767.3 \\
\hline 1 & 0256 & 89 & 490. & 45.4 & 2784.6 & * & 1 & 0616 & 189 & 137. & 9.9 & 2776.2 & * & 1 & 0936 & 289 & 0. & . 0 & 2767.3 \\
\hline 1 & 0258 & 90 & 484. & 45.3 & 2784.6 & * & 1 & 0618 & 190 & 136. & 9.5 & 2776.0 & * & 1 & 0938 & 290 & 0. & . 0 & 2767.3 \\
\hline 1 & 0300 & 91 & 477. & 45.2 & 2784.5 & * & 1 & 0620 & 191 & 134. & 9.2 & 2775.9 & * & 1 & 0940 & 291 & 0. & . 0 & 2767.3 \\
\hline 1 & 0302 & 92 & 470. & 45.1 & 2784.5 & * & 1 & 0622 & 192 & 133. & 8.8 & 2775.8 & * & 1 & 0942 & 292 & 0. & . 0 & 2767.3 \\
\hline 1 & 0304 & 93 & 462. & 44.9 & 2784.5 & * & 1 & 0624 & 193 & 131. & 8.4 & 2775.6 & * & 1 & 0944 & 293 & 0. & . 0 & 2767.3 \\
\hline 1 & 0306 & 94 & 454. & 44.8 & 2784.5 & * & 1 & 0626 & 194 & 130. & 8.1 & 2775.5 & * & 1 & 0946 & 294 & 0. & . 0 & 2767.3 \\
\hline 1 & 0308 & 95 & 446. & 44.7 & 2784.4 & * & 1 & 0628 & 195 & 128. & 7.7 & 2775.3 & * & 1 & 0948 & 295 & 0. & . 0 & 2767.3 \\
\hline 1 & 0310 & 96 & 437. & 44.5 & 2784.4 & * & 1 & 0630 & 196 & 126. & 7.4 & 2775.2 & * & 1 & 0950 & 296 & 0. & . 0 & 2767.3 \\
\hline 1 & 0312 & 97 & 427. & 44.4 & 2784.4 & * & 1 & 0632 & 197 & 125. & 7.0 & 2775.0 & * & 1 & 0952 & 297 & 0. & . 0 & 2767.3 \\
\hline 1 & 0314 & 98 & 417. & 44.2 & 2784.4 & * & 1 & 0634 & 198 & 123. & 6.7 & 2774.9 & * & 1 & 0954 & 298 & 0. & . 0 & 2767.3 \\
\hline 1 & 0316 & 99 & 406. & 44.0 & 2784.3 & * & 1 & 0636 & 199 & 122. & 6.3 & 2774.8 & * & 1 & 0956 & 299 & 0. & . 0 & 2767.3 \\
\hline 1 & 0318 & 100 & 394. & 43.8 & 2784.3 & * & 1 & 0638 & 200 & 120. & 6.0 & 2774.6 & * & 1 & 0958 & 300 & 0. & . 0 & 2767.3 \\
\hline
\end{tabular}

277 KK

* 7 TO
*
*

MODIEIED PULS CHANNEL ROUTING FROM NODE FR-7 TO FR-6 (MAIN CHANNEL)

HYDROGRAPH ROUTING DATA
280 RS
SIORAGE ROUTING
\begin{tabular}{rrl}
NSTPS & 2 & NUMBER OF SUBREACHES \\
ITYP & FLOW & TYPE OF INITIAL CONDITION \\
RSVRIC & -1.00 & INITIAL CONDITION \\
X & .00 & WORKING R AND D COEFFICIENT
\end{tabular}

281 RC
NORMAL DEPTH CHANNEL
\begin{tabular}{rrl}
ANL & .060 & LEFT OVERBANK N-VALUE \\
ANCH & .045 & MAIN CHANNEL N-VALUE \\
ANR & .060 & RIGHT OVERBANK N-VALUE \\
RLNTH & 3136. & REACH LENGTH \\
SEL & .0240 & ENERGY SLOPE
\end{tabular}

*** WARNING *** MODIFIED PULS ROUTING MAY BE NUMERICALLY UNSTABLE FOR OUTELOWS BETWEEN 28164. TO 31958. THE ROUTED HYDROGRAPH SHOULD BE EXAMINED FOR OSCILIATIONS OR OUTFLOWS GREATER THAN PEAK INFLOWS this can be corrected by decreasing the time interval or increasing storage (use a longer reach.)
\(\qquad\)

\(\qquad\)

\footnotetext{
HYDROGRAPH AT STATION ER-6
}

TOTAL RAINEALL \(=2.85\), TOTAL LOSS \(=1.51\), TOTAL EXCESS \(=1.34\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PEAK FLOW & TIME & & \multicolumn{4}{|c|}{MAXIMUM AVERAGE FIOW} \\
\hline & & & 6-HR & 24-HR & 72-HR & 9.97-HR \\
\hline (CFS) & (HR) & & & & & \\
\hline \multicolumn{7}{|c|}{(CFS)} \\
\hline 123. & . 50 & & 19. & 12. & 12. & 12. \\
\hline & & (TNCHES) & 1.345 & 1.345 & 1.345 & 1.345 \\
\hline & & (\(\mathrm{AC}-\mathrm{FT}\)) & 10. & 10. & 10. & 10. \\
\hline \multicolumn{7}{|c|}{CUMULATIVE AREA \(=.13\) SQ MI} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DA MON & HRMN & ORD & ELOW & * & DA MON & HRMN & ORD & FLOW & * & DA MON & HRMN & ORD & ELOW & * & DA & MON HRMN & ORD & FLOW \\
\hline 1 & 0000 & 1 & 0. & * & 1 & 0230 & 76 & 741 & * & 1 & 0500 & 151 & & * & 1 & & & \\
\hline 1 & 0002 & 2 & 0. & * & 1 & 0232 & 77 & 719. & * & 1 & 0502 & 152 & 180. & * & 1 & 0732 & 227 & 59. \\
\hline 1 & 0004 & 3 & 1. & * & 1 & 0234 & 78 & 699. & * & 1 & 0504 & 153 & 180. & * & 1 & 0734 & 228 & 47. \\
\hline 1 & 0006 & 4 & 4. & * & 1 & 0236 & 79 & 680. & * & 1 & 0506 & 154 & 179. & * & 1 & 0736 & 229 & 40. \\
\hline 1 & 0008 & 5 & 8. & * & 1 & 0238 & 80 & 662. & * & 1 & 0508 & 155 & 178. & * & 1 & 0738 & 230 & 34 \\
\hline 1 & 0010 & 6 & 16. & * & 1 & 0240 & 81 & 644. & * & 1 & 0510 & 156 & 177. & * & 1 & 0740 & 231 & 28. \\
\hline 1 & 0012 & 7 & 26. & * & 1 & 0242 & 82 & 628. & * & 1 & 0512 & 157 & 176. & * & 1 & 0742 & 232 & 23. \\
\hline 1. & 0014 & 8 & 41. & * & 1 & 0244 & 83 & 612. & * & 1 & 0514 & 158 & 175. & * & 1 & 0744 & 233 & 20. \\
\hline 1 & 0016 & 9 & 60. & * & 1 & 0246 & 84 & 596. & * & 1 & 0516 & 159 & 175. & * & 1 & 0746 & 234 & 16. \\
\hline 1 & 0018 & 10 & 81. & * & 1 & 0248 & 85 & 581. & * & 1 & 0518 & 160 & 174. & * & 1 & 0748 & 235 & 14. \\
\hline 1 & 0020 & 11 & 108. & * & 1 & 0250 & 86 & 566. & * & 1 & 0520 & 161 & 173. & * & 1 & 0750 & 236 & 12. \\
\hline 1 & 0022 & 12 & 134. & * & 1 & 0252 & 87 & 552. & * & 1 & 0522 & 162 & 172. & * & 1 & 0752 & 237 & 10. \\
\hline 1 & 0024 & 13 & 159. & * & 1 & 0254 & 88 & 539. & * & 1 & 0524 & 163 & 171. & * & 1 & 0754 & 238 & 9. \\
\hline 1 & 0026 & 14 & 181. & * & 1 & 0256 & 89 & 527. & * & 1 & 0526 & 164 & 170. & * & 1 & 0756 & 239 & 8. \\
\hline 1 & 0028 & 15 & 201. & * & 1 & 0258 & 90 & 517. & * & 1 & 0528 & 165 & 169. & * & 1 & 0758 & 240 & 8. \\
\hline 1 & 0030 & 16 & 222. & * & 1 & 0300 & 91 & 508. & * & 1 & 0530 & 166 & 168. & * & 1 & 0800 & 241 & 7. \\
\hline 1 & 0032 & 17 & 247. & * & 1 & 0302 & 92 & 500. & * & 1 & 0532 & 167 & 167. & * & 1 & 0802 & 242 & 6. \\
\hline 1 & 0034 & 18 & 376. & * & 1 & 0304 & 93 & 493. & * & 1 & 0534 & 168 & 166. & * & 1 & 0804 & 243 & 5. \\
\hline 1 & 0036 & 19 & 968. & * & 1 & 0306 & 94 & 486. & * & 1 & 0536 & 169 & 166. & * & 1 & 0806 & 244 & 5. \\
\hline 1 & 0038 & 20 & 2329. & * & 1 & 0308 & 95 & 479. & * & 1. & 0538 & 170 & 165. & * & 1 & 0808 & 245 & 4. \\
\hline 1 & 0040 & 21 & 4081. & * & 1 & 0310 & 96 & 472. & * & 1 & 0540 & 171 & 164. & * & 1 & 0810 & 246 & 4. \\
\hline 1 & 0042 & 22 & 5381. & * & 1 & 0312 & 97 & 464. & * & 1 & 0542 & 172 & 163. & * & 1 & 0812 & 247 & 3. \\
\hline 1 & 0044 & 23 & 5924. & * & 1 & 0314 & 98 & 455. & * & 1 & 0544 & 173 & 162. & * & 1 & 0814 & 248 & 3. \\
\hline 1 & 0046 & 24 & 6060. & * & 1 & 0316 & 99 & 446. & * & 1 & 0546 & 174 & 161. & * & 1 & 0816 & 249 & 2. \\
\hline 1 & 0048 & 25 & 5997. & * & 1 & 0318 & 100 & 436. & * & 1 & 0548 & 175 & 160. & * & 1 & 0818 & 250 & 2. \\
\hline 1 & 0050 & 26 & 5827. & * & 1 & 0320 & 101 & 426. & * & 1 & 0550 & 176 & 159. & * & 1 & 0820 & 251 & 2. \\
\hline 1 & 0052 & 27 & 5597. & * & 1 & 0322 & 102 & 415. & * & 1 & 0552 & 177 & 158. & * & 1 & 0822 & 252 & 2. \\
\hline 1 & 0054 & 28 & 5340. & * & 1 & 0324 & 103 & 403. & * & 1 & 0554 & 178 & 157. & * & 1 & 0824 & 253 & 1. \\
\hline 1 & 0056 & 29 & 5080. & * & 1 & 0326 & 104 & 391. & * & 1 & 0556 & 179 & 155. & * & 1 & 0826 & 254 & 1. \\
\hline 1 & 0058 & 30 & 4823. & * & 1 & 0328 & 105 & 378. & * & 1 & 0558 & 180 & 154. & * & 1 & 0828 & 255 & 1. \\
\hline 1 & 0100 & 31 & 4571. & * & 1 & 0330 & 106 & 365. & * & 1 & 0600 & 181 & 153. & * & 1 & 0830 & 256 & 1. \\
\hline 1 & 0102 & 32 & 4335. & * & 1 & 0332 & 107 & 351. & * & 1 & 0602 & 182 & 152. & * & 1 & 0832 & 257 & 1. \\
\hline 1 & 0104 & 33 & 4102. & * & 1 & 0334 & 108 & 338. & * & 1 & 0604 & 183 & 151. & * & 1 & 0834 & 258 & 1. \\
\hline 1 & 0106 & 34 & 3861. & * & 1 & 0336 & 109 & 324. & * & 1 & 0606 & 184 & 149. & * & 1 & 0836 & 259 & 1. \\
\hline 1 & 0108 & 35 & 3632. & * & 1 & 0338 & 110 & 310. & * & 1 & 0608 & 185 & 148. & * & 1 & 0838 & 260 & 1. \\
\hline 1 & 0110 & 36 & 3422. & * & 1 & 0340 & 111 & 296. & * & 1 & 0610 & 186 & 147. & * & 1 & 0840 & 261 & 0. \\
\hline 1 & 0112 & 37 & 3235. & * & 1 & 0342 & 112 & 283. & * & 1 & 0612 & 187 & 146. & * & 1 & 0842 & 262 & 0. \\
\hline 1 & 0114 & 38 & 3085. & * & 1 & 0344 & 113 & 269. & * & 1. & 0614 & 188 & 145. & * & 1 & 0844 & 263 & 0. \\
\hline 1 & 0116 & 39 & 2964. & * & 1 & 0346 & 114 & 256. & * & 1 & 0616 & 189 & 144. & * & 1 & 0846 & 264 & 0. \\
\hline 1. & 0118 & 40 & 2836. & * & 1 & 0348 & 115 & 243. & * & 1 & 0618 & 190 & 142. & * & 1 & 0848 & 265 & 0. \\
\hline 1 & 0120 & 41 & 2705. & * & 1 & 0350 & 116 & 232. & * & 1 & 0620 & 191 & 141. & * & 1 & 0850 & 266 & 0. \\
\hline 1 & 0122 & 42 & 2575. & * & 1 & 0352 & 117 & 223. & * & 1 & 0622 & 192 & 140. & * & 1 & 0852 & 267 & 0. \\
\hline 1 & 0124 & 43 & 2449. & * & 1 & 0354 & 118 & 218. & * & 1 & 0624 & 193 & 138. & * & 1 & 0854 & 268 & 0. \\
\hline 1 & 0126 & 44 & 2328. & * & 1 & 0356 & 119 & 213. & * & 1 & 0626 & 194 & 137. & * & 1 & 0856 & 269 & 0. \\
\hline 1. & 0128 & 45 & 2216. & * & 1 & 0358 & 120 & 209. & * & 1 & 0628 & 195 & 135. & * & 1 & 0858 & 270 & 0. \\
\hline 1 & 0130 & 46 & 2119. & * & 1 & 0400 & 121 & 206. & * & 1 & 0630 & 196 & 134. & * & 1 & 0900 & 271 & 0. \\
\hline 1 & 0132 & 47 & 2028. & * & 1 & 0402 & 122 & 204. & * & 1 & 0632 & 197 & 132. & * & 1 & 0902 & 272 & 0. \\
\hline 1 & 0134 & 48 & 1941. & * & 1 & 0404 & 123 & 202. & * & 1 & 0634 & 198 & 131. & * & 1 & 0904 & 273 & 0. \\
\hline 1 & 0136 & 49 & 1858. & * & 1 & 0406 & 124 & 201. & * & 1 & 0636 & 199 & 129. & * & 1 & 0906 & 274 & 0. \\
\hline 1 & 0138 & 50 & 1778. & * & 1 & 0408 & 125 & 199. & * & 1 & 0638 & 200 & 128. & * & 1 & 0908 & 275 & 0. \\
\hline 1 & 0140 & 51 & 1702. & * & 1 & 0410 & 126 & 198. & * & 1 & 0640 & 201 & 126. & * & 1 & 0910 & 276 & 0. \\
\hline 1 & 0142 & 52 & 1629. & * & 1 & 0412 & 127 & 198. & * & 1 & 0642 & 202 & 125. & * & 1 & 0912 & 277 & 0. \\
\hline 1 & 0144 & 53 & 1561. & * & 1 & 0414 & 128 & 197. & * & 1 & 0644 & 203 & 123. & * & 1 & 0914 & 278 & 0. \\
\hline 1 & 0146 & 54 & 1497. & * & 1 & 0416 & 129 & 196. & * & 1 & 0646 & 204 & 121. & * & 1 & 0916 & 279 & 0. \\
\hline 1 & 0148 & 55 & 1439. & * & 1 & 0418 & 130 & 196. & * & 1 & 0648 & 205 & 119. & * & 1 & 0918 & 280 & 0. \\
\hline 1 & 0150 & 56 & 1389. & * & 1 & 0420 & 131 & 195. & * & 1 & 0650 & 206 & 117. & * & 1 & 0920 & 281 & 0. \\
\hline 1 & 0152 & 57 & 1340. & * & 1 & 0422 & 132 & 194. & * & 1 & 0652 & 207 & 115. & * & 1 & 0922 & 282 & 0. \\
\hline 1 & 0154 & 58 & 1293. & * & 1 & 0424 & 133 & 194. & * & 1 & 0654 & 208 & 113. & * & 1 & 0924 & 283 & 0. \\
\hline 1 & 0156 & 59 & 1247. & * & 1 & 0426 & 134 & 193. & * & 1 & 0656 & 209 & 111. & * & 1 & 0926 & 284 & 0. \\
\hline 1 & 0158 & 60 & 1203. & * & 1 & 0428 & 135 & 192. & * & 1 & 0658 & 210 & 109. & * & 1 & 0928 & 285 & 0. \\
\hline 1 & 0200 & 61 & 1161. & * & 1 & 0430 & 136 & 192. & * & 1 & 0700 & 211 & 107. & * & 1 & 0930 & 286 & 0. \\
\hline 1 & 0202 & 62 & 1121. & * & 1 & 0432 & 137 & 191. & * & 1 & 0702 & 212 & 105. & * & 1 & 0932 & 287 & 0. \\
\hline 1 & 0204 & 63 & 1082. & * & 1 & 0434 & 138 & 191. & * & 1 & 0704 & 213 & 102. & * & 1 & 0934 & 288 & 0. \\
\hline 1 & 0206 & 64 & 1047. & * & 1 & 0436 & 139 & 190. & * & 1 & 0706 & 214 & 99. & * & 1 & 0936 & 289 & 0. \\
\hline 1 & 0208 & 65 & 1016. & * & 1 & 0438 & 140 & 189. & * & 1 & 0708 & 215 & 97. & * & 1 & 0938 & 290 & 0. \\
\hline 1 & 0210 & 66 & 986. & * & 1 & 0440 & 141 & 189. & * & 1 & 0710 & 216 & 94. & * & 1 & 0940 & 291 & 0. \\
\hline 1 & 0212 & 67 & 957. & * & 1 & 0442 & 142 & 188. & * & 1 & 0712 & 217 & 91. & * & 1 & 0942 & 292 & 0. \\
\hline 1 & 0214 & 68 & 929. & * & 1. & 0444 & 143 & 187. & * & 1 & 0714 & 218 & 88. & * & 1 & 0944 & 293 & 0. \\
\hline 1. & 0216 & 69 & 902. & * & 1 & 0446 & 144 & 186. & * & 1 & 0716 & 219 & 85. & * & 1 & 0946 & 294 & 0. \\
\hline 1 & 0218 & 70 & 878. & * & 1 & 0448 & 145 & 186. & * & 1 & 0718 & 220 & 82. & * & 1 & 0948 & 295 & 0. \\
\hline 1 & 0220 & 71 & 855. & * & 1 & 0450 & 146 & 185. & * & 1 & 0720 & 221 & 79. & * & 1 & 0950 & 296 & 0. \\
\hline 1 & 0222 & 72 & 832. & * & 1 & 0452 & 147 & 184. & * & 1 & 0722 & 222 & 75. & * & 1 & 0952 & 297 & 0. \\
\hline 1 & 0224 & 73 & 809. & * & 1 & 0454 & 148 & 184. & * & 1 & 0724 & 223 & 72. & * & 1 & 0954 & 298 & 0. \\
\hline 1 & 0226 & 74 & 785. & * & 1 & 0456 & 149 & 183. & * & 1 & 0726 & 224 & 69. & * & 1 & 0956 & 299 & 0. \\
\hline 1 & 0228 & 75 & 763. & * & 1 & 0458 & 150 & 182. & * & 1 & 0728 & 225 & 65. & * & 1 & 0958 & 300 & 0. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline + & (CES) & (HR) & & 6-HR & 24-HR & 72-HR & 9.97-HR \\
\hline \multicolumn{8}{|c|}{(CFS)} \\
\hline \multirow[t]{3}{*}{+} & 6060. & . 77 & & 989. & 610. & 610. & 610. \\
\hline & & & (INCHES) & 1.877 & 1.924 & 1.924 & 1.924 \\
\hline & & & (AC-FT) & 490. & 503. & 503. & 503. \\
\hline \multicolumn{8}{|c|}{CUMULATIVE AREA \(=4.90 \mathrm{SQ} \mathrm{MI}\)} \\
\hline
\end{tabular}

TOTAL RATNEALL \(=2.98\), TOTAL LOSS \(=1.40\), TOTAL EXCESS \(=1.58\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PEAK FLOW & TIME & & \multicolumn{4}{|c|}{MAXIMUM AVERAGE FLOW} \\
\hline & & & 6-HR & 24-HR & 72-HR & 9.97-HR \\
\hline (CFS) & (HR) & & & & & \\
\hline \multicolumn{7}{|c|}{(CFS)} \\
\hline \multirow[t]{3}{*}{595.} & \multirow[t]{3}{*}{. 47} & & 86. & 52. & 52. & 52. \\
\hline & & (INCHES) & 1.584 & 1.584 & 1.584 & 1.584 \\
\hline & & (AC-FT) & 42. & 42. & 42. & 42. \\
\hline
\end{tabular}

CUMULATIVE AREA \(=\quad .50 \mathrm{SQ} \mathrm{MI}\)
\(303 \mathrm{KK} \stackrel{*}{*} \quad 62 \mathrm{TO61}\) *
\(\qquad\)
MODIFIED PULS CHANNEL ROUTING
FROM NODE FR-62 TO FR-61
HYDROGRAPH ROUTING DATA

PEAK FLOW
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & K & IME & & \multicolumn{4}{|c|}{IMU} \\
\hline & & & & 6-HR & 24-HR & 72-HR & 9.97-HR \\
\hline + & (CFS) & (HR) & & & & & \\
\hline & & & (CFS) & & & & \\
\hline \multirow[t]{3}{*}{+} & \multirow[t]{3}{*}{570.} & . 57 & & 86. & 52. & 52. & 52. \\
\hline & & & (INCHES) & 1.584 & 1.584 & 1.584 & 1.584 \\
\hline & & & (AC-FT) & 42. & 42. & 42. & 42. \\
\hline
\end{tabular}

TIME
(HR)
.57

PEAK STORAGE
PEAK STORAGE TIME
TIME
(HR)

MAXIMUM AVERAGE FLOW
\(24-\mathrm{HR} \quad 72-\mathrm{HR} \quad\) 9.97-HR

MAXIMUM AVERAGE STORAGE
6-HR
\(\begin{array}{lll}24-\mathrm{HR} & 72-\mathrm{HR} & 9.97-\mathrm{HR}\end{array}\)
0.0 .
0.0 .
\begin{tabular}{ccrccr}
PEAK STAGE & TIME & \multicolumn{4}{c}{ MAXIMUM AVERAGE STAGE } \\
(EEET) & (HR) & \(6-\mathrm{HR}\) & \(24-\mathrm{HR}\) & \(72-\mathrm{HR}\) & \(9.97-\mathrm{HR}\) \\
2.80 & .57 & .76 & .46 & .46 & .46
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 0026 & 14 & . 06 & . 02 & . 05 & 179. & * & 1 & 0526 & 164 & . 00 & . 00 & . 00 \\
\hline 0028 & 15 & . 06 & . 01 & . 04 & 191. & * & 1 & 0528 & 165 & . 00 & . 00 & . 00 \\
\hline 0030 & 16 & . 06 & . 01 & . 04 & 199. & * & 1 & 0530 & 166 & . 00 & . 00 & . 00 \\
\hline 0032 & 17 & . 05 & . 01 & . 03 & 202. & * & 1 & 0532 & 167 & . 00 & . 00 & . 00 \\
\hline 0034 & 18 & . 05 & . 01 & . 03 & 201. & * & 1 & 0534 & 168 & . 00 & . 00 & . 00 \\
\hline 0036 & 19 & . 04 & . 01 & . 03 & 196. & * & 1 & 0536 & 169 & . 00 & . 00 & . 00 \\
\hline 0038 & 20 & . 04 & . 01 & . 03 & 189. & * & 1 & 0538 & 170 & . 00 & . 00 & . 00 \\
\hline 0040 & 21 & . 04 & . 01 & . 03 & 181. & * & 1 & 0540 & 171 & . 00 & . 00 & . 00 \\
\hline 0042 & 22 & . 03 & . 01 & . 03 & 172. & * & 1 & 0542 & 172 & . 00 & . 00 & . 00 \\
\hline 0044 & 23 & . 03 & . 01 & . 03 & 164. & * & 1 & 0544 & 173 & . 00 & . 00 & . 00 \\
\hline 0046 & 24 & . 03 & . 01 & . 02 & 155. & * & 1 & 0546 & 174 & . 00 & . 00 & . 00 \\
\hline 0048 & 25 & . 03 & . 01 & . 02 & 146. & * & 1 & 0548 & 175 & . 00 & . 00 & . 00 \\
\hline 0050 & 26 & . 03 & . 01 & . 02 & 138. & * & 1 & 0550 & 176 & . 00 & . 00 & . 00 \\
\hline 0052 & 27 & . 02 & . 01 & . 02 & 131. & * & 1 & 0552 & 177 & . 00 & . 00 & . 00 \\
\hline 0054 & 28 & . 02 & . 00 & . 02 & 123. & * & 1 & 0554 & 178 & . 00 & . 00 & . 00 \\
\hline 0056 & 29 & . 02 & . 00 & . 02 & 116. & * & 1 & 0556 & 179 & . 00 & . 00 & . 00 \\
\hline 0058 & 30 & . 02 & . 00 & . 02 & 110. & * & 1 & 0558 & 180 & . 00 & . 00 & . 00 \\
\hline 0100 & 31 & . 02 & . 00 & . 02 & 103. & * & 1 & 0600 & 181 & . 00 & . 00 & . 00 \\
\hline 0102 & 32 & . 02 & . 00 & . 01 & 98. & * & 1 & 0602 & 182 & . 00 & . 00 & . 00 \\
\hline 0104 & 33 & . 02 & . 00 & . 01 & 92. & * & 1 & 0604 & 183 & . 00 & . 00 & . 00 \\
\hline 0106 & 34 & . 02 & . 00 & . 01 & 87. & * & 1 & 0606 & 184 & . 00 & . 00 & . 00 \\
\hline 0108 & 35 & . 02 & . 00 & . 01 & 82. & * & 1 & 0608 & 185 & . 00 & . 00 & . 00 \\
\hline 0110 & 36 & . 02 & . 00 & . 01 & 78. & * & 1 & 0610 & 186 & . 00 & . 00 & . 00 \\
\hline 0112 & 37 & . 01 & . 00 & . 01 & 74. & * & 1 & 0612 & 187 & . 00 & . 00 & . 00 \\
\hline 0114 & 38 & . 01 & . 00 & . 01 & 70. & * & 1 & 0614 & 188 & . 00 & . 00 & . 00 \\
\hline 0116 & 39 & . 01 & . 00 & . 01 & 66. & * & 1 & 0616 & 189 & . 00 & . 00 & . 00 \\
\hline 0118 & 40 & . 01 & . 00 & . 01 & 63. & * & 1 & 0618 & 190 & . 00 & . 00 & . 00 \\
\hline 0120 & 41 & . 01 & . 00 & . 01 & 60. & * & 1 & 0620 & 191 & . 00 & . 00 & . 00 \\
\hline 0122 & 42 & . 01 & . 00 & . 01 & 57. & * & 1 & 0622 & 192 & . 00 & . 00 & . 00 \\
\hline 0124 & 43 & . 01 & . 00 & . 01 & 54. & * & 1 & 0624 & 193 & . 00 & . 00 & . 00 \\
\hline 0126 & 44 & . 01 & . 00 & . 01 & 51. & * & 1 & 0626 & 194 & . 00 & . 00 & . 00 \\
\hline 0128 & 45 & . 01 & . 00 & . 01 & 49. & * & 1 & 0628 & 195 & . 00 & . 00 & . 00 \\
\hline 0130 & 46 & . 01 & . 00 & . 01 & 47. & * & 1 & 0630 & 196 & . 00 & . 00 & . 00 \\
\hline 0132 & 47 & . 01 & . 00 & . 01 & 45. & * & 1 & 0632 & 197 & . 00 & . 00 & . 00 \\
\hline 0134 & 48 & . 01 & . 00 & . 01 & 43. & * & 1 & 0634 & 198 & . 00 & . 00 & . 00 \\
\hline 0136 & 49 & . 01 & . 00 & . 01 & 41. & * & 1 & 0636 & 199 & . 00 & . 00 & . 00 \\
\hline 0138 & 50 & . 01 & . 00 & . 01 & 39. & * & 1 & 0638 & 200 & . 00 & . 00 & . 00 \\
\hline 0140 & 51 & . 01 & . 00 & . 01 & 37. & * & 1 & 0640 & 201 & . 00 & . 00 & . 00 \\
\hline 0142 & 52 & . 01 & . 00 & . 01 & 36. & * & 1 & 0642 & 202 & . 00 & . 00 & . 00 \\
\hline 0144 & 53 & . 01 & . 00 & . 01 & 34. & * & 1 & 0644 & 203 & . 00 & . 00 & . 00 \\
\hline 0146 & 54 & . 01 & . 00 & . 01 & 33. & * & 1 & 0646 & 204 & . 00 & . 00 & . 00 \\
\hline 0148 & 55 & . 01 & . 00 & . 01 & 32. & * & 1 & 0648 & 205 & . 00 & . 00 & . 00 \\
\hline 0150 & 56 & . 01 & . 00 & . 01 & 30. & * & 1 & 0650 & 206 & . 00 & . 00 & . 00 \\
\hline 0152 & 57 & . 01 & . 00 & . 01 & 29. & * & 1 & 0652 & 207 & . 00 & . 00 & . 00 \\
\hline 0154 & 58 & . 01 & . 00 & . 01 & 28. & * & 1 & 0654 & 208 & . 00 & . 00 & . 00 \\
\hline 0156 & 59 & . 01 & . 00 & . 01 & 27. & * & 1 & 0656 & 209 & . 00 & . 00 & . 00 \\
\hline 0158 & 60 & . 01 & . 00 & . 01 & 26. & * & 1 & 0658 & 210 & . 00 & . 00 & . 00 \\
\hline 0200 & 61 & . 01 & . 00 & . 01 & 25. & * & 1 & 0700 & 211 & . 00 & . 00 & . 00 \\
\hline 0202 & 62 & . 01 & . 00 & . 01 & 24. & * & 1 & 0702 & 212 & . 00 & . 00 & . 00 \\
\hline 0204 & 63 & . 01 & . 00 & . 01 & 24. & * & 1 & 0704 & 213 & . 00 & . 00 & . 00 \\
\hline 0206 & 64 & . 01 & . 00 & . 01 & 23. & * & 1 & 0706 & 214 & . 00 & . 00 & . 00 \\
\hline 0208 & 65 & . 01 & . 00 & . 00 & 22. & * & 1 & 0708 & 215 & . 00 & . 00 & . 00 \\
\hline 0210 & 66 & . 01 & . 00 & . 00 & 21. & * & 1 & 0710 & 216 & . 00 & . 00 & . 00 \\
\hline 0212 & 67 & . 01 & . 00 & . 00 & 21. & * & 1 & 0712 & 217 & . 00 & . 00 & . 00 \\
\hline 0214 & 68 & . 01 & . 00 & . 00 & 20. & * & 1 & 0714 & 218 & . 00 & . 00 & . 00 \\
\hline 0216 & 69 & . 01 & . 00 & . 00 & 20. & * & 1 & 0716 & 219 & . 00 & . 00 & . 00 \\
\hline 0218 & 70 & . 01 & . 00 & . 00 & 19. & * & 1 & 0718 & 220 & . 00 & . 00 & . 00 \\
\hline 0220 & 71 & . 01 & . 00 & . 00 & 18. & * & 1 & 0720 & 221 & . 00 & . 00 & . 00 \\
\hline 0222 & 72 & . 00 & . 00 & . 00 & 18. & * & 1 & 0722 & 222 & . 00 & . 00 & . 00 \\
\hline 0224 & 73 & . 00 & . 00 & . 00 & 17. & * & 1 & 0724 & 223 & . 00 & . 00 & . 00 \\
\hline 0226 & 74 & . 00 & . 00 & . 00 & 17. & * & 1 & 0726 & 224 & . 00 & . 00 & . 00 \\
\hline 0228 & 75 & . 00 & . 00 & . 00 & 16. & * & 1 & 0728 & 225 & . 00 & . 00 & . 00 \\
\hline 0230 & 76 & . 00 & . 00 & . 00 & 16. & * & 1 & 0730 & 226 & . 00 & . 00 & . 00 \\
\hline 0232 & 77 & . 00 & . 00 & . 00 & 16. & * & 1 & 0732 & 227 & . 00 & . 00 & . 00 \\
\hline 0234 & 78 & . 00 & . 00 & . 00 & 15. & * & 1 & 0734 & 228 & . 00 & . 00 & . 00 \\
\hline 0236 & 79 & . 00 & . 00 & . 00 & 15. & * & 1 & 0736 & 229 & . 00 & . 00 & . 00 \\
\hline 0238 & 80 & . 00 & . 00 & . 00 & 14. & * & 1 & 0738 & 230 & . 00 & . 00 & . 00 \\
\hline 0240 & 81 & . 00 & . 00 & . 00 & 14. & * & 1 & 0740 & 231 & . 00 & . 00 & . 00 \\
\hline 0242 & 82 & . 00 & . 00 & . 00 & 14. & * & 1 & 0742 & 232 & . 00 & . 00 & . 00 \\
\hline 0244 & 83 & . 00 & . 00 & . 00 & 13. & * & 1 & 0744 & 233 & . 00 & . 00 & . 00 \\
\hline 0246 & 84 & . 00 & . 00 & . 00 & 13. & * & 1 & 0746 & 234 & . 00 & . 00 & . 00 \\
\hline 0248 & 85 & . 00 & . 00 & . 00 & 13. & * & 1 & 0748 & 235 & . 00 & . 00 & . 00 \\
\hline 0250 & 86 & . 00 & . 00 & . 00 & 12. & * & 1 & 0750 & 236 & . 00 & . 00 & . 00 \\
\hline 0252 & 87 & . 00 & . 00 & . 00 & 12. & * & 1 & 0752 & 237 & . 00 & . 00 & . 00 \\
\hline 0254 & 88 & . 00 & . 00 & . 00 & 12. & * & 1 & 0754 & 238 & . 00 & . 00 & . 00 \\
\hline 0256 & 89 & . 00 & . 00 & . 00 & 12. & * & 1 & 0756 & 239 & . 00 & . 00 & . 00 \\
\hline 0258 & 90 & . 00 & . 00 & . 00 & 11. & * & 1 & 0758 & 240 & . 00 & . 00 & . 00 \\
\hline 0300 & 91 & . 00 & . 00 & . 00 & 11. & * & 1 & 0800 & 241 & . 00 & . 00 & . 00 \\
\hline 0302 & 92 & . 00 & . 00 & . 00 & 11. & * & 1 & 0802 & 242 & . 00 & . 00 & . 00 \\
\hline 0304 & 93 & . 00 & . 00 & . 00 & 10. & * & 1 & 0804 & 243 & . 00 & . 00 & . 00 \\
\hline 0306 & 94 & . 00 & . 00 & . 00 & 10. & * & 1 & 0806 & 244 & . 00 & . 00 & . 00 \\
\hline
\end{tabular}

0
\(\circ \dot{\circ}\)
0.
0.
0.
0.
0.
0.
0.
0.
0.
\(\therefore \dot{\circ} \circ\)
0.
0.
oóo

\(\qquad\)
TOTAL RAINEALL \(=2.85\), TOTAL LOSS \(=1.07\), TOTAL EXCESS \(=1.78\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PEAK ELOW & TIME & & \multicolumn{4}{|c|}{MAXIMUM AVERAGE FLOW} \\
\hline \(+\quad\) (CES) & (HR) & & 6-HR & 24-HR & 72-HR & 9.97-HR \\
\hline \multicolumn{7}{|c|}{(CFS)} \\
\hline 202. & . 53 & (INCHES) & \[
\begin{array}{r}
32 \\
1.777
\end{array}
\] & \[
\begin{array}{r}
19 \\
1.777
\end{array}
\] & \[
\begin{array}{r}
19 \\
1.777
\end{array}
\] & \[
\begin{array}{r}
19 . \\
1.777
\end{array}
\] \\
\hline & & (\(\mathrm{AC}-\mathrm{FT}\)) & 16. & 16. & 16. & 16. \\
\hline & & CUMULAT & AREA \(=\) & 7 SQ & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & *********** \\
\hline 317 KK & CO-61 \\
\hline
\end{tabular}
\begin{tabular}{ll}
\(* * * * * * * * * * * * * *\) & \\
& COMBINE HYDROGRAPHS \\
& AT NODE ER-61
\end{tabular}
\(320 \mathrm{HC} \quad\) HYDROGRAPH COMBINATTON
ICOMP 2 NUMBER OF HYDROGRAPHS TO COMBINE
\begin{tabular}{|c|}
\hline & & & & * & & & & & * & & & & & & * & & & & & \\
\hline DA MON & HRMN & ORD & FLOW & * & DA MON & HRMN & ORD & ELOW & * & DA & MON & HRMN & ORD & FLOW & * & DA & MON & HRMN & ORD & ELOW \\
\hline & & & & * & & & & & * & & & & & & * & & & & & \\
\hline 1 & 0000 & 1 & 0. & * & 1 & 0230 & 76 & 68. & * & 1 & & 0500 & 151 & 0. & * & 1 & & 0730 & 226 & 0. \\
\hline 1 & 0002 & 2 & 0. & * & 1 & 0232 & 77 & 66. & * & 1 & & 0502 & 152 & 0. & * & 1 & & 0732 & 227 & 0. \\
\hline 1 & 0004 & 3 & 2. & * & 1 & 0234 & 78 & 64. & * & 1 & & 0504 & 153 & 0. & * & 1 & & 0734 & 228 & 0 \\
\hline 1 & 0006 & 4 & 4. & * & 1 & 0236 & 79 & 62. & * & 1 & & 0506 & 154. & 0. & * & 1 & & 0736 & 229 & 0. \\
\hline 1. & 0008 & 5 & 9. & * & 1 & 0238 & 80 & 61. & * & 1 & & 0508 & 155 & 0. & * & 1 & & 0738 & 230 & 0. \\
\hline 1 & 0010 & 6 & 18. & * & 1 & 0240 & 81 & 59. & * & 1 & & 0510 & 156 & 0. & * & 1 & & 0740 & 231 & 0. \\
\hline 1 & 0012 & 7 & 32. & * & 1 & 0242 & 82 & 58. & * & 1 & & 0512 & 157 & 0. & * & 1 & & 0742 & 232 & 0. \\
\hline 1 & 0014 & 8 & 52. & * & 1 & 0244 & 83 & 56. & * & 1 & & 0514 & 158 & 0. & * & 1 & & 0744 & 233 & 0. \\
\hline 1 & 0016 & 9 & 85. & * & 1 & 0246 & 84 & 55. & * & 1 & & 0516 & 159 & 0. & * & 1 & & 0746 & 234 & 0. \\
\hline 1 & 0018 & 10 & 139. & * & 1 & 0248 & 85 & 54. & * & 1 & & 0518 & 160 & 0. & * & 1 & & 0748 & 235 & 0. \\
\hline 1 & 0020 & 11 & 219. & \(\star\) & 1 & 0250 & 86 & 52. & * & 1 & & 0520 & 161 & 0. & * & 1 & & 0750 & 236 & 0 . \\
\hline 1 & 0022 & 12 & 327. & * & 1 & 0252 & 87 & 51. & * & 1 & & 0522 & 162 & 0. & * & 1 & & 0752 & 237 & 0 . \\
\hline 1 & 0024 & 13 & 455. & * & 1 & 0254 & 88 & 50. & * & 1 & & 0524 & 163 & 0. & * & 1 & & 0754 & 238 & 0. \\
\hline 1 & 0026 & 14 & 581. & * & 1 & 0256 & 89 & 49. & * & 1 & & 0526 & 164 & 0. & * & 1 & & 0756 & 239 & 0. \\
\hline 1 & 0028 & 15 & 675. & * & 1 & 0258 & 90 & 48. & * & 1 & & 0528 & 165 & 0. & * & 1 & & 0758 & 240 & 0. \\
\hline 1 & 0030 & 16 & 735. & * & 1 & 0300 & 91 & 45. & * & 1 & & 0530 & 166 & 0. & * & 1 & & 0800 & 241 & 0. \\
\hline 1 & 0032 & 17 & 765. & * & 1 & 0302 & 92 & 45. & * & 1 & & 0532 & 167 & 0. & * & 1 & & 0802 & 242 & 0. \\
\hline 1 & 0034 & 18 & 770. & * & 1 & 0304 & 93 & 44. & * & 1 & & 0534 & 168 & 0. & * & 1 & & 0804 & 243 & 0. \\
\hline 1 & 0036 & 19 & 758. & * & 1 & 0306 & 94 & 43. & * & 1 & & 0536 & 169 & 0. & * & 1 & & 0806 & 244 & 0. \\
\hline 1 & 0038 & 20 & 734. & * & 1 & 0308 & 95 & 42. & * & 1 & & 0538 & 170 & 0. & * & 1 & & 0808 & 245 & 0. \\
\hline 1 & 0040 & 21 & 702 . & * & 1 & 0310 & 96 & 40. & * & 1 & & 0540 & 171 & 0. & * & 1 & & 0810 & 246 & 0. \\
\hline 1 & 0042 & 22 & 668. & * & 1 & 0312 & 97 & 38. & * & 1 & & 0542 & 172 & 0. & * & 1 & & 0812 & 247 & 0. \\
\hline 1. & 0044 & 23 & 632. & * & 1 & 0314 & 98 & 36. & * & 1 & & 0544 & 173 & 0. & * & 1 & & 0814 & 248 & 0. \\
\hline 1 & 0046 & 24 & 598. & * & 1 & 0316 & 99 & 34. & * & 1 & & 0546 & 174 & 0. & * & 1 & & 0816 & 249 & 0. \\
\hline 1 & 0048 & 25 & 565. & * & 1 & 0318 & 100 & 32. & * & 1 & & 0548 & 175 & 0. & * & 1 & & 0818 & 250 & 0. \\
\hline 1 & 0050 & 26 & 533. & * & 1 & 0320 & 101 & 30. & * & 1 & & 0550 & 176 & 0. & * & 1 & & 0820 & 251 & 0. \\
\hline 1 & 0052 & 27 & 502. & * & 1 & 0322 & 102 & 27. & * & 1 & & 0552 & 177 & 0. & * & 1 & & 0822 & 252 & 0. \\
\hline 1 & 0054 & 28 & 473. & * & 1 & 0324 & 103 & 25. & * & 1 & & 0554 & 178 & 0. & * & 1 & & 0824 & 253 & 0. \\
\hline 1 & 0056 & 29 & 446. & * & 1 & 0326 & 104 & 22. & * & 1 & & 0556 & 179 & 0. & * & 1 & & 0826 & 254 & 0. \\
\hline 1 & 0058 & 30 & 422. & * & 1 & 0328 & 105 & 19. & * & 1 & & 0558 & 180 & 0. & * & 1 & & 0828 & 255 & 0. \\
\hline 1 & 0100 & 31 & 399. & * & 1 & 0330 & 106 & 17. & * & 1 & & 0600 & 181 & 0. & * & 1 & & 0830 & 256 & 0. \\
\hline 1 & 0102 & 32 & 377. & * & 1 & 0332 & 107 & 15. & * & 1 & & 0602 & 182 & 0. & * & 1 & & 0832 & 257 & 0. \\
\hline 1 & 0104 & 33 & 356. & * & 1 & 0334 & 108 & 13. & * & 1 & & 0604 & 183 & 0. & * & 1 & & 0834 & 258 & 0. \\
\hline 1 & 0106 & 34 & 337. & * & 1 & 0336 & 109 & 12. & * & 1 & & 0606 & 184 & 0. & * & 1 & & 0836 & 259 & 0. \\
\hline 1 & 0108 & 35 & 319. & * & 1 & 0338 & 110 & 10. & * & 1 & & 0608 & 185 & 0. & * & 1 & & 0838 & 260 & 0. \\
\hline 1 & 0110 & 36 & 304. & * & 1 & 0340 & 111 & 9. & * & 1 & & 0610 & 186 & 0. & * & 1 & & 0840 & 261 & 0. \\
\hline 1 & 0112 & 37 & 290. & * & 1 & 0342 & 112 & 9. & * & 1 & & 0612 & 187 & 0. & * & 1 & & 0842 & 262 & 0. \\
\hline 1 & 0114 & 38 & 276. & * & 1 & 0344 & 113 & 8. & * & 1 & & 0614 & 188 & 0. & * & 1 & & 0844 & 263 & 0. \\
\hline 1 & 0116 & 39 & 263. & * & 1 & 0346 & 114 & 7. & * & 1. & & 0616 & 189 & 0. & * & 1 & & 0846 & 264 & 0. \\
\hline 1 & 0118 & 40 & 250. & * & 1 & 0348 & 115 & 7. & * & 1 & & 0618 & 190 & 0. & * & 1 & & 0848 & 265 & 0. \\
\hline 1 & 0120 & 41 & 238. & * & 1 & 0350 & 116 & 6. & * & 1 & & 0620 & 191 & 0. & * & 1 & & 0850 & 266 & 0 . \\
\hline 1 & 0122 & 42 & 226. & * & 1 & 0352 & 117 & 6. & * & 1 & & 0622 & 192 & 0. & * & 1 & & 0852 & 267 & 0. \\
\hline 1 & 0124 & 43 & 216. & * & 1 & 0354 & 118 & 5. & * & 1 & & 0624 & 193 & 0. & * & 1 & & 0854 & 268 & 0. \\
\hline 1 & 0126 & 44 & 206. & * & 1 & 0356 & 119 & 5. & * & 1 & & 0626 & 194 & 0. & * & 1 & & 0856 & 269 & 0. \\
\hline 1 & 0128 & 45 & 197. & * & 1 & 0358 & 120 & 4. & * & 1 & & 0628 & 195 & 0. & * & 1 & & 0858 & 270 & 0. \\
\hline 1 & 0130 & 46 & 189. & * & 1 & 0400 & 121 & 4. & * & 1 & & 0630 & 196 & 0. & * & 1 & & 0900 & 271 & 0. \\
\hline 1 & 0132 & 47 & 181. & * & 1 & 0402 & 122 & 4. & * & 1 & & 0632 & 197 & 0. & * & 1 & & 0902 & 272 & 0. \\
\hline 1 & 0134 & 48 & 173. & * & 1 & 0404 & 123 & 3. & * & 1 & & 0634 & 198 & 0. & * & 1 & & 0904 & 273 & 0 . \\
\hline 1 & 0136 & 49 & 165. & * & 1 & 0406 & 124 & 3. & * & 1 & & 0636 & 199 & 0. & * & 1 & & 0906 & 274 & 0 . \\
\hline 1 & 0138 & 50 & 158. & * & 1 & 0408 & 125 & 3. & * & 1 & & 0638 & 200 & 0. & * & 1 & & 0908 & 275 & 0. \\
\hline 1 & 0140 & 51 & 152. & * & 1 & 0410 & 126 & 2. & * & 1 & & 0640 & 201 & 0. & * & 1 & & 0910 & 276 & 0 . \\
\hline 1 & 0142 & 52 & 146. & * & 1 & 0412 & 127 & 2. & * & 1 & & 0642 & 202 & 0. & * & 1 & & 0912 & 277 & 0. \\
\hline 1 & 0144 & 53 & 140. & * & 1 & 0414 & 128 & 2. & * & 1 & & 0644 & 203 & 0. & * & 1 & & 0914 & 278 & 0. \\
\hline 1 & 0146 & 54 & 135. & * & 1 & 0416 & 129 & 2. & * & 1 & & 0646 & 204 & 0. & * & 1 & & 0916 & 279 & 0. \\
\hline 1 & 0148 & 55 & 130. & * & 1 & 0418 & 130 & 1. & * & 1 & & 0648 & 205 & 0. & * & 1 & & 0918 & 280 & 0. \\
\hline 1 & 0150 & 56 & 126. & * & 1 & 0420 & 131 & 1. & * & 1 & & 0650 & 206 & 0. & * & 1 & & 0920 & 281 & 0 . \\
\hline 1 & 0152 & 57 & 121. & * & 1 & 0422 & 132 & 1. & * & 1 & & 0652 & 207 & 0. & * & 1 & & 0922 & 282 & 0. \\
\hline 1 & 0154 & 58 & 117. & * & 1 & 0424 & 133 & 1. & * & 1 & & 0654 & 208 & 0. & * & 1 & & 0924 & 283 & 0 . \\
\hline 1 & 0156 & 59 & 113. & * & 1 & 0426 & 134 & 1. & * & 1 & & 0656 & 209 & 0. & * & 1 & & 0926 & 284 & 0 \\
\hline 1 & 0158 & 60 & 109. & * & 1 & 0428 & 135 & 1. & * & 1 & & 0658 & 210 & 0. & * & 1 & & 0928 & 285 & 0. \\
\hline 1 & 0200 & 61 & 106. & * & 1 & 0430 & 136 & 1. & * & 1 & & 0700 & 211 & 0. & * & 1 & & 0930 & 286 & 0. \\
\hline 1 & 0202 & 62 & 102. & * & 1 & 0432 & 137 & 1. & * & 1 & & 0702 & 212 & 0. & * & 1 & & 0932 & 287 & 0. \\
\hline 1 & 0204 & 63 & 99. & \(\star\) & 1 & 0434 & 138 & 0. & * & 1 & & 0704 & 213 & 0. & * & 1 & & 0934 & 288 & 0. \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 0054 & 28 & 5813. & * & 1 & 0324 & 103 & 427. & * & 1 & 0554 & 178 & 157. & * & 1 & 0824 & 253 & 1. \\
\hline 1 & 0056 & 29 & 5526. & * & 1 & 0326 & 104 & 413. & * & 1 & 0556 & 179 & 155. & * & 1 & 0826 & 254 & 1. \\
\hline 1 & 0058 & 30 & 5246. & * & 1 & 0328 & 105 & 397. & * & 1 & 0558 & 180 & 154. & * & 1 & 0828 & 255 & 1. \\
\hline 1 & 0100 & 31 & 4971. & * & 1 & 0330 & 106 & 382. & * & 1 & 0600 & 181 & 153. & * & 1 & 0830 & 256 & 1. \\
\hline 1 & 0102 & 32 & 4713. & * & 1 & 0332 & 107 & 367. & * & 1 & 0602 & 182 & 152. & * & 1 & 0832 & 257 & 1. \\
\hline 1 & 0104 & 33 & 4458. & * & 1 & 0334 & 108 & 351. & * & 1 & 0604 & 183 & 151. & * & 1 & 0834 & 258 & 1. \\
\hline 1 & 0106 & 34 & 4197. & * & 1 & 0336 & 109 & 336. & * & 1 & 0606 & 184 & 149. & * & 1 & 0836 & 259 & 1. \\
\hline 1 & 0108 & 35 & 3950. & * & 1 & 0338 & 110 & 321. & * & 1 & 0608 & 185 & 148. & * & 1 & 0838 & 260 & 1. \\
\hline 1 & 0110 & 36 & 3725. & * & 1 & 0340 & 111 & 306. & * & 1 & 0610 & 186 & 147. & * & 1 & 0840 & 261 & 0. \\
\hline 1 & 0112 & 37 & 3526. & * & 1 & 0342 & 112 & 291. & * & 1 & 0612 & 187 & 146. & * & 1 & 0842 & 262 & 0. \\
\hline 1 & 0114 & 38 & 3361. & * & 1 & 0344 & 113 & 277. & * & 1 & 0614 & 188 & 145. & * & 1 & 0844 & 263 & 0. \\
\hline 1 & 0116 & 39 & 3227. & * & 1 & 0346 & 114 & 263. & * & 1 & 0616 & 189 & 144. & * & 1 & 0846 & 264 & 0. \\
\hline 1 & 0118 & 40 & 3086. & * & 1 & 0348 & 115 & 250. & * & 1 & 0618 & 190 & 142. & * & 1 & 0848 & 265 & 0. \\
\hline 1 & 0120 & 41 & 2942. & * & 1 & 0350 & 116 & 238. & * & 1 & 0620 & 191 & 141. & * & 1 & 0850 & 266 & 0. \\
\hline 1 & 0122 & 42 & 2801. & * & 1 & 0352 & 117 & 229. & * & 1 & 0622 & 192 & 140. & * & 1 & 0852 & 267 & 0. \\
\hline 1 & 0124 & 43 & 2664. & * & 1 & 0354 & 118 & 223. & * & 1 & 0624 & 193 & 138. & * & 1 & 0854 & 268 & 0. \\
\hline 1 & 0126 & 44 & 2534. & * & 1 & 0356 & 119 & 218. & * & 1 & 0626 & 194 & 137. & * & 1 & 0856 & 269 & 0. \\
\hline 1 & 0128 & 45 & 2413. & * & 1 & 0358 & 120 & 214. & * & 1 & 0628 & 195 & 135. & * & 1 & 0858 & 270 & 0. \\
\hline 1 & 0130 & 46 & 2307. & * & 1 & 0400 & 121 & 210. & * & 1 & 0630 & 196 & 134. & * & 1 & 0900 & 271 & 0. \\
\hline 1 & 0132 & 47 & 2209. & * & 1. & 0402 & 122 & 207. & * & 1 & 0632 & 197 & 132. & \(\star\) & 1 & 0902 & 272 & 0. \\
\hline 1 & 0134 & 48 & 2114. & * & 1 & 0404 & 123 & 205. & * & 1 & 0634 & 198 & 131. & * & 1 & 0904 & 273 & 0. \\
\hline 1 & 0136 & 49 & 2023. & * & 1 & 0406 & 124 & 204. & * & 1 & 0636 & 199 & 129. & * & 1 & 0906 & 274 & 0 . \\
\hline 1 & 0138 & 50 & 1936. & * & 1 & 0408 & 125 & 202. & * & 1 & 0638 & 200 & 128. & * & 1 & 0908 & 275 & 0. \\
\hline 1 & 0140 & 51 & 1854. & * & 1 & 0410 & 126 & 201. & * & 1 & 0640 & 201 & 126. & * & 1 & 0910 & 276 & 0. \\
\hline 1 & 0142 & 52 & 1775. & * & 1 & 0412 & 127 & 200. & * & 1 & 0642 & 202 & 125. & * & 1 & 0912 & 277 & 0. \\
\hline 1 & 0144 & 53 & 1701. & * & 1 & 0414 & 128 & 199. & * & 1 & 0644 & 203 & 123. & * & 1 & 0914 & 278 & 0. \\
\hline 1 & 0146 & 54 & 1632. & * & 1 & 0416 & 129 & 198. & * & 1 & 0646 & 204 & 121. & * & 1 & 0916 & 279 & 0. \\
\hline 1 & 0148 & 55 & 1569. & * & 1 & 0418 & 130 & 197. & * & 1 & 0648 & 205 & 119. & * & 1 & 0918 & 280 & 0. \\
\hline 1 & 0150 & 56 & 1514. & * & 1 & 0420 & 131 & 196. & * & 1 & 0650 & 206 & 117. & * & 1 & 0920 & 281 & 0. \\
\hline 1 & 0152 & 57 & 1461. & * & 1 & 0422 & 132 & 195. & * & 1 & 0652 & 207 & 115. & * & 1 & 0922 & 282 & 0. \\
\hline 1 & 0154 & 58 & 1410. & * & 1 & 0424 & 133 & 195. & * & 1 & 0654 & 208 & 113. & * & 1 & 0924 & 283 & 0. \\
\hline 1 & 0156 & 59 & 1360. & * & 1 & 0426 & 134 & 194. & * & 1 & 0656 & 209 & 111. & * & 1 & 0926 & 284 & 0. \\
\hline 1 & 0158 & 60 & 1313. & * & 1 & 0428 & 135 & 193. & * & 1 & 0658 & 210 & 109. & * & 1 & 0928 & 285 & 0. \\
\hline 1 & 0200 & 61 & 1267. & * & 1 & 0430 & 136 & 192. & * & 1 & 0700 & 211 & 107. & * & 1 & 0930 & 286 & 0. \\
\hline 1 & 0202 & 62 & 1222. & * & 1 & 0432 & 137 & 192. & * & 1 & 0702 & 212 & 105. & * & 1 & 0932 & 287 & 0. \\
\hline 1 & 0204 & 63 & 1181. & * & 1 & 0434 & 138 & 191. & * & 1 & 0704 & 213 & 102. & * & 1 & 0934 & 288 & 0. \\
\hline 1 & 0206 & 64 & 1143. & * & 1 & 0436 & 139 & 190. & * & 1 & 0706 & 214 & 99. & * & 1 & 0936 & 289 & 0. \\
\hline 1 & 0208 & 65 & 1108. & * & 1 & 0438 & 140 & 190. & * & 1 & 0708 & 215 & 97. & * & 1 & 0938 & 290 & 0. \\
\hline 1 & 0210 & 66 & 1075. & * & 1 & 0440 & 141 & 189. & * & 1 & 0710 & 216 & 94. & * & 1 & 0940 & 291 & 0. \\
\hline 1 & 0212 & 67 & 1044. & * & 1 & 0442 & 142 & 188. & * & 1 & 0712 & 217 & 91. & * & 1 & 0942 & 292 & 0. \\
\hline 1 & 0214 & 68 & 1013. & * & 1 & 0444 & 143 & 187. & * & 1 & 0714 & 218 & 88. & * & 1 & 0944 & 293 & 0. \\
\hline 1 & 0216 & 69 & 984. & * & 1 & 0446 & 144 & 187. & * & 1 & 0716 & 219 & 85. & * & 1 & 0946 & 294 & 0. \\
\hline 1 & 0218 & 70 & 957. & * & 1 & 0448 & 145 & 186. & * & 1 & 0718 & 220 & 82. & * & 1 & 0948 & 295 & 0. \\
\hline 1 & 0220 & 71 & 932. & * & 1 & 0450 & 146 & 185. & * & 1 & 0720 & 221 & 79. & * & 1 & 0950 & 296 & 0. \\
\hline 1 & 0222 & 72 & 907. & * & 1 & 0452 & 147 & 184. & * & 1 & 0722 & 222 & 75. & * & 1 & 0952 & 297 & 0. \\
\hline 1 & 0224 & 73 & 882. & * & 1 & 0454 & 148 & 184. & * & 1 & 0724 & 223 & 72. & * & 1 & 0954 & 298 & 0. \\
\hline 1 & 0226 & 74 & 857. & * & 1 & 0456 & 149 & 183. & * & 1 & 0726 & 224 & 69. & * & 1 & 0956 & 299 & 0. \\
\hline 1 & 0228 & 75 & 832. & * & 1 & 0458 & 150 & 182. & * & 1 & 0728 & 225 & 65. & * & 1 & 0958 & 300 & 0. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{PEAK ELOW}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{TIME}} & \multicolumn{4}{|c|}{MAXIMUM AVERAGE FLOW} \\
\hline & & & & 6-HR & 24-HR & 72-HR & 9.97-HR \\
\hline + & (CFS) & (HR) & & & & & \\
\hline \multicolumn{8}{|c|}{(CES)} \\
\hline \multirow[t]{3}{*}{+} & 6657. & . 77 & & 1105. & 681. & 681. & 681. \\
\hline & & & (INCHES) & 1.844 & 1.889 & 1.889 & 1.889 \\
\hline & & & (AC-ET) & 548. & 561. & 561. & 561. \\
\hline \multicolumn{8}{|c|}{CUMULATIVE AREA \(=5.57 \mathrm{SQ} \mathrm{MI}\)} \\
\hline
\end{tabular}
\(326 \mathrm{KK} \quad\)\begin{tabular}{l}
************** \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\end{tabular}

MODIEIED PULS ChANNEL ROUIING
fROM NODE FR-6 TO ER-5 (MAIN CHANNEL)
hYDROGRAPH ROUTING DATA
329 RS
\begin{tabular}{crl}
STORAGE ROUTING & & \\
NSTPS & 2 & NUMBER OF SUBREACHES \\
ITYP & LOW & TYPE OF INITIAL CONDITION \\
RSVRIC & -10.00 & INITIAL CONDITION
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & -SECTI & DATA & & & & \\
\hline & & -- LEF & ERBAN & + & MAIN & NNEL & + & GHT OV & ANK --- \\
\hline 332 RY & ELEVATION & 90.00 & 82.00 & 80.00 & 76.60 & 78.00 & 80.00 & 82.00 & 90.00 \\
\hline 331 RX & DISTANCE & . 00 & 66.00 & 202.00 & 225.00 & 237.00 & 255.00 & 287.00 & 320.00 \\
\hline
\end{tabular}

COMPUTED STORAGE-OUTELOW-ELEVATION DATA
\begin{tabular}{rrrrrrrrrr}
STORAGE & .00 & .27 & 1.10 & 2.48 & 4.43 & 6.98 & 11.72 & 19.47 \\
OUTFLOW & .00 & 8.41 & 53.39 & 157.28 & 339.90 & 632.67 & 1146.72 & 1925.89 & 3088.21 \\
ELEVATION & 76.60 & 77.31 & 78.01 & 78.72 & 79.42 & 80.13 & 80.83 & 81.54 & 82.24 \\
& & & & & & & & \\
STORAGE & 53.75 & 66.24 & 79.19 & 92.57 & 106.40 & 120.67 & 135.38 & 150.54 & 166.15 \\
OUTFLOW & 6622.95 & 8875.12 & 11434.10 & 14293.47 & 17449.36 & 20899.62 & 24643.32 & 28680.46 & 33011.71 \\
ELEVATION & 83.65 & 84.36 & 85.06 & 85.77 & 86.47 & 87638.27 \\
& & & & & 87.18 & 87.88 & 88.59 & 89.29 & 90.00
\end{tabular}

DA MON HRMN ORD OUTFLOW STORAGE

\begin{tabular}{|c|c|c|c|c|c|}
\hline 0320 & 101 & 492. & 2.9 & 79.8 & * 1 \\
\hline 0322 & 102 & 480. & 2.8 & 79.8 & * 1 \\
\hline 0324 & 103 & 468. & 2.8 & 79.7 & * 1 \\
\hline 0326 & 104 & 456. & 2.7 & 79.7 & * 1 \\
\hline 0328 & 105 & 442 . & 2.7 & 79.7 & * 1 \\
\hline 0330 & 106 & 428. & 2.6 & 79.6 & * 1 \\
\hline 0332 & 107 & 414. & 2.5 & 79.6 & * 1 \\
\hline 0334 & 108 & 399. & 2.5 & 79.6 & * 1 \\
\hline 0336 & 109 & 384. & 2.4 & 79.5 & * 1 \\
\hline 0338 & 110 & 369. & 2.3 & 79.5 & * 1 \\
\hline 0340 & 111 & 354. & 2.3 & 79.5 & * 1 \\
\hline 0342 & 112 & 340. & 2.2 & 79.4 & * 1 \\
\hline 0344 & 113 & 328. & 2.2 & 79.4 & * 1 \\
\hline 0346 & 114 & 315. & 2.1 & 79.3 & * 1 \\
\hline 0348 & 115 & 302. & 2.0 & 79.3 & * 1 \\
\hline 0350 & 116 & 289. & 1.9 & 79.2 & * 1 \\
\hline 0352 & 117 & 276. & 1.9 & 79.2 & * 1 \\
\hline 0354 & 118 & 264. & 1.8 & 79.1 & * 1 \\
\hline 0356 & 119 & 252. & 1.7 & 79.1 & * 1 \\
\hline 0358 & 120 & 243. & 1.7 & 79.0 & * 1 \\
\hline 0400 & 121 & 235. & 1.7 & 79.0 & * 1 \\
\hline 0402 & 122 & 228. & 1.6 & 79.0 & * 1 \\
\hline 0404 & 123 & 222. & 1.6 & 79.0 & * 1 \\
\hline 0406 & 124 & 217. & 1.6 & 78.9 & * 1 \\
\hline 0408 & 125 & 213. & 1.5 & 78.9 & * 1 \\
\hline 0410 & 126 & 210. & 1.5 & 78.9 & * 1 \\
\hline 0412 & 127 & 207. & 1.5 & 78.9 & * 1 \\
\hline 0414 & 128 & 205. & 1.5 & 78.9 & * 1 \\
\hline 0416 & 129 & 203. & 1.5 & 78.9 & * 1 \\
\hline 0418 & 130 & 202. & 1.5 & 78.9 & * 1 \\
\hline 0420 & 131 & 200. & 1.5 & 78.9 & * 1 \\
\hline 0422 & 132 & 199. & 1.5 & 78.9 & * 1 \\
\hline 0424 & 133 & 198. & 1.5 & 78.9 & * 1 \\
\hline 0426 & 134 & 197. & 1.5 & 78.9 & * 1 \\
\hline 0428 & 135 & 196. & 1.4 & 78.9 & * 1 \\
\hline 0430 & 136 & 195. & 1.4 & 78.9 & * 1 \\
\hline 0432 & 137 & 195. & 1.4 & 78.9 & * 1 \\
\hline 0434 & 138 & 194. & 1.4 & 78.9 & * 1 \\
\hline 0436 & 139 & 193. & 1.4 & 78.9 & * 1 \\
\hline 0438 & 140 & 192. & 1.4 & 78.9 & * 1 \\
\hline 0440 & 141 & 192. & 1.4 & 78.8 & * 1 \\
\hline 0442 & 142 & 191. & 1.4 & 78.8 & * 1 \\
\hline 0444 & 143 & 190. & 1.4 & 78.8 & * 1 \\
\hline 0446 & 144 & 189. & 1. 4 & 78.8 & * 1 \\
\hline 0448 & 145 & 189. & 1.4 & 78.8 & * 1 \\
\hline
\end{tabular}
\begin{tabular}{ccc}
0640 & 201 & 133. \\
0642 & 202 & 132. \\
0644 & 203 & 130. \\
0646 & 204 & 129. \\
0648 & 205 & 127. \\
0650 & 206 & 126. \\
0652 & 207 & 124. \\
0654 & 208 & 122. \\
0656 & 209 & 121. \\
0658 & 210 & 119. \\
0700 & 211 & 117. \\
0702 & 212 & 115. \\
0704 & 213 & 113. \\
0706 & 214 & 111. \\
0708 & 215 & 108. \\
0710 & 216 & 106. \\
0712 & 217 & 104. \\
0714 & 218 & 101. \\
0716 & 219 & 99. \\
0718 & 220 & 96. \\
0720 & 221 & 93. \\
0722 & 222 & 90. \\
0724 & 223 & 87. \\
0726 & 224 & 84. \\
0728 & 225 & 81. \\
0730 & 226 & 78. \\
0732 & 227 & 74. \\
0734 & 228 & 70. \\
0736 & 229 & 66. \\
0738 & 230 & 61. \\
0740 & 231 & 56. \\
0742 & 232 & 52. \\
0744 & 233 & 48. \\
0746 & 234 & 44. \\
0748 & 235 & 40. \\
0804 & 242 & 17. \\
0806 & 244 & 15. \\
0750 & 236 & 345
\end{tabular}
\begin{tabular}{|c|c|}
\hline 1.1 & 78.6 \\
\hline 1.1 & 78.5 \\
\hline 1.1 & 78.5 \\
\hline 1.1 & 78.5 \\
\hline 1.0 & 78.4 \\
\hline 1.0 & 78.4 \\
\hline . 9 & 78.3 \\
\hline . 9 & 78.3 \\
\hline . 8 & 78.2 \\
\hline . 8 & 78.2 \\
\hline . 7 & 78.1 \\
\hline . 6 & 78.1 \\
\hline . 6 & 78.1 \\
\hline . 6 & 78.0 \\
\hline . 5 & 78.0 \\
\hline . 5 & 77.9 \\
\hline . 5 & 77.9 \\
\hline . 4 & 77.8 \\
\hline . 4 & 77.7 \\
\hline . 4 & 77.7 \\
\hline . 3 & 77.6 \\
\hline . 3 & 77.6 \\
\hline . 3 & 77.5 \\
\hline . 2 & 77.5 \\
\hline . 2 & 77.4 \\
\hline
\end{tabular}

\footnotetext{
hydrograph at station er-5
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DA MON & HRMN & ORD & RAIN & LOSS & EXCESS & COMP Q & * & DA MON & HRMN & ORD & RAIN & LOSS & EXCESS & COMP Q \\
\hline & & & & & & & * & & & & & & & \\
\hline 1 & 0000 & 1 & . 00 & . 00 & . 00 & 0. & * & 1 & 0500 & 151 & . 00 & .00 & . 00 & 0. \\
\hline 1 & 0002 & 2 & . 12 & . 10 & .01 & 0. & * & 1 & 0502 & 152 & . 00 & .00 & . 00 & 0. \\
\hline 1 & 0004 & 3 & . 12 & . 10 & . 01 & 1. & * & 1 & 0504 & 153 & . 00 & .00 & . 00 & 0. \\
\hline 1 & 0006 & 4 & .17 & . 16 & .02 & 3. & * & 1 & 0506 & 154 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0008 & 5 & . 23 & . 21 & . 02 & 6. & * & 1 & 0508 & 155 & . 00 & .00 & . 00 & 0. \\
\hline 1 & 0010 & 6 & . 23 & .19 & .04 & 11. & * & 1 & 0510 & 156 & . 00 & .00 & . 00 & 0. \\
\hline 1 & 0012 & 7 & . 19 & . 13 & . 05 & 19. & * & 1 & 0512 & 157 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0014 & 8 & . 19 & . 12 & .07 & 30. & * & 1 & 0514 & 158 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0016 & 9 & . 14 & . 08 & .06 & 45. & * & 1 & 0516 & 159 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0018 & 10 & .10 & . 05 & . 04 & 62. & * & 1 & 0518 & 160 & . 00 & .00 & . 00 & 0. \\
\hline 1 & 0020 & 11 & . 10 & . 05 & . 05 & 79. & * & 1 & 0520 & 161 & . 00 & .00 & .00 & 0. \\
\hline 1 & 0022 & 12 & . 07 & . 04 & .04 & 95. & * & 1 & 0522 & 162 & . 00 & . 00 & .00 & 0. \\
\hline 1 & 0024 & 13 & . 07 & . 03 & . 04 & 107. & * & 1 & 0524 & 163 & . 00 & .00 & . 00 & 0. \\
\hline 1 & 0026 & 14 & . 06 & . 03 & . 03 & 116. & * & 1 & 0526 & 164 & . 00 & . 00 & . 00 & 0 \\
\hline 1 & 0028 & 15 & . 06 & . 03 & . 03 & 120. & * & 1 & 0528 & 165 & . 00 & .00 & . 00 & 0. \\
\hline 1 & 0030 & 16 & . 06 & . 02 & . 03 & 120. & * & 1 & 0530 & 166 & . 00 & . 00 & . 00 & 0 . \\
\hline 1 & 0032 & 17 & . 05 & . 02 & . 03 & 118. & * & 1 & 0532 & 167 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0034 & 18 & . 05 & . 02 & . 03 & 114. & * & 1 & 0534 & 168 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0036 & 19 & . 04 & . 02 & . 02 & 110. & * & 1 & 0536 & 169 & . 00 & .00 & . 00 & 0. \\
\hline 1 & 0038 & 20 & . 04 & . 02 & . 02 & 105. & * & 1 & 0538 & 170 & . 00 & . 00 & .00 & 0. \\
\hline 1 & 0040 & 21 & . 04 & . 02 & . 02 & 101. & * & 1 & 0540 & 171 & . 00 & .00 & . 00 & 0. \\
\hline 1 & 0042 & 22 & . 03 & . 01 & . 02 & 96. & * & 1 & 0542 & 172 & . 00 & .00 & . 00 & 0. \\
\hline 1 & 0044 & 23 & . 03 & . 01 & . 02 & 91. & \(\star\) & 1 & 0544 & 173 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0046 & 24 & . 03 & . 01 & . 02 & 86. & * & 1 & 0546 & 174 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0048 & 25 & . 03 & . 01 & . 02 & 82. & * & 1 & 0548 & 175 & . 00 & .00 & . 00 & 0. \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline 0330 & 106 & 436. & . 3 & 2636.6 & * 1 \\
\hline 0332 & 107 & 421. & . 3 & 2636.6 & * 1 \\
\hline 0334 & 108 & 407. & . 3 & 2636.5 & 1 \\
\hline 0336 & 109 & 391. & . 3 & 2636.5 & 1 \\
\hline 0338 & 110 & 376. & . 3 & 2636.5 & 1 \\
\hline 0340 & 111 & 361. & . 2 & 2636.4 & * 1 \\
\hline 0342 & 112 & 347. & . 2 & 2636.4 & 1 \\
\hline 0344 & 113 & 334. & . 2 & 2636.4 & 1 \\
\hline 0346 & 114 & 321. & . 2 & 2636.3 & 1 \\
\hline 0348 & 115 & 308. & . 2 & 2636.3 & 1 \\
\hline 0350 & 116 & 295. & . 2 & 2636.3 & 1 \\
\hline 0352 & 117 & 282. & . 1 & 2636.2 & * 1 \\
\hline 0354 & 118 & 269. & . 1 & 2636.2 & 1 \\
\hline 0356 & 119 & 258. & . 1 & 2636.2 & 1 \\
\hline 0358 & 120 & 247. & . 1 & 2636.2 & * 1 \\
\hline 0400 & 121 & 239. & . 1 & 2636.1 & 1 \\
\hline 0402 & 122 & 231. & . 1 & 2636.1 & 1 \\
\hline 0404 & 123 & 225. & . 1 & 2636.1 & 1 \\
\hline 0406 & 124 & 219. & . 1 & 2636.1 & 1 \\
\hline 0408 & 125 & 215. & . 1 & 2636.1 & 1 \\
\hline 0410 & 126 & 211. & . 0 & 2636.1 & 1 \\
\hline 0412 & 127 & 208. & . 0 & 2636.1 & * 1 \\
\hline 0414 & 128 & 206. & . 0 & 2636.1 & * 1 \\
\hline 0416 & 129 & 204. & . 0 & 2636.1 & * 1 \\
\hline 0418 & 130 & 202. & . 0 & 2636.1 & 1 \\
\hline 0420 & 131 & 201. & . 0 & 2636.1 & 1 \\
\hline 0422 & 132 & 200. & . 0 & 2636.1 & * 1 \\
\hline 0424 & 133 & 199. & . 0 & 2636.1 & * 1 \\
\hline 0426 & 134 & 198. & . 0 & 2636.1 & * 1 \\
\hline 0428 & 135 & 197. & . 0 & 2636.1 & 1 \\
\hline 0430 & 136 & 196. & . 0 & 2636.1 & 1 \\
\hline 0432 & 137 & 195. & . 0 & 2636.0 & 1 \\
\hline 0434 & 138 & 194. & . 0 & 2536.0 & 1 \\
\hline 0436 & 139 & 193. & . 0 & 2636.0 & * 1 \\
\hline 0438 & 140 & 193. & . 0 & 2636.0 & * 1 \\
\hline 0440 & 141 & 192. & . 0 & 2636.0 & 1 \\
\hline 0442 & 142 & 191. & . 0 & 2636.0 & * 1 \\
\hline 0444 & 143 & 191. & . 0 & 2636.0 & 1 \\
\hline 0446 & 144 & 190. & . 0 & 2636.0 & 1 \\
\hline 0448 & 145 & 189. & . 0 & 2636.0 & 1 \\
\hline 0450 & 146 & 188. & . 0 & 2536.0 & * 1 \\
\hline 0452 & 147 & 188. & . 0 & 2636.0 & * 1 \\
\hline 0454 & 148 & 187. & . 0 & 2636.0 & * 1 \\
\hline 0456 & 149 & 186. & . 0 & 2636.0 & * 1 \\
\hline 0458 & 150 & 185. & . 0 & 2636.0 & * 1 \\
\hline 0500 & 151 & 185. & . 0 & 2636.0 & - \\
\hline 0502 & 152 & 184. & . 0 & 2636.0 & * 1 \\
\hline 0504 & 153 & 183. & . 0 & 2636.0 & 1 \\
\hline 0506 & 154 & 182. & . 0 & 2636.0 & 1 \\
\hline 0508 & 155 & 182. & . 0 & 2636.0 & 1 \\
\hline 0510 & 156 & 181. & . 0 & 2636.0 & 1 \\
\hline 0512 & 157 & 180. & . 0 & 2636.0 & 1 \\
\hline 0514 & 158 & 179. & . 0 & 2636.0 & 1 \\
\hline 0516 & 159 & 178. & . 0 & 2636.0 & 1 \\
\hline 0518 & 160 & 177. & . 0 & 2636.0 & 1 \\
\hline 0520 & 161 & 177. & . 0 & 2636.0 & 1 \\
\hline 0522 & 162 & 176. & . 0 & 2636.0 & * 1 \\
\hline 0524 & 163 & 175. & . 0 & 2636.0 & * 1 \\
\hline 0526 & 164 & 174. & . 0 & 2636.0 & * 1 \\
\hline 0528 & 165 & 173. & . 0 & 2636.0 & 1 \\
\hline 0530 & 166 & 172. & . 0 & 2636.0 & 1 \\
\hline 0532 & 167 & 171. & . 0 & 2636.0 & 1 \\
\hline 0534 & 168 & 170. & . 0 & 2636.0 & 1 \\
\hline 0536 & 169 & 169. & . 0 & 2636.0 & 1 \\
\hline 0538 & 170 & 168. & . 0 & 2636.0 & * 1 \\
\hline 0540 & 171 & 167. & . 0 & 2636.0 & 1 \\
\hline 0542 & 172 & 166. & . 0 & 2636.0 & 1 \\
\hline 0544 & 173 & 165. & . 0 & 2636.0 & 1 \\
\hline 0546 & 174 & 165. & . 0 & 2636.0 & 1 \\
\hline 0548 & 175 & 164. & . 0 & 2636.0 & 1 \\
\hline 0550 & 176 & 163. & . 0 & 2636.0 & * 1 \\
\hline 0552 & 177 & 162. & . 0 & 2636.0 & 1 \\
\hline 0554 & 178 & 161. & . 0 & 2636.0 & * 1 \\
\hline 0556 & 179 & 160. & . 0 & 2636.0 & * 1 \\
\hline 0558 & 180 & 159. & . 0 & 2636.0 & 1 \\
\hline 0600 & 181 & 158. & . 0 & 2636.0 & 1 \\
\hline 0602 & 182 & 157. & . 0 & 2636.0 & 1 \\
\hline 0604 & 183 & 156. & . 0 & 2636.0 & * 1 \\
\hline 0606 & 184 & 155. & . 0 & 2636.0 & 1 \\
\hline 0608 & 185 & 154. & . 0 & 2636.0 & 1 \\
\hline 0610 & 186 & 153. & . 0 & 2636.0 & * 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 0650 & 206 & 126. & . 0 & 2635.9 \\
\hline 0652 & 207 & 124. & . 0 & 2635.9 \\
\hline 0654 & 208 & 122. & . 0 & 2635.9 \\
\hline 0656 & 209 & 121. & . 0 & 2635.9 \\
\hline 0658 & 210 & 119. & . 0 & 2635.9 \\
\hline 0700 & 211 & 117. & . 0 & 2635.9 \\
\hline 0702 & 212 & 115. & . 0 & 2635.9 \\
\hline 0704 & 213 & 113. & . 0 & 2635.9 \\
\hline 0706 & 214 & 111. & . 0 & 2635.9 \\
\hline 0708 & 215 & 108. & . 0 & 2635.8 \\
\hline 0710 & 216 & 106. & . 0 & 2635.8 \\
\hline 0712 & 217 & 104. & . 0 & 2635.8 \\
\hline 0714 & 218 & 101. & . 0 & 2635.8 \\
\hline 0716 & 219 & 99. & . 0 & 2635.8 \\
\hline 0718 & 220 & 96. & . 0 & 2635.8 \\
\hline 0720 & 221 & 93. & . 0 & 2635.8 \\
\hline 0722 & 222 & 90. & . 0 & 2635.8 \\
\hline 0724 & 223 & 87. & . 0 & 2635.8 \\
\hline 0726 & 224 & 84. & . 0 & 2635.8 \\
\hline 0728 & 225 & 81. & . 0 & 2635.8 \\
\hline 0730 & 226 & 78. & . 0 & 2635.8 \\
\hline 0732 & 227 & 74. & . 0 & 2635.8 \\
\hline 0734 & 228 & 70. & . 0 & 2635.8 \\
\hline 0736 & 229 & 66. & . 0 & 2635.8 \\
\hline 0738 & 230 & 61. & . 0 & 2635.7 \\
\hline 0740 & 231 & 56. & . 0 & 2635.7 \\
\hline 0742 & 232 & 52. & . 0 & 2635.7 \\
\hline 0744 & 233 & 48. & . 0 & 2635.7 \\
\hline 0746 & 234 & 44. & . 0 & 2635.7 \\
\hline 0748 & 235 & 40. & . 0 & 2635.7 \\
\hline 0750 & 236 & 36. & . 0 & 2635.7 \\
\hline 0752 & 237 & 32. & . 0 & 2635.7 \\
\hline 0754 & 238 & 29. & . 0 & 2635.7 \\
\hline 0756 & 239 & 25. & . 0 & 2635.7 \\
\hline 0758 & 240 & 22. & . 0 & 2635.7 \\
\hline 0800 & 241 & 20. & . 0 & 2635.6 \\
\hline 0802 & 242 & 17. & . 0 & 2635.6 \\
\hline 0804 & 243 & 15. & . 0 & 2635.6 \\
\hline 0806 & 244 & 14. & . 0 & 2635.6 \\
\hline 0808 & 245 & 12. & . 0 & 2635.6 \\
\hline 0810 & 246 & 11. & . 0 & 2635.6 \\
\hline 0812 & 247 & 10. & . 0 & 2635.6 \\
\hline 0814 & 248 & 9. & . 0 & 2635.6 \\
\hline 0816 & 249 & 8. & . 0 & 2635.6 \\
\hline 0818 & 250 & 8. & . 0 & 2635.6 \\
\hline 0820 & 251 & 7. & . 0 & 2635.6 \\
\hline 0822 & 252 & 7. & . 0 & 2635.6 \\
\hline 0824 & 253 & 6. & . 0 & 2635.6 \\
\hline 0826 & 254 & 6. & . 0 & 2635.6 \\
\hline 0828 & 255 & 5. & . 0 & 2635.6 \\
\hline 0830 & 256 & 5. & . 0 & 2635.6 \\
\hline 0832 & 257 & 5. & . 0 & 2635.6 \\
\hline 0834 & 258 & 4. & . 0 & 2635.6 \\
\hline 0836 & 259 & 4. & . 0 & 2635.6 \\
\hline 0838 & 260 & 4. & . 0 & 2635.6 \\
\hline 0840 & 261 & 3. & . 0 & 2635.6 \\
\hline 0842 & 262 & 3. & . 0 & 2635.6 \\
\hline 0844 & 263 & 3. & . 0 & 2635.6 \\
\hline 0846 & 264 & 2. & . 0 & 2635.6 \\
\hline 0848 & 265 & 2. & . 0 & 2635.6 \\
\hline 0850 & 266 & 2. & . 0 & 2635.6 \\
\hline 0852 & 267 & 2. & . 0 & 2635.6 \\
\hline 0854 & 268 & 2. & . 0 & 2635.6 \\
\hline 0856 & 269 & 1. & . 0 & 2635.6 \\
\hline 0858 & 270 & 1. & . 0 & 2635.6 \\
\hline 0900 & 271 & 1. & . 0 & 2635.6 \\
\hline 0902 & 272 & 1. & . 0 & 2635.6 \\
\hline 0904 & 273. & 1. & . 0 & 2635.6 \\
\hline 0906 & 274 & 1. & . 0 & 2635.6 \\
\hline 0908 & 275 & 1. & . 0 & 2635.6 \\
\hline 0910 & 276 & 1. & . 0 & 2635.6 \\
\hline 0912 & 277 & 1. & . 0 & 2635.6 \\
\hline 0914 & 278 & 1. & . 0 & 2635.6 \\
\hline 0916 & 279 & 0. & . 0 & 2635.6 \\
\hline 0918 & 280 & 0. & . 0 & 2635.6 \\
\hline 0920 & 281 & 0. & . 0 & 2635.6 \\
\hline 0922 & 282 & 0. & . 0 & 2635.6 \\
\hline 0924 & 283 & 0. & . 0 & 2635.6 \\
\hline 0926 & 284 & 0. & . 0 & 2635.6 \\
\hline 0928 & 285 & 0. & . 0 & 2635.6 \\
\hline 0930 & 286 & 0. & . 0 & 2635.6 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline 1 & 0252 & 87 & 676. & . 7 & 2637.2 & * & 1 & 0612 & 187 & 151. & . 0 & 2635.9 & * & 1 & 0932 & 287 & 0. & . 0 & 2635.6 \\
\hline 1 & 0254 & 88 & 658. & . 6 & 2637.1 & * & 1 & 0614 & 188 & 150. & . 0 & 2635.9 & * & 1 & 0934 & 288 & 0. & . 0 & 2635.6 \\
\hline 1 & 0256 & 89 & 641. & . 6 & 2637.1 & * & 1 & 0616 & 189 & 149. & . 0 & 2635.9 & * & 1 & 0936 & 289 & 0. & . 0 & 2635.6 \\
\hline 1 & 0258 & 90 & 625. & . 6 & 2637.0 & * & 1 & 0618 & 190 & 148. & . 0 & 2635.9 & * & 1 & 0938 & 290 & 0. & . 0 & 2635.6 \\
\hline 1 & 0300 & 91 & 609. & . 6 & 2637.0 & * & 1 & 0620 & 191 & 147. & . 0 & 2635.9 & * & 1 & 0940 & 291 & 0. & . 0 & 2635.6 \\
\hline 1 & 0302 & 92 & 596. & . 6 & 2637.0 & * & 1 & 0622 & 192 & 146. & . 0 & 2635.9 & * & 1 & 0942 & 292 & 0. & . 0 & 2635.6 \\
\hline 1 & 0304 & 93 & 583. & . 5 & 2636.9 & * & 1 & 0624 & 193 & 144. & . 0 & 2635.9 & * & 1 & 0944 & 293 & 0. & . 0 & 2635.6 \\
\hline 1 & 0306 & 94 & 571. & . 5 & 2636.9 & * & 1 & 0626 & 194 & 143. & . 0 & 2635.9 & * & 1 & 0946 & 294 & 0. & . 0 & 2635.6 \\
\hline 1 & 0308 & 95 & 561. & . 5 & 2636.9 & * & 1 & 0628 & 195 & 142. & . 0 & 2635.9 & * & 1 & 0948 & 295 & 0. & . 0 & 2635.6 \\
\hline 1 & 0310 & 96 & 550. & . 5 & 2636.9 & * & 1 & 0630 & 196 & 141. & . 0 & 2635.9 & * & 1 & 0950 & 296 & 0. & . 0 & 2635.6 \\
\hline 1 & 0312 & 97 & 540. & . 5 & 2636.8 & * & 1 & 0632 & 197 & 139. & . 0 & 2635.9 & * & 1 & 0952 & 297 & 0. & . 0 & 2635.6 \\
\hline 1 & 0314 & 98 & 530. & . 5 & 2636.8 & * & 1 & 0634 & 198 & 138. & . 0 & 2635.9 & * & 1 & 0954 & 298 & 0. & . 0 & 2635.6 \\
\hline 1 & 0316 & 99 & 520. & . 5 & 2636.8 & * & 1 & 0636 & 199 & 136. & . 0 & 2635.9 & * & 1 & 0956 & 299 & 0. & . 0 & 2635.6 \\
\hline 1 & 0318 & 100 & 510. & . 4 & 2636.8 & * & 1 & 0638 & 200 & 135. & . 0 & 2635.9 & * & 1 & 0958 & 300 & 0. & . 0 & 2635.6 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PEAK FLOW & TIME & \multicolumn{5}{|c|}{MAXIMUM AVERAGE FLOW} \\
\hline & & & 6-HR & 24-HR & 72-HR & 9.97-HR \\
\hline + (CFS) & (HR) & & & & & \\
\hline & & \multicolumn{2}{|l|}{(CFS)} & & & \\
\hline \multirow[t]{3}{*}{6213.} & . 93 & & 1121. & 693. & 693. & 693. \\
\hline & & (INCHES) & 1.821 & 1.870 & 1.870 & 1.870 \\
\hline & & (\(\mathrm{AC}-\mathrm{FT}\)) & 556. & 571. & 571. & 571. \\
\hline \multirow[t]{2}{*}{PEAK Storage} & \multirow[t]{2}{*}{TIME} & & & MAXIMUM AV & GE StORAGE & \\
\hline & & & 6-HR & 24-HR & 72-HR & 9.97-HR \\
\hline + (\(\mathrm{AC}-\mathrm{FT}\)) & (HR) & & & & & \\
\hline 12. & . 93 & & 1. & 1. & 1. & 1. \\
\hline PEAK STAGE & TIME & & & MAXIMUM A & Age stage & \\
\hline & & & 6-HR & \(24-H R\) & 72-HR & 9.97-HR \\
\hline + (FEET) & (HR) & & & & & \\
\hline 2643.91 & . 93 & & 2637.56 & 2636.83 & 2636.83 & 2636.83 \\
\hline - & & CUMULATI & AREA \(=\) & 5.72 SQ M & & \\
\hline
\end{tabular}

359 RS
HYDROGRAPH ROUTING DATA
\begin{tabular}{cr}
STORAGE ROUTING & \\
NSTPS & 1 \\
ITYP & FLOWMBER OF SUBREACHES \\
TYPE OF INITIAL CONDITION \\
RSVRIC & -1.00 INITIAL CONDITION \\
\(X\) & .00 WORKING R AND D COEFFICIENT
\end{tabular}

360 RC
NORMAL DEPTH CHANNEL
\begin{tabular}{rrl}
ANL & .060 & LEFT OVERBANK N-VALUE \\
ANCH & .050 & MAIN CHANNEL N-VALUE \\
ANR & .060 & RIGHT OVERBANK N-VALUE \\
RLNTH & 1270. & REACH LENGTH \\
SEL & .0190 & ENERGY SLOPE \\
ELMAX & .0 & MAX. ELEV. FOR STORAGE/OUTFLOW CALCULATION
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & -SECTI & DAtA & & & & \\
\hline & & --- LEE & ERBANK & + - & MAIN & NEL & + & GHT OVE & ANK --- \\
\hline 362 RY & ELEVATION & 30.00 & 24.00 & 22.00 & 18.00 & 20.00 & 22.00 & 26.00 & 30.00 \\
\hline 361 RX & DISTANCE & . 00 & 50.00 & 373.00 & 415.00 & 425.00 & 442.00 & 543.00 & 593.00 \\
\hline
\end{tabular}

COMPUTED STORAGE-OUTFLOW-ELEVATION DATA
\begin{tabular}{rrrrrrrrrrr}
\\
STORAGE & .00 & .09 & .36 & .81 & 1.46 & 2.32 & 3.41 & 5.15 & 8.95 & 14.93 \\
OUTFLOW & .00 & 5.85 & 37.16 & 109.55 & 232.70 & 426.86 & 706.59 & 1166.49 & 1943.44 & 3174.48 \\
ELEVATION & 18.00 & 18.63 & 19.26 & 19.89 & 20.53 & 21.16 & 21.79 & 22.42 & 23.05 & 23.68 \\
STORAGE & 22.86 & 31.39 & 40.32 & 49.63 & 59.22 & 69.05 & 79.12 & 89.44 & 99.99 & 110.79
\end{tabular}
\begin{tabular}{rrrrrrrrrr}
OUTELOW & 5096.90 & 7736.26 & 10945.45 & 14722.78 & 19066.41 & 23919.72 & 29270.95 & 35111.74 & 41436.11 \\
ELEVATION & 24.32 & 24.95 & 25.58 & 26.21 & 26.84 & 27.47 & 28.11 & 28.74 & 29.37
\end{tabular}
\begin{tabular}{|c|}
\hline 1 & 0000 & 1 & 0. & . 0 & 18.0 & * & 1 & 0320 & 101 & 514. & 2.7 & 21.4 & * & 1 & 0640 & 201 & 136. & 1.0 & 20.0 \\
\hline 1 & 0002 & 2 & 20. & . 2 & 18.9 & * & 1 & 0322 & 102 & 503. & 2.6 & 21.3 & * & 1 & 0642 & 202 & 135. & . 9 & 20.0 \\
\hline 1 & 0004 & 3 & 39. & . 4 & 19.3 & * & 1 & 0324 & 103 & 492. & 2.6 & 21.3 & * & 1 & 0644 & 203 & 133. & . 9 & 20.0 \\
\hline 1 & 0006 & 4 & 28. & . 3 & 19.1 & * & 1 & 0326 & 104 & 480. & 2.5 & 21.3 & * & 1 & 0646 & 204 & 132. & . 9 & 20.0 \\
\hline 1 & 0008 & 5 & 22. & . 2 & 19.0 & * & 1 & 0328 & 105 & 467. & 2.5 & 21.2 & * & 1 & 0648 & 205 & 130. & . 9 & 20.0 \\
\hline 1 & 0010 & 6 & 19. & . 2 & 18.9 & * & 1 & 0330 & 106 & 454. & 2.4 & 21.2 & * & 1 & 0650 & 206 & 129. & . 9 & 20.0 \\
\hline 1 & 0012 & 7 & 18. & . 2 & 18.9 & * & 1 & 0332 & 107 & 441. & 2.4 & 21.2 & * & 1 & 0652 & 207 & 127. & . 9 & 20.0 \\
\hline 1 & 0014 & 8 & 21. & . 2 & 18.9 & * & 1 & 0334 & 108 & 427. & 2.3 & 21.2 & * & 1 & 0654 & 208 & 126. & . 9 & 20.0 \\
\hline 1 & 0016 & 9 & 28. & . 3 & 19.1 & * & 1 & 0336 & 109 & 414. & 2.3 & 21.1 & * & 1 & 0656 & 209 & 124. & . 9 & 20.0 \\
\hline 1 & 0018 & 10 & 43. & . 4 & 19.3 & * & 1 & 0338 & 110 & 400. & 2.2 & 21.1 & * & 1 & 0658 & 210 & 122. & . 9 & 20.0 \\
\hline 1 & 0020 & 11 & 68. & . 6 & 19.5 & * & 1 & 0340 & 111 & 385. & 2.1 & 21.0 & * & 1 & 0700 & 211 & 120. & . 9 & 19.9 \\
\hline 1 & 0022 & 12 & 102. & . 8 & 19.8 & * & 1 & 0342 & 112 & 370. & 2.1 & 21.0 & * & 1 & 0702 & 212 & 118. & . 9 & 19.9 \\
\hline 1 & 0024 & 13 & 149. & 1.0 & 20.1 & * & 1 & 0344 & 113 & 356. & 2.0 & 20.9 & * & 1 & 0704 & 213 & 116. & . 8 & 19.9 \\
\hline 1 & 0026 & 14 & 212. & 1.3 & 20.4 & * & 1 & 0346 & 114 & 343. & 1.9 & 20.9 & * & 1 & 0706 & 214 & 114. & . 8 & 19.9 \\
\hline 1 & 0028 & 15 & 306. & 1.8 & 20.8 & * & 1 & 0348 & 115 & 330. & 1.9 & 20.8 & * & 1 & 0708 & 215 & 112. & . 8 & 19.9 \\
\hline 1 & 0030 & 16 & 423. & 2.3 & 21.1 & * & 1 & 0350 & 116 & 316. & 1.8 & 20.8 & * & 1 & 0710 & 216 & 110. & . 8 & 19.9 \\
\hline 1 & 0032 & 17 & 561. & 2.8 & 21.5 & * & 1 & 0352 & 117 & 303. & 1.8 & 20.8 & * & 1 & 0712 & 217 & 108. & . 8 & 19.9 \\
\hline 1 & 0034 & 18 & 690. & 3.3 & 21.8 & * & 1 & 0354 & 118 & 290. & 1.7 & 20.7 & * & 1 & 0714 & 218 & 106. & . 8 & 19.9 \\
\hline 1 & 0036 & 19 & 812. & 3.8 & 21.9 & * & 1 & 0356 & 119 & 278. & 1.7 & 20.7 & * & 1 & 0716 & 219 & 104. & . 8 & 19.8 \\
\hline 1 & 0038 & 20 & 956. & 4.4 & 22.1 & * & 1 & 0358 & 120 & 266. & 1.6 & 20.6 & * & 1 & 0718 & 220 & 101. & . 8 & 19.8 \\
\hline 1 & 0040 & 21 & 1172. & 5.2 & 22.4 & * & 1 & 0400 & 121 & 255. & 1.6 & 20.6 & * & 1 & 0720 & 221 & 99. & . 7 & 19.8 \\
\hline 1 & 0042 & 22 & 1475. & 6.7 & 22.7 & * & 1 & 0402 & 122 & 245. & 1.5 & 20.6 & * & 1 & 0722 & 222 & 96. & . 7 & 19.8 \\
\hline 1 & 0044 & 23 & 1969. & 9.1 & 23.1 & * & 1 & 0404 & 123 & 237. & 1.5 & 20.5 & * & 1 & 0724 & 223 & 93. & . 7 & 19.8 \\
\hline 1 & 0046 & 24 & 2655. & 12.4 & 23.4 & * & 1 & 0406 & 124 & 230. & 1.4 & 20.5 & * & 1 & 0726 & 224 & 91. & . 7 & 19.7 \\
\hline 1 & 0048 & 25 & 3505. & 16.3 & 23.8 & * & 1 & 0408 & 125 & 225. & 1.4 & 20.5 & * & 1 & 0728 & 225 & 88. & . 7 & 19.7 \\
\hline 1 & 0050 & 26 & 4392. & 19.9 & 24.1 & * & 1 & 0410 & 126 & 220. & 1.4 & 20.5 & * & 1 & 0730 & 226 & 85. & . 7 & 19.7 \\
\hline 1 & 0052 & 27 & 5096. & 22.9 & 24.3 & * & 1 & 0412 & 127 & 216. & 1.4 & 20.4 & * & 1 & 0732 & 227 & 81. & . 6 & 19.6 \\
\hline 1 & 0054 & 28 & 5698. & 24.8 & 24.5 & * & 1 & 0414 & 128 & 212. & 1.3 & 20.4 & * & 1 & 0734 & 228 & 78. & . 6 & 19.6 \\
\hline 1 & 0056 & 29 & 6002. & 25.8 & 24.5 & * & 1 & 0416 & 129 & 209. & 1.3 & 20.4 & * & 1 & 0736 & 229 & 74. & . 6 & 19.6 \\
\hline 1 & 0058 & 30 & 6095. & 26.1 & 24.6 & * & 1 & 0418 & 130 & 207. & 1.3 & 20.4 & * & 1 & 0738 & 230 & 70. & . 6 & 19.6 \\
\hline 1 & 0100 & 31 & 6041. & 25.9 & 24.5 & * & 1 & 0420 & 131 & 205. & 1.3 & 20.4 & * & 1 & 0740 & 231 & 66. & . 5 & 19.5 \\
\hline 1 & 0102 & 32 & 5892. & 25.4 & 24.5 & * & 1 & 0422 & 132 & 203. & 1.3 & 20.4 & * & 1 & 0742 & 232 & 62. & . 5 & 19.5 \\
\hline 1. & 0104 & 33 & 5684. & 24.8 & 24.5 & * & 1 & 0424 & 133 & 201. & 1.3 & 20.4 & * & 1 & 0744 & 233 & 57. & . 5 & 19.4 \\
\hline 1 & 0106 & 34 & 5446. & 24.0 & 24.4 & * & 1 & 0426 & 134 & 200. & 1.3 & 20.4 & * & 1 & 0746 & 234 & 53. & . 5 & 19.4 \\
\hline 1 & 0108 & 35 & 5192. & 23.2 & 24.3 & * & 1 & 0428 & 135 & 199. & 1.3 & 20.4 & * & 1 & 0748 & 235 & 49. & . 4 & 19.4 \\
\hline 1 & 0110 & 36 & 4955. & 22.3 & 24.3 & * & 1 & 0430 & 136 & 198. & 1.3 & 20.3 & * & 1 & 0750 & 236 & 45. & . 4 & 19.3 \\
\hline 1 & 0112 & 37 & 4723. & 21.3 & 24.2 & * & 1 & 0432 & 137 & 197. & 1.3 & 20.3 & * & 1 & 0752 & 237 & 41. & . 4 & 19.3 \\
\hline 1 & 0114 & 38 & 4485. & 20.3 & 24.1 & * & 1 & 0434 & 138 & 196. & 1.3 & 20.3 & * & 1 & 0754 & 238 & 37. & . 4 & 19.3 \\
\hline 1 & 0116 & 39 & 4248. & 19.4 & 24.0 & * & 1 & 0436 & 139 & 195. & 1.3 & 20.3 & * & 1 & 0756 & 239 & 34. & . 3 & 19.2 \\
\hline 1 & 0118 & 40 & 4021. & 18.4 & 24.0 & * & 1 & 0438 & 140 & 194. & 1.3 & 20.3 & * & 1 & 0758 & 240 & 32. & . 3 & 19.1 \\
\hline 1 & 0120 & 41 & 3810. & 17.6 & 23.9 & * & 1 & 0440 & 141 & 193. & 1.3 & 20.3 & * & 1 & 0800 & 241 & 29. & . 3 & 19.1 \\
\hline 1 & 0122 & 42 & 3619. & 16.8 & 23.8 & * & 1 & 0442 & 142 & 193. & 1.2 & 20.3 & * & 1 & 0802 & 242 & 26. & . 3 & 19.0 \\
\hline 1 & 0124 & 43 & 3446. & 16.0 & 23.8 & * & 1 & 0444 & 143 & 192. & 1.2 & 20.3 & * & 1 & 0804 & 243 & 23. & . 2 & 19.0 \\
\hline 1 & 0126 & 44 & 3290. & 15.4 & 23.7 & * & 1 & 0446 & 144 & 191. & 1.2 & 20.3 & * & 1 & 0806 & 244 & 21. & . 2 & 18.9 \\
\hline 1 & 0128 & 45 & 3152. & 14.8 & 23.7 & * & 1 & 0448 & 145 & 190. & 1.2 & 20.3 & * & 1 & 0808 & 245 & 19. & . 2 & 18.9 \\
\hline 1 & 0130 & 46 & 3032. & 14.2 & 23.6 & * & 1 & 0450 & 146 & 190. & 1.2 & 20.3 & * & 1 & 0810 & 246 & 17. & . 2 & 18.9 \\
\hline 1 & 0132 & 47 & 2909. & 13.6 & 23.5 & * & 1 & 0452 & 147 & 189. & 1.2 & 20.3 & * & 1 & 0812 & 247 & 15. & . 2 & 18.8 \\
\hline 1 & 0134 & 48 & 2787. & 13.0 & 23.5 & * & 1 & 0454 & 148 & 188. & 1.2 & 20.3 & * & 1 & 0814 & 248 & 13. & . 2 & 18.8 \\
\hline 1 & 0136 & 49 & 2663. & 12.4 & 23.4 & * & 1 & 0456 & 149 & 188. & 1.2 & 20.3 & * & 1 & 0816 & 249 & 12. & . 1 & 18.8 \\
\hline 1 & 0138 & 50 & 2543. & 11.9 & 23.4 & * & 1 & 0458 & 150 & 187. & 1.2 & 20.3 & * & 1 & 0818 & 250 & 11. & . 1 & 18.7 \\
\hline 1 & 0140 & 51 & 2429. & 11.3 & 23.3 & * & 1 & 0500 & 151 & 186. & 1.2 & 20.3 & * & 1 & 0820 & 251 & 10. & . 1 & 18.7 \\
\hline 1 & 0142 & 52 & 2322. & 10.8 & 23.2 & * & 1 & 0502 & 152 & 185. & 1.2 & 20.3 & * & 1 & 0822 & 252 & 9. & . 1 & 18.7 \\
\hline 1 & 0144 & 53 & 2220. & 10.3 & 23.2 & * & 1 & 0504 & 153 & 185. & 1.2 & 20.3 & * & 1 & 0824 & 253 & 8. & . 1 & 18.7 \\
\hline 1 & 0146 & 54 & 2123. & 9.8 & 23.1 & * & 1 & 0506 & 154 & 184. & 1.2 & 20.3 & * & 1 & 0826 & 254 & 8. & . 1 & 18.7 \\
\hline 1 & 0148 & 55 & 2030. & 9.4 & 23.1 & * & 1 & 0508 & 155 & 183. & 1.2 & 20.3 & * & 1 & 0828 & 255 & 7. & . 1 & 18.7 \\
\hline 1 & 0150 & 56 & 1944. & 9.0 & 23.1 & * & 1 & 0510 & 156 & 182. & 1.2 & 20.3 & * & 1 & 0830 & 256 & 7. & . 1 & 18.6 \\
\hline 1 & 0152 & 57 & 1865. & 8.6 & 23.0 & * & 1 & 0512 & 157 & 181. & 1.2 & 20.3 & * & 1. & 0832 & 257 & 6. & . 1 & 18.6 \\
\hline 1 & 0154 & 58 & 1791. & 8.2 & 22.9 & * & 1 & 0514 & 158 & 181. & 1.2 & 20.3 & * & 1 & 0834 & 258 & 6. & . 1 & 18.6 \\
\hline 1 & 0156 & 59 & 1722. & 7.9 & 22.9 & * & 1 & 0516 & 159 & 180. & 1.2 & 20.3 & * & 1 & 0836 & 259 & 5. & . 1 & 18.6 \\
\hline 1 & 0158 & 60 & 1656. & 7.5 & 22.8 & * & 1 & 0518 & 160 & 179. & 1.2 & 20.3 & * & 1 & 0838 & 260 & 5. & . 1 & 18.6 \\
\hline 1 & 0200 & 61 & 1594. & 7.2 & 22.8 & * & 1 & 0520 & 161 & 178. & 1.2 & 20.2 & * & 1 & 0840 & 261 & 5. & . 1 & 18.5 \\
\hline 1 & 0202 & 62 & 1535. & 7.0 & 22.7 & * & 1 & 0522 & 162 & 177. & 1.2 & 20.2 & * & 1 & 0842 & 262 & 5. & . 1 & 18.5 \\
\hline 1 & 0204 & 63 & 1480. & 6.7 & 22.7 & * & 1 & 0524 & 163 & 177. & 1.2 & 20.2 & * & 1 & 0844 & 263 & 4. & . 1 & 18.5 \\
\hline 1 & 0206 & 64 & 1427. & 6.4 & 22.6 & * & 1 & 0526 & 164 & 176. & 1.2 & 20.2 & * & 1 & 0846 & 264 & 4. & . 1 & 18.4 \\
\hline 1. & 0208 & 65 & 1376. & 6.2 & 22.6 & * & 1 & 0528 & 165 & 175. & 1.2 & 20.2 & * & 1 & 0848 & 265 & 4. & . 1 & 18.4 \\
\hline 1 & 0210 & 66 & 1328. & 5.9 & 22.6 & * & 1 & 0530 & 166 & 174. & 1.1 & 20.2 & * & 1 & 0850 & 266 & 3. & . 1 & 18.4 \\
\hline 1 & 0212 & 67 & 1282. & 5.7 & 22.5 & * & 1 & 0532 & 167 & 173. & 1.1 & 20.2 & * & 1 & 0852 & 267 & 3. & . 0 & 18.3 \\
\hline 1 & 0214 & 68 & 1239. & 5.5 & 22.5 & * & 1 & 0534 & 168 & 172. & 1.1 & 20.2 & * & 1 & 0854 & 268 & 3. & . 0 & 18.3 \\
\hline 1 & 0216 & 69 & 1197. & 5.3 & 22.4 & & 1 & 0536 & 169 & 171. & 1.1 & 20.2 & & 1 & 0856 & 269 & 3. & . 0 & 18.3 \\
\hline
\end{tabular}

DA MON HRMN ORD OUTFLOW STORAGE
\(021669 \quad 1197\).
5.3

STAGE * DA MON HRMN ORD OUTFLOW STORAG \(18.0 * 1\) 18.0 * 1
18.9 *
19.3

\begin{tabular}{l}
320101 \\
322102 \\
\hline 324103
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 0000 & 1 & 0. & . 0 & 18.0 & * 1 & 0320101 & 514. & 2.7 & 21.4 & * & 1 & 0640 & 201 & 136. & 1.0 & 20.0 \\
\hline 1 & 0002 & 2 & 20. & . 2 & 18.9 & * 1 & 0322102 & 503. & 2.6 & 21.3 & * & 1 & 0642 & 202 & 135. & . 9 & 20.0 \\
\hline 1 & 0004 & 3 & 39. & . 4 & 19.3 & * 1 & 0324103 & 492. & 2.6 & 21.3 & * & 1 & 0644 & 203 & 133. & . 9 & 20.0 \\
\hline 1 & 0006 & 4 & 28. & . 3 & 19.1 & * 1 & 0326104 & 480. & 2.5 & 21.3 & * & 1 & 0646 & 204 & 132. & . 9 & 20.0 \\
\hline 1 & 0008 & 5 & 22. & . 2 & 19.0 & * 1 & 0328105 & 467. & 2.5 & 21.2 & * & 1 & 0648 & 205 & 130. & . 9 & 20.0 \\
\hline 1 & 0010 & 6 & 19. & . 2 & 18.9 & * 1 & 0330106 & 454. & 2.4 & 21.2 & * & 1 & 0650 & 206 & 129. & . 9 & 20.0 \\
\hline 1 & 0012 & 7 & 18. & . 2 & 18.9 & * 1 & 0332107 & 441. & 2.4 & 21.2 & * & 1 & 0652 & 207 & 127. & . 9 & 20.0 \\
\hline 1 & 0014 & 8 & 21. & . 2 & 18.9 & * 1 & 0334108 & 427. & 2.3 & 21.2 & * & 1 & 0654 & 208 & 126. & . 9 & 20.0 \\
\hline 1 & 0016 & 9 & 28. & . 3 & 19.1 & * 1 & 0336109 & 414. & 2.3 & 21.1 & * & 1 & 0656 & 209 & 124. & . 9 & 20.0 \\
\hline 1 & 0018 & 10 & 43. & . 4 & 19.3 & * 1 & 0338110 & 400. & 2.2 & 21.1 & * & 1 & 0658 & 210 & 122. & . 9 & 20.0 \\
\hline 1 & 0020 & 11 & 68. & . 6 & 19.5 & * 1 & 0340111 & 385. & 2.1 & 21.0 & * & 1 & 0700 & 211 & 120. & . 9 & 19.9 \\
\hline 1 & 0022 & 12 & 102. & . 8 & 19.8 & * 1 & 0342112 & 370. & 2.1 & 21.0 & * & 1 & 0702 & 212 & 118. & . 9 & 19.9 \\
\hline 1 & 0024 & 13 & 149. & 1.0 & 20.1 & * 1 & 0344113 & 356. & 2.0 & 20.9 & * & 1 & 0704 & 213 & 116. & . 8 & 19.9 \\
\hline 1 & 0026 & 14 & 212. & 1.3 & 20.4 & * 1 & 034611.4 & 343. & 1.9 & 20.9 & * & 1 & 0706 & 214 & 114. & . 8 & 19.9 \\
\hline 1 & 0028 & 15 & 306. & 1.8 & 20.8 & * 1 & 0348115 & 330. & 1.9 & 20.8 & * & 1 & 0708 & 215 & 112. & . 8 & 19.9 \\
\hline 1 & 0030 & 16 & 423. & 2.3 & 21.1 & * 1 & 0350116 & 316. & 1.8 & 20.8 & * & 1 & 0710 & 216 & 110. & . 8 & 19.9 \\
\hline 1 & 0032 & 17 & 561. & 2.8 & 21.5 & * 1 & 0352117 & 303. & 1.8 & 20.8 & * & 1 & 0712 & 217 & 108. & . 8 & 19.9 \\
\hline 1 & 0034 & 18 & 690. & 3.3 & 21.8 & * 1 & 0354118 & 290. & 1.7 & 20.7 & * & 1 & 0714 & 218 & 106. & . 8 & 19.9 \\
\hline 1 & 0036 & 19 & 812. & 3.8 & 21.9 & * 1 & 0356119 & 278. & 1.7 & 20.7 & * & 1 & 0716 & 219 & 104. & . 8 & 19.8 \\
\hline 1 & 0038 & 20 & 956. & 4.4 & 22.1 & * 1 & 0358120 & 266. & 1.6 & 20.6 & * & 1 & 0718 & 220 & 101. & . 8 & 19.8 \\
\hline 1 & 0040 & 21 & 1172. & 5.2 & 22.4 & * 1 & 0400121 & 255. & 1.6 & 20.6 & * & 1 & 0720 & 221 & 99. & . 7 & 19.8 \\
\hline 1 & 0042 & 22 & 1475. & 6.7 & 22.7 & * 1 & 0402122 & 245. & 1.5 & 20.6 & * & 1 & 0722 & 222 & 96. & . 7 & 19.8 \\
\hline 1 & 0044 & 23 & 1969. & 9.1 & 23.1 & * 1 & 0404123 & 237. & 1.5 & 20.5 & * & 1 & 0724 & 223 & 93. & . 7 & 19.8 \\
\hline 1 & 0046 & 24 & 2655. & 12.4 & 23.4 & * 1 & 0406124 & 230. & 1.4 & 20.5 & * & 1 & 0726 & 224 & 91. & . 7 & 19.7 \\
\hline 1 & 0048 & 25 & 3505. & 16.3 & 23.8 & * 1 & 0408125 & 225. & 1.4 & 20.5 & * & 1 & 0728 & 225 & 88. & . 7 & 19.7 \\
\hline 1 & 0050 & 26 & 4392. & 19.9 & 24.1 & * 1 & 0410126 & 220. & 1.4 & 20.5 & * & 1 & 0730 & 226 & 85. & . 7 & 19.7 \\
\hline 1 & 0052 & 27 & 5096. & 22.9 & 24.3 & * 1 & 0412127 & 216. & 1.4 & 20.4 & * & 1 & 0732 & 227 & 81. & . 6 & 19.6 \\
\hline 1 & 0054 & 28 & 5698. & 24.8 & 24.5 & * 1 & 0414128 & 212. & 1.3 & 20.4 & * & 1 & 0734 & 228 & 78. & . 6 & 19.6 \\
\hline 1 & 0056 & 29 & 6002. & 25.8 & 24.5 & * 1 & 0416129 & 209. & 1.3 & 20.4 & * & 1 & 0736 & 229 & 74. & . 6 & 19.6 \\
\hline 1 & 0058 & 30 & 6095. & 26.1 & 24.6 & * 1 & 0418130 & 207. & 1.3 & 20.4 & * & 1 & 0738 & 230 & 70. & . 6 & 19.6 \\
\hline 1 & 0100 & 31 & 6041. & 25.9 & 24.5 & * 1 & 0420131 & 205. & 1.3 & 20.4 & * & 1 & 0740 & 231 & 66. & . 5 & 19.5 \\
\hline 1 & 0102 & 32 & 5892. & 25.4 & 24.5 & * 1 & 0422132 & 203. & 1.3 & 20.4 & * & 1 & 0742 & 232 & 62. & . 5 & 19.5 \\
\hline 1. & 0104 & 33 & 5684. & 24.8 & 24.5 & * 1 & 0424133 & 201. & 1.3 & 20.4 & * & 1 & 0744 & 233 & 57. & . 5 & 19.4 \\
\hline 1 & 0106 & 34 & 5446. & 24.0 & 24.4 & * 1 & 0426134 & 200. & 1.3 & 20.4 & * & 1 & 0746 & 234 & 53. & . 5 & 19.4 \\
\hline 1 & 0108 & 35 & 5192. & 23.2 & 24.3 & * 1 & 0428135 & 199. & 1.3 & 20.4 & * & 1 & 0748 & 235 & 49. & . 4 & 19.4 \\
\hline 1 & 0110 & 36 & 4955. & 22.3 & 24.3 & * 1 & 0430136 & 198. & 1.3 & 20.3 & * & 1 & 0750 & 236 & 45. & . 4 & 19.3 \\
\hline 1 & 0112 & 37 & 4723. & 21.3 & 24.2 & * 1 & 0432137 & 197. & 1.3 & 20.3 & * & 1 & 0752 & 237 & 41. & . 4 & 19.3 \\
\hline 1 & 0114 & 38 & 4485. & 20.3 & 24.1 & * 1 & 0434138 & 196. & 1.3 & 20.3 & * & 1 & 0754 & 238 & 37. & . 4 & 19.3 \\
\hline 1 & 0116 & 39 & 4248. & 19.4 & 24.0 & * 1 & 0436139 & 195. & 1.3 & 20.3 & * & 1 & 0756 & 239 & 34. & . 3 & 19.2 \\
\hline 1 & 0118 & 40 & 4021. & 18.4 & 24.0 & * 1 & 0438140 & 194. & 1.3 & 20.3 & * & 1 & 0758 & 240 & 32. & . 3 & 19.1 \\
\hline 1 & 0120 & 41 & 3810. & 17.6 & 23.9 & * 1 & 0440141 & 193. & 1.3 & 20.3 & * & 1 & 0800 & 241 & 29. & . 3 & 19.1 \\
\hline 1 & 0122 & 42 & 3619. & 16.8 & 23.8 & * 1 & 0442142 & 193. & 1.2 & 20.3 & * & 1 & 0802 & 242 & 26. & . 3 & 19.0 \\
\hline 1 & 0124 & 43 & 3446. & 16.0 & 23.8 & * 1 & 0444143 & 192. & 1.2 & 20.3 & * & 1 & 0804 & 243 & 23. & . 2 & 19.0 \\
\hline 1 & 0126 & 44 & 3290. & 15.4 & 23.7 & * 1 & 0446144 & 191. & 1.2 & 20.3 & * & 1 & 0806 & 244 & 21. & . 2 & 18.9 \\
\hline 1 & 0128 & 45 & 3152. & 14.8 & 23.7 & * 1 & 0448145 & 190. & 1.2 & 20.3 & * & 1 & 0808 & 245 & 19. & . 2 & 18.9 \\
\hline 1 & 0130 & 46 & 3032. & 14.2 & 23.6 & * 1 & 0450146 & 190. & 1.2 & 20.3 & * & 1 & 0810 & 246 & 17. & . 2 & 18.9 \\
\hline 1 & 0132 & 47 & 2909. & 13.6 & 23.5 & * 1 & 0452147 & 189. & 1.2 & 20.3 & * & 1 & 0812 & 247 & 15. & . 2 & 18.8 \\
\hline 1 & 0134 & 48 & 2787. & 13.0 & 23.5 & * 1 & 0454148 & 188. & 1.2 & 20.3 & * & 1 & 0814 & 248 & 13. & . 2 & 18.8 \\
\hline 1 & 0136 & 49 & 2663. & 12.4 & 23.4 & * 1 & 0456149 & 188. & 1.2 & 20.3 & * & 1 & 0816 & 249 & 12. & . 1 & 18.8 \\
\hline 1 & 0138 & 50 & 2543. & 11.9 & 23.4 & * 1 & 0458150 & 187. & 1.2 & 20.3 & * & 1 & 0818 & 250 & 11. & . 1 & 18.7 \\
\hline 1 & 0140 & 51 & 2429. & 11.3 & 23.3 & * 1 & 0500151 & 186. & 1.2 & 20.3 & * & 1 & 0820 & 251 & 10. & . 1 & 18.7 \\
\hline 1 & 0142 & 52 & 2322. & 10.8 & 23.2 & * 1 & 0502152 & 185. & 1.2 & 20.3 & * & 1 & 0822 & 252 & 9. & . 1 & 18.7 \\
\hline 1 & 0144 & 53 & 2220. & 10.3 & 23.2 & * 1 & 0504153 & 185. & 1.2 & 20.3 & * & 1 & 0824 & 253 & 8. & . 1 & 18.7 \\
\hline 1 & 0146 & 54 & 2123. & 9.8 & 23.1 & * 1 & 0506154 & 184. & 1.2 & 20.3 & * & 1 & 0826 & 254 & 8. & . 1 & 18.7 \\
\hline 1 & 0148 & 55 & 2030. & 9.4 & 23.1 & * 1 & 0508155 & 183. & 1.2 & 20.3 & * & 1 & 0828 & 255 & 7. & . 1 & 18.7 \\
\hline 1 & 0150 & 56 & 1944. & 9.0 & 23.1 & * 1 & 0510156 & 182. & 1.2 & 20.3 & * & 1 & 0830 & 256 & 7. & . 1 & 18.6 \\
\hline 1 & 0152 & 57 & 1865. & 8.6 & 23.0 & * 1 & 0512157 & 181. & 1.2 & 20.3 & * & 1 & 0832 & 257 & 6. & . 1 & 18.6 \\
\hline 1 & 0154 & 58 & 1791. & 8.2 & 22.9 & * 1 & 0514158 & 181. & 1.2 & 20.3 & * & 1 & 0834 & 258 & 6. & . 1 & 18.6 \\
\hline 1 & 0156 & 59 & 1722. & 7.9 & 22.9 & * 1 & 0516159 & 180. & 1.2 & 20.3 & * & 1 & 0836 & 259 & 5. & . 1 & 18.6 \\
\hline 1 & 0158 & 60 & 1656. & 7.5 & 22.8 & * 1 & 0518160 & 179. & 1.2 & 20.3 & * & 1 & 0838 & 260 & 5. & . 1 & 18.6 \\
\hline , & 0200 & 61 & 1594. & 7.2 & 22.8 & * 1 & 0520161 & 178. & 1.2 & 20.2 & * & 1 & 0840 & 261 & 5. & . 1 & 18.5 \\
\hline 1 & 0202 & 62 & 1535. & 7.0 & 22.7 & * 1 & 0522162 & 177. & 1.2 & 20.2 & * & 1 & 0842 & 262 & 5. & . 1 & 18.5 \\
\hline & 0204 & 63 & 1480. & 6.7 & 22.7 & * 1 & 0524163 & 177. & 1.2 & 20.2 & * & 1 & 0844 & 263 & 4. & . 1 & 18.5 \\
\hline 1 & 0206 & 64 & 1427. & 6.4 & 22.6 & * 1 & 0526164 & 176. & 1.2 & 20.2 & , & 1 & 0846 & 264 & 4. & . 1 & 18.4 \\
\hline 1 & 0208 & 65 & 1376. & 6.2 & 22.6 & * 1 & 0528165 & 175. & 1.2 & 20.2 & * & 1 & 0848 & 265 & 4. & . 1 & 18.4 \\
\hline , & 0210 & 65 & 1328. & 5.9 & 22.6 & * 1 & 0530166 & 174. & 1.1 & 20.2 & * & 1 & 0850 & 266 & 3. & . 1 & 18.4 \\
\hline 1 & 0212 & 67 & 1282. & 5.7 & 22.5 & * 1 & 0532167 & 173. & 1.1 & 20.2 & * & 1 & 0852 & 267 & 3. & . 0 & 18.3 \\
\hline 1 & 0214 & 68 & 1239. & 5.5 & 22.5 & * 1 & 0534168 & 172. & 1.1 & 20.2 & * & 1 & 0854 & 268 & 3. & . 0 & 18.3 \\
\hline 1 & 0216 & 69 & 1197. & 5.3 & 22.4 & * 1 & 0536169 & 171. & 1.1 & 20.2 & * & 1 & 0856 & 269 & 3. & . 0 & 18.3 \\
\hline
\end{tabular}
\(\begin{array}{lll}514 . & 2.7 & 21.4 * * 1 \\ 503 . & 2.6 & 21.3 *\end{array}\)
\begin{tabular}{|c|}
\hline 1 & 0000 & 1 & 0. & . 0 & 18.0 & * & 1 & 0320 & 101 & 514. & 2.7 & 21.4 & * & 1 & 0640 & 201 & 136. & 1.0 & 20.0 \\
\hline 1 & 0002 & 2 & 20. & . 2 & 18.9 & * & 1 & 0322 & 102 & 503. & 2.6 & 21.3 & * & 1 & 0642 & 202 & 135. & . 9 & 20.0 \\
\hline 1 & 0004 & 3 & 39. & . 4 & 19.3 & * & 1 & 0324 & 103 & 492. & 2.6 & 21.3 & * & 1 & 0644 & 203 & 133. & . 9 & 20.0 \\
\hline 1 & 0006 & 4 & 28. & . 3 & 19.1 & * & 1 & 0326 & 104 & 480. & 2.5 & 21.3 & * & 1 & 0646 & 204 & 132. & . 9 & 20.0 \\
\hline 1 & 0008 & 5 & 22. & . 2 & 19.0 & * & 1 & 0328 & 105 & 467. & 2.5 & 21.2 & * & 1 & 0648 & 205 & 130. & . 9 & 20.0 \\
\hline 1 & 0010 & 6 & 19. & . 2 & 18.9 & * & 1 & 0330 & 106 & 454. & 2.4 & 21.2 & * & 1 & 0650 & 206 & 129. & . 9 & 20.0 \\
\hline 1 & 0012 & 7 & 18. & . 2 & 18.9 & * & 1 & 0332 & 107 & 441. & 2.4 & 21.2 & * & 1 & 0652 & 207 & 127. & . 9 & 20.0 \\
\hline 1 & 0014 & 8 & 21. & . 2 & 18.9 & * & 1 & 0334 & 108 & 427. & 2.3 & 21.2 & * & 1 & 0654 & 208 & 126. & . 9 & 20.0 \\
\hline 1 & 0016 & 9 & 28. & . 3 & 19.1 & * & 1 & 0336 & 109 & 414. & 2.3 & 21.1 & * & 1 & 0656 & 209 & 124. & . 9 & 20.0 \\
\hline 1 & 0018 & 10 & 43. & . 4 & 19.3 & * & 1 & 0338 & 110 & 400. & 2.2 & 21.1 & * & 1 & 0658 & 210 & 122. & . 9 & 20.0 \\
\hline 1 & 0020 & 11 & 68. & . 6 & 19.5 & * & 1 & 0340 & 111 & 385. & 2.1 & 21.0 & * & 1 & 0700 & 211 & 120. & . 9 & 19.9 \\
\hline 1 & 0022 & 12 & 102. & . 8 & 19.8 & * & 1 & 0342 & 112 & 370. & 2.1 & 21.0 & * & 1 & 0702 & 212 & 118. & . 9 & 19.9 \\
\hline 1 & 0024 & 13 & 149. & 1.0 & 20.1 & * & 1 & 0344 & 113 & 356. & 2.0 & 20.9 & * & 1 & 0704 & 213 & 116. & . 8 & 19.9 \\
\hline 1 & 0026 & 14 & 212. & 1.3 & 20.4 & * & 1 & 0346 & 114 & 343. & 1.9 & 20.9 & * & 1 & 0706 & 214 & 114. & . 8 & 19.9 \\
\hline 1 & 0028 & 15 & 306. & 1.8 & 20.8 & * & 1 & 0348 & 115 & 330. & 1.9 & 20.8 & * & 1 & 0708 & 215 & 112. & . 8 & 19.9 \\
\hline 1 & 0030 & 16 & 423. & 2.3 & 21.1 & * & 1 & 0350 & 116 & 316. & 1.8 & 20.8 & * & 1 & 0710 & 216 & 110. & . 8 & 19.9 \\
\hline 1 & 0032 & 17 & 561. & 2.8 & 21.5 & * & 1 & 0352 & 117 & 303. & 1.8 & 20.8 & * & 1 & 0712 & 217 & 108. & . 8 & 19.9 \\
\hline 1 & 0034 & 18 & 690. & 3.3 & 21.8 & * & 1 & 0354 & 118 & 290. & 1.7 & 20.7 & * & 1 & 0714 & 218 & 106. & . 8 & 19.9 \\
\hline 1 & 0036 & 19 & 812. & 3.8 & 21.9 & * & 1 & 0356 & 119 & 278. & 1.7 & 20.7 & * & 1 & 0716 & 219 & 104. & . 8 & 19.8 \\
\hline 1 & 0038 & 20 & 956. & 4.4 & 22.1 & * & 1 & 0358 & 120 & 266. & 1.6 & 20.6 & * & 1 & 0718 & 220 & 101. & . 8 & 19.8 \\
\hline 1 & 0040 & 21 & 1172. & 5.2 & 22.4 & * & 1 & 0400 & 121 & 255. & 1.6 & 20.6 & * & 1 & 0720 & 221 & 99. & . 7 & 19.8 \\
\hline 1 & 0042 & 22 & 1475. & 6.7 & 22.7 & * & 1 & 0402 & 122 & 245. & 1.5 & 20.6 & * & 1 & 0722 & 222 & 96. & . 7 & 19.8 \\
\hline 1 & 0044 & 23 & 1969. & 9.1 & 23.1 & * & 1 & 0404 & 123 & 237. & 1.5 & 20.5 & * & 1 & 0724 & 223 & 93. & . 7 & 19.8 \\
\hline 1 & 0046 & 24 & 2655. & 12.4 & 23.4 & * & 1 & 0406 & 124 & 230. & 1.4 & 20.5 & * & 1 & 0726 & 224 & 91. & . 7 & 19.7 \\
\hline 1 & 0048 & 25 & 3505. & 16.3 & 23.8 & * & 1 & 0408 & 125 & 225. & 1.4 & 20.5 & * & 1 & 0728 & 225 & 88. & . 7 & 19.7 \\
\hline 1 & 0050 & 26 & 4392. & 19.9 & 24.1 & * & 1 & 0410 & 126 & 220. & 1.4 & 20.5 & * & 1 & 0730 & 226 & 85. & . 7 & 19.7 \\
\hline 1 & 0052 & 27 & 5096. & 22.9 & 24.3 & * & 1 & 0412 & 127 & 216. & 1.4 & 20.4 & * & 1 & 0732 & 227 & 81. & . 6 & 19.6 \\
\hline 1 & 0054 & 28 & 5698. & 24.8 & 24.5 & * & 1 & 0414 & 128 & 212. & 1.3 & 20.4 & * & 1 & 0734 & 228 & 78. & . 6 & 19.6 \\
\hline 1 & 0056 & 29 & 6002. & 25.8 & 24.5 & * & 1 & 0416 & 129 & 209. & 1.3 & 20.4 & * & 1 & 0736 & 229 & 74. & . 6 & 19.6 \\
\hline 1 & 0058 & 30 & 6095. & 26.1 & 24.6 & * & 1 & 0418 & 130 & 207. & 1.3 & 20.4 & * & 1 & 0738 & 230 & 70. & . 6 & 19.6 \\
\hline 1 & 0100 & 31 & 6041. & 25.9 & 24.5 & * & 1 & 0420 & 131 & 205. & 1.3 & 20.4 & * & 1 & 0740 & 231 & 66. & . 5 & 19.5 \\
\hline 1 & 0102 & 32 & 5892. & 25.4 & 24.5 & * & 1 & 0422 & 132 & 203. & 1.3 & 20.4 & * & 1 & 0742 & 232 & 62. & . 5 & 19.5 \\
\hline 1. & 0104 & 33 & 5684. & 24.8 & 24.5 & * & 1 & 0424 & 133 & 201. & 1.3 & 20.4 & * & 1 & 0744 & 233 & 57. & . 5 & 19.4 \\
\hline 1 & 0106 & 34 & 5446. & 24.0 & 24.4 & * & 1 & 0426 & 134 & 200. & 1.3 & 20.4 & * & 1 & 0746 & 234 & 53. & . 5 & 19.4 \\
\hline 1 & 0108 & 35 & 5192. & 23.2 & 24.3 & * & 1 & 0428 & 135 & 199. & 1.3 & 20.4 & * & 1 & 0748 & 235 & 49. & . 4 & 19.4 \\
\hline 1 & 0110 & 36 & 4955. & 22.3 & 24.3 & * & 1 & 0430 & 136 & 198. & 1.3 & 20.3 & * & 1 & 0750 & 236 & 45. & . 4 & 19.3 \\
\hline 1 & 0112 & 37 & 4723. & 21.3 & 24.2 & * & 1 & 0432 & 137 & 197. & 1.3 & 20.3 & * & 1 & 0752 & 237 & 41. & . 4 & 19.3 \\
\hline 1 & 0114 & 38 & 4485. & 20.3 & 24.1 & * & 1 & 0434 & 138 & 196. & 1.3 & 20.3 & * & 1 & 0754 & 238 & 37. & . 4 & 19.3 \\
\hline 1 & 0116 & 39 & 4248. & 19.4 & 24.0 & * & 1 & 0436 & 139 & 195. & 1.3 & 20.3 & * & 1 & 0756 & 239 & 34. & . 3 & 19.2 \\
\hline 1 & 0118 & 40 & 4021. & 18.4 & 24.0 & * & 1 & 0438 & 140 & 194. & 1.3 & 20.3 & * & 1 & 0758 & 240 & 32. & . 3 & 19.1 \\
\hline 1 & 0120 & 41 & 3810. & 17.6 & 23.9 & * & 1 & 0440 & 141 & 193. & 1.3 & 20.3 & * & 1 & 0800 & 241 & 29. & . 3 & 19.1 \\
\hline 1 & 0122 & 42 & 3619. & 16.8 & 23.8 & * & 1 & 0442 & 142 & 193. & 1.2 & 20.3 & * & 1 & 0802 & 242 & 26. & . 3 & 19.0 \\
\hline 1 & 0124 & 43 & 3446. & 16.0 & 23.8 & * & 1 & 0444 & 143 & 192. & 1.2 & 20.3 & * & 1 & 0804 & 243 & 23. & . 2 & 19.0 \\
\hline 1 & 0126 & 44 & 3290. & 15.4 & 23.7 & * & 1 & 0446 & 144 & 191. & 1.2 & 20.3 & * & 1 & 0806 & 244 & 21. & . 2 & 18.9 \\
\hline 1 & 0128 & 45 & 3152. & 14.8 & 23.7 & * & 1 & 0448 & 145 & 190. & 1.2 & 20.3 & * & 1 & 0808 & 245 & 19. & . 2 & 18.9 \\
\hline 1 & 0130 & 46 & 3032. & 14.2 & 23.6 & * & 1 & 0450 & 146 & 190. & 1.2 & 20.3 & * & 1 & 0810 & 246 & 17. & . 2 & 18.9 \\
\hline 1 & 0132 & 47 & 2909. & 13.6 & 23.5 & * & 1 & 0452 & 147 & 189. & 1.2 & 20.3 & * & 1 & 0812 & 247 & 15. & . 2 & 18.8 \\
\hline 1 & 0134 & 48 & 2787. & 13.0 & 23.5 & * & 1 & 0454 & 148 & 188. & 1.2 & 20.3 & * & 1 & 0814 & 248 & 13. & . 2 & 18.8 \\
\hline 1 & 0136 & 49 & 2663. & 12.4 & 23.4 & * & 1 & 0456 & 149 & 188. & 1.2 & 20.3 & * & 1 & 0816 & 249 & 12. & . 1 & 18.8 \\
\hline 1 & 0138 & 50 & 2543. & 11.9 & 23.4 & * & 1 & 0458 & 150 & 187. & 1.2 & 20.3 & * & 1 & 0818 & 250 & 11. & . 1 & 18.7 \\
\hline 1 & 0140 & 51 & 2429. & 11.3 & 23.3 & * & 1 & 0500 & 151 & 186. & 1.2 & 20.3 & * & 1 & 0820 & 251 & 10. & . 1 & 18.7 \\
\hline 1 & 0142 & 52 & 2322. & 10.8 & 23.2 & * & 1 & 0502 & 152 & 185. & 1.2 & 20.3 & * & 1 & 0822 & 252 & 9. & . 1 & 18.7 \\
\hline 1 & 0144 & 53 & 2220. & 10.3 & 23.2 & * & 1 & 0504 & 153 & 185. & 1.2 & 20.3 & * & 1 & 0824 & 253 & 8. & . 1 & 18.7 \\
\hline 1 & 0146 & 54 & 2123. & 9.8 & 23.1 & * & 1 & 0506 & 154 & 184. & 1.2 & 20.3 & * & 1 & 0826 & 254 & 8. & . 1 & 18.7 \\
\hline 1 & 0148 & 55 & 2030. & 9.4 & 23.1 & * & 1 & 0508 & 155 & 183. & 1.2 & 20.3 & * & 1 & 0828 & 255 & 7. & . 1 & 18.7 \\
\hline 1 & 0150 & 56 & 1944. & 9.0 & 23.1 & * & 1 & 0510 & 156 & 182. & 1.2 & 20.3 & * & 1 & 0830 & 256 & 7. & . 1 & 18.6 \\
\hline 1 & 0152 & 57 & 1865. & 8.6 & 23.0 & * & 1 & 0512 & 157 & 181. & 1.2 & 20.3 & * & 1. & 0832 & 257 & 6. & . 1 & 18.6 \\
\hline 1 & 0154 & 58 & 1791. & 8.2 & 22.9 & * & 1 & 0514 & 158 & 181. & 1.2 & 20.3 & * & 1 & 0834 & 258 & 6. & . 1 & 18.6 \\
\hline 1 & 0156 & 59 & 1722. & 7.9 & 22.9 & * & 1 & 0516 & 159 & 180. & 1.2 & 20.3 & * & 1 & 0836 & 259 & 5. & . 1 & 18.6 \\
\hline 1 & 0158 & 60 & 1656. & 7.5 & 22.8 & * & 1 & 0518 & 160 & 179. & 1.2 & 20.3 & * & 1 & 0838 & 260 & 5. & . 1 & 18.6 \\
\hline 1 & 0200 & 61 & 1594. & 7.2 & 22.8 & * & 1 & 0520 & 161 & 178. & 1.2 & 20.2 & * & 1 & 0840 & 261 & 5. & . 1 & 18.5 \\
\hline 1 & 0202 & 62 & 1535. & 7.0 & 22.7 & * & 1 & 0522 & 162 & 177. & 1.2 & 20.2 & * & 1 & 0842 & 262 & 5. & . 1 & 18.5 \\
\hline 1 & 0204 & 63 & 1480. & 6.7 & 22.7 & * & 1 & 0524 & 163 & 177. & 1.2 & 20.2 & * & 1 & 0844 & 263 & 4. & . 1 & 18.5 \\
\hline 1 & 0206 & 64 & 1427. & 6.4 & 22.6 & * & 1 & 0526 & 164 & 176. & 1.2 & 20.2 & * & 1 & 0846 & 264 & 4. & . 1 & 18.4 \\
\hline 1. & 0208 & 65 & 1376. & 6.2 & 22.6 & * & 1 & 0528 & 165 & 175. & 1.2 & 20.2 & * & 1 & 0848 & 265 & 4. & . 1 & 18.4 \\
\hline 1 & 0210 & 66 & 1328. & 5.9 & 22.6 & * & 1 & 0530 & 166 & 174. & 1.1 & 20.2 & * & 1 & 0850 & 266 & 3. & . 1 & 18.4 \\
\hline 1 & 0212 & 67 & 1282. & 5.7 & 22.5 & * & 1 & 0532 & 167 & 173. & 1.1 & 20.2 & * & 1 & 0852 & 267 & 3. & . 0 & 18.3 \\
\hline 1 & 0214 & 68 & 1239. & 5.5 & 22.5 & * & 1 & 0534 & 168 & 172. & 1.1 & 20.2 & * & 1 & 0854 & 268 & 3. & . 0 & 18.3 \\
\hline 1 & 0216 & 69 & 1197. & 5.3 & 22.4 & & 1 & 0536 & 169 & 171. & 1.1 & 20.2 & & 1 & 0856 & 269 & 3. & . 0 & 18.3 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline 1 & 0000 & 1 & 0. & . 0 & 18.0 & * & 1 & 0320 & 101 & 514. & 2.7 & 21.4 & * & 1 & 0640 & 201 & 136. & 1.0 & 20.0 \\
\hline 1 & 0002 & 2 & 20. & . 2 & 18.9 & * & 1 & 0322 & 102 & 503. & 2.6 & 21.3 & * & 1 & 0642 & 202 & 135. & . 9 & 20.0 \\
\hline 1 & 0004 & 3 & 39. & . 4 & 19.3 & * & 1 & 0324 & 103 & 492. & 2.6 & 21.3 & * & 1 & 0644 & 203 & 133. & . 9 & 20.0 \\
\hline 1 & 0006 & 4 & 28. & . 3 & 19.1 & * & 1 & 0326 & 104 & 480. & 2.5 & 21.3 & * & 1 & 0646 & 204 & 132. & . 9 & 20.0 \\
\hline 1 & 0008 & 5 & 22. & . 2 & 19.0 & * & 1 & 0328 & 105 & 467. & 2.5 & 21.2 & * & 1 & 0648 & 205 & 130. & . 9 & 20.0 \\
\hline 1 & 0010 & 6 & 19. & . 2 & 18.9 & * & 1 & 0330 & 106 & 454. & 2.4 & 21.2 & * & 1 & 0650 & 206 & 129. & . 9 & 20.0 \\
\hline 1 & 0012 & 7 & 18. & . 2 & 18.9 & * & 1 & 0332 & 107 & 441. & 2.4 & 21.2 & * & 1 & 0652 & 207 & 127. & . 9 & 20.0 \\
\hline 1 & 0014 & 8 & 21. & . 2 & 18.9 & * & 1 & 0334 & 108 & 427. & 2.3 & 21.2 & * & 1 & 0654 & 208 & 126. & . 9 & 20.0 \\
\hline 1 & 0016 & 9 & 28. & . 3 & 19.1 & * & 1 & 0336 & 109 & 414. & 2.3 & 21.1 & * & 1 & 0656 & 209 & 124. & . 9 & 20.0 \\
\hline 1 & 0018 & 10 & 43. & . 4 & 19.3 & * & 1 & 0338 & 110 & 400. & 2.2 & 21.1 & * & 1 & 0658 & 210 & 122. & . 9 & 20.0 \\
\hline 1 & 0020 & 11 & 68. & . 6 & 19.5 & * & 1 & 0340 & 111 & 385. & 2.1 & 21.0 & * & 1 & 0700 & 211 & 120. & . 9 & 19.9 \\
\hline 1 & 0022 & 12 & 102. & . 8 & 19.8 & * & 1 & 0342 & 112 & 370. & 2.1 & 21.0 & * & 1 & 0702 & 212 & 118. & . 9 & 19.9 \\
\hline 1 & 0024 & 13 & 149. & 1.0 & 20.1 & * & 1 & 0344 & 113 & 356. & 2.0 & 20.9 & * & 1 & 0704 & 213 & 116. & . 8 & 19.9 \\
\hline 1 & 0026 & 14 & 212. & 1.3 & 20.4 & * & 1 & 0346 & 114 & 343. & 1.9 & 20.9 & * & 1 & 0706 & 214 & 114. & . 8 & 19.9 \\
\hline 1 & 0028 & 15 & 306. & 1.8 & 20.8 & * & 1 & 0348 & 115 & 330. & 1.9 & 20.8 & * & 1 & 0708 & 215 & 112. & . 8 & 19.9 \\
\hline 1 & 0030 & 16 & 423. & 2.3 & 21.1 & * & 1 & 0350 & 116 & 316. & 1.8 & 20.8 & * & 1 & 0710 & 216 & 110. & . 8 & 19.9 \\
\hline 1 & 0032 & 17 & 561. & 2.8 & 21.5 & * & 1 & 0352 & 117 & 303. & 1.8 & 20.8 & * & 1 & 0712 & 217 & 108. & . 8 & 19.9 \\
\hline 1 & 0034 & 18 & 690. & 3.3 & 21.8 & * & 1 & 0354 & 118 & 290. & 1.7 & 20.7 & * & 1 & 0714 & 218 & 106. & . 8 & 19.9 \\
\hline 1 & 0036 & 19 & 812. & 3.8 & 21.9 & * & 1 & 0356 & 119 & 278. & 1.7 & 20.7 & * & 1 & 0716 & 219 & 104. & . 8 & 19.8 \\
\hline 1 & 0038 & 20 & 956. & 4.4 & 22.1 & * & 1 & 0358 & 120 & 266. & 1.6 & 20.6 & * & 1 & 0718 & 220 & 101. & . 8 & 19.8 \\
\hline 1 & 0040 & 21 & 1172. & 5.2 & 22.4 & * & 1 & 0400 & 121 & 255. & 1.6 & 20.6 & * & 1 & 0720 & 221 & 99. & . 7 & 19.8 \\
\hline 1 & 0042 & 22 & 1475. & 6.7 & 22.7 & * & 1 & 0402 & 122 & 245. & 1.5 & 20.6 & * & 1 & 0722 & 222 & 96. & . 7 & 19.8 \\
\hline 1 & 0044 & 23 & 1969. & 9.1 & 23.1 & * & 1 & 0404 & 123 & 237. & 1.5 & 20.5 & * & 1 & 0724 & 223 & 93. & . 7 & 19.8 \\
\hline 1 & 0046 & 24 & 2655. & 12.4 & 23.4 & * & 1 & 0406 & 124 & 230. & 1.4 & 20.5 & * & 1 & 0726 & 224 & 91. & . 7 & 19.7 \\
\hline 1 & 0048 & 25 & 3505. & 16.3 & 23.8 & * & 1 & 0408 & 125 & 225. & 1.4 & 20.5 & * & 1 & 0728 & 225 & 88. & . 7 & 19.7 \\
\hline 1 & 0050 & 26 & 4392. & 19.9 & 24.1 & * & 1 & 0410 & 126 & 220. & 1.4 & 20.5 & * & 1 & 0730 & 226 & 85. & . 7 & 19.7 \\
\hline 1 & 0052 & 27 & 5096. & 22.9 & 24.3 & * & 1 & 0412 & 127 & 216. & 1.4 & 20.4 & * & 1 & 0732 & 227 & 81. & . 6 & 19.6 \\
\hline 1 & 0054 & 28 & 5698. & 24.8 & 24.5 & * & 1 & 0414 & 128 & 212. & 1.3 & 20.4 & * & 1 & 0734 & 228 & 78. & . 6 & 19.6 \\
\hline 1 & 0056 & 29 & 6002. & 25.8 & 24.5 & * & 1 & 0416 & 129 & 209. & 1.3 & 20.4 & * & 1 & 0736 & 229 & 74. & . 6 & 19.6 \\
\hline 1 & 0058 & 30 & 6095. & 26.1 & 24.6 & * & 1 & 0418 & 130 & 207. & 1.3 & 20.4 & * & 1 & 0738 & 230 & 70. & . 6 & 19.6 \\
\hline 1 & 0100 & 31 & 6041. & 25.9 & 24.5 & * & 1 & 0420 & 131 & 205. & 1.3 & 20.4 & * & 1 & 0740 & 231 & 66. & . 5 & 19.5 \\
\hline 1 & 0102 & 32 & 5892. & 25.4 & 24.5 & * & 1 & 0422 & 132 & 203. & 1.3 & 20.4 & * & 1 & 0742 & 232 & 62. & . 5 & 19.5 \\
\hline 1. & 0104 & 33 & 5684. & 24.8 & 24.5 & * & 1 & 0424 & 133 & 201. & 1.3 & 20.4 & * & 1 & 0744 & 233 & 57. & . 5 & 19.4 \\
\hline 1 & 0106 & 34 & 5446. & 24.0 & 24.4 & * & 1 & 0426 & 134 & 200. & 1.3 & 20.4 & * & 1 & 0746 & 234 & 53. & . 5 & 19.4 \\
\hline 1 & 0108 & 35 & 5192. & 23.2 & 24.3 & * & 1 & 0428 & 135 & 199. & 1.3 & 20.4 & * & 1 & 0748 & 235 & 49. & . 4 & 19.4 \\
\hline 1 & 0110 & 36 & 4955. & 22.3 & 24.3 & * & 1 & 0430 & 136 & 198. & 1.3 & 20.3 & * & 1 & 0750 & 236 & 45. & . 4 & 19.3 \\
\hline 1 & 0112 & 37 & 4723. & 21.3 & 24.2 & * & 1 & 0432 & 137 & 197. & 1.3 & 20.3 & * & 1 & 0752 & 237 & 41. & . 4 & 19.3 \\
\hline 1 & 0114 & 38 & 4485. & 20.3 & 24.1 & * & 1 & 0434 & 138 & 196. & 1.3 & 20.3 & * & 1 & 0754 & 238 & 37. & . 4 & 19.3 \\
\hline 1 & 0116 & 39 & 4248. & 19.4 & 24.0 & * & 1 & 0436 & 139 & 195. & 1.3 & 20.3 & * & 1 & 0756 & 239 & 34. & . 3 & 19.2 \\
\hline 1 & 0118 & 40 & 4021. & 18.4 & 24.0 & * & 1 & 0438 & 140 & 194. & 1.3 & 20.3 & * & 1 & 0758 & 240 & 32. & . 3 & 19.1 \\
\hline 1 & 0120 & 41 & 3810. & 17.6 & 23.9 & * & 1 & 0440 & 141 & 193. & 1.3 & 20.3 & * & 1 & 0800 & 241 & 29. & . 3 & 19.1 \\
\hline 1 & 0122 & 42 & 3619. & 16.8 & 23.8 & * & 1 & 0442 & 142 & 193. & 1.2 & 20.3 & * & 1 & 0802 & 242 & 26. & . 3 & 19.0 \\
\hline 1 & 0124 & 43 & 3446. & 16.0 & 23.8 & * & 1 & 0444 & 143 & 192. & 1.2 & 20.3 & * & 1 & 0804 & 243 & 23. & . 2 & 19.0 \\
\hline 1 & 0126 & 44 & 3290. & 15.4 & 23.7 & * & 1 & 0446 & 144 & 191. & 1.2 & 20.3 & * & 1 & 0806 & 244 & 21. & . 2 & 18.9 \\
\hline 1 & 0128 & 45 & 3152. & 14.8 & 23.7 & * & 1 & 0448 & 145 & 190. & 1.2 & 20.3 & * & 1 & 0808 & 245 & 19. & . 2 & 18.9 \\
\hline 1 & 0130 & 46 & 3032. & 14.2 & 23.6 & * & 1 & 0450 & 146 & 190. & 1.2 & 20.3 & * & 1 & 0810 & 246 & 17. & . 2 & 18.9 \\
\hline 1 & 0132 & 47 & 2909. & 13.6 & 23.5 & * & 1 & 0452 & 147 & 189. & 1.2 & 20.3 & * & 1 & 0812 & 247 & 15. & . 2 & 18.8 \\
\hline 1 & 0134 & 48 & 2787. & 13.0 & 23.5 & * & 1 & 0454 & 148 & 188. & 1.2 & 20.3 & * & 1 & 0814 & 248 & 13. & . 2 & 18.8 \\
\hline 1 & 0136 & 49 & 2663. & 12.4 & 23.4 & * & 1 & 0456 & 149 & 188. & 1.2 & 20.3 & * & 1 & 0816 & 249 & 12. & . 1 & 18.8 \\
\hline 1 & 0138 & 50 & 2543. & 11.9 & 23.4 & * & 1 & 0458 & 150 & 187. & 1.2 & 20.3 & * & 1 & 0818 & 250 & 11. & . 1 & 18.7 \\
\hline 1 & 0140 & 51 & 2429. & 11.3 & 23.3 & * & 1 & 0500 & 151 & 186. & 1.2 & 20.3 & * & 1 & 0820 & 251 & 10. & . 1 & 18.7 \\
\hline 1 & 0142 & 52 & 2322. & 10.8 & 23.2 & * & 1 & 0502 & 152 & 185. & 1.2 & 20.3 & * & 1 & 0822 & 252 & 9. & . 1 & 18.7 \\
\hline 1 & 0144 & 53 & 2220. & 10.3 & 23.2 & * & 1 & 0504 & 153 & 185. & 1.2 & 20.3 & * & 1 & 0824 & 253 & 8. & . 1 & 18.7 \\
\hline 1 & 0146 & 54 & 2123. & 9.8 & 23.1 & * & 1 & 0506 & 154 & 184. & 1.2 & 20.3 & * & 1 & 0826 & 254 & 8. & . 1 & 18.7 \\
\hline 1 & 0148 & 55 & 2030. & 9.4 & 23.1 & * & 1 & 0508 & 155 & 183. & 1.2 & 20.3 & * & 1 & 0828 & 255 & 7. & . 1 & 18.7 \\
\hline 1 & 0150 & 56 & 1944. & 9.0 & 23.1 & * & 1 & 0510 & 156 & 182. & 1.2 & 20.3 & * & 1 & 0830 & 256 & 7. & . 1 & 18.6 \\
\hline 1 & 0152 & 57 & 1865. & 8.6 & 23.0 & * & 1 & 0512 & 157 & 181. & 1.2 & 20.3 & * & 1. & 0832 & 257 & 6. & . 1 & 18.6 \\
\hline 1 & 0154 & 58 & 1791. & 8.2 & 22.9 & * & 1 & 0514 & 158 & 181. & 1.2 & 20.3 & * & 1 & 0834 & 258 & 6. & . 1 & 18.6 \\
\hline 1 & 0156 & 59 & 1722. & 7.9 & 22.9 & * & 1 & 0516 & 159 & 180. & 1.2 & 20.3 & * & 1 & 0836 & 259 & 5. & . 1 & 18.6 \\
\hline 1 & 0158 & 60 & 1656. & 7.5 & 22.8 & * & 1 & 0518 & 160 & 179. & 1.2 & 20.3 & * & 1 & 0838 & 260 & 5. & . 1 & 18.6 \\
\hline 1 & 0200 & 61 & 1594. & 7.2 & 22.8 & * & 1 & 0520 & 161 & 178. & 1.2 & 20.2 & * & 1 & 0840 & 261 & 5. & . 1 & 18.5 \\
\hline 1 & 0202 & 62 & 1535. & 7.0 & 22.7 & * & 1 & 0522 & 162 & 177. & 1.2 & 20.2 & * & 1 & 0842 & 262 & 5. & . 1 & 18.5 \\
\hline 1 & 0204 & 63 & 1480. & 6.7 & 22.7 & * & 1 & 0524 & 163 & 177. & 1.2 & 20.2 & * & 1 & 0844 & 263 & 4. & . 1 & 18.5 \\
\hline 1 & 0206 & 64 & 1427. & 6.4 & 22.6 & * & 1 & 0526 & 164 & 176. & 1.2 & 20.2 & * & 1 & 0846 & 264 & 4. & . 1 & 18.4 \\
\hline 1. & 0208 & 65 & 1376. & 6.2 & 22.6 & * & 1 & 0528 & 165 & 175. & 1.2 & 20.2 & * & 1 & 0848 & 265 & 4. & . 1 & 18.4 \\
\hline 1 & 0210 & 66 & 1328. & 5.9 & 22.6 & * & 1 & 0530 & 166 & 174. & 1.1 & 20.2 & * & 1 & 0850 & 266 & 3. & . 1 & 18.4 \\
\hline 1 & 0212 & 67 & 1282. & 5.7 & 22.5 & * & 1 & 0532 & 167 & 173. & 1.1 & 20.2 & * & 1 & 0852 & 267 & 3. & . 0 & 18.3 \\
\hline 1 & 0214 & 68 & 1239. & 5.5 & 22.5 & * & 1 & 0534 & 168 & 172. & 1.1 & 20.2 & * & 1 & 0854 & 268 & 3. & . 0 & 18.3 \\
\hline 1 & 0216 & 69 & 1197. & 5.3 & 22.4 & & 1 & 0536 & 169 & 171. & 1.1 & 20.2 & & 1 & 0856 & 269 & 3. & . 0 & 18.3 \\
\hline
\end{tabular}
\(\qquad\)*
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 0218 & 70 & 1155. & 5.1 & 22.4 & * & 1 & 0538 & 170 & 170. & 1.1 & 20.2 & * & 1 & 0858 & 270 & 3. & . 0 & 18.3 \\
\hline 0220 & 71 & 1110. & 4.9 & 22.3 & * & 1 & 0540 & 171 & 169. & 1.1 & 20.2 & * & 1 & 0900 & 271 & 2. & . 0 & 18.3 \\
\hline 0222 & 72 & 1070. & 4.8 & 22.3 & * & 1 & 0542 & 172 & 168. & 1.1 & 20.2 & * & 1 & 0902 & 272 & 2. & . 0 & 18.2 \\
\hline 0224 & 73 & 1036. & 4.7 & 22.2 & * & 1 & 0544 & 173 & 167. & 1.1 & 20.2 & * & 1 & 0904 & 273 & 2. & . 0 & 18.2 \\
\hline 0226 & 74 & 1007. & 4.5 & 22.2 & * & 1 & 0546 & 174 & 166. & 1.1 & 20.2 & * & 1 & 0906 & 274 & 2. & . 0 & 18.2 \\
\hline 0228 & 75 & 979. & 4.4 & 22.2 & * & 1 & 0548 & 175 & 165. & 1.1 & 20.2 & * & 1 & 0908 & 275 & 2. & . 0 & 18.2 \\
\hline 0230 & 76 & 953. & 4.3 & 22.1 & * & 1 & 0550 & 176 & 164. & 1.1 & 20.2 & * & 1 & 0910 & 276 & 1. & . 0 & 18.2 \\
\hline 0232 & 77 & 926. & 4.2 & 22.1 & * & 1 & 0552 & 177 & 163. & 1.1 & 20.2 & * & 1 & 0912 & 277 & 1. & . 0 & 18.1 \\
\hline 0234 & 78 & 900. & 4.1 & 22.1 & * & 1 & 0554 & 178 & 163. & 1.1 & 20.2 & * & 1 & 0914 & 278 & 1. & . 0 & 18.1 \\
\hline 0236 & 79 & 875. & 4.0 & 22.0 & * & 1 & 0556 & 179 & 162. & 1.1 & 20.2 & * & 1 & 0916 & 279 & 1. & . 0 & 18.1 \\
\hline 0238 & 80 & 850. & 4.0 & 22.0 & * & 1 & 0558 & 180 & 161. & 1.1 & 20.2 & * & 1 & 0918 & 280 & 1. & . 0 & 18.1 \\
\hline 0240 & 81 & 826. & 3.9 & 22.0 & * & 1 & 0600 & 181 & 159. & 1.1 & 20.2 & * & 1 & 0920 & 281 & 1. & . 0 & 18.1 \\
\hline 0242 & 82 & 803. & 3.8 & 21.9 & * & 1 & 0602 & 182 & 158. & 1.1 & 20.1 & * & 1 & 0922 & 282 & 1. & . 0 & 18.1 \\
\hline 0244 & 83 & 781. & 3.7 & 21.9 & * & 1 & 0604 & 183 & 158. & 1.1 & 20.1 & * & 1 & 0924 & 283 & 1. & . 0 & 18.1 \\
\hline 0246 & 84 & 760. & 3.6 & 21.9 & * & 1 & 0606 & 184 & 157. & 1.1 & 20.1 & * & 1 & 0926 & 284 & 1. & . 0 & 18.1 \\
\hline 0248 & 85 & 739. & 3.5 & 21.8 & * & 1 & 0608 & 185 & 156. & 1.1 & 20.1 & * & 1 & 0928 & 285 & 1. & . 0 & 18.1 \\
\hline 0250 & 86 & 720. & 3.5 & 21.8 & * & 1 & 0610 & 186 & 155. & 1.0 & 20.1 & * & 1 & 0930 & 286 & 1. & . 0 & 18.1 \\
\hline 0252 & 87 & 701. & 3.4 & 21.8 & * & 1 & 0612 & 187 & 154. & 1.0 & 20.1 & * & 1 & 0932 & 287 & 0. & . 0 & 18.1 \\
\hline 0254 & 88 & 683. & 3.3 & 21.7 & * & 1 & 0614 & 188 & 152. & 1.0 & 20.1 & * & 1 & 0934 & 288 & 0. & . 0 & 18.0 \\
\hline 0256 & 89 & 666. & 3.2 & 21.7 & * & 1 & 0616 & 189 & 151. & 1.0 & 20.1 & * & 1 & 0936 & 289 & 0. & .0 & 18.0 \\
\hline 0258 & 90 & 649. & 3.2 & 21.7 & * & 1 & 0618 & 190 & 150. & 1.0 & 20.1 & * & 1 & 0938 & 290 & 0. & . 0 & 18.0 \\
\hline 0300 & 91 & 632. & 3.1 & 21.6 & * & 1 & 0620 & 191 & 149. & 1.0 & 20.1 & * & 1 & 0940 & 291 & 0. & . 0 & 18.0 \\
\hline 0302 & 92 & 617. & 3.1 & 21.6 & * & 1 & 0622 & 192 & 148. & 1.0 & 20.1 & * & 1 & 0942 & 292 & 0. & . 0 & 18.0 \\
\hline 0304 & 93 & 602. & 3.0 & 21.6 & * & 1 & 0624 & 193 & 147. & 1.0 & 20.1 & * & 1 & 0944 & 293 & 0. & . 0 & 18.0 \\
\hline 0306 & 94 & 589. & 3.0 & 21.5 & * & 1 & 0626 & 194 & 146. & 1.0 & 20.1 & * & 1 & 0946 & 294 & 0. & . 0 & 18.0 \\
\hline 0308 & 95 & 577. & 2.9 & 21.5 & * & 1 & 0628 & 195 & 144. & 1.0 & 20.1 & * & 1 & 0948 & 295 & 0. & . 0 & 18.0 \\
\hline 0310 & 96 & 566. & 2.9 & 21.5 & * & 1 & 0630 & 196 & 143. & 1.0 & 20.1 & * & 1 & 0950 & 296 & 0. & . 0 & 18.0 \\
\hline 0312 & 97 & 555. & 2.8 & 21.4 & * & 1 & 0632 & 197 & 142. & 1.0 & 20.1 & * & 1 & 0952 & 297 & 0. & . 0 & 18.0 \\
\hline 0314 & 98 & 545. & 2.8 & 21.4 & * & 1 & 0634 & 198 & 140. & 1.0 & 20.1 & * & 1 & 0954 & 298 & 0. & . 0 & 18.0 \\
\hline 0316 & 99 & 535. & 2.7 & 21.4 & * & 1 & 0636 & 199 & 139. & 1.0 & 20.0 & * & 1 & 0956 & 299 & 0. & . 0 & 18.0 \\
\hline 0318 & 100 & 524. & 2.7 & 21.4 & * & 1 & 0638 & 200 & 138. & 1.0 & 20.0 & * & 1 & 0958 & 300 & 0. & . 0 & 18.0 \\
\hline
\end{tabular}

\begin{tabular}{llllllllll}
.01 & .01 & .01 & .01 & .01 & .01 & .01 & .00 & .00 & .00 \\
.00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 \\
.00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 \\
.00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 \\
.00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 \\
.00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 0424 & 133 & . 00 & . 00 & . 00 & 0. & * & 1 & 0924 & 283 & . 00 & .00 & . 00 & 0. \\
\hline 1 & 0426 & 134 & . 00 & . 00 & . 00 & 0. & * & 1 & 0926 & 284 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0428 & 135 & . 00 & . 00 & . 00 & 0. & * & 1 & 0928 & 285 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0430 & 136 & . 00 & .00 & . 00 & 0. & * & 1 & 0930 & 286 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0432 & 137 & . 00 & .00 & . 00 & 0. & * & 1 & 0932 & 287 & . 00 & . 00 & . 00 & 0 \\
\hline 1 & 0434 & 138 & . 00 & .00 & . 00 & 0. & * & 1 & 0934 & 288 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0436 & 139 & . 00 & . 00 & . 00 & 0. & * & 1 & 0936 & 289 & .00 & . 00 & .00 & 0. \\
\hline 1 & 0438 & 140 & . 00 & .00 & . 00 & 0. & * & 1 & 0938 & 290 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0440 & 141 & . 00 & . 00 & .00 & 0. & * & 1 & 0940 & 291 & . 00 & . 00 & . 00 & 0 \\
\hline 1 & 0442 & 142 & . 00 & . 00 & . 00 & 0. & * & 1 & 0942 & 292 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0444 & 143 & . 00 & . 00 & . 00 & 0. & * & 1 & 0944 & 293 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0446 & 144 & . 00 & . 00 & . 00 & 0. & * & 1 & 0946 & 294 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0448 & 145 & . 00 & . 00 & . 00 & 0. & * & 1 & 0948 & 295 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0450 & 146 & . 00 & . 00 & . 00 & 0. & * & 1 & 0950 & 296 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0452 & 147 & .00 & . 00 & . 00 & 0. & * & 1 & 0952 & 297 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0454 & 148 & . 00 & . 00 & . 00 & 0. & * & 1 & 0954 & 298 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0456 & 149 & . 00 & . 00 & . 00 & 0. & * & 1 & 0956 & 299 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0458 & 150 & . 00 & . 00 & . 00 & 0. & * & 1 & 0958 & 300 & .00 & . 00 & . 00 & 0. \\
\hline
\end{tabular}

TOTAL RAINFALL \(=2.85\), TOTAL LOSS \(=1.41\), TOTAL EXCESS \(=1.44\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PEAK ELOW & TIME & & \multicolumn{4}{|c|}{MAXIMUM AVERAGE ELOW} \\
\hline & & & 6-HR & \(24-\mathrm{HR}\) & 72-HR & 9.97-HR \\
\hline (CFS) & (AR) & & & & & \\
\hline \multicolumn{7}{|c|}{(CFS)} \\
\hline 72. & . 33 & & 9. & 5. & 5. & 5. \\
\hline & & (INCHES) & 1.439 & 1.439 & 1.439 & 1.439 \\
\hline & & (\(\mathrm{AC}-\mathrm{FT}\)) & 4. & 4. & 4. & 4. \\
\hline
\end{tabular}

370 KK

COMBINE HYDROGRAPHS
AT NODE FR-4 (MAIN CHANNEL)
373 HC
HYDROGRAPH COMBINATION
ICOMP 2 NUMBER OE HYDROGRAPHS TO COMBINE
HYDROGRAPH AT STATION CO-4
SUM OF 2 HYDROGRAPHS
\begin{tabular}{|c|}
\hline & & & & * & & & & & & \(\star\) & & & & & & * & & & & & \\
\hline DA MON & HRMN & ORD & ELOW & * & DA & MON & HRMN & ORD & ELOW & * & DA & MON & HRMN & ORD & FLOW & * & DA & MON & HRMN & ORD & ELOW \\
\hline & & & & * & & & & & & * & & & & & & * & & & & & \\
\hline 1 & 0000 & 1 & 0. & * & 1 & & 0230 & 76 & 956. & * & 1 & & 0500 & 151 & 186. & * & 1 & & 0730 & 226 & 85. \\
\hline 1 & 0002 & 2 & 21. & * & 1 & & 0232 & 77 & 930. & * & 1 & & 0502 & 152 & 185. & * & 1 & & 0732 & 227 & 81. \\
\hline 1 & 0004 & 3 & 44. & * & 1 & & 0234 & 78 & 904. & * & 1 & & 0504 & 153 & 185. & * & 1 & & 0734 & 228 & 78. \\
\hline 1 & 0006 & 4 & 40. & * & 1 & & 0236 & 79 & 878. & \(\star\) & 1 & & 0506 & 154 & 184. & * & 1 & & 0736 & 229 & 74. \\
\hline 1 & 0008 & 5 & 43. & * & 1 & & 0238 & 80 & 854. & * & 1 & & 0508 & 155 & 183. & * & 1 & & 0738 & 230 & 70. \\
\hline 1 & 0010 & 6 & 51. & * & 1 & & 0240 & 81 & 830. & * & 1 & & 0510 & 156 & 182. & * & 1 & & 0740 & 231 & 66. \\
\hline 1 & 0012 & 7 & 62. & * & 1 & & 0242 & 82 & 807. & * & 1 & & 0512 & 157 & 181. & * & 1 & & 0742 & 232 & 62. \\
\hline 1 & 0014 & 8 & 77. & * & 1 & & 0244 & 83 & 784. & * & 1 & & 0514 & 158 & 181. & * & 1 & & 0744 & 233 & 57. \\
\hline 1 & 0016 & 9 & 94. & * & 1 & & 0246 & 84 & 763. & * & 1 & & 0516 & 159 & 180. & * & 1 & & 0746 & 234 & 53. \\
\hline 1 & 0018 & 10 & 114. & * & 1 & & 0248 & 85 & 743. & * & 1 & & 0518 & 160 & 179. & * & 1 & & 0748 & 235 & 49. \\
\hline 1 & 0020 & 11 & 141. & * & 1 & & 0250 & 86 & 723. & * & 1 & & 0520 & 161 & 178. & * & 1 & & 0750 & 236 & 45. \\
\hline 1. & 0022 & 12 & 171. & * & 1 & & 0252 & 87 & 704. & * & 1 & & 0522 & 162 & 177. & * & 1 & & 0752 & 237 & 41. \\
\hline 1 & 0024 & 13 & 213. & * & 1 & & 0254 & 88 & 686. & * & 1 & & 0524 & 163 & 177. & * & 1 & & 0754 & 238 & 37. \\
\hline 1 & 0026 & 14 & 269. & * & 1 & & 0256 & 89 & 669. & * & 1 & & 0526 & 164 & 176. & * & 1 & & 0756 & 239 & 34. \\
\hline 1 & 0028 & 15 & 358. & * & 1 & & 0258 & 90 & 651. & * & 1 & & 0528 & 165 & 175. & * & 1 & & 0758 & 240 & 32. \\
\hline 1 & 0030 & 16 & 471. & * & 1 & & 0300 & 91 & 635. & * & 1 & & 0530 & 166 & 174. & * & 1 & & 0800 & 241 & 29. \\
\hline 1 & 0032 & 17 & 606. & * & 1 & & 0302 & 92 & 619. & * & 1 & & 0532 & 167 & 173. & * & 1 & & 0802 & 242 & 26. \\
\hline 1. & 0034 & 18 & 732. & * & 1 & & 0304 & 93 & 605. & * & 1 & & 0534 & 168 & 172. & * & 1 & & 0804 & 243 & 23. \\
\hline 1 & 0036 & 19 & 850. & * & 1 & & 0306 & 94 & 591. & * & 1 & & 0536 & 169 & 171. & * & 1 & & 0806 & 244 & 21. \\
\hline 1 & 0038 & 20 & 991. & * & 1 & & 0308 & 95 & 578. & * & 1 & & 0538 & 170 & 170. & * & 1 & & 0808 & 245 & 19. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 0040 & 21 & 1205. & * & 1 & 0310 & 96 & 566. & * & 1 & 0540 & 171 & 169. & * & 1 & 0810 & 246 & 17. \\
\hline 1 & 0042 & 22 & 1506. & * & 1 & 0312 & 97 & 556. & * & 1 & 0542 & 172 & 168. & * & 1 & 0812 & 247 & 15. \\
\hline 1 & 0044 & 23 & 1999. & * & 1 & 0314 & 98 & 545. & * & 1 & 0544 & 173 & 167. & * & 1 & 0814 & 248 & 13. \\
\hline 1 & 0046 & 24 & 2682. & * & 1 & 0316 & 99 & 535. & * & 1 & 0546 & 174 & 166. & * & 1 & 0816 & 249 & 12. \\
\hline 1 & 0048 & 25 & 3531. & * & 1 & 0318 & 100 & 524. & * & 1 & 0548 & 175 & 165. & * & 1 & 0818 & 250 & 11. \\
\hline 1 & 0050 & 26 & 4416. & * & 1 & 0320 & 101 & 514. & * & 1 & 0550 & 176 & 164. & * & 1 & 0820 & 251 & 10. \\
\hline 1 & 0052 & 27 & 5119. & * & 1 & 0322 & 102 & 503. & * & 1 & 0552 & 177 & 163. & * & 1 & 0822 & 252 & 9. \\
\hline 1 & 0054 & 28 & 5720. & * & 1 & 0324 & 103 & 492. & * & 1 & 0554 & 178 & 163. & * & 1 & 0824 & 253 & 8. \\
\hline 1 & 0056 & 29 & 6022. & * & 1 & 0326 & 104 & 480. & * & 1 & 0556 & 179 & 162. & * & 1 & 0826 & 254 & 8. \\
\hline 1 & 0058 & 30 & 6114. & * & 1 & 0328 & 105 & 467. & * & 1 & 0558 & 180 & 161. & * & 1 & 0828 & 255 & 7. \\
\hline 1 & 0100 & 31 & 6059. & * & 1 & 0330 & 106 & 454. & * & 1 & 0600 & 181 & 159. & * & 1 & 0830 & 256 & 7. \\
\hline 1 & 0102 & 32 & 5909. & * & 1 & 0332 & 107 & 441. & * & 1 & 0602 & 182 & 158. & * & 1 & 0832 & 257 & 6. \\
\hline 1 & 0104 & 33 & 5701. & * & 1 & 0334 & 108 & 427. & * & 1 & 0604 & 183 & 158. & * & 1 & 0834 & 258 & 6. \\
\hline 1 & 0106 & 34 & 5462. & * & 1 & 0336 & 109 & 414. & * & 1 & 0606 & 184 & 157. & * & 1 & 0836 & 259 & 5. \\
\hline 1 & 0108 & 35 & 5207. & * & 1 & 0338 & 110 & 400. & * & 1 & 0608 & 185 & 156. & * & 1 & 0838 & 260 & 5. \\
\hline 1 & 0110 & 36 & 4970. & * & 1 & 0340 & 111 & 385. & * & 1 & 0610 & 186 & 155. & * & 1 & 0840 & 261 & 5. \\
\hline 1 & 0112 & 37 & 4737. & * & 1 & 0342 & 112 & 370. & * & 1 & 0612 & 187 & 154. & * & 1 & 0842 & 262 & 5. \\
\hline 1 & 0114 & 38 & 4498. & * & 1 & 0344 & 113 & 356. & * & 1 & 0614 & 188 & 152. & * & 1 & 0844 & 263 & 4. \\
\hline 1 & 0116 & 39 & 4261. & * & 1 & 0346 & 114 & 343. & * & 1 & 0616 & 189 & 151. & * & 1 & 0846 & 264 & 4. \\
\hline 1 & 0118 & 40 & 4033. & * & 1. & 0348 & 115 & 330. & * & 1 & 0618 & 190 & 150. & * & 1 & 0848 & 265 & 4. \\
\hline 1 & 0120 & 41 & 3822. & * & 1 & 0350 & 116 & 316. & * & 1 & 0620 & 191 & 149. & * & 1 & 0850 & 266 & 3. \\
\hline 1 & 0122 & 42 & 3630. & * & 1 & 0352 & 117 & 303. & * & 1 & 0622 & 192 & 148. & * & 1 & 0852 & 267 & 3. \\
\hline 1 & 0124 & 43 & 3456. & * & 1 & 0354 & 118 & 290. & * & 1 & 0624 & 193 & 147. & * & 1 & 0854 & 268 & 3. \\
\hline 1 & 0126 & 44 & 3300. & * & 1 & 0356 & 119 & 278. & * & 1 & 0626 & 194 & 146. & * & 1 & 0856 & 269 & 3. \\
\hline 1 & 0128 & 45 & 3162. & * & 1 & 0358 & 120 & 266. & * & 1 & 0628 & 195 & 144. & * & 1 & 0858 & 270 & 3. \\
\hline 1 & 0130 & 46 & 3041. & * & 1 & 0400 & 121 & 255. & * & 1 & 0630 & 196 & 143. & * & 1 & 0900 & 271 & 2. \\
\hline 1 & 0132 & 47 & 2918. & * & 1 & 0402 & 122 & 245. & * & 1 & 0632 & 197 & 142. & * & 1 & 0902 & 272 & 2. \\
\hline 1 & 0134 & 48 & 2795. & * & 1 & 0404 & 123 & 237. & * & 1 & 0634 & 198 & 140. & * & 1 & 0904 & 273 & 2. \\
\hline 1 & 0136 & 49 & 2672. & * & 1 & 0406 & 124 & 230. & * & 1 & 0636 & 199 & 139. & * & 1 & 0906 & 274 & 2. \\
\hline 1 & 0138 & 50 & 2551. & * & 1 & 0408 & 125 & 225. & * & 1 & 0638 & 200 & 138. & * & 1 & 0908 & 275 & 2. \\
\hline 1 & 0140 & 51 & 2437. & * & 1 & 0410 & 126 & 220. & * & 1 & 0640 & 201 & 136. & * & 1 & 0910 & 276 & 1. \\
\hline 1 & 0142 & 52 & 2329. & * & 1 & 0412 & 127 & 216. & * & 1 & 0642 & 202 & 135. & * & 1 & 0912 & 277 & 1. \\
\hline 1 & 0144 & 53 & 2228. & * & 1 & 0414 & 128 & 212. & * & 1 & 0644 & 203 & 133. & * & 1 & 0914 & 278 & 1. \\
\hline 1 & 0146 & 54 & 2130. & * & 1 & 0416 & 129 & 209. & * & 1 & 0646 & 204 & 132. & * & 1 & 0916 & 279 & 1. \\
\hline 1 & 0148 & 55 & 2037. & * & 1 & 0418 & 130 & 207. & * & 1 & 0648 & 205 & 130. & * & 1 & 0918 & 280 & 1. \\
\hline 1 & 0150 & 56 & 1951. & * & 1 & 0420 & 131 & 205. & * & 1 & 0650 & 206 & 129. & * & 1 & 0920 & 281 & 1. \\
\hline 1 & 0152 & 57 & 1872. & * & 1 & 0422 & 132 & 203. & * & 1 & 0652 & 207 & 127. & * & 1 & 0922 & 282 & 1. \\
\hline 1 & 0154 & 58 & 1797. & * & 1 & 0424 & 133 & 201. & * & 1 & 0654 & 208 & 126. & * & 1 & 0924 & 283 & 1. \\
\hline 1 & 0156 & 59 & 1728. & * & 1 & 0426 & 134 & 200. & * & 1 & 0656 & 209 & 124. & * & 1 & 0926 & 284 & 1. \\
\hline 1 & 0158 & 60 & 1662. & * & 1 & 0428 & 135 & 199. & * & 1 & 0658 & 210 & 122. & * & 1 & 0928 & 285 & 1. \\
\hline 1 & 0200 & 61 & 1600. & * & 1 & 0430 & 136 & 198. & * & 1 & 0700 & 211 & 120. & * & 1 & 0930 & 286 & 1. \\
\hline 1 & 0202 & 62 & 1541. & * & 1 & 0432 & 137 & 197. & * & 1 & 0702 & 21.2 & 118. & * & 1 & 0932 & 287 & 0. \\
\hline 1 & 0204 & 63 & 1485. & * & 1 & 0434 & 138 & 196. & * & 1 & 0704 & 213 & 116. & * & 1 & 0934 & 288 & 0. \\
\hline 1 & 0206 & 64 & 1432. & * & 1 & 0436 & 139 & 195. & * & 1 & 0706 & 214 & 114. & * & 1 & 0936 & 289 & 0. \\
\hline 1 & 0208 & 65 & 1381. & * & 1 & 0438 & 140 & 194. & * & 1 & 0708 & 215 & 112. & * & 1 & 0938 & 290 & 0. \\
\hline 1 & 0210 & 66 & 1333. & * & 1 & 0440 & 141 & 193. & * & 1 & 0710 & 216 & 110. & * & 1 & 0940 & 291 & 0. \\
\hline 1 & 0212 & 67 & 1287. & * & 1 & 0442 & 142 & 193. & * & 1 & 0712 & 217 & 108. & * & 1 & 0942 & 292 & 0. \\
\hline 1 & 0214 & 68 & 1243. & * & 1 & 0444 & 143 & 192. & * & 1 & 0714 & 218 & 106. & * & 1 & 0944 & 293 & 0. \\
\hline 1 & 0216 & 69 & 1202. & * & 1 & 0446 & 144 & 191. & * & 1 & 0716 & 219 & 104. & * & 1 & 0946 & 294 & 0. \\
\hline 1 & 0218 & 70 & 1160. & * & 1 & 0448 & 145 & 190. & * & 1 & 0718 & 220 & 101. & * & 1 & 0948 & 295 & 0. \\
\hline 1 & 0220 & 71 & 1114. & * & 1 & 0450 & 146 & 190. & * & 1 & 0720 & 221 & 99. & * & 1 & 0950 & 296 & 0. \\
\hline 1 & 0222 & 72 & 1074. & * & 1 & 0452 & 147 & 189. & * & 1 & 0722 & 222 & 96. & * & 1 & 0952 & 297 & 0. \\
\hline 1 & 0224 & 73 & 1040. & * & 1 & 0454 & 148 & 188. & * & 1 & 0724 & 223 & 93. & * & 1 & 0954 & 298 & 0. \\
\hline 1 & 0226 & 74 & 1011. & * & 1 & 0456 & 149 & 188. & * & 1 & 0726 & 224 & 91. & * & 1 & 0956 & 299 & 0. \\
\hline 1 & 0228 & 75 & 983. & * & 1 & 0458 & 150 & 187. & * & 1 & 0728 & 225 & 88. & * & 1 & 0958 & 300 & 0. \\
\hline
\end{tabular}
PEAK ELOW
TIME

MAXIMUM AVERAGE FLOW
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{(108)} & & \multicolumn{4}{|c|}{MAXIMOM AVERAG} \\
\hline & & 6-HR & 24-HR & 72-HR & 9.97-HR \\
\hline \multicolumn{6}{|l|}{(HR)} \\
\hline & (CFS) & & & & \\
\hline \multirow[t]{3}{*}{. 97} & & 1126. & 698. & 698. & 698. \\
\hline & (INCHES) & 1.812 & 1.866 & 1.866 & 1.866 \\
\hline & (\(\mathrm{AC}-\mathrm{F}^{\prime} \mathrm{T}\)) & 558. & 575. & 575. & 575. \\
\hline \multicolumn{6}{|c|}{CUMULATIVE AREA \(=5.78 \mathrm{SQ}\) MI} \\
\hline
\end{tabular}

374 KK

\section*{PONTATOC CANYON DR CULVERT CROSSING}

HYDROGRAPH ROUTING DATA

HYDROGRAPH AT STATION RES-4

\begin{tabular}{|c|}
\hline 1 & 0000 & 1 & 0. & . 2 & 2611.0 & * & 1 & 0320 & 101 & 519. & . 2 & 2612.7 & * & 1 & 0640 & 201 & 136. & . 0 & 2611.0 \\
\hline 1 & 0002 & 2 & 154. & . 0 & 2611.1 & * & 1 & 0322 & 102 & 508. & . 2 & 2612.7 & * & 1. & 0642 & 202 & 135. & . 0 & 2611.0 \\
\hline 1 & 0004 & 3 & 44. & -. 1 & 2610.4 & * & 1 & 0324 & 103 & 497. & . 2 & 2612.6 & * & 1 & 0644 & 203 & 133. & . 0 & 2611.0 \\
\hline 1 & 0006 & 4 & 40. & -. 1 & 2610.4 & * & 1 & 0326 & 104 & 486. & . 2 & 2612.6 & * & 1 & 0646 & 204 & 132. & . 0 & 2611.0 \\
\hline 1 & 0008 & 5 & 43. & -. 1 & 2610.4 & * & 1 & 0328 & 105 & 474. & . 2 & 2612.5 & * & 1 & 0648 & 205 & 130. & . 0 & 2611.0 \\
\hline 1 & 0010 & 6 & 51. & -. 1 & 2610.4 & * & 1 & 0330 & 106 & 461. & . 2 & 2612.5 & * & 1 & 0650 & 206 & 129. & . 0 & 2611.0 \\
\hline 1 & 0012 & 7 & 62. & -. 1 & 2610.5 & * & 1 & 0332 & 107 & 448. & . 1 & 2612.4 & * & 1 & 0652 & 207 & 127. & . 0 & 2611.0 \\
\hline 1 & 0014 & 8 & 77. & -. 1 & 2610.6 & * & 1 & 0334 & 108 & 434. & . 1 & 2612.4 & * & 1 & 0654 & 208 & 126. & . 0 & 2611.0 \\
\hline 1 & 001.6 & 9 & 94. & -. 1 & 2610.6 & * & 1 & 0336 & 109 & 420. & . 1 & 2612.3 & * & 1 & 0656 & 209 & 124. & . 0 & 2611.0 \\
\hline 1 & 0018 & 10 & 114. & -. 1 & 2610.7 & * & 1 & 0338 & 110 & 407. & . 1 & 2612.2 & * & 1 & 0658 & 210 & 122. & . 0 & 2610.9 \\
\hline 1 & 0020 & 11 & 141. & -. 1 & 2610.9 & * & 1 & 0340 & 111 & 392. & . 1 & 2612.2 & * & 1 & 0700 & 211 & 120. & . 0 & 2610.9 \\
\hline 1 & 0022 & 12 & 171. & -. 1 & 2611.0 & * & 1 & 0342 & 112 & 378. & . 0 & 2612.1 & * & 1 & 0702 & 212 & 118. & . 0 & 2610.9 \\
\hline 1 & 0024 & 13 & 171. & . 0 & 2611.2 & * & 1 & 0344 & 113 & 363. & . 0 & 2612.0 & * & 1 & 0704 & 213 & 116. & . 0 & 2610.9 \\
\hline 1 & 0026 & 14 & 307. & . 0 & 2611.8 & * & 1 & 0346 & 114 & 344. & . 0 & 2611.9 & * & 1 & 0706 & 214 & 114. & . 0 & 2610.9 \\
\hline 1 & 0028 & 15 & 321. & . 0 & 2611.8 & * & 1 & 0348 & 115 & 329. & . 0 & 2611.9 & * & 1 & 0708 & 215 & 112. & . 0 & 2610.9 \\
\hline 1 & 0030 & 16 & 431. & . 1 & 2612.3 & * & 1 & 0350 & 116 & 317. & . 0 & 2611.8 & * & 1 & 0710 & 216 & 110. & . 0 & 2610.9 \\
\hline 1 & 0032 & 17 & 537. & . 3 & 2612.8 & * & 1 & 0352 & 117 & 303. & . 0 & 2611.8 & * & 1 & 0712 & 217 & 108. & . 0 & 2610.9 \\
\hline 1 & 0034 & 18 & 668. & . 4 & 2613.4 & * & 1 & 0354 & 118 & 291. & . 0 & 2611.7 & * & 1 & 0714 & 218 & 106. & . 0 & 2610.9 \\
\hline 1 & 0036 & 19 & 790. & . 6 & 2614.0 & * & 1 & 0356 & 119 & 277. & . 0 & 2611.6 & * & 1 & 0716 & 219 & 104. & . 0 & 2610.9 \\
\hline 1 & 0038 & 20 & 856. & . 9 & 2614.3 & * & 1 & 0358 & 120 & 267. & . 0 & 2611.6 & * & 1 & 0718 & 220 & 101. & . 0 & 2610.9 \\
\hline 1 & 0040 & 21 & 970. & 1.4 & 2614.8 & * & 1 & 0400 & 121 & 255. & . 0 & 2611.5 & * & 1 & 0720 & 221 & 99. & . 0 & 2610.8 \\
\hline 1 & 0042 & 22 & 1159. & 2.2 & 2615.3 & * & 1 & 0402 & 122 & 246. & . 0 & 2611.5 & * & 1 & 0722 & 222 & 96. & . 0 & 2610.8 \\
\hline 1 & 0044 & 23 & 1449. & 3.4 & 2616.0 & * & 1 & 0404 & 123 & 237. & . 0 & 2611.5 & * & 1 & 0724 & 223 & 93. & . 0 & 2610.8 \\
\hline 1 & 0046 & 24 & 1760. & 5.5 & 2616.8 & * & 1 & 0406 & 124 & 231. & . 0 & 2611.4 & * & 1 & 0726 & 224 & 91. & . 0 & 2610.8 \\
\hline 1 & 0048 & 25 & 2314. & 8.4 & 2617.8 & * & 1 & 0408 & 125 & 224. & . 0 & 2611.4 & * & 1 & 0728 & 225 & 88. & . 0 & 2610.8 \\
\hline 1 & 0050 & 26 & 3062. & 11.9 & 2618.7 & * & 1 & 0410 & 126 & 220. & . 0 & 2611.4 & * & 1 & 0730 & 226 & 85. & . 0 & 2610.8 \\
\hline 1 & 0052 & 27 & 4150. & 15.1 & 2619.5 & * & 1 & 0412 & 127 & 216. & . 0 & 2611.4 & * & 1 & 0732 & 227 & 81. & . 0 & 2610.8 \\
\hline 1 & 0054 & 28 & 5080. & 17.4 & 2619.9 & * & 1 & 0414 & 128 & 213. & . 0 & 2611.4 & * & 1 & 0734 & 228 & 78. & . 0 & 2610.8 \\
\hline 1 & 0056 & 29 & 5635. & 18.8 & 2620.2 & * & 1 & 0416 & 129 & 209. & . 0 & 2611.3 & * & 1 & 0736 & 229 & 74. & . 0 & 2610.7 \\
\hline 1 & 0058 & 30 & 5938. & 19.6 & 2620.4 & * & 1 & 0418 & 130 & 207. & . 0 & 2611.3 & * & 1 & 0738 & 230 & 70. & . 0 & 2610.7 \\
\hline 1 & 0100 & 31 & 6046. & 19.8 & 2620.4 & * & 1 & 0420 & 131 & 204. & . 0 & 2611.3 & * & 1 & 0740 & 231 & 66. & . 0 & 2610.7 \\
\hline 1 & 0102 & 32 & 5998. & 19.7 & 2620.4 & * & 1 & 0422 & 132 & 203. & . 0 & 2611.3 & * & 1 & 0742 & 232 & 62. & . 0 & 2610.7 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PEAK ELOW & TIME & & \multicolumn{4}{|c|}{MAXIMUM AVERAGE FLOW} \\
\hline & & & 6-HR & 24-HR & 72-HR & 9.97-HR \\
\hline \(\div\) (CES) & (HR) & & & & & \\
\hline \multicolumn{7}{|c|}{(CFS)} \\
\hline + 6046 . & 1.00 & & 1126. & 699. & 699. & 699. \\
\hline & & (INCHES) & 1.812 & 1.867 & 1.867 & 1.867 \\
\hline & & (\(\mathrm{AC}-\mathrm{FT}\)) & 558. & 575. & 575. & 575. \\
\hline PEAK STORAGE & TIME & & \multicolumn{4}{|c|}{MAXIMUM AVERAGE STORAGE} \\
\hline & & & 6-HR & 24-HR & 72-HR & 9.97-HR \\
\hline
\end{tabular}

388 RS \begin{tabular}{cc}
& \\
& STORAGE ROUTING \\
NSTPS & 4 \\
& ITYP NUMBER OF SUBREACHES \\
& RSVRIC
\end{tabular}

389 RC NORMAL DEPTH CHANNEL
\begin{tabular}{rrl}
ANL & .060 & LEFT OVERBANK N-VALUE \\
ANCH & .045 & MAIN CHANNEL N-VALUE \\
ANR & .060 & RIGHT OVERBANK N-VALUE \\
RLNTH & 5940. & REACH LENGTH \\
SEL & .0170 & ENERGY SLOPE \\
ELMAX & .0 & MAX. ELEV. FOR STORAGE/OUTELOW CALCUUATION
\end{tabular}

CROSS-SECTION DATA

COMPUTED STORAGE-OUTELOW-ELEVATION DATA
\begin{tabular}{rrrrrrrrrrrr}
STORAGE & .00 & 1.13 & 6.48 & 16.30 & 30.58 & 49.33 & 71.63 & 94.68 & 118.28 \\
OUTFLOW & .00 & 11.80 & 115.30 & 389.97 & 897.60 & 1692.60 & 2978.29 & 4662.49 & 6647.86 & 8919.53 \\
ELEVATION & 67.50 & 68.16 & 68.82 & 69.47 & 70.13 & 70.79 & 71.45 & 72.11 & 72.76 & 73.42 \\
& & & & & & & & \\
STORAGE & 167.11 & 192.34 & 218.12 & 244.45 & 271.32 & 298.74 & 326.70 & 355.21 & 384.26 \\
OUTFLOW & 11466.92 & 14282.24 & 17359.66 & 20694.76 & 24284.21 & 28125.48 & 32216.71 & 36556.57 & 41144.16 & 45978.99 \\
ELEVATION & 74.08 & 74.74 & 75.39 & 76.05 & 76.71 & 77.37 & 78.03 & 78.68 & 79.34 & 80.00
\end{tabular}

\section*{HYDROGRAPH AT STATION \(4 T O 3\)}
DA MON HRMN ORD OUTFLOW STORAGE
\begin{tabular}{|c|}
\hline 1 & 0000 & 1 & 0. & . 0 & 67.5 & * & 1 & 0320 & 101 & 658. & 6.0 & 69.8 & * & 1 & 0640 & 201 & 152 , & 1.9 & 68.9 \\
\hline 1 & 0002 & 2 & 0. & . 0 & 67.5 & * & 1 & 0322 & 102 & 642. & 5.8 & 69.8 & * & 1 & 0642 & 202 & 151. & 1.9 & 68.9 \\
\hline 1 & 0004 & 3 & 0. & . 0 & 67.5 & * & 1 & 0324 & 103 & 627. & 5.7 & 69.8 & * & 1 & 0644 & 203 & 150. & 1.9 & 68.9 \\
\hline 1 & 0006 & 4 & 0. & . 0 & 67.5 & * & 1 & 0326 & 104 & 612. & 5.6 & 69.8 & * & 1 & 0646 & 204 & 149. & 1.9 & 68.9 \\
\hline 1 & 0008 & 5 & 0. & . 0 & 67.5 & * & 1 & 0328 & 105 & 598. & 5.5 & 69.7 & * & 1 & 0648 & 205 & 147. & 1.9 & 68.9 \\
\hline 1 & 0010 & 6 & 0. & . 0 & 67.5 & * & 1 & 0330 & 106 & 585. & 5.4 & 69.7 & * & 1 & 0650 & 206 & 146. & 1.9 & 68.9 \\
\hline 1 & 0012 & 7 & 1. & . 0 & 67.5 & * & 1 & 0332 & 107 & 572. & 5.4 & 69.7 & * & 1 & 0652 & 207 & 145. & 1.9 & 68.9 \\
\hline 1 & 0014 & 8 & 1 & . 0 & 67.5 & * & 1 & 0334 & 108 & 559. & 5.3 & 69.7 & * & 1 & 0654 & 208 & 144. & 1.9 & 68.9 \\
\hline 1 & 0016 & 9 & 1. & . 0 & 67.6 & * & 1 & 0336 & 109 & 547. & 5.2 & 69.7 & * & 1 & 0656 & 209 & 142. & 1.9 & 68.9 \\
\hline 1 & 0018 & 10 & 2. & . 0 & 67.6 & * & 1 & 0338 & 110 & 535. & 5.1 & 69.7 & * & 1 & 0658 & 210 & 141. & 1.9 & 68.9 \\
\hline 1 & 0020 & 11 & 3. & . 1 & 67.7 & * & 1 & 0340 & 111 & 522. & 5.0 & 69.6 & * & 1 & 0700 & 211 & 140. & 1.8 & 68.9 \\
\hline 1 & 0022 & 12 & 4. & . 1 & 67.7 & * & 1 & 0342 & 112 & 510. & 4.9 & 69.6 & * & 1 & 0702 & 212 & 138. & 1.8 & 68.9 \\
\hline 1 & 0024 & 13 & 6. & . 1 & 67.8 & * & 1 & 0344 & 113 & 498. & 4.8 & 69.6 & * & 1 & 0704 & 213 & 137. & 1.8 & 68.9 \\
\hline 1 & 0026 & 14 & 8. & . 2 & 68.0 & * & 1 & 0346 & 114 & 485. & 4.7 & 69.6 & * & 1 & 0706 & 214 & 136. & 1.8 & 68.9 \\
\hline 1 & 0028 & 15 & 11. & . 3 & 68.1 & * & 1 & 0348 & 115 & 473. & 4.7 & 69.6 & * & 1 & 0708 & 215 & 134. & 1.8 & 68.9 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 0030 & 16 & 17 & . 4 & 68.2 & * \\
\hline 0032 & 1.7 & 25. & . 5 & 68.2 & * \\
\hline 0034 & 18 & 35. & . 6 & 68.3 & * \\
\hline 0036 & 19 & 48. & . 8 & 68.4 & * \\
\hline 0038 & 20 & 66. & 1.0 & 68.5 & * \\
\hline 0040 & 21 & 91. & 1.3 & 68.7 & * \\
\hline 0042 & 22 & 126. & 1.7 & 68.8 & * \\
\hline 0044 & 23 & 182. & 2.2 & 69.0 & * \\
\hline 0046 & 24 & 249. & 2.8 & 69.1 & * \\
\hline 0048 & 25 & 332. & 3.6 & 69.3 & * \\
\hline 0050 & 26 & 444. & 4.5 & 69.5 & * \\
\hline 0052 & 27 & 603. & 5.6 & 69.7 & * \\
\hline 0054 & 28 & 818. & 7.1 & 70.0 & * \\
\hline 0056 & 29 & 1172. & 9.3 & 70.4 & * 1 \\
\hline 0058 & 30 & 1690. & 12.3 & 70.8 & * \\
\hline 0100 & 31 & 2547. & 16.0 & 71.2 & * \\
\hline 0102 & 32 & 3509. & 19.7 & 71.7 & * \\
\hline 0104 & 33 & 4397. & 22.8 & 72.0 & * \\
\hline 0106 & 34 & 5068. & 24.9 & 72.2 & * \\
\hline 0108 & 35 & 5470. & 26.1 & 72.4 & * 1 \\
\hline 0110 & 36 & 5640. & 26.6 & 72.4 & * 1 \\
\hline 0112 & 37 & 5654. & 26.6 & 72.4 & * \\
\hline 0114 & 38 & 5565. & 26.4 & 72.4 & * \\
\hline 0116 & 39 & 5411. & 25.9 & 72.4 & * 1 \\
\hline 0118 & 40 & 5218. & 25.3 & 72.3 & * \\
\hline 0120 & 41 & 5005. & 24.7 & 72.2 & * \\
\hline 0122 & 42 & 4792. & 24.1 & 72.1 & * 1 \\
\hline 0124 & 43 & 4595. & 23.4 & 72.1 & * 1 \\
\hline 0126 & 44 & 4412 . & 22.8 & 72.0 & * \\
\hline 0128 & 45 & 4222. & 22.2 & 71.9 & * \\
\hline 0130 & 46 & 4034. & 21.5 & 71.9 & * 1 \\
\hline 0132 & 47 & 3851. & 20.9 & 71.8 & * 1 \\
\hline 0134 & 48 & 3676. & 20.3 & 71.7 & * \\
\hline 0136 & 49 & 3513. & 19.7 & 71.7 & * 1 \\
\hline 0138 & 50 & 3362. & 19.2 & 71.6 & * \\
\hline 0140 & 51 & 3226. & 18.8 & 71.5 & * \\
\hline 0142 & 52 & 3106. & 18.3 & 71.5 & * \\
\hline 0144 & 53 & 3003. & 18.0 & 71.5 & * \\
\hline 0146 & 54 & 2920. & 17.7 & 71.4 & * \\
\hline 0148 & 55 & 2836. & 17.3 & 71.4 & * \\
\hline 0150 & 56 & 2744. & 16.9 & 71.3 & * \\
\hline 0152 & 57 & 2647. & 16.5 & 71.3 & * \\
\hline 0154 & 58 & 2547. & 16.0 & 71.2 & * \\
\hline 0156 & 59 & 2446. & 15.6 & 71.2 & * \\
\hline 0158 & 60 & 2347. & 15.2 & 71.1 & * \\
\hline 0200 & 61 & 2252. & 14.8 & 71.1 & * \\
\hline 0202 & 62 & 2162. & 14.4 & 71.0 & * \\
\hline 0204 & 63 & 2078. & 14.0 & 71.0 & * \\
\hline 0206 & 64 & 1999. & 13.7 & 70.9 & * \\
\hline 0208 & 65 & 1924. & 13.3 & 70.9 & * \\
\hline 0210 & 66 & 1855. & 13.0 & 70.9 & * \\
\hline 0212 & 67 & 1792. & 12.8 & 70.8 & * 1 \\
\hline 0214 & 68 & 1736. & 12.5 & 70.8 & * 1 \\
\hline 0216 & 69 & 1688. & 12.3 & 70.8 & * \\
\hline 0218 & 70 & 1651. & 12.1 & 70.8 & * \\
\hline 0220 & 71 & 1609. & 11.8 & 70.7 & * 1 \\
\hline 0222 & 72 & 1564. & 11.6 & 70.7 & * \\
\hline 0224 & 73 & 1516. & 11.3 & 70.6 & * 1 \\
\hline 0226 & 74 & 1467 . & 11.0 & 70.6 & * 1 \\
\hline 0228 & 75 & 1418. & 10.7 & 70.6 & * 1 \\
\hline 0230 & 76 & 1368. & 10.4 & 70.5 & * \\
\hline 0232 & 77 & 1320. & 10.1 & 70.5 & * \\
\hline 0234 & 78 & 1274. & 9.9 & 70.4 & * 1 \\
\hline 0236 & 79 & 1229. & 9.6 & 70.4 & * 1 \\
\hline 0238 & 80 & 11.87. & 9.3 & 70.4 & * \\
\hline 0240 & 81 & 11.46. & 9.1 & 70.3 & * 1 \\
\hline 0242 & 82 & 1109. & 8.9 & 70.3 & * \\
\hline 0244 & 83 & 1073. & 8.7 & 70.3 & * \\
\hline 0246 & 84 & 1039. & 8.5 & 70.2 & * \\
\hline 0248 & 85 & 1008. & 8.3 & 70.2 & * \\
\hline 0250 & 86 & 978. & 8.1 & 70.2 & * \\
\hline 0252 & 87 & 950. & 8.0 & 70.2 & * \\
\hline 0254 & 88 & 924. & 7.8 & 70.2 & * \\
\hline 0256 & 89 & 900. & 7.7 & 70.1 & * \\
\hline 0258 & 90 & 879. & 7.5 & 70.1 & * \\
\hline 0300 & 91 & 858. & 7.4 & 70.1 & * \\
\hline 0302 & 92 & 836. & 7.2 & 70.1 & * 1 \\
\hline 0304 & 93 & 815. & 7.1 & 70.0 & * \\
\hline 0306 & 94 & 793. & 6.9 & 70.0 & * \\
\hline 0308 & 95 & 772. & 6.8 & 70.0 & * \\
\hline 0310 & 96 & 751. & 6.6 & 69.9 & * \\
\hline
\end{tabular}
\begin{tabular}{lll}
0350 & 116 \\
0352 & 117 \\
0354 & 118 \\
0356 & 119 \\
0358 & 120 \\
0400 & 121 \\
0402 & 122 \\
0404 & 123 \\
0406 & 124 \\
0408 & 125 \\
0410 & 126 \\
0412 & 127 \\
0414 & 128 \\
0416 & 129 \\
0418 & 130 \\
0420 & 131 \\
0422 & 132
\end{tabular}
\begin{tabular}{lllll}
460. & 4.6 & \(69.6 *\) & 1 \\
447. & 4.5 & \(69.5 *\) & 1 \\
434. & 4.4 & \(69.5 *\) & 1 \\
422. & 4.3 & \(69.5 *\) & 1 \\
409. & 4.2 & \(69.5 *\) & 1
\end{tabular}
\begin{tabular}{llllllllllllllllllll}
1 & 0312 & 97 & 731. & 6.5 & \(69.9 *\) & 1 & 0632197 & 156. & 2.0 & \(68.9 *\) & 1 & 0952 & 297 & 6. & .1 & 67.8 \\
1 & 0314 & 98 & 712. & 6.3 & \(69.9 *\) & 1 & 0634198 & 155. & 2.0 & \(68.9 *\) & 1 & 0954 & 298 & 6. & .1 & 67.8 \\
1 & 0316 & 99 & 693. & 6.2 & \(69.9 *\) & 1 & 0636199 & 154. & 2.0 & \(68.9 *\) & 1 & 0956 & 299 & 5. & .1 & 67.8 \\
1 & 0318 & 100 & 675. & 6.1 & \(69.8 *\) & 1 & 0638 & 200 & 153. & 2.0 & \(68.9 *\) & 1 & 0958 & 300 & 5. & .1 & 67.8
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PEAK FLOW & TIME & & \multicolumn{4}{|c|}{MAXIMUM AVERAGE ELOW} \\
\hline & & & 6-HR & 24-HR & 72-HR & 9.97-HR \\
\hline (CFS) & (HR) & & & & & \\
\hline \multicolumn{7}{|c|}{(CFS)} \\
\hline 5654. & 1.20 & & 11.22. & 698. & 698. & 698. \\
\hline & & (INCHES) & 1.805 & 1.867 & 1.867 & 1.867 \\
\hline & & (\(\mathrm{AC}-\mathrm{FT}\)) & 556. & 575. & 575. & 575. \\
\hline PEAK STORAGE & TIME & & & MAXIMUM AVERAGE & Storage & \\
\hline & & & 6-HR & 24-HR & 72-HR & 9.97-HR \\
\hline (\(\mathrm{AC}-\mathrm{FT}\)) & (HR) & & & & & \\
\hline 27. & 1.20 & & 8. & 5. & 5. & 5. \\
\hline PEAK STAGE & TIME & & \multicolumn{4}{|c|}{MAXIMUM AVERAGE STAGE} \\
\hline & & & 6-HR & \(24-\mathrm{HR}\) & 72-HR & 9.97-HR \\
\hline + (FEET) & (HR) & & & & & \\
\hline 72.43 & 1.20 & & 69.90 & 69.28 & 69.28 & 69.28 \\
\hline & & CUMULAT & AREA \(=\) & 5.78 SQ MI & & \\
\hline
\end{tabular}

SUBBASIN RUNOFF DATA
395 BA \begin{tabular}{ccc}
SUBBASIN CHARACTERISTICS \\
TAREA & .32 & \\
& &
\end{tabular}
396 SB 2.76 BASIN TOTAL PRECIPITATION

20 PI INCREMENTAL PRECIPITATION PATTERN
\begin{tabular}{llllllllll}
.04 & .04 & .06 & .08 & .08 & .07 & .07 & .05 & .03 & .03 \\
.02 & .02 & .02 & .02 & .02 & .02 & .02 & .01 & .01 & .01 \\
.01 & .01 & .01 & .01 & .01 & .01 & .01 & .01 & .01 \\
.01 & .01 & .01 & .01 & .01 & .01 & .01 & .00 & .00 \\
.00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 \\
.00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 \\
.00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 \\
.00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 \\
.00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00
\end{tabular}
\begin{tabular}{lrl}
STRTL & .60 & INITIAL ABSTRACTION \\
CRVNBR & 77.00 & CURVE NUMBER \\
RTIMP & 25.00 & PERCENT TMPERVIOUS AREA
\end{tabular}

398 UD SCS DIMENSIONLESS UNITGRAPH
TLAG .23 LAG

UNIT HYDROGRAPH
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & DROG & & & & \\
\hline & & & & END & RIOD & JATES & & & \\
\hline 32. & 97. & 189. & 324. & 467. & 567. & 607. & 607. & 570. & 511. \\
\hline 439. & 345. & 269. & 216. & 173. & 143. & 115. & 91. & 74. & 60. \\
\hline 48. & 39. & 31. & 25. & 20. & 16. & 13. & 11. & 8. & 7. \\
\hline 6. & 5. & 4. & 3. & 2. & 1. & 0 . & & & \\
\hline
\end{tabular}

0.
1.
4.
9.
20.
38.
62.
94.
131.
171.
210.
245.
272.
290.
300.
301.
0.
1.
4.
9.
*
\(*\)

DA MON HRMN ORD
\begin{tabular}{|c|c|c|c|c|}
\hline 0500 & 151 & . 00 & . 00 & . 00 \\
\hline 0502 & 152 & . 00 & . 00 & . 00 \\
\hline 0504 & 153 & . 00 & . 00 & .00 \\
\hline 0506 & 154 & . 00 & . 00 & . 00 \\
\hline 0508 & 155 & . 00 & . 00 & . 00 \\
\hline 0510 & 156 & . 00 & . 00 & . 00 \\
\hline 0512 & 157 & . 00 & . 00 & . 00 \\
\hline 0514 & 158 & . 00 & . 00 & . 00 \\
\hline 0516 & 159 & . 00 & . 00 & . 00 \\
\hline 0518 & 160 & . 00 & . 00 & . 00 \\
\hline 0520 & 161 & . 00 & . 00 & . 00 \\
\hline 0522 & 162 & . 00 & . 00 & . 00 \\
\hline 0524 & 163 & . 00 & . 00 & . 00 \\
\hline 0526 & 164 & . 00 & . 00 & . 00 \\
\hline 0528 & 165 & . 00 & . 00 & . 00 \\
\hline 0530 & 166 & . 00 & . 00 & . 00 \\
\hline 0532 & 167 & . 00 & . 00 & . 00 \\
\hline 0534 & 168 & . 00 & . 00 & . 00 \\
\hline 0536 & 169 & . 00 & . 00 & . 00 \\
\hline 0538 & 170 & . 00 & . 00 & . 00 \\
\hline 0540 & 171 & . 00 & . 00 & . 00 \\
\hline 0542 & 172 & . 00 & . 00 & . 00 \\
\hline 0544 & 173 & . 00 & . 00 & . 00 \\
\hline 0546 & 174 & . 00 & . 00 & . 00 \\
\hline 0548 & 175 & . 00 & . 00 & . 00 \\
\hline 0550 & 176 & . 00 & . 00 & . 00 \\
\hline 0552 & 177 & . 00 & . 00 & . 00 \\
\hline 0554 & 178 & . 00 & . 00 & . 00 \\
\hline 0556 & 179 & . 00 & . 00 & . 00 \\
\hline 0558 & 180 & . 00 & . 00 & . 00 \\
\hline 0600 & 181 & . 00 & . 00 & . 00 \\
\hline 0602 & 182 & . 00 & . 00 & . 00 \\
\hline 0604 & 183 & . 00 & . 00 & . 00 \\
\hline 0606 & 184 & . 00 & . 00 & . 00 \\
\hline 0608 & 185 & . 00 & . 00 & . 00 \\
\hline 0610 & 186 & . 00 & . 00 & . 00 \\
\hline 0612 & 187 & . 00 & . 00 & . 00 \\
\hline 0614 & 188 & . 00 & . 00 & . 00 \\
\hline 0616 & 189 & . 00 & . 00 & . 00 \\
\hline 0618 & 190 & . 00 & . 00 & . 00 \\
\hline 0620 & 191 & . 00 & . 00 & . 00 \\
\hline 0622 & 192 & . 00 & . 00 & . 00 \\
\hline 0624 & 193 & . 00 & . 00 & . 00 \\
\hline 0626 & 194 & . 00 & . 00 & . 00 \\
\hline 0628 & 195 & . 00 & . 00 & . 00 \\
\hline 0630 & 196 & .00 & . 00 & . 00 \\
\hline 0632 & 197 & . 00 & . 00 & . 00 \\
\hline 0634 & 198 & . 00 & . 00 & . 00 \\
\hline 0636 & 199 & . 00 & . 00 & . 00 \\
\hline 0638 & 200 & . 00 & . 00 & . 00 \\
\hline 0640 & 201 & . 00 & . 00 & . 00 \\
\hline 0642 & 202 & . 00 & . 00 & . 00 \\
\hline 0644 & 203 & . 00 & . 00 & . 00 \\
\hline 0646 & 204 & . 00 & . 00 & . 00 \\
\hline 0648 & 205 & . 00 & . 00 & . 00 \\
\hline 0650 & 206 & . 00 & . 00 & . 00 \\
\hline 0652 & 207 & . 00 & . 00 & . 00 \\
\hline 0654 & 208 & . 00 & . 00 & . 00 \\
\hline 0656 & 209 & . 00 & . 00 & . 00 \\
\hline 0658 & 210 & . 00 & . 00 & . 00 \\
\hline 0700 & 211 & . 00 & . 00 & . 00 \\
\hline 0702 & 212 & . 00 & . 00 & . 00 \\
\hline 0704 & 213 & . 00 & . 00 & . 00 \\
\hline 0706 & 214 & . 00 & . 00 & . 00 \\
\hline 0708 & 215 & . 00 & . 00 & . 00 \\
\hline 0710 & 216 & . 00 & . 00 & . 00 \\
\hline 0712 & 217 & . 00 & . 00 & . 00 \\
\hline 0714 & 218 & . 00 & . 00 & . 00 \\
\hline 0716 & 219 & . 00 & . 00 & . 00 \\
\hline 0718 & 220 & . 00 & . 00 & . 00 \\
\hline 0720 & 221 & . 00 & . 00 & . 00 \\
\hline 0722 & 222 & . 00 & . 00 & . 00 \\
\hline 0724 & 223 & . 00 & . 00 & . 00 \\
\hline 0726 & 224 & . 00 & . 00 & . 00 \\
\hline 0728 & 225 & . 00 & . 00 & . 00 \\
\hline 0730 & 226 & . 00 & . 00 & . 00 \\
\hline
\end{tabular}
\(\dot{\circ} \dot{\circ}\)
.00

TOTAL RAINEALL \(=2.76\), TOTAL LOSS \(=1.39\), TOTAL EXCESS \(=1.37\)

PEAK FLOW
TIME

MAXIMUM AVERAGE FLOW
6-HR 24-HR 72-HR 9.97-HR
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline + & (CES) & (HR) & & & & & \\
\hline \multicolumn{8}{|c|}{(CES)} \\
\hline \multirow[t]{4}{*}{+} & \multirow[t]{4}{*}{301.} & \multirow[t]{4}{*}{. 50} & & 47. & 28. & 28. & 28. \\
\hline & & & (INCHES) & 1.371 & 1.371 & 1.371 & 1.371 \\
\hline & & & (\(\mathrm{AC}-\mathrm{FT}\)) & 23. & 23. & 23. & 23. \\
\hline & & & CUMULAT & REA \(=\) & 32 SQ & & \\
\hline
\end{tabular}

402 HC HYDROGRAPH COMBINATION ICOMP 2 NUMBER OF HYDROGRAPHS TO COMBINE

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1. & 0130 & 46 & 4100. & * & 1 & 0400 & 121 & 398. & * & 1 & 0630 & 196 & 157. & * & 1 & 0900 & 271 & 16. \\
\hline 1 & 0132 & 47 & 3914. & * & 1 & 0402 & 122 & 387. & * & 1 & 0632 & 197 & 156. & * & 1 & 0902 & 272 & 15. \\
\hline 1 & 0134 & 48 & 3737. & * & 1 & 0404 & 123 & 378. & * & 1 & 0634 & 198 & 155. & * & 1 & 0904 & 273 & 14. \\
\hline 1 & 0136 & 49 & 3571. & * & 1 & 0406 & 124 & 368. & * & 1 & 0636 & 199 & 154. & * & 1 & 0906 & 274 & 13. \\
\hline 1 & 0138 & 50 & 3418. & * & 1 & 0408 & 125 & 358. & * & 1 & 0638 & 200 & 153. & * & 1 & 0908 & 275 & 13. \\
\hline 1 & 0140 & 51 & 3280. & * & 1 & 0410 & 126 & 348. & * & 1 & 0640 & 201 & 152. & * & 1 & 0910 & 276 & 12. \\
\hline 1 & 0142 & 52 & 3158. & * & 1 & 0412 & 127 & 337. & * & 1 & 0642 & 202 & 151. & * & 1 & 0912 & 277 & 12. \\
\hline 1 & 0144 & 53 & 3053. & * & 1 & 0414 & 128 & 326. & * & 1 & 0644 & 203 & 150. & * & 1 & 0914 & 278 & 11. \\
\hline 1 & 0146 & 54 & 2968. & * & 1 & 0416 & 129 & 316. & * & 1 & 0646 & 204 & 149. & * & 1 & 0916 & 279 & 11. \\
\hline 1 & 0148 & 55 & 2882. & * & 1 & 0418 & 130 & 305. & * & 1 & 0648 & 205 & 147. & * & 1 & 0918 & 280 & 11. \\
\hline 1 & 0150 & 56 & 2789. & * & 1 & 0420 & 131 & 295. & * & 1 & 0650 & 206 & 146. & * & 1 & 0920 & 281 & 11. \\
\hline 1 & 0152 & 57 & 2690. & * & 1 & 0422 & 132 & 286. & * & 1 & 0652 & 207 & 145. & * & 1 & 0922 & 282 & 10. \\
\hline 1 & 0154 & 58 & 2589. & * & 1 & 0424 & 133 & 277. & * & 1 & 0654 & 208 & 144. & * & 1 & 0924 & 283 & 10. \\
\hline 1 & 0156 & 59 & 2486. & * & 1 & 0426 & 134 & 268. & * & 1 & 0656 & 209 & 142. & * & 1 & 0926 & 284 & 10. \\
\hline 1 & 0158 & 60 & 2386. & * & 1 & 0428 & 135 & 261. & * & 1 & 0658 & 210 & 141. & * & 1 & 0928 & 285 & 9. \\
\hline 1 & 0200 & 61 & 2290. & * & 1 & 0430 & 136 & 253. & * & 1 & 0700 & 211 & 140. & * & 1 & 0930 & 286 & 9. \\
\hline 1 & 0202 & 62 & 2199. & * & 1 & 0432 & 137 & 247. & * & 1 & 0702 & 212 & 138. & * & 1 & 0932 & 287 & 9. \\
\hline 1 & 0204 & 63 & 2113. & * & 1 & 0434 & 138 & 240. & * & 1 & 0704 & 213 & 137. & * & 1 & 0934 & 288 & 8. \\
\hline 1 & 0206 & 64 & 2033. & * & 1 & 0436 & 139 & 235. & * & 1 & 0706 & 214 & 136. & * & 1 & 0936 & 289 & 8. \\
\hline 1 & 0208 & 65 & 1958. & * & 1 & 0438 & 140 & 230. & * & 1 & 0708 & 215 & 134. & * & 1 & 0938 & 290 & 8. \\
\hline 1 & 0210 & 66 & 1887. & * & 1 & 0440 & 141 & 225. & * & 1 & 0710 & 216 & 133. & * & 1 & 0940 & 291 & 8. \\
\hline 1 & 0212 & 67 & 1823. & * & 1 & 0442 & 142 & 221. & * & 1 & 0712 & 217 & 131. & * & 1 & 0942 & 292 & 7. \\
\hline 1 & 0214 & 68 & 1767. & * & 1 & 0444 & 143 & 218. & * & 1 & 0714 & 218 & 130. & * & 1 & 0944 & 293 & 7. \\
\hline 1 & 0216 & 69 & 1718. & * & 1 & 0446 & 144 & 214. & * & 1 & 0716 & 219 & 128. & * & 1 & 0946 & 294 & 7. \\
\hline 1 & 0218 & 70 & 1680. & * & 1 & 0448 & 145 & 211. & * & 1 & 0718 & 220 & 126. & * & 1 & 0948 & 295 & 6. \\
\hline 1 & 0220 & 71 & 1637. & * & 1 & 0450 & 146 & 209. & * & 1 & 0720 & 221 & 125. & * & 1 & 0950 & 296 & 6. \\
\hline 1 & 0222 & 72 & 1591. & * & 1 & 0452 & 147 & 206. & * & 1 & 0722 & 222 & 123. & * & 1 & 0952 & 297 & 6. \\
\hline 1 & 0224 & 73 & 1543. & * & 1 & 0454 & 148 & 204. & * & 1 & 0724 & 223 & 121. & * & 1 & 0954 & 298 & 6. \\
\hline 1. & 0226 & 74 & 1493. & * & 1 & 0456 & 149 & 202. & * & 1 & 0726 & 224 & 120. & * & 1 & 0956 & 299 & 5. \\
\hline 1 & 0228 & 75 & 1443. & * & 1 & 0458 & 150 & 201. & * & 1 & 0728 & 225 & 118. & * & 1 & 0958 & 300 & 5. \\
\hline
\end{tabular}

PEAK FLOW
TIME
MAXIMUM AVERAGE FLOW
\(24-\mathrm{HR} \quad 72-\mathrm{HR} \quad 9.97-\mathrm{HR}\)

\begin{tabular}{rrrrrrrrrrr}
STORAGE & .00 & 1.38 & 5.12 & 11.95 & 24.19 & 38.33 & 52.62 & 67.06 & 81.64 & 96.38 \\
OUTFLOW & .00 & 50.92 & 299.70 & 921.23 & 2133.10 & 4090.75 & 6610.34 & 9633.89 & 13124.55 & 17056.03 \\
ELEVATION & 77.50 & 78.16 & 78.82 & 79.47 & 80.13 & 80.79 & 81.45 & 82.11 & 82.76 & 83.42 \\
STORAGE & 111.27 & 126.31 & 141.49 & 156.83 & 172.31 & 187.95 & 203.73 & 219.66 & 235.74 & 251.98 \\
OUTELOW & 21408.37 & 26165.77 & 31315.37 & 36846.49 & 42750.14 & 49018.63 & 55645.29 & 62624.36 & 69950.80 & 77620.18 \\
ELEVATION & 84.08 & 84.74 & 85.39 & 86.05 & 86.71 & 87.37 & 88.03 & 88.68 & 89.34 & 90.00
\end{tabular}

\footnotetext{
*** WARNING *** MODIFIED PULS ROUTING MAY BE NUMERICALLY UNSTABLE FOR OUTFLOWS BETWEEN 36846. TO 77620. THE ROUTED HYDROGRAPH SHOULD BE EXAMINED FOR OSCILLATIONS OR OUTELOWS GREATER THAN PEAK INFLOWS, THIS CAN BE CORRECTED BY DECREASING THE TIME INTERVAL OR INCREASING STORAGE (USE A LONGER REACH.)
}
\begin{tabular}{|c|}
\hline DA MON & HRMN & ORD & OUTELOW & STORAGE & STAGE & * & DA MON & HRMN & ORD & OUTFLOW & STORAGE & STAGE & * & DA MON & HRMN & ORD & OUTELOW & STORAGE & Stage \\
\hline 1 & 0000 & 1 & 0. & . 0 & 77.5 & * & 1 & 0320 & 101 & 744. & 5.0 & 79.3 & * & 1 & 0640 & 201 & 158. & 1.5 & 78.4 \\
\hline 1 & 0002 & 2 & 0. & . 0 & 77.5 & * & 1 & 0322 & 102 & 724. & 4.9 & 79.3 & * & 1 & 0642 & 202 & 157. & 1.5 & 78.4 \\
\hline 1 & 0004 & 3 & 0. & . 0 & 77.5 & * & 1 & 0324 & 103 & 704. & 4.8 & 79.2 & * & 1 & 0644 & 203 & 156. & 1.5 & 78.4 \\
\hline 1 & 0006 & 4 & 0. & . 0 & 77.5 & * & 1 & 0326 & 104 & 685. & 4.7 & 79.2 & * & 1 & 0646 & 204 & 155. & 1.5 & 78.4 \\
\hline 1 & 0008 & 5 & 1. & . 0 & 77.5 & * & 1 & 0328 & 105 & 667. & 4.6 & 79.2 & & 1 & 0648 & 205 & 154. & 1.5 & 78.4 \\
\hline 1 & 0010 & 6 & 2. & . 0 & 77.5 & & 1 & 0330 & 106 & 650. & 4.5 & 79.2 & & 1 & 0650 & 206 & 152. & 1.5 & 78.4 \\
\hline 1 & 0012 & 7 & 4. & . 1 & 77.5 & - & 1 & 0332 & 107 & 634. & 4.4 & 79.2 & * & 1 & 0652 & 207 & 151. & 1.4 & 78.4 \\
\hline 1 & 0014 & 8 & 7. & . 1 & 77.6 & * & 1 & 0334 & 108 & 618. & 4.3 & 79.2 & * & 1 & 0654 & 208 & 150. & 1.4 & 78.4 \\
\hline 1 & 0016 & 9 & 12. & . 2 & 77.7 & * & 1 & 0336 & 109 & 603. & 4.2 & 79.1 & & 1 & 0656 & 209 & 149. & 1.4 & 78.4 \\
\hline 1 & 0018 & 10 & 21. & . 3 & 77.8 & * & 1 & 0338 & 110 & 589. & 4.2 & 79.1 & * & 1 & 0658 & 210 & 148. & 1.4 & 78.4 \\
\hline 1 & 0020 & 11 & 34. & . 5 & 77.9 & * & 1 & 0340 & 111 & 575. & 4.1 & 79.1 & * & 1 & 0700 & 211 & 147. & 1.4 & 78.4 \\
\hline 1. & 0022 & 12 & 52. & . 7 & 78.2 & * & 1 & 0342 & 112 & 562. & 4.0 & 79.1 & * & 1 & 0702 & 212 & 145. & 1.4 & 78.4 \\
\hline 1 & 0024 & 13 & 87. & 1.0 & 78.3 & * & 1 & 0344 & 113 & 549. & 3.9 & 79.1 & * & 1 & 0704 & 213 & 144. & 1.4 & 78.4 \\
\hline 1 & 0026 & 14 & 122. & 1.2 & 78.3 & * & 1 & 0346 & 114 & 536. & 3.9 & 79.1 & * & 1 & 0706 & 214 & 143. & 1.4 & 78.4 \\
\hline 1 & 0028 & 15 & 155. & 1.5 & 78.4 & * & 1 & 0348 & 115 & 523. & 3.8 & 79.1 & * & 1 & 0708 & 215 & 142. & 1.4 & 78.4 \\
\hline 1 & 0030 & 16 & 186. & 1.7 & 78.5 & * & 1 & 0350 & 116 & 511. & 3.7 & 79.0 & * & 1 & 0710 & 216 & 140. & 1.4 & 78.4 \\
\hline 1 & 0032 & 17 & 213. & 1.9 & 78.6 & * & 1 & 0352 & 117 & 498. & 3.7 & 79.0 & * & 1 & 0712 & 217 & 139. & 1.4 & 78.4 \\
\hline 1 & 0034 & 18 & 236. & 2.1 & 78.6 & * & 1 & 0354 & 118 & 485. & 3.6 & 79.0 & * & 1 & 0714 & 218 & 137. & 1.3 & 78.4 \\
\hline 1 & 0036 & 19 & 256. & 2.2 & 78.7 & * & 1 & 0356 & 119 & 473. & 3.5 & 79.0 & * & 1 & 0716 & 219 & 136. & 1.3 & 78.4 \\
\hline 1 & 0038 & 20 & 272. & 2.4 & 78.7 & * & 1 & 0358 & 120 & 460. & 3.4 & 79.0 & * & 1 & 0718 & 220 & 135. & 1.3 & 78.4 \\
\hline 1 & 0040 & 21 & 286. & 2.5 & 78.8 & * & 1 & 0400 & 121 & 447. & 3.4 & 79.0 & * & 1 & 0720 & 221 & 133. & 1.3 & 78.4 \\
\hline 1 & 0042 & 22 & 298. & 2.6 & 78.8 & * & 1 & 0402 & 122 & 435. & 3.3 & 79.0 & * & 1 & 0722 & 222 & 132. & 1.3 & 78.4 \\
\hline 1 & 0044 & 23 & 316. & 2.6 & 78.8 & * & 1 & 0404 & 123 & 423. & 3.2 & 78.9 & * & 1 & 0724 & 223 & 130. & 1.3 & 78.4 \\
\hline 1 & 0046 & 24 & 337. & 2.8 & 78.9 & * & 1 & 0406 & 124 & 411. & 3.2 & 78.9 & * & 1 & 0726 & 224 & 128. & 1.3 & 78.4 \\
\hline 1 & 0048 & 25 & 365. & 2.9 & 78.9 & * & 1 & 0408 & 125 & 400. & 3.1 & 78.9 & * & 1 & 0728 & 225 & 127. & 1.3 & 78.4 \\
\hline 1 & 0050 & 26 & 403. & 3.1 & 78.9 & * & 1 & 0410 & 126 & 390. & 3.1 & 78.9 & * & 1 & 0730 & 226 & 125. & 1.2 & 78.4 \\
\hline 1 & 0052 & 27 & 455. & 3.4 & 79.0 & * & 1 & 0412 & 127 & 379. & 3.0 & 78.9 & * & 1 & 0732 & 227 & 124. & 1.2 & 78.4 \\
\hline 1 & 0054 & 28 & 528. & 3.8 & 79.1 & * & 1 & 0414 & 128 & 368. & 2.9 & 78.9 & * & 1 & 0734 & 228 & 122. & 1.2 & 78.3 \\
\hline 1 & 0056 & 29 & 633. & 4.4 & 79.2 & * & 1 & 0416 & 129 & 358. & 2.9 & 78.9 & * & 1 & 0736 & 229 & 121. & 1.2 & 78.3 \\
\hline 1 & 0058 & 30 & 793. & 5.3 & 79.3 & * & 1 & 0418 & 130 & 347. & 2.8 & 78.9 & * & 1 & 0738 & 230 & 119. & 1.2 & 78.3 \\
\hline 1 & 0100 & 31 & 1050. & 6.6 & 79.5 & * & 1 & 0420 & 131 & 337. & 2.8 & 78.9 & * & 1 & 0740 & 231 & 118. & 1.2 & 78.3 \\
\hline 1 & 0102 & 32 & 1455. & 8.7 & 79.8 & * & 1 & 0422 & 132 & 326. & 2.7 & 78.8 & * & 1 & 0742 & 232 & 117. & 1.2 & 78.3 \\
\hline 1 & 0104 & 33 & 2042. & 11.6 & 80.1 & * & 1 & 0424 & 133 & 316. & 2.7 & 78.8 & * & 1 & 0744 & 233 & 115. & 1.2 & 78.3 \\
\hline 1 & 0106 & 34 & 2953. & 15.1 & 80.4 & * & 1 & 0426 & 134 & 307. & 2.6 & 78.8 & * & 1 & 0746 & 234 & 114. & 1.2 & 78.3 \\
\hline 1 & 0108 & 35 & 3845. & 18.3 & 80.7 & * & 1 & 0428 & 135 & 299. & 2.6 & 78.8 & * & 1 & 0748 & 235 & 112. & 1.2 & 78.3 \\
\hline 1 & 0110 & 36 & 4682. & 20.8 & 80.9 & * & 1 & 0430 & 136 & 292. & 2.5 & 78.8 & * & 1 & 0750 & 236 & 111. & 1.1 & 78.3 \\
\hline 1 & 0112 & 37 & 5237. & 22.4 & 81.1 & * & 1 & 0432 & 137 & 285. & 2.5 & 78.8 & * & 1 & 0752 & 237 & 109. & 1.1 & 78.3 \\
\hline 1 & 0114 & 38 & 5514. & 23.2 & 81.2 & + & 1 & 0434 & 138 & 279. & 2.4 & 78.8 & * & 1 & 0754 & 238 & 108. & 1.1 & 78.3 \\
\hline 1 & 0116 & 39 & 5604. & 23.5 & 81.2 & * & 1 & 0436 & 139 & 272. & 2.3 & 78.7 & * & 1 & 0756 & 239 & 106. & 1.1 & 78.3 \\
\hline 1 & 0118 & 40 & 5567. & 23.4 & 81.2 & * & 1 & 0438 & 140 & 265. & 2.3 & 78.7 & * & 1 & 0758 & 240 & 104. & 1.1 & 78.3 \\
\hline 1 & 0120 & 41 & 5449. & 23.0 & 81.1 & * & 1 & 0440 & 141 & 258. & 2.2 & 78.7 & * & 1 & 0800 & 241 & 102. & 1.1 & 78.3 \\
\hline 1 & 0122 & 42 & 5281. & 22.5 & 81.1 & * & 1 & 0442 & 142 & 252. & 2.2 & 78.7 & * & 1 & 0802 & 242 & 100. & 1.1 & 78.3 \\
\hline 1 & 0124 & 43 & 5087. & 22.0 & 81.0 & * & 1 & 0444 & 143 & 246. & 2.2 & 78.7 & * & 1 & 0804 & 243 & 98. & 1.0 & 78.3 \\
\hline 1 & 0126 & 44 & 4888. & 21.4 & 81.0 & * & 1 & 0446 & 144 & 240. & 2.1 & 78.7 & * & 1 & 0806 & 244 & 95. & 1.0 & 78.3 \\
\hline 1 & 0128 & 45 & 4691. & 20.9 & 80.9 & * & 1 & 0448 & 145 & 235. & 2.1 & 78.6 & & 1 & 0808 & 245 & 93. & 1.0 & 78.3 \\
\hline 1 & 0130 & 46 & 4497. & 20.3 & 80.9 & * & 1 & 0450 & 146 & 231. & 2.0 & 78.6 & & 1 & 0810 & 246 & 90. & 1.0 & 78.3 \\
\hline 1 & 0132 & 47 & 4304. & 19.8 & 80.8 & * & 1 & 0452 & 147 & 226. & 2.0 & 78.6 & * & 1 & 0812 & 247 & 87. & 1.0 & 78.3 \\
\hline 1 & 0134 & 48 & 4124. & 19.3 & 80.8 & * & 1 & 0454 & 148 & 222. & 2.0 & 78.6 & * & 1 & 0814 & 248 & 85. & . 9 & 78.2 \\
\hline 1 & 0136 & 49 & 3977. & 18.8 & 80.8 & * & 1 & 0456 & 149 & 219. & 2.0 & 78.6 & * & 1 & 0816 & 249 & 82. & . 9 & 78.2 \\
\hline 1 & 0138 & 50 & 3827. & 18.2 & 80.7 & * & 1 & 0458 & 150 & 215. & 1.9 & 78.6 & * & 1 & 0818 & 250 & 79. & . 9 & 78.2 \\
\hline 1 & 0140 & 51 & 3674. & 17.7 & 80.6 & * & 1 & 0500 & 151 & 212. & 1.9 & 78.6 & * & 1 & 0820 & 251 & 76. & . 9 & 78.2 \\
\hline 1 & 0142 & 52 & 3524. & 17.1 & 80.6 & - & 1 & 0502 & 152 & 210. & 1.9 & 78.6 & * & 1 & 0822 & 252 & 73. & . 9 & 78.2 \\
\hline 1 & 0144 & 53 & 3384. & 16.6 & 80.6 & - & 1 & 0504 & 153 & 207. & 1.9 & 78.6 & * & 1 & 0824 & 253 & 70. & . 8 & 78.2 \\
\hline 1 & 0146 & 54 & 3256. & 16.2 & 80.5 & * & 1 & 0506 & 154 & 205. & 1.9 & 78.6 & * & 1 & 0826 & 254 & 67. & . 8 & 78.2 \\
\hline 1 & 0148 & 55 & 3143. & 15.7 & 80.5 & - & 1 & 0508 & 155 & 203. & 1.8 & 78.6 & * & 1 & 0828 & 255 & 64. & . 8 & 78.2 \\
\hline 1 & 0150 & 56 & 3040. & 15.4 & 80.4 & - & 1 & 0510 & 156 & 201. & 1.8 & 78.6 & * & 1 & 0830 & 256 & 60. & . 8 & 78.2 \\
\hline 1 & 0152 & 57 & 2943. & 15.0 & 80.4 & * & 1 & 0512 & 157 & 200. & 1.8 & 78.6 & * & 1 & 0832 & 257 & 58. & . 7 & 78.2 \\
\hline 1 & 0154 & 58 & 2846. & 14.7 & 80.4 & - & 1 & 0514 & 158 & 198. & 1.8 & 78.5 & * & 1 & 0834 & 258 & 55. & . 7 & 78.2 \\
\hline 1 & 0156 & 59 & 2748. & 14.3 & 80.3 & * & 1 & 0516 & 159 & 197. & 1.8 & 78.5 & * & 1 & 0836 & 259 & 52. & . 7 & 78.2 \\
\hline
\end{tabular}

LOCAL RUNOFF TO FR-2 BASIN ER-2

SUBBASIN RUNOFF DATA
413 BA SUBBASIN CHARACTERISTICS

TAREA . 17 SUBBASIN AREA
PRECIPITATION DATA
\begin{tabular}{lcccccccccc}
414 PB & STORM & 2.76 & BASIN TOTAL PRECIPITATION & & \\
20 PI & INCREMENTAL & PRECIPITATION PATTERN & & & & \\
& .04 & .04 & .06 & .08 & .08 & .07 & .07 & .05 & .03 \\
& .02 & .02 & .02 & .02 & .02 & .02 & .02 & .01 & .01 \\
& .01 & .01 & .01 & .01 & .01 & .01 & .01 & .01 & .01 \\
& .01 & .01 & .01 & .01 & .01 & .01 & .01 & .00 & .00 & .01 \\
& .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 \\
& .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 \\
& .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 \\
& .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 \\
& .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00 & .00
\end{tabular}

415 LS

416 UD
\begin{tabular}{crl}
SCS LOSS RATE & & \\
STRTLL & .60 & INITIAL ABSTRACTION \\
CRVNBR & 77.00 & CURVE NUMBER \\
RTIMP & 15.00 & PERCENT IMPERVIOUS AREA
\end{tabular}

SCS DIMENSIONLESS UNITGRAPH
TLAG . 25 LAG

UNIT HYDROGRAPH
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{9}{|c|}{40 END-OF-PERTOD ORDINATES} \\
\hline 15. & 45. & 87. & 146. & 218. & 274. & 306. & 315. & 308. & 284. \\
\hline 254. & 218. & 172. & 137. & 111. & 90. & 76. & 62. & 50. & 41. \\
\hline 33. & 28. & 22. & 18. & 15. & 12. & 10. & 8. & 7. & 5. \\
\hline 4. & 4. & 3. & 3. & 2. & 2. & 1. & 1. & 1. & 0. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DA MON & HRMN & ORD & RAIN & LOSS & EXCESS & COMP Q & * & DA & MON & HRMN & ORD & RAIN & LOSS & EXCESS & COMP Q \\
\hline 1 & 0000 & 1 & . 00 & . 00 & . 00 & 0. & * & 1 & & 0500 & 151 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0002 & 2 & . 11 & . 09 & . 02 & 0. & * & 1 & & 0502 & 152 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0004 & 3 & . 11 & . 09 & . 02 & 1. & * & 1 & & 0504 & 153 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0006 & 4 & . 17 & . 14 & . 03 & 3. & * & 1 & & 0506 & 154 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0008 & 5 & . 23 & . 19 & . 03 & 6. & * & 1 & & 0508 & 155 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0010 & 6 & . 23 & . 18 & . 05 & 11. & * & 1 & & 0510 & 156 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0012 & 7 & . 18 & . 12 & . 06 & 18. & * & 1 & & 0512 & 157 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0014 & 8 & . 18 & . 11 & . 07 & 28. & * & 1 & & 0514 & 158 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0016 & 9 & . 14 & . 08 & . 06 & 41. & * & 1 & & 0516 & 159 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0018 & 10 & . 09 & . 05 & . 04 & 56. & * & 1 & & 0518 & 160 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0020 & 11 & . 09 & . 05 & . 05 & 72. & * & 1 & & 0520 & 161 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0022 & 12 & . 07 & . 03 & . 04 & 89. & * & 1 & & 0522 & 162 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0024 & 13 & . 07 & . 03 & . 04 & 103. & * & 1 & & 0524 & 163 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0026 & 14 & . 06 & . 03 & . 03 & 115. & * & 1 & & 0526 & 164 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0028 & 15 & . 05 & . 02 & . 03 & 124. & * & 1 & & 0528 & 165 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0030 & 16 & . 05 & . 02 & . 03 & 129. & * & 1 & & 0530 & 166 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0032 & 17 & . 04 & . 02 & . 03 & 131. & * & 1 & & 0532 & 167 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0034 & 18 & . 04 & . 02 & . 03 & 131. & * & 1 & & 0534 & 168 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0036 & 19 & . 04 & . 02 & . 02 & 129. & * & 1 & & 0536 & 169 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0038 & 20 & . 04 & . 01 & . 02 & 125. & * & 1 & & 0538 & 170 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0040 & 21 & . 04 & . 01 & . 02 & 120. & * & 1 & & 0540 & 171 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0042 & 22 & . 03 & . 01 & . 02 & 116. & * & 1 & & 0542 & 172 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0044 & 23 & . 03 & . 01 & . 02 & 111. & * & 1 & & 0544 & 173 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0046 & 24 & . 03 & . 01 & . 02 & 106. & * & 1 & & 0546 & 174 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0048 & 25 & . 03 & . 01 & . 02 & 101. & * & 1 & & 0548 & 175 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0050 & 26 & . 03 & . 01 & . 02 & 96. & * & 1 & & 0550 & 176 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0052 & 27 & . 02 & . 01 & . 01 & 91. & * & 1 & & 0552 & 177 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0054 & 28 & . 02 & . 01 & . 02 & 87. & * & 1 & & 0554 & 178 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0056 & 29 & . 02 & . 01 & . 01 & 82. & * & 1 & & 0556 & 179 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0058 & 30 & . 02 & . 01 & . 01 & 78. & * & 1 & & 0558 & 180 & . 00 & . 00 & . 00 & 0. \\
\hline 1. & 0100 & 31 & . 02 & . 01 & . 01 & 74. & * & 1 & & 0600 & 181 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0102 & 32 & . 02 & . 01 & . 01 & 70. & * & 1 & & 0602 & 182 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0104 & 33 & . 02 & . 01 & . 01 & 67. & * & 1 & & 0604 & 183 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0106 & 34 & . 02 & . 01 & . 01 & 63. & * & 1 & & 0606 & 184 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0108 & 35 & . 02 & . 01 & . 01 & 60. & * & 1 & & 0608 & 185 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0110 & 36 & . 02 & . 01 & . 01 & 57. & * & 1 & & 0610 & 186 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0112 & 37 & . 01 & . 00 & . 01 & 55. & * & 1 & & 0612 & 187 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0114 & 38 & . 01 & . 00 & . 01 & 52. & * & 1 & & 0614 & 188 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0116 & 39 & . 01 & . 00 & . 01 & 49. & * & 1 & & 0616 & 189 & . 00 & . 00 & . 00 & 0. \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 0400 & 121 & . 00 & . 00 & . 00 & 0. & * & 1 & 0900 & 271 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0402 & 122 & . 00 & . 00 & . 00 & 0. & * & 1 & 0902 & 272 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0404 & 123 & . 00 & . 00 & . 00 & 0. & * & 1 & 0904 & 273 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0406 & 124 & . 00 & . 00 & . 00 & 0. & * & 1 & 0906 & 274 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0408 & 125 & . 00 & . 00 & . 00 & 0. & * & 1 & 0908 & 275 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0410 & 126 & . 00 & . 00 & . 00 & 0. & * & 1 & 0910 & 276 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0412 & 127 & . 00 & . 00 & . 00 & 0. & * & 1 & 0912 & 277 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0414 & 128 & . 00 & . 00 & . 00 & 0. & * & 1 & 0914 & 278 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0416 & 129 & . 00 & . 00 & . 00 & 0. & * & 1 & 0916 & 279 & . 00 & . 00 & . 00 & 0. \\
\hline 1. & 0418 & 130 & . 00 & . 00 & . 00 & 0. & * & 1 & 0918 & 280 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0420 & 131 & . 00 & . 00 & . 00 & 0. & * & 1 & 0920 & 281 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0422 & 132 & . 00 & . 00 & . 00 & 0. & * & 1 & 0922 & 282 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0424 & 133 & . 00 & . 00 & . 00 & 0. & * & 1 & 0924 & 283 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0426 & 134 & . 00 & . 00 & . 00 & 0. & * & 1 & 0926 & 284 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0428 & 135 & . 00 & . 00 & . 00 & 0. & * & 1 & 0928 & 285 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0430 & 136 & . 00 & . 00 & . 00 & 0. & * & 1 & 0930 & 286 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0432 & 137 & . 00 & . 00 & . 00 & 0. & * & 1 & 0932 & 287 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0434 & 138 & . 00 & . 00 & . 00 & 0. & * & 1 & 0934 & 288 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0436 & 139 & . 00 & . 00 & . 00 & 0. & * & 1 & 0936 & 289 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0438 & 140 & . 00 & . 00 & . 00 & 0. & * & 1 & 0938 & 290 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0440 & 141 & . 00 & . 00 & . 00 & 0. & * & 1 & 0940 & 291 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0442 & 142 & . 00 & . 00 & . 00 & 0. & * & 1 & 0942 & 292 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0444 & 143 & . 00 & . 00 & . 00 & 0. & * & 1 & 0944 & 293 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0446 & 144 & . 00 & . 00 & . 00 & 0. & * & 1 & 0946 & 294 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0448 & 145 & . 00 & . 00 & . 00 & 0. & * & 1 & 0948 & 295 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0450 & 146 & . 00 & . 00 & . 00 & 0. & * & 1 & 0950 & 296 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0452 & 147 & . 00 & . 00 & . 00 & 0. & * & 1 & 0952 & 297 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0454 & 148 & . 00 & . 00 & . 00 & 0. & * & 1 & 0954 & 298 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0456 & 149 & . 00 & . 00 & . 00 & 0. & * & 1 & 0956 & 299 & . 00 & . 00 & . 00 & 0. \\
\hline 1 & 0458 & 150 & . 00 & . 00 & . 00 & 0. & * & 1 & 0958 & 300 & . 00 & . 00 & . 00 & 0. \\
\hline
\end{tabular}
TOTAL RAINEALL \(=2.76\), TOTAL LOSS \(=1.57\), TOTAL EXCESS \(=1.19\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PEAK ELOW & TIME & & \multicolumn{4}{|c|}{MAXIMUM AVERAGE FLOW} \\
\hline & & & 6-HR & 24-HR & 72-HR & 9.97-HR \\
\hline (CFS) & (HR) & & & & & \\
\hline \multicolumn{7}{|c|}{(CES)} \\
\hline \multirow[t]{3}{*}{131.} & . 53 & & 22. & 13. & 13. & 13. \\
\hline & & (INCHES) & 1.186 & 1.186 & 1.186 & 1.186 \\
\hline & & (\(\mathrm{AC}-\mathrm{FT}\)) & 11. & 11. & 11. & 11. \\
\hline
\end{tabular}

COMBINE HYDROGRAPHS
AT NODE FR-2 (MAIN CHANNEL)
420 HC
HYDROGRAPH COMBINATION
ICOMP
NUMBER OF HYDROGRAPHS TO COMBINE
```

HYDROGRAPH AT STATION CO-2

``` SUM OF 2 HYDROGRAPHS

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 0016 & 9 & 53. & * & 1 & 0246 & 84 & 1212. & * & 1 & 0516 & 159 & 197. & * & 1 & 0746 & 234 & 114. \\
\hline 1 & 0018 & 10 & 77. & * & 1 & 0248 & 85 & 1172. & * & 1 & 0518 & 160 & 196. & * & 1 & 0748 & 235 & 112. \\
\hline 1 & 0020 & 11 & 106. & * & 1 & 0250 & 86 & 1135. & * & 1. & 0520 & 161 & 194. & * & 1 & 0750 & 236 & 111. \\
\hline 1 & 0022 & 12 & 140. & * & 1 & 0252 & 87 & 1099. & * & 1 & 0522 & 162 & 193. & * & 1 & 0752 & 237 & 109. \\
\hline 1 & 0024 & 13 & 190. & * & 1 & 0254 & 88 & 1065. & * & 1 & 0524 & 163 & 192. & * & 1 & 0754 & 238 & 108. \\
\hline 1 & 0026 & 14 & 237. & * & 1 & 0256 & 89 & 1033. & * & 1 & 0526 & 164 & 191. & * & 1 & 0756 & 239 & 106. \\
\hline 1 & 0028 & 15 & 279. & * & 1 & 0258 & 90 & 1003. & * & 1 & 0528 & 165 & 190. & * & 1 & 0758 & 240 & 104. \\
\hline 1 & 0030 & 16 & 315. & * & 1 & 0300 & 91 & 976. & * & 1 & 0530 & 166 & 189. & * & 1 & 0800 & 241 & 102. \\
\hline 1 & 0032 & 17 & 344. & * & 1 & 0302 & 92 & 950. & * & 1 & 0532 & 167 & 188. & * & 1 & 0802 & 242 & 100. \\
\hline 1 & 0034 & 18 & 367. & * & 1 & 0304 & 93 & 926. & * & 1 & 0534 & 168 & 188. & * & 1 & 0804 & 243 & 98. \\
\hline 1 & 0036 & 19 & 384. & * & 1 & 0306 & 94 & 904. & * & 1 & 0536 & 169 & 187. & * & 1 & 0806 & 244 & 95. \\
\hline 1 & 0038 & 20 & 397. & * & 1 & 0308 & 95 & 882. & * & 1 & 0538 & 170 & 186. & * & 1 & 0808 & 245 & 93. \\
\hline 1 & 0040 & 21 & 406. & * & 1 & 0310 & 96 & 859. & * & 1 & 0540 & 171 & 185. & * & 1 & 0810 & 246 & 90. \\
\hline 1 & 0042 & 22 & 414. & * & 1 & 0312 & 97 & 836. & * & 1 & 0542 & 172 & 184. & * & 1 & 0812 & 247 & 87. \\
\hline 1 & 0044 & 23 & 426. & * & 1 & 0314 & 98 & 814. & * & 1 & 0544 & 173 & 183. & * & 1 & 0814 & 248 & 85. \\
\hline 1 & 0046 & 24 & 443. & * & 1 & 0316 & 99 & 791. & * & 1 & 0546 & 174 & 183. & * & 1 & 0816 & 249 & 82. \\
\hline 1 & 0048 & 25 & 466. & * & 1 & 0318 & 100 & 769. & * & 1 & 0548 & 175 & 182. & * & 1 & 0818 & 250 & 79. \\
\hline 1 & 0050 & 26 & 499. & * & 1 & 0320 & 101 & 747. & * & 1 & 0550 & 176 & 181. & * & 1 & 0820 & 251 & 76. \\
\hline 1 & 0052 & 27 & 546. & * & 1 & 0322 & 102 & 726. & * & 1 & 0552 & 177 & 180. & * & 1 & 0822 & 252 & 73. \\
\hline 1 & 0054 & 28 & 615. & * & 1 & 0324 & 103 & 706. & * & 1 & 0554 & 178 & 179. & * & 1 & 0824 & 253 & 70. \\
\hline 1 & 0056 & 29 & 716. & * & 1 & 0326 & 104 & 687. & * & 1 & 0556 & 179 & 178. & * & 1 & 0826 & 254 & 67. \\
\hline 1 & 0058 & 30 & 871. & * & 1 & 0328 & 105 & 669. & * & 1 & 0558 & 180 & 177. & * & 1 & 0828 & 255 & 64. \\
\hline 1 & 0100 & 31 & 1124. & * & 1 & 0330 & 106 & 651. & * & 1 & 0600 & 181 & 177. & * & 1 & 0830 & 256 & 60. \\
\hline 1 & 0102 & 32 & 1525. & * & 1 & 0332 & 107 & 635. & * & 1 & 0602 & 182 & 176. & * & 1 & 0832 & 257 & 58. \\
\hline 1 & 0104 & 33 & 2109. & * & 1 & 0334 & 108 & 619. & * & 1 & 0604 & 183 & 175. & * & 1 & 0834 & 258 & 55. \\
\hline 1 & 0106 & 34 & 3016. & * & 1 & 0336 & 109 & 604. & * & 1 & 0606 & 184 & 174. & * & 1 & 0836 & 259 & 52. \\
\hline 1 & 0108 & 35 & 3906. & * & 1 & 0338 & 110 & 590. & * & 1 & 0608 & 185 & 173. & * & 1 & 0838 & 260 & 50. \\
\hline 1 & 0110 & 36 & 4739. & * & 1 & 0340 & 111 & 576. & * & 1 & 0610 & 186 & 172. & * & 1 & 0840 & 261 & 49. \\
\hline 1 & 0112 & 37 & 5291. & * & 1 & 0342 & 112 & 562. & * & 1 & 0612 & 187 & 171. & * & 1 & 0842 & 262 & 47. \\
\hline 1 & 0114 & 38 & 5566. & * & 1 & 0344 & 113 & 549. & * & 1 & 0614 & 188 & 170. & * & 1 & 0844 & 263 & 46. \\
\hline 1 & 0116 & 39 & 5653. & * & 1 & 0346 & 114 & 536. & * & 1 & 0616 & 189 & 169. & * & 1 & 0846 & 264 & 44. \\
\hline 1 & 0118 & 40 & 5614. & * & 1 & 0348 & 115 & 524. & * & 1 & 0618 & 190 & 168. & * & 1 & 0848 & 265 & 42. \\
\hline 1 & 0120 & 41 & 5494. & * & 1 & 0350 & 116 & 511. & * & 1 & 0620 & 191 & 167. & * & 1 & 0850 & 266 & 40. \\
\hline 1 & 0122 & 42 & 5324. & * & 1 & 0352 & 117 & 498. & * & 1 & 0622 & 192 & 167. & * & 1 & 0852 & 267 & 39. \\
\hline 1 & 0124 & 43 & 5128. & * & 1 & 0354 & 118 & 485. & * & 1 & 0624 & 193 & 166. & * & 1 & 0854 & 268 & 37. \\
\hline 1 & 0126 & 44 & 4927. & * & 1 & 0356 & 119 & 473. & * & 1 & 0626 & 194 & 165. & * & 1 & 0856 & 269 & 35. \\
\hline 1 & 0128 & 45 & 4728. & * & 1 & 0358 & 120 & 460. & * & 1 & 0528 & 195 & 164. & * & 1 & 0858 & 270 & 33. \\
\hline 1 & 0130 & 46 & 4532. & * & 1 & 0400 & 121 & 447. & * & 1 & 0630 & 196 & 163. & * & 1 & 0900 & 271 & 31. \\
\hline 1 & 0132 & 47 & 4339. & * & 1 & 0402 & 122 & 435. & * & 1 & 0632 & 197 & 162. & * & 1 & 0902 & 272 & 30. \\
\hline 1 & 0134 & 48 & 4157. & * & 1 & 0404 & 123 & 423. & * & 1 & 0634 & 198 & 161. & * & 1 & 0904 & 273 & 28. \\
\hline 1 & 0136 & 49 & 4009. & * & 1 & 0406 & 124 & 411. & * & 1 & 0636 & 199 & 160. & * & 1. & 0906 & 274 & 26. \\
\hline 1 & 0138 & 50 & 3858. & * & 1 & 0408 & 125 & 400. & * & 1 & 0638 & 200 & 159. & * & 1 & 0908 & 275 & 25. \\
\hline 1 & 0140 & 51 & 3703. & * & 1 & 0410 & 126 & 390. & * & 1 & 0640 & 201 & 158. & * & 1 & 0910 & 276 & 24. \\
\hline 1 & 0142 & 52 & 3552. & * & 1 & 0412 & 127 & 379. & * & 1 & 0642 & 202 & 157. & * & 1 & 0912 & 277 & 22. \\
\hline 1 & 0144 & 53 & 3411. & * & 1 & 0414 & 128 & 368. & * & 1 & 0644 & 203 & 156. & * & 1 & 0914 & 278 & 21. \\
\hline 1 & 0146 & 54 & 3282. & * & 1 & 0416 & 129 & 358. & * & 1 & 0646 & 204 & 155. & * & 1 & 0916 & 279 & 20. \\
\hline 1 & 0148 & 55 & 3168. & * & 1 & 0418 & 130 & 347. & * & 1 & 0648 & 205 & 154. & * & 1 & 0918 & 280 & 19. \\
\hline 1 & 0150 & 56 & 3064. & * & 1 & 0420 & 131 & 337. & * & 1 & 0650 & 206 & 152. & * & 1 & 0920 & 281 & 18. \\
\hline 1 & 0152 & 57 & 2966. & * & 1 & 0422 & 132 & 326. & * & 1 & 0652 & 207 & 151. & * & 1 & 0922 & 282 & 17. \\
\hline 1 & 0154 & 58 & 2868. & * & 1 & 0424 & 133 & 316. & * & 1 & 0654 & 208 & 150. & * & 1 & 0924 & 283 & 16. \\
\hline 1 & 0156 & 59 & 2770. & * & 1 & 0426 & 134 & 307. & * & 1 & 0656 & 209 & 149. & * & 1 & 0926 & 284 & 15. \\
\hline 1 & 0158 & 60 & 2670. & * & 1 & 0428 & 135 & 299. & * & 1 & 0658 & 210 & 148. & * & 1 & 0928 & 285 & 15. \\
\hline 1 & 0200 & 61 & 2569. & * & 1 & 0430 & 136 & 292. & * & 1 & 0700 & 211 & 147. & * & 1 & 0930 & 286 & 14. \\
\hline 1 & 0202 & 62 & 2470. & * & 1 & 0432 & 137 & 285. & * & 1 & 0702 & 212 & 145. & * & 1 & 0932 & 287 & 13. \\
\hline 1 & 0204 & 63 & 2373. & * & 1 & 0434 & 138 & 279. & * & 1 & 0704 & 213 & 144. & * & 1. & 0934 & 288 & 13. \\
\hline 1 & 0206 & 64 & 2281. & * & 1 & 0436 & 139 & 272. & * & 1 & 0706 & 214 & 143. & * & 1 & 0936 & 289 & 12. \\
\hline 1 & 0208 & 65 & 2196. & * & 1 & 0438 & 140 & 265. & * & 1 & 0708 & 215 & 142. & * & 1 & 0938 & 290 & 12. \\
\hline 1 & 0210 & 66 & 2128. & * & 1 & 0440 & 141 & 258. & * & 1 & 0710 & 216 & 140. & * & 1 & 0940 & 291 & 11. \\
\hline 1 & 0212 & 67 & 2071. & * & 1 & 0442 & 142 & 252. & * & 1 & 0712 & 217 & 139. & * & 1 & 0942 & 292 & 11. \\
\hline 1 & 0214 & 68 & 2010. & * & 1 & 0444 & 143 & 246. & * & 1 & 0714 & 218 & 137. & * & 1 & 0944 & 293 & 11 \\
\hline 1 & 0216 & 69 & 1948. & * & 1 & 0446 & 144 & 240. & * & 1 & 0716 & 219 & 136. & * & 1 & 0946 & 294 & 10. \\
\hline 1. & 0218 & 70 & 1889. & * & 1 & 0448 & 145 & 235. & * & 1 & 0718 & 220 & 135. & * & 1 & 0948 & 295 & 10. \\
\hline 1 & 0220 & 71 & 1833. & * & 1 & 0450 & 146 & 231. & * & 1 & 0720 & 221 & 133. & * & 1 & 0950 & 296 & 9. \\
\hline 1 & 0222 & 72 & 1782. & * & 1 & 0452 & 147 & 226. & * & 1 & 0722 & 222 & 132. & * & 1 & 0952 & 297 & 9. \\
\hline 1 & 0224 & 73 & 1732. & * & 1 & 0454 & 148 & 222. & * & 1 & 0724 & 223 & 130. & * & 1 & 0954 & 298 & 9. \\
\hline 1 & 0226 & 74 & 1683. & * & 1 & 0456 & 149 & 219. & * & 1 & 0726 & 224 & 128. & * & 1 & 0956 & 299 & 8. \\
\hline 1 & 0228 & 75 & 1635. & * & 1 & 0458 & 150 & 215. & * & 1 & 0728 & 225 & 127. & * & 1 & 0958 & 300 & 8. \\
\hline & & & & & & & & & * & & & & & * & & & & \\
\hline
\end{tabular}

PEAK ELOW
TIME
MAXIMUM AVERAGE FLOW
\begin{tabular}{rrrrrrr}
(CFS) & (HR) & & & \(6-\mathrm{HR}\) & \(24-\mathrm{HR}\) & \(72-\mathrm{HR}\) \\
5653. & 1.27 & (CES) & & & & \(9.97-\mathrm{HR}\) \\
& & (INCHES) & 1176. & 740. & 740. & 740. \\
& & (AC-FT) & 583. & 1.822 & 1.822 & 1.822 \\
& & & 609. & 609. & 609.
\end{tabular}

CUMULATIVE AREA \(=6.27\) SQ MI

*** WARNING *** MODIEIED PULS ROUTING MAY BE NUMERICALLY UNSTABLE EOR OUTFLOWS BETWEEN \(18639 . ~ T O ~ 66079 . ~\) THE ROUTED HYDROGRAPH SHOULD BE EXAMINED FOR OSCILLATIONS OR OUTELOWS GREATER THAN PEAK INFLOWS. THIS CAN BE CORRECTED BY DECREASING THE TIME INTERVAL OR INCREASING STORAGE (USE A LONGER REACH.)
\(\qquad\) HYDROGRAPH AT STATION \(2 T O 1\)

\begin{tabular}{|c|}
\hline 1 & 0000 & 1 & 0. & . 0 & 42.0 & * & 1 & 0320 & 101 & 808. & 4.8 & 43.3 & * & 1 & 0640 & 201 & 163. & 1.5 & 42.6 \\
\hline 1 & 0002 & 2 & 0 . & . 0 & 42.0 & * & 1 & 0322 & 102 & 786. & 4.7 & 43.2 & * & 1 & 0642 & 202 & 162. & 1.5 & 42.6 \\
\hline 1 & 0004 & 3 & 0 . & . 0 & 42.0 & * & 1 & 0324 & 103 & 764. & 4.7 & 43.2 & * & 1 & 0644 & 203 & 161 & 1.5 & 42.6 \\
\hline 1 & 0006 & 4 & 0 . & . 0 & 42.0 & * & 1 & 0326 & 104 & 743. & 4.6 & 43.2 & * & 1 & 0646 & 204 & 160. & 1.5 & 42.6 \\
\hline 1 & 0008 & 5 & 0. & . 0 & 42.0 & * & 1 & 0328 & 105 & 722. & 4.5 & 43.2 & * & 1 & 0648 & 205 & 159. & 1.5 & 42.6 \\
\hline 1 & 0010 & 6 & 1. & . 0 & 42.0 & * & 1 & 0330 & 106 & 702. & 4.4 & 43.2 & * & 1 & 0650 & 206 & 158. & 1.5 & 42.6 \\
\hline 1 & 0012 & 7 & 1. & . 0 & 42.0 & * & 1 & 0332 & 107 & 683. & 4.4 & 43.2 & * & 1 & 0652 & 207 & 156. & 1.5 & 42.6 \\
\hline 1 & 0014 & 8 & 3. & . 0 & 42.0 & * & 1 & 0334 & 108 & 665. & 4.3 & 43.2 & * & 1 & 0654 & 208 & 155 & 1.5 & 42.6 \\
\hline 1 & 0016 & 9 & 5. & . 1 & 42.0 & * & 1 & 0336 & 109 & 648. & 4.2 & 43.2 & * & 1 & 0656 & 209 & 154. & 1.5 & 42.6 \\
\hline 1 & 0018 & 10 & 9. & . 1 & 42.1 & * & 1 & 0338 & 110 & 632. & 4.2 & 43.2 & * & 1 & 0658 & 210 & 153. & 1.5 & 42.6 \\
\hline 1 & 0020 & 11 & 14. & . 2 & 42.1 & * & 1 & 0340 & 111 & 616. & 4.1 & 43.1 & * & 1 & 0700 & 211 & 152 & 1.4 & 42.6 \\
\hline 1 & 0022 & 12 & 21. & . 3 & 42.1 & * & 1 & 0342 & 112 & 601. & 4.0 & 43.1 & * & 1 & 0702 & 212 & 151. & 1.4 & 42.6 \\
\hline 1 & 0024 & 13 & 31. & . 4 & 42.2 & * & 1 & 0344 & 113 & 587. & 4.0 & 43.1 & * & 1 & 0704 & 213 & 150. & 1.4 & 42.6 \\
\hline 1 & 0026 & 14 & 45. & . 5 & 42.3 & * & 1 & 0346 & 114 & 573. & 3.9 & 43.1 & * & 1 & 0706 & 214 & 149. & 1.4 & 42.6 \\
\hline 1 & 0028 & 15 & 66. & . 8 & 42.4 & * & 1 & 0348 & 115 & 559. & 3.9 & 43.1 & * & 1 & 0708 & 215 & 148. & 1.4 & 42.6 \\
\hline 1 & 0030 & 16 & 100. & 1.1 & 42.6 & * & 1 & 0350 & 116 & 546. & 3.8 & 43.1 & * & 1 & 0710 & 216 & 146. & 1.4 & 42.6 \\
\hline 1 & 0032 & 17 & 146. & 1.4 & 42.6 & * & 1 & 0352 & 117 & 533. & 3.8 & 43.1 & * & 1 & 0712 & 217 & 145. & 1.4 & 42.6 \\
\hline 1 & 0034 & 18 & 188. & 1.7 & 42.7 & * & 1 & 0354 & 118 & 520. & 3.7 & 43.1 & * & 1 & 0714 & 218 & 144. & 1.4 & 42.6 \\
\hline 1 & 0036 & 19 & 228. & 2.0 & 42.7 & * & 1 & 0356 & 119 & 508. & 3.7 & 43.1 & * & 1 & 0716 & 219 & 143. & 1.4 & 42.6 \\
\hline 1 & 0038 & 20 & 263. & 2.2 & 42.8 & * & 1 & 0358 & 120 & 495. & 3.6 & 43.1 & * & 1 & 0718 & 220 & 141. & 1.4 & 42.6 \\
\hline 1 & 0040 & 21 & 294. & 2.4 & 42.8 & * & 1 & 0400 & 121 & 482. & 3.6 & 43.1 & * & 1 & 0720 & 221 & 140. & 1.4 & 42.6 \\
\hline 1 & 0042 & 22 & 320. & 2.6 & 42.9 & * & 1 & 0402 & 122 & 470. & 3.6 & 43.1 & * & 1 & 0722 & 222 & 138. & 1.4 & 42.6 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 0044 & 23 & 343. & 2.7 & 42.9 & * & 1 & 0404 & 123 & 461. & 3.5 & 43.1 & * & 1 & 0724 & 223 & 137. & 1.3 & 42.6 \\
\hline 0046 & 24 & 362. & 2.9 & 42.9 & * & 1 & 0406 & 124 & 454. & 3.5 & 43.0 & * & 1 & 0726 & 224 & 136. & 1.3 & 42.6 \\
\hline 0048 & 25 & 380. & 3.0 & 42.9 & * & 1 & 0408 & 125 & 446. & 3.4 & 43.0 & * & 1 & 0728 & 225 & 134. & 1.3 & 42.6 \\
\hline 0050 & 26 & 399. & 3.1 & 43.0 & * & 1 & 0410 & 126 & 438. & 3.4 & 43.0 & * & 1 & 0730 & 226 & 133. & 1.3 & 42.6 \\
\hline 0052 & 27 & 419. & 3.2 & 43.0 & * & 1 & 0412 & 127 & 428. & 3.3 & 43.0 & * & 1 & 0732 & 227 & 131. & 1.3 & 42.6 \\
\hline 0054 & 28 & 448. & 3.4 & 43.0 & * & 1 & 0414 & 128 & 418. & 3.2 & 43.0 & * & 1 & 0734 & 228 & 130. & 1.3 & 42.6 \\
\hline 0056 & 29 & 504. & 3.7 & 43.1 & - & 1 & 0416 & 129 & 408. & 3.2 & 43.0 & * & 1 & 0736 & 229 & 128. & 1.3 & 42.6 \\
\hline 0058 & 30 & 585. & 4.0 & 43.1 & * & 1 & 0418 & 130 & 398. & 3.1 & 43.0 & * & 1 & 0738 & 230 & 127. & 1.3 & 42.6 \\
\hline 0100 & 31 & 692. & 4.4 & 43.2 & * & 1 & 0420 & 131 & 388. & 3.0 & 43.0 & * & 1 & 0740 & 231 & 125. & 1.3 & 42.6 \\
\hline 0102 & 32 & 850. & 5.0 & 43.3 & * & 1 & 0422 & 132 & 377. & 3.0 & 42.9 & * & 1 & 0742 & 232 & 124. & 1.3 & 42.6 \\
\hline 0104 & 33 & 1098. & 5.9 & 43.4 & * & 1 & 0424 & 133 & 367. & 2.9 & 42.9 & * & 1 & 0744 & 233 & 122. & 1.2 & 42.6 \\
\hline 0106 & 34 & 1531. & 7.4 & 43.6 & * & 1 & 0426 & 134 & 356. & 2.8 & 42.9 & * & 1 & 0746 & 234 & 121. & 1.2 & 42.6 \\
\hline 0108 & 35 & 2236. & 9.4 & 43.9 & + & 1 & 0428 & 135 & 346. & 2.7 & 42.9 & * & 1 & 0748 & 235 & 119. & 1.2 & 42.6 \\
\hline 0110 & 36 & 3105. & 11.7 & 44.2 & * & 1 & 0430 & 136 & 336. & 2.7 & 42.9 & * & 1 & 0750 & 236 & 118. & 1.2 & 42.6 \\
\hline 0112 & 37 & 4011. & 14.0 & 44.5 & * & 1 & 0432 & 137 & 327. & 2.6 & 42.9 & * & 1 & 0752 & 237 & 116. & 1.2 & 42.6 \\
\hline 0114 & 38 & 4767. & 15.7 & 44.7 & * & 1 & 0434 & 138 & 318. & 2.6 & 42.9 & * & 1 & 0754 & 238 & 115. & 1.2 & 42.6 \\
\hline 0116 & 39 & 5265. & 16.8 & 44.9 & * & 1 & 0436 & 139 & 309. & 2.5 & 42.8 & * & 1 & 0756 & 239 & 114. & 1.2 & 42.6 \\
\hline 0118 & 40 & 5505. & 17.3 & 44.9 & * & 1 & 0438 & 140 & 301. & 2.4 & 42.8 & * & 1 & 0758 & 240 & 112. & 1.2 & 42.6 \\
\hline 0120 & 41 & 5571. & 17.4 & 44.9 & * & 1 & 0440 & 141 & 294. & 2.4 & 42.8 & * & 1 & 0800 & 241 & 110. & 1.2 & 42.6 \\
\hline 0122 & 42 & 5520. & 17.3 & 44.9 & * & 1 & 0442 & 142 & 286. & 2.3 & 42.8 & * & 1 & 0802 & 242 & 109. & 1.2 & 42.6 \\
\hline 0124 & 43 & 5395. & 17.0 & 44.9 & * & 1 & 0444 & 143 & 279. & 2.3 & 42.8 & * & 1 & 0804 & 243 & 107. & 1.1 & 42.6 \\
\hline 0126 & 44 & 5227. & 16.7 & 44.9 & * & 1 & 0446 & 144 & 272. & 2.2 & 42.8 & * & 1 & 0806 & 244 & 105. & 1.1 & 42.6 \\
\hline 0128 & 45 & 5038. & 16.3 & 44.8 & * & 1 & 0448 & 145 & 265. & 2.2 & 42.8 & * & 1 & 0808 & 245 & 103. & 1.1 & 42.6 \\
\hline 0130 & 46 & 4842. & 15.8 & 44.8 & * & 1 & 0450 & 146 & 259. & 2.2 & 42.8 & * & 1 & 0810 & 246 & 101. & 1.1 & 42.6 \\
\hline 0132 & 47 & 4645. & 15.4 & 44.7 & * & 1 & 0452 & 147 & 253. & 2.1 & 42.8 & * & 1 & 0812 & 247 & 99. & 1.1 & 42.6 \\
\hline 0134 & 48 & 4453. & 15.0 & 44.7 & * & 1 & 0454 & 148 & 247. & 2.1 & 42.8 & * & 1 & 0814 & 248 & 97. & 1.1 & 42.5 \\
\hline 0136 & 49 & 4280. & 14.6 & 44.6 & * & 1 & 0456 & 149 & 242. & 2.0 & 42.7 & * & 1 & 0816 & 249 & 94. & 1.1 & 42.5 \\
\hline 0138 & 50 & 4127. & 14.2 & 44.6 & * & 1 & 0458 & 150 & 237. & 2.0 & 42.7 & * & 1 & 0818 & 250 & 92. & 1.0 & 42.5 \\
\hline 0140 & 51 & 3975. & 13.9 & 44.5 & * & 1 & 0500 & 151 & 232. & 2.0 & 42.7 & * & 1 & 0820 & 251 & 89. & 1.0 & 42.5 \\
\hline 0142 & 52 & 3822. & 13.5 & 44.5 & * & 1 & 0502 & 152 & 228. & 2.0 & 42.7 & * & 1 & 0822 & 252 & 86. & 1.0 & 42.5 \\
\hline 0144 & 53 & 3671. & 13.1 & 44.4 & * & 1 & 0504 & 153 & 224. & 1.9 & 42.7 & * & 1 & 0824 & 253 & 84. & 1.0 & 42.5 \\
\hline 0146 & 54 & 3526. & 12.8 & 44.4 & * & 1 & 0506 & 154 & 220. & 1.9 & 42.7 & * & 1 & 0826 & 254 & 82. & 1.0 & 42.5 \\
\hline 0148 & 55 & 3390. & 12.4 & 44.3 & * & 1 & 0508 & 155 & 217. & 1.9 & 42.7 & * & 1 & 0828 & 255 & 79. & 1.0 & 42.5 \\
\hline 0150 & 56 & 3265. & 12.1 & 44.3 & * & 1 & 0510 & 156 & 214. & 1.9 & 42.7 & * & 1 & 0830 & 256 & 78. & . 9 & 42.5 \\
\hline 0152 & 57 & 3152. & 11.9 & 44.3 & * & 1 & 0512 & 157 & 211. & 1.8 & 42.7 & * & 1 & 0832 & 257 & 76. & . 9 & 42.5 \\
\hline 0154 & 58 & 3046. & 11.6 & 44.2 & * & 1 & 0514 & 158 & 209. & 1.8 & 42.7 & * & 1 & 0834 & 258 & 75. & . 9 & 42.5 \\
\hline 0156 & 59 & 2945. & 11.3 & 44.2 & * & 1 & 0516 & 159 & 206. & 1.8 & 42.7 & * & 1 & 0836 & 259 & 73. & . 9 & 42.5 \\
\hline 0158 & 60 & 2846. & 11.1 & 44.2 & * & I & 0518 & 160 & 204. & 1.8 & 42.7 & * & 1 & 0838 & 260 & 71. & . 9 & 42.5 \\
\hline 0200 & 61 & 2747. & 10.9 & 44.1 & * & 1 & 0520 & 161 & 202. & 1.8 & 42.7 & * & 1 & 0840 & 261 & 68. & . 8 & 42.5 \\
\hline 0202 & 62 & 2653. & 10.6 & 44.1 & * & 1 & 0522 & 162 & 201. & 1.8 & 42.7 & * & 1 & 0842 & 262 & 66. & . 8 & 42.4 \\
\hline 0204 & 63 & 2568. & 10.4 & 44.1 & * & 1 & 0524 & 163 & 199. & 1.8 & 42.7 & * & 1 & 0844 & 263 & 64. & . 8 & 42.4 \\
\hline 0206 & 64 & 2476. & 10.1 & 44.0 & * & 1 & 0526 & 164 & 197. & 1.8 & 42.7 & * & 1 & 0846 & 264 & 62. & . 8 & 42.4 \\
\hline 0208 & 65 & 2384. & 9.9 & 44.0 & * & 1 & 0528 & 165 & 196. & 1.7 & 42.7 & * & 1 & 0848 & 265 & 60. & . 7 & 42.4 \\
\hline 0210 & 66 & 2296. & 9.6 & 44.0 & * & 1 & 0530 & 166 & 195. & 1.7 & 42.7 & * & 1 & 0850 & 266 & 58. & . 7 & 42.4 \\
\hline 0212 & 67 & 2216. & 9.4 & 43.9 & * & 1 & 0532 & 167 & 194. & 1.7 & 42.7 & * & 1 & 0852 & 267 & 56. & . 7 & 42.4 \\
\hline 0214 & 68 & 2145. & 9.2 & 43.9 & * & 1 & 0534 & 168 & 193. & 1.7 & 42.7 & * & 1 & 0854 & 268 & 54. & . 7 & 42.4 \\
\hline 0216 & 69 & 2079. & 9.0 & 43.9 & * & 1 & 0536 & 169 & 191. & 1.7 & 42.7 & * & 1 & 0856 & 269 & 52. & . 6 & 42.3 \\
\hline 0218 & 70 & 2017. & 8.8 & 43.8 & * & 1 & 0538 & 170 & 190. & 1.7 & 42.7 & * & 1 & 0858 & 270 & 50. & . 6 & 42.3 \\
\hline 0220 & 71 & 1956. & 8.6 & 43.8 & * & 1 & 0540 & 171 & 189. & 1.7 & 42.7 & * & 1 & 0900 & 271 & 48. & . 6 & 42.3 \\
\hline 0222 & 72 & 1897. & 8.4 & 43.8 & * & 1 & 0542 & 172 & 189. & 1.7 & 42.7 & * & 1 & 0902 & 272 & 46. & . 6 & 42.3 \\
\hline 0224 & 73 & 1842. & 8.3 & 43.8 & * & 1 & 0544 & 173 & 188. & 1.7 & 42.7 & * & 1 & 0904 & 273 & 44. & . 5 & 42.3 \\
\hline 0226 & 74 & 1789. & 8.1 & 43.7 & * & 1 & 0546 & 174 & 187. & 1.7 & 42.7 & * & 1 & 0906 & 274 & 42. & . 5 & 42.3 \\
\hline 0228 & 75 & 1738. & 8.0 & 43.7 & * & 1 & 0548 & 175 & 186. & 1.7 & 42.7 & * & 1 & 0908 & 275 & 40. & . 5 & 42.3 \\
\hline 0230 & 76 & 1689. & 7.8 & 43.7 & * & 1 & 0550 & 176 & 185. & 1.7 & 42.7 & * & 1 & 0910 & 276 & 39. & . 5 & 42.3 \\
\hline 0232 & 77 & 1639. & 7.7 & 43.7 & + & 1 & 0552 & 177 & 184. & 1.7 & 42.7 & * & 1 & 0912 & 277 & 37. & . 4 & 42.2 \\
\hline 0234 & 78 & 1590. & 7.6 & 43.7 & * & 1 & 0554 & 178 & 183. & 1.7 & 42.7 & * & 1 & 0914 & 278 & 35. & . 4 & 42.2 \\
\hline 0236 & 79 & 1541. & 7.4 & 43.6 & * & 1 & 0556 & 179 & 182. & 1.7 & 42.7 & * & 1 & 0916 & 279 & 33. & . 4 & 42.2 \\
\hline 0238 & 80 & 1492. & 7.3 & 43.6 & * & 1 & 0558 & 180 & 182. & 1.6 & 42.7 & * & 1 & 0918 & 280 & 32. & . 4 & 42.2 \\
\hline 0240 & 81 & 1444. & 7.1 & 43.6 & & 1 & 0600 & 181 & 181. & 1.6 & 42.7 & * & 1 & 0920 & 281 & 30. & . 4 & 42.2 \\
\hline 0242 & 82 & 1397. & 7.0 & 43.6 & + & 1 & 0602 & 182 & 180. & 1.6 & 42.7 & * & 1 & 0922 & 282 & 29. & . 3 & 42.2 \\
\hline 0244 & 83 & 1356. & 6.9 & 43.6 & * & 1 & 0604 & 183 & 179. & 1.6 & 42.7 & * & 1 & 0924 & 283 & 27. & . 3 & 42.2 \\
\hline 0246 & 84 & 1321. & 6.7 & 43.6 & * & 1 & 0606 & 184 & 178. & 1.6 & 42.7 & * & 1 & 0926 & 284 & 26. & . 3 & 42.2 \\
\hline 0248 & 85 & 1282. & 6.6 & 43.5 & * & 1 & 0608 & 185 & 177. & 1.6 & 42.7 & * & 1 & 0928 & 285 & 25. & . 3 & 42.2 \\
\hline 0250 & 86 & 1242. & 6.4 & 43.5 & * & 1 & 0610 & 186 & 176. & 1.6 & 42.7 & * & 1 & 0930 & 286 & 23. & . 3 & 42.2 \\
\hline 0252 & 87 & 1203. & 6.3 & 43.5 & * & 1 & 0612 & 187 & 176. & 1.6 & 42.7 & * & 1 & 0932 & 287 & 22. & . 3 & 42.1 \\
\hline 0254 & 88 & 1165. & 6.2 & 43.5 & * & 1 & 0614 & 188 & 175. & 1.6 & 42.7 & * & 1 & 0934 & 288 & 21. & . 3 & 42.1 \\
\hline 0256 & 89 & 1128. & 6.0 & 43.4 & - & 1 & 0616 & 189 & 174. & 1.6 & 42.7 & * & 1 & 0936 & 289 & 20. & . 2 & 42.1 \\
\hline 0258 & 90 & 1093. & 5.9 & 43.4 & * & 1 & 0618 & 190 & 173. & 1.6 & 42.7 & * & 1 & 0938 & 290 & 19. & . 2 & 42.1 \\
\hline 0300 & 91 & 1060. & 5.8 & 43.4 & * & 1 & 0620 & 191 & 172. & 1.6 & 42.7 & * & 1 & 0940 & 291 & 18. & . 2 & 42.1 \\
\hline 0302 & 92 & 1029. & 5.6 & 43.4 & * & 1 & 0622 & 192 & 171. & 1.6 & 42.7 & * & 1 & 0942 & 292 & 17. & . 2 & 42.1 \\
\hline 0304 & 93 & 999. & 5.5 & 43.4 & * & 1 & 0624 & 193 & 170. & 1.6 & 42.7 & * & 1 & 0944 & 293 & 16. & . 2 & 42.1 \\
\hline 0306 & 94 & 972. & 5.4 & 43.3 & * & 1 & 0626 & 194 & 169. & 1.6 & 42.6 & * & 1 & 0946 & 294 & 16. & . 2 & 42.1 \\
\hline 0308 & 95 & 947. & 5.3 & 43.3 & * & 1 & 0628 & 195 & 168. & 1.6 & 42.6 & * & 1 & 0948 & 295 & 15. & . 2 & 42.1 \\
\hline 0310 & 96 & 922. & 5.2 & 43.3 & , & 1 & 0630 & 196 & 167. & 1.6 & 42.6 & * & 1 & 0950 & 296 & 14. & . 2 & 42.1 \\
\hline 0312 & 97 & 899. & 5.2 & 43.3 & * & 1 & 0632 & 197 & 166. & 1.5 & 42.6 & * & 1 & 0952 & 297 & 14. & . 2 & 42.1 \\
\hline 0314 & 98 & 876. & 5.1 & 43.3 & - & 1 & 0634 & 198 & 165. & 1.5 & 42.6 & * & 1 & 0954 & 298 & 13. & . 2 & 42.1 \\
\hline 0316 & 99 & 853. & 5.0 & 43.3 & * & 1 & 0636 & 199 & 164. & 1.5 & 42.6 & * & 1 & 0956 & 299 & 12. & . 2 & 42.1 \\
\hline 0318 & 100 & 830. & 4.9 & 43.3 & * & 1 & 0638 & 200 & 164. & 1.5 & 42.6 & * & 1 & 0958 & 300 & 12. & . 1 & 42.1 \\
\hline
\end{tabular}

\section*{SUBBASIN RUNOFF DATA}
431 BA \begin{tabular}{ccc}
SUBBASIN CHARACTERISTICS \\
TAREA & .08 & \\
& &
\end{tabular}

\(433 \mathrm{LS} \quad\)\begin{tabular}{crl}
SCS LOSS RATE & & \\
& STRTL & .60 \\
& CRVNBR & 77.00 \\
& CURVIAL ABSTRACTION \\
& & 10.00
\end{tabular}
434 UD \begin{tabular}{cc}
SCS DIMENSIONLESS UNITGRAPH \\
TLAG & \(.19 \quad\) LAG
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{13} & \multicolumn{9}{|c|}{UNIT HYDROGRAPH} \\
\hline & \multicolumn{9}{|c|}{31 END-OF-PERIOD ORDINATES} \\
\hline & 39. & 81. & 134 & 174. & 188. & 187. & 168. & 144. & 112. \\
\hline 83. & 64. & 50. & 39. & 30. & 23. & 18. & 14. & 11. & 8. \\
\hline 6. & 5. & 4. & 3. & 2. & 2. & 2. & 1. & 1. & 1. \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline 0504 & 153 & . 00 & . 00 & . 00 \\
\hline 0506 & 154 & . 00 & . 00 & . 00 \\
\hline 0508 & 155 & . 00 & . 00 & . 00 \\
\hline 0510 & 156 & . 00 & . 00 & . 00 \\
\hline 0512 & 157 & . 00 & . 00 & . 00 \\
\hline 0514 & 158 & . 00 & . 00 & . 00 \\
\hline 0516 & 159 & . 00 & . 00 & . 00 \\
\hline 0518 & 160 & . 00 & . 00 & . 00 \\
\hline 0520 & 161 & . 00 & . 00 & . 00 \\
\hline 0522 & 162 & . 00 & . 00 & . 00 \\
\hline 0524 & 163 & . 00 & . 00 & . 00 \\
\hline 0526 & 164 & . 00 & . 00 & . 00 \\
\hline 0528 & 165 & . 00 & . 00 & . 00 \\
\hline 0530 & 166 & . 00 & . 00 & . 00 \\
\hline 0532 & 167 & . 00 & . 00 & . 00 \\
\hline 0534 & 168 & . 00 & . 00 & . 00 \\
\hline 0536 & 169 & . 00 & . 00 & . 00 \\
\hline 0538 & 170 & . 00 & . 00 & . 00 \\
\hline 0540 & 171 & . 00 & . 00 & . 00 \\
\hline 0542 & 172 & . 00 & . 00 & . 00 \\
\hline 0544 & 173 & . 00 & . 00 & . 00 \\
\hline 0546 & 174 & . 00 & . 00 & . 00 \\
\hline 0548 & 175 & . 00 & . 00 & . 00 \\
\hline 0550 & 176 & . 00 & . 00 & . 00 \\
\hline 0552 & 177 & . 00 & . 00 & . 00 \\
\hline 0554 & 178 & . 00 & . 00 & . 00 \\
\hline 0556 & 179 & . 00 & . 00 & . 00 \\
\hline 0558 & 180 & . 00 & . 00 & . 00 \\
\hline 0600 & 181 & . 00 & . 00 & . 00 \\
\hline 0602 & 182 & . 00 & . 00 & . 00 \\
\hline 0604 & 183 & . 00 & . 00 & . 00 \\
\hline 0606 & 184 & . 00 & . 00 & . 00 \\
\hline 0608 & 185 & . 00 & . 00 & . 00 \\
\hline 0610 & 186 & . 00 & . 00 & . 00 \\
\hline 0612 & 187 & . 00 & . 00 & . 00 \\
\hline 0614 & 188 & . 00 & . 00 & . 00 \\
\hline 0616 & 189 & . 00 & . 00 & . 00 \\
\hline 0618 & 190 & . 00 & . 00 & . 00 \\
\hline 0620 & 191 & . 00 & . 00 & . 00 \\
\hline 0622 & 192 & . 00 & . 00 & . 00 \\
\hline 0624 & 193 & . 00 & . 00 & . 00 \\
\hline 0626 & 194 & . 00 & . 00 & . 00 \\
\hline 0628 & 195 & . 00 & . 00 & . 00 \\
\hline 0630 & 196 & . 00 & . 00 & . 00 \\
\hline 0632 & 197 & . 00 & . 00 & . 00 \\
\hline 0634 & 198 & . 00 & . 00 & . 00 \\
\hline 0636 & 199 & . 00 & . 00 & . 00 \\
\hline 0638 & 200 & . 00 & . 00 & . 00 \\
\hline 0640 & 201 & . 00 & . 00 & . 00 \\
\hline 0642 & 202 & . 00 & . 00 & . 00 \\
\hline 0644 & 203 & . 00 & . 00 & . 00 \\
\hline 0646 & 204 & . 00 & . 00 & . 00 \\
\hline 0648 & 205 & . 00 & . 00 & . 00 \\
\hline 0650 & 206 & . 00 & . 00 & . 00 \\
\hline 0652 & 207 & . 00 & . 00 & . 00 \\
\hline 0654 & 208 & . 00 & . 00 & . 00 \\
\hline 0656 & 209 & . 00 & . 00 & . 00 \\
\hline 0658 & 210 & . 00 & . 00 & . 00 \\
\hline 0700 & 211 & . 00 & . 00 & . 00 \\
\hline 0702 & 212 & . 00 & . 00 & . 00 \\
\hline 0704 & 213 & . 00 & . 00 & . 00 \\
\hline 0706 & 214 & . 00 & . 00 & . 00 \\
\hline 0708 & 215 & . 00 & . 00 & . 00 \\
\hline 0710 & 216 & . 00 & . 00 & . 00 \\
\hline 0712 & 217 & . 00 & . 00 & . 00 \\
\hline 0714 & 218 & . 00 & . 00 & . 00 \\
\hline 0716 & 219 & . 00 & . 00 & . 00 \\
\hline 0718 & 220 & . 00 & . 00 & . 00 \\
\hline 0720 & 221 & . 00 & . 00 & . 00 \\
\hline 0722 & 222 & . 00 & . 00 & . 00 \\
\hline 0724 & 223 & . 00 & . 00 & . 00 \\
\hline 0726 & 224 & . 00 & . 00 & . 00 \\
\hline 0728 & 225 & . 00 & . 00 & . 00 \\
\hline 0730 & 226 & . 00 & . 00 & . 00 \\
\hline 0732 & 227 & . 00 & . 00 & . 00 \\
\hline 0734 & 228 & . 00 & . 00 & . 00 \\
\hline 0736 & 229 & . 00 & . 00 & . 00 \\
\hline 0738 & 230 & . 00 & . 00 & . 00 \\
\hline 0740 & 231 & . 00 & . 00 & . 00 \\
\hline 0742 & 232 & . 00 & . 00 & . 00 \\
\hline 0744 & 233 & 00 & . 00 & . 00 \\
\hline
\end{tabular}

TOTAL RAINEALL \(=2.76\), TOTAL LOSS \(=1.67\), TOTAL EXCESS \(=1.09\)

HYDROGRAPH AT STATION CO-1
SUM OE 2 HYDROGRAPHS

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{HYDROGRAPH AT} \\
\hline & ER-94 & 830. & . 40 & 104. & 63. & 63. & . 46 & & \\
\hline \multicolumn{10}{|l|}{ROUTED TO} \\
\hline & 94 TO 93 & 781. & . 50 & 104. & 63. & 63. & . 46 & & \\
\hline & & & & & & & & 4.28 & . 50 \\
\hline \multicolumn{10}{|l|}{HYDROGRAPH AT} \\
\hline & FR-93 & 635. & . 43 & 83. & 50. & 50. & . 38 & & \\
\hline \multicolumn{10}{|l|}{2 COMBINED AT} \\
\hline & CO-93 & 1388. & . 47 & 187. & 112. & 112. & . 85 & & \\
\hline \multicolumn{10}{|l|}{ROUTED TO} \\
\hline & \(93 \mathrm{TO92}\) & 1323. & . 57 & 187. & 112. & 112. & . 85 & & \\
\hline & & & & & & & & 5.50 & . 57 \\
\hline \multicolumn{10}{|l|}{HYDROGRAPH AT} \\
\hline & FR-92 & 343. & . 40 & 44. & 26. & 26. & . 22 & & \\
\hline \multicolumn{10}{|l|}{2 COMBINED AT} \\
\hline & CO-92 & 1601. & . 53 & 230. & 139. & 139. & 1.07 & & \\
\hline \multicolumn{10}{|l|}{HYDROGRAPH AT} \\
\hline & FR-922 & 559. & .43 & 73. & 44. & 44. & . 34 & & \\
\hline \multicolumn{10}{|l|}{ROUTED TO} \\
\hline & 922921 & 510. & . 57 & 73. & 44. & 44. & . 34 & & \\
\hline & & & & & & & & 3.52 & . 57 \\
\hline \multicolumn{10}{|l|}{HYDROGRAPH AT} \\
\hline & FR-921 & 337. & . 40 & 43. & 26. & 26. & . 21 & & \\
\hline \multicolumn{10}{|l|}{2 COMBINED AT} \\
\hline & CO-921 & 777. & . 53 & 116. & 70. & 70. & . 55 & & \\
\hline \multicolumn{10}{|l|}{2 COMBINED AT} \\
\hline & CO-92A & 2377. & . 53 & 346. & 208. & 208. & 1.62 & & \\
\hline \multicolumn{10}{|l|}{ROJTED TO} \\
\hline & 92 T091 & 2364. & . 57 & 346. & 208. & 208. & 1.62 & & \\
\hline & & & & & & & & 7.16 & . 57 \\
\hline \multicolumn{10}{|l|}{HYDROGRAPH AT} \\
\hline & FR-91 & 181. & . 40 & 23. & 14. & 14. & .11 & & \\
\hline \multicolumn{10}{|l|}{2 COMBINED AT} \\
\hline & C0-91 & 2504. & . 57 & 369. & 222. & 222. & 1.73 & & \\
\hline \multicolumn{10}{|l|}{ROUTED TO} \\
\hline & RES-91 & 2503. & . 57 & 369. & 222. & 222. & 1.73 & & \\
\hline & & & & & & & & 3057.61 & . 57 \\
\hline \multicolumn{10}{|l|}{2 COMBINED AT} \\
\hline & CO-9A & 4798. & . 60 & 723. & 435. & 435. & 3.36 & & \\
\hline \multicolumn{10}{|l|}{ROUTED TO} \\
\hline & 9708 & 4681. & . 67 & 723. & 435. & 435. & 3.36 & & \\
\hline & & & & & & & & 8.46 & .67 \\
\hline \multicolumn{10}{|l|}{HYDROGRAPH AT} \\
\hline & FR-8 & 887. & . 43 & 118. & 71. & 71. & . 59 & & \\
\hline \multicolumn{10}{|l|}{2 COMBINED AT} \\
\hline & CO-8 & 5284. & . 67 & 841. & 506. & 506. & 3.95 & & \\
\hline \multicolumn{10}{|l|}{HYDROGRAPH AT} \\
\hline & ER-82 & 495. & . 40 & 63. & 38. & 38. & . 33 & & \\
\hline \multicolumn{10}{|l|}{ROUTED TO} \\
\hline & \(82 \mathrm{TO81}\) & 440. & . 57 & 63. & 38. & 38. & . 33 & & \\
\hline & & & & & & & & 3.32 & . 57 \\
\hline \multicolumn{10}{|l|}{HYDROGRAPH AT} \\
\hline & ER-81 & 430. & . 50 & 62. & 38. & 38. & . 31 & & \\
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline ROUTED TO & \(3 \mathrm{TO2}\) & 5604. & 1.27 & 1156. & 726. & 726. & 6.09 & \multirow[b]{2}{*}{81.18} & \multirow[b]{2}{*}{1.27} \\
\hline & & & & & & & & & \\
\hline \multicolumn{10}{|l|}{HYDROGRAPH AT} \\
\hline & FR-2 & 131. & . 53 & 22. & 13. & 13. & . 17 & & \\
\hline \multicolumn{10}{|l|}{2 COMBINED AT} \\
\hline & CO-2 & 5653. & 1.27 & 1176. & 740. & 740. & 6.27 & & \\
\hline \multicolumn{10}{|l|}{ROUTED TO} \\
\hline & \(2 \mathrm{TO1}\) & 5571. & 1.33 & 1174. & 739. & 739. & 6.27 & & \\
\hline & & & & & & & & 44.95 & 1.33 \\
\hline \multicolumn{10}{|l|}{HYDROGRAPH AT} \\
\hline & FR-1 & 61. & . 50 & 10. & 6. & 6. & . 08 & & \\
\hline \multicolumn{10}{|l|}{2 COMBINED AT} \\
\hline & CO-1 & 5589. & 1.33 & 1182. & 745. & 745. & 6.35 & & \\
\hline
\end{tabular}

\section*{APPENDIX E}

HYDRAULIC ANALYSIS SUPPORTING DOCUMENTATION

\section*{E. 1 - ROUGHNESS COEFFICIENT ESTIMATION}

\title{
Finger Rock Wash LOMR Study
}

\section*{Field Reconnaissance Report}

\author{
Prepared For: \\ Pima County Regional Flood Control District \\ 97 East Congress Street, \(3^{\text {rd }}\) Floor \\ Tucson, Arizona 85701
}

Prepared By:
CMG Drainage Engineering, Inc.
3555 N. Mountain Ave.
Tucson, Arizona 85719

Job \#27028

April 23, 2010

\section*{TABLE OF CONTENTS}
Page
1.0 Introduction 1
2.0 Manning's "n" Values 1
3.0 Photographs and Roughness Coefficient Tables 2
List of Tables
Table 1 - Determination of Manning's Roughness Coefficients: Finger Rock Wash River Station 0.000 to 2.233 3
Table 2 - Determination of Manning's Roughness Coefficients: Finger Rock Wash River Station 2.233 to 3.466 8
Table 3 - Determination of Manning's Roughness Coefficients: Finger Rock Wash River Station 3.466 to 4.643 12
Table 4 - Determination of Manning's Roughness Coefficients: Finger Rock Wash River Station 4.643 to 4.800 15
Table 5 - Determination of Manning's Roughness Coefficients: Pontatoc Canyon Tributary River Station 0.000 to 0.154 18

\subsection*{1.0 Introduction}

This report was prepared to document the results of field reconnaissance performed as part of the Finger Rock Wash LOMR. The project area is shown on Figure F-1 in Appendix F. CMG Drainage Engineering, Inc. conducted field reconnaissance of the project area between 2008 and 2010. The purpose of the field reconnaissance was to observe channel and floodplain conditions, to estimate Manning's " n " values, document those conditions using photographs, observe tributary inflow areas as well as possible channel overbank flow areas, and observe culvert dimensions and configurations. Additional culvert and roadway elevation information was obtained through review of as-built plans and field survey as needed. The results of the field reconnaissance documented herein were used for subsequent floodplain hydraulic modeling of Finger Rock Wash.

\subsection*{2.0 Manning's " \(n\) " Values}

Manning's "n" values were determined using the methodology in the report titled "Guide to Selecting Manning's Roughness Coefficients For Natural Channel Flood Plains", U.S. Geological Survey Water Supply Paper 2339 report, 1989, and supplemented by information from the report titled "Estimating Manning's Roughness Coefficients for Stream Channel and Flood Plains in Maricopa County, Arizona", USGS, 1991. Engineering judgment and experience were applied as needed to determine the variables used in the above referenced procedures and to arrive at reasonable roughness element estimates. In addition to information from field reconnaissance, aerial photographs were also reviewed to verify conditions along the various study reaches.

Finger Rock Wash, a tributary to Rillito Creek emanates from the Santa Catalina Mountain Foothills in Pima County, Arizona. Finger Rock Wash consists primarily of a sand/cobble bed channel varying in depth up to approximately four feet in places. The overbanks of the creek
are heavily vegetated.

The main factor in the development of the Manning's roughness coefficients for the Finger Rock Wash is the variation in vegetation, for which the manning's vegetation component varies from 0 to 0.02. Other factors in defining the main channel " \(n\) " values, such as channel materials, degree of irregularity, effects of obstructions and variations in channel cross-sections, also played a role.

The main factors in the development of the roughness coefficients for the overbank areas were vegetation and obstructions. The vegetation component varies from 0.015 to 0.035 . The obstruction component varies from 0.005 to 0.01 . Both components increase moving upstream.

\subsection*{3.0 Photographs and Roughness Coefficient Tables}

The following pages contain aerial and ground photographs and tabulations of selected roughness coefficients for the various reaches covered by the study. For the purposes of field reconnaissance and roughness coefficient determination, the study area was broken into a series of reaches usually defined by major roadway crossings. The photographs and Manning's " n " value tables which follow are organized by those reach definitions.

TABLE 1: DETERMINATION OF MANNING'S ROUGHNESS COEFFICIENTS
Project: Finger Rock Wash LOMR
Stream: Finger Rock Wash
Location: River Station 0.000 to River Station 2.233 (Alvernon to Sunrise)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Channel Conditions} & \multicolumn{2}{|l|}{Manning's Adjustment} & Left Overbank & Channel & Right Overbank \\
\hline \multirow{6}{*}{Channel Material} & Concrete & \multirow{6}{*}{n} & .012-.018 & & & \\
\hline & Firm Soil & & .025-.032 & & & \\
\hline & Coarse Sand & & .012-. 035 & & & \\
\hline & Gravel & & .028-. 035 & & & \\
\hline & Cobble & & .030-. 050 & . 045 & . 045 & . 045 \\
\hline & Boulder & & .040-. 070 & & & \\
\hline \multirow[b]{4}{*}{Degree of Irregularity} & Smooth & \multirow{4}{*}{n ,} & 0 & & & \\
\hline & Minor & & .001-.005 & . 001 & . 005 & . 001 \\
\hline & Moderate & & .006-.010 & & & \\
\hline & Severe & & .011-.020 & & & \\
\hline \multirow{4}{*}{Effects of Obstruction} & Negligible & \multirow{4}{*}{n ,} & .000-.004 & . 005 & . 005 & . 005 \\
\hline & Minor & & .010-. 025 & & & \\
\hline & Appreciable & & .020-. 030 & & & \\
\hline & Severe & & .040-.060 & & & \\
\hline \multirow{4}{*}{Vegetation} & Small & \multirow{4}{*}{n ,} & .002-. 010 & & 0 & \\
\hline & Medium & & .010-. 025 & . 015 & & . 015 \\
\hline & Large & & .025-.050 & & & \\
\hline & Very Large & & .50-. 100 & & & \\
\hline \multirow[b]{3}{*}{Variations in Channel Crosssection} & Gradual & \multirow[b]{3}{*}{n ,} & 0 & 0 & 0 & 0 \\
\hline & Occ. Alt. & & .001-.005 & & & \\
\hline & Freq. Alt. & & .010-.015 & & & \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{Degree of Meandering} & Minor & \multirow{3}{*}{m} & 1 & 1 & 1 & 1 \\
\hline & Appreciable & & 1.15 & & & \\
\hline & Severe & & 1.3 & & & \\
\hline \multicolumn{4}{|l|}{\(\mathrm{n}=(\mathrm{n}+\mathrm{n}+\mathrm{n}+\mathrm{n}+\mathrm{n}) \mathrm{m}\)} & 0.066 & 0.045 & 0.066 \\
\hline
\end{tabular}

Finger Rock Wash - reach between Alvernon Way and La Espalda

Google Maps Aerial View - Typical of Reach - RS 0.421 to 0.710

Finger Rock Wash - reach between Alvernon Way and La Espalda River Station 0.898 (La Espalda) Facing Downstream

Overbank 'n' = 0.066
Channel ' \(n\) ' \(=0.045\)

Finger Rock Wash - reach between La Espalda and Sunrise Drive

Google Maps Aerial View - Typical of Reach - RS 1.585 to RS 1.997

Finger Rock Wash - reach between La Espalda and Sunrise Drive River Station 2.233 (Sunrise Drive) Facing Downstream

Overbank ' \(n\) ' \(=0.066\)
Channel ' \(n\) ' \(=0.045\)

TABLE 2: DETERMINATION OF MANNING'S ROUGHNESS COEFFICIENTS
Project: Finger Rock Wash LOMR
Stream: Finger Rock Wash
Location: River Station 2.233 to River Station 3.466 (Sunrise Drive to Skyline Drive)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Channel Conditions} & \multicolumn{2}{|l|}{Manning's Adjustment} & Left Overbank & Channel & Right Overbank \\
\hline \multirow{6}{*}{Channel Material} & Concrete & \multirow{6}{*}{n} & .012-.018 & & & \\
\hline & Firm Soil & & .025-. 032 & & & \\
\hline & Coarse Sand & & .012-. 035 & & & \\
\hline & Gravel & & .028-.035 & & & \\
\hline & Cobble & & .030-. 050 & 0.045 & 0.035 & 0.045 \\
\hline & Boulder & & .040-. 070 & & & \\
\hline \multirow[b]{4}{*}{Degree of Irregularity} & Smooth & \multirow{4}{*}{n ,} & 0 & & & \\
\hline & Minor & & .001-.005 & & 0.005 & \\
\hline & Moderate & & .006-.010 & & & \\
\hline & Severe & & .011-.020 & & & \\
\hline \multirow{4}{*}{Effects of Obstruction} & Negligible & \multirow{4}{*}{n ,} & .000-. 004 & 0.005 & 0.005 & 0.005 \\
\hline & Minor & & .010-. 025 & & & \\
\hline & Appreciable & & .020-. 030 & & & \\
\hline & Severe & & .040-. 060 & & & \\
\hline \multirow{4}{*}{Vegetation} & Small & \multirow{4}{*}{n ,} & .002-.010 & & 0.005 & \\
\hline & Medium & & .010-. 025 & 0.025 & & 0.025 \\
\hline & Large & & .025-.050 & & & \\
\hline & Very Large & & .50-. 100 & & & \\
\hline \multirow[b]{3}{*}{Variations in Channel Crosssection} & Gradual & \multirow[b]{3}{*}{n ,} & 0 & 0 & 0 & 0 \\
\hline & Occ. Alt. & & .001-.005 & & & \\
\hline & Freq. Alt. & & .010-.015 & & & \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{Degree of Meandering} & Minor & \multirow{3}{*}{m} & 1 & 1 & 1 & 1 \\
\hline & Appreciable & & 1.15 & & & \\
\hline & Severe & & 1.3 & & & \\
\hline \multicolumn{4}{|l|}{\(\mathrm{n}=(\mathrm{n}+\mathrm{n}+\mathrm{n}+\mathrm{n}+\mathrm{n}) \mathrm{m}\)} & 0.075 & 0.050 & 0.075 \\
\hline
\end{tabular}

Finger Rock Wash - reach between Sunrise Drive and Skyline Drive

Google Maps Aerial View - Typical of Reach - RS 3.031 to RS 3.291

Finger Rock Wash - reach between Sunrise Drive and Skyline Drive River Station 2.268 (Sunrise Drive) Facing Upstream

Overbank 'n' = 0.075
Channel ' n ' \(=0.050\)

Finger Rock Wash - reach between Sunrise Drive and Skyline Drive River Station 3.466 (Skyline Drive) Facing Downstream

Overbank 'n' = 0.075
Channel ' n ' \(=0.050\)

TABLE 3: DETERMINATION OF MANNING'S ROUGHNESS COEFFICIENTS
Project: Finger Rock Wash LOMR
Stream: Finger Rock Wash
Location: River Station 3.466 to River Station 4.643 (Skyline Drive to Ina Road)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Channel Conditions} & \multicolumn{2}{|l|}{Manning's Adjustment} & Left Overbank & Channel & Right Overbank \\
\hline \multirow{6}{*}{Channel Material} & Concrete & \multirow{6}{*}{n} & .012-.018 & & & \\
\hline & Firm Soil & & .025-. 032 & & & \\
\hline & Coarse Sand & & .012-. 035 & & & \\
\hline & Gravel & & .028-.035 & & & \\
\hline & Cobble & & .030-. 050 & 0.045 & 0.035 & 0.045 \\
\hline & Boulder & & .040-. 070 & & & \\
\hline \multirow[b]{4}{*}{Degree of Irregularity} & Smooth & \multirow{4}{*}{n ,} & 0 & & & \\
\hline & Minor & & .001-.005 & & 0.005 & \\
\hline & Moderate & & .006-.010 & & & \\
\hline & Severe & & .011-.020 & & & \\
\hline \multirow{4}{*}{Effects of Obstruction} & Negligible & \multirow{4}{*}{n ,} & .000-. 004 & 0.005 & 0.005 & 0.005 \\
\hline & Minor & & .010-. 025 & & & \\
\hline & Appreciable & & .020-. 030 & & & \\
\hline & Severe & & .040-. 060 & & & \\
\hline \multirow{4}{*}{Vegetation} & Small & \multirow{4}{*}{n ,} & .002-.010 & & 0.01 & \\
\hline & Medium & & .010-. 025 & 0.025 & & 0.025 \\
\hline & Large & & .025-.050 & & & \\
\hline & Very Large & & .50-. 100 & & & \\
\hline \multirow[b]{3}{*}{Variations in Channel Crosssection} & Gradual & \multirow[b]{3}{*}{n ,} & 0 & 0 & 0 & 0 \\
\hline & Occ. Alt. & & .001-.005 & & & \\
\hline & Freq. Alt. & & .010-. 015 & & & \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{Degree of Meandering} & Minor & \multirow{3}{*}{m} & 1 & & & \\
\hline & Appreciable & & 1.15 & 1.1 & 1.1 & 1.1 \\
\hline & Severe & & 1.3 & & & \\
\hline \multicolumn{4}{|l|}{\(\mathrm{n}=(\mathrm{n}+\mathrm{n}+\mathrm{n}+\mathrm{n}+\mathrm{n}) \mathrm{m}\)} & 0.083 & 0.061 & 0.083 \\
\hline
\end{tabular}

Finger Rock Wash - reach between Skyline Drive and Ina Road

Google Maps Aerial View - Typical of Reach - RS 3.466 to RS 4.643

Finger Rock Wash - reach between Skyline Drive and Ina Road River Station 3.466 (Skyline Drive) Facing Upstream

TABLE 4: DETERMINATION OF MANNING'S ROUGHNESS COEFFICIENTS
Project: Finger Rock Wash LOMR
Stream: Finger Rock Wash
Location: River Station 4.643 to River Station 4.800 (Ina Road to Coronado NF Boundary)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Channel Conditions} & \multicolumn{2}{|l|}{Manning's Adjustment} & Left Overbank & Channel & Right Overbank \\
\hline \multirow{6}{*}{Channel Material} & Concrete & \multirow{6}{*}{n} & .012-.018 & & & \\
\hline & Firm Soil & & .025-. 032 & & & \\
\hline & Coarse Sand & & .012-. 035 & & & \\
\hline & Gravel & & .028-.035 & & & \\
\hline & Cobble & & .030-. 050 & & & \\
\hline & Boulder & & .040-. 070 & 0.04 & 0.04 & 0.04 \\
\hline \multirow[b]{4}{*}{Degree of Irregularity} & Smooth & \multirow{4}{*}{n ,} & 0 & & & \\
\hline & Minor & & .001-.005 & 0.001 & 0.001 & 0.001 \\
\hline & Moderate & & .006-.010 & & & \\
\hline & Severe & & .011-.020 & & & \\
\hline \multirow{4}{*}{Effects of Obstruction} & Negligible & \multirow{4}{*}{n ,} & .000-. 004 & 0.01 & 0.005 & 0.01 \\
\hline & Minor & & .010-. 025 & & & \\
\hline & Appreciable & & .020-. 030 & & & \\
\hline & Severe & & .040-. 060 & & & \\
\hline \multirow{4}{*}{Vegetation} & Small & \multirow{4}{*}{n ,} & .002-. 010 & & & \\
\hline & Medium & & .010-. 025 & & 0.02 & \\
\hline & Large & & .025-.050 & 0.035 & & 0.035 \\
\hline & Very Large & & .50-. 100 & & & \\
\hline \multirow[b]{3}{*}{Variations in Channel Crosssection} & Gradual & \multirow[b]{3}{*}{n ,} & 0 & 0 & 0 & \\
\hline & Occ. Alt. & & .001-.005 & & & \\
\hline & Freq. Alt. & & .010-.015 & & & \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{Degree of Meandering} & Minor & \multirow{3}{*}{m} & 1 & 1 & 1 & 1 \\
\hline & Appreciable & & 1.15 & & & \\
\hline & Severe & & 1.3 & & & \\
\hline \multicolumn{4}{|l|}{\(\mathrm{n}=(\mathrm{n}+\mathrm{n}+\mathrm{n}+\mathrm{n}+\mathrm{n}) \mathrm{m}\)} & 0.086 & 0.066 & 0.086 \\
\hline
\end{tabular}

Finger Rock Wash - reach between Ina Road and Coronado NF Boundary

Google Maps Aerial View - Typical of Reach - RS 4.643 to RS 4.800

Finger Rock Wash - reach between Ina Road and Coronado NF Boundary River Station 4.787 (Playa de Coronado West Crossing) Facing Downstream

Overbank 'n' = 0.086
Channel ' n ' \(=0.066\)

TABLE 5: DETERMINATION OF MANNING'S ROUGHNESS COEFFICIENTS
Project: Finger Rock Wash LOMR
Stream: Finger Rock Wash - Pontatoc Canyon Tributary
Location: River Station 0.000 to River Station 0.154 (Ina Road to Coronado NF Boundary)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Channel Conditions} & \multicolumn{2}{|l|}{Manning's Adjustment} & Left Overbank & Channel & Right Overbank \\
\hline \multirow{6}{*}{Channel Material} & Concrete & \multirow{6}{*}{n} & .012-.018 & & & \\
\hline & Firm Soil & & .025-.032 & & & \\
\hline & Coarse Sand & & .012-. 035 & & & \\
\hline & Gravel & & .028-. 035 & & & \\
\hline & Cobble & & .030-. 050 & & & \\
\hline & Boulder & & .040-. 070 & 0.040 & 0.040 & 0.040 \\
\hline \multirow[b]{4}{*}{Degree of Irregularity} & Smooth & \multirow{4}{*}{n ,} & 0 & & & \\
\hline & Minor & & .001-. 005 & 0.001 & 0.002 & 0.001 \\
\hline & Moderate & & .006-. 010 & & & \\
\hline & Severe & & .011-. 020 & & & \\
\hline \multirow{4}{*}{Effects of Obstruction} & Negligible & \multirow{4}{*}{n ,} & .000-. 004 & & & \\
\hline & Minor & & .010-. 025 & 0.010 & & 0.010 \\
\hline & Appreciable & & .020-. 030 & & 0.020 & \\
\hline & Severe & & .040-. 060 & & & \\
\hline \multirow{4}{*}{Vegetation} & Small & \multirow{4}{*}{n ,} & .002-. 010 & & & \\
\hline & Medium & & .010-. 025 & 0.025 & & 0.025 \\
\hline & Large & & .025-.050 & & 0.035 & \\
\hline & Very Large & & .50-. 100 & & & \\
\hline \multirow[b]{3}{*}{Variations in Channel Crosssection} & Gradual & \multirow[b]{3}{*}{n ,} & 0 & 0 & 0 & 0 \\
\hline & Occ. Alt. & & .001-. 005 & & & \\
\hline & Freq. Alt. & & .010-. 015 & & & \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{Degree of Meandering} & Minor & \multirow{3}{*}{m} & 1 & 1 & 1 & 1 \\
\hline & Appreciable & & 1.15 & & & \\
\hline & Severe & & 1.3 & & & \\
\hline \multicolumn{4}{|l|}{\(n=(n+n+n+n+n) m\)} & 0.076 & 0.097 & 0.076 \\
\hline
\end{tabular}

Google Maps Aerial View - Typical of Reach - RS 0.000 to RS 0.154

Pontatoc Canyon Tributary - reach between Ina Road and Coronado NF Boundary River Station 0.070 (Playa de Coronado East Crossing) Downstream

Overbank 'n' = 0.076
Channel ' \(n\) ' \(=0.097\)

\section*{E. 2 - CROSS SECTION PLOTS}

Finger Rock Wash LOMR - NAVD88 Plan: FRW NAVD88 Model 10/14/2010 3:30:42 PM Geom: Geometry per NAVD88 topography Flow: 100-yr Q per 3-hour HEC-1 storm River \(=\) Pontatoc Cnyn Reach \(=\) Pontatoc Cnyn RS \(=0.09716\)

Finger Rock Wash LOMR - NAVD88 Plan: FRW NAVD88 Model 10/14/2010 3:30:42 PM Geom: Geometry per NAVD88 topography Flow: 100-yr Q per 3-hour HEC-1 storm River \(=\) Pontatoc Cnyn Reach \(=\) Pontatoc Cnyn RS \(=0.09215\)

Finger Rock Wash LOMR - NAVD88 Plan: FRW NAVD88 Model 10/14/2010 3:30:42 PM
Geom: Geometry per NAVD88 topography Flow: 100-yr Q per 3-hour HEC-1 storm River \(=\) Pontatoc Cnyn Reach \(=\) Pontatoc Cnyn RS \(=0.08714\)

Finger Rock Wash LOMR - NAVD88 Plan: FRW NAVD88 Model 10/14/2010 3:30:42 PM Geom: Geometry per NAVD88 topography Flow: 100 -yr Q per 3-hour HEC-1 storm River \(=\) Pontatoc Cnyn Reach \(=\) Pontatoc Cnyn RS \(=0.0135\)

Finger Rock Wash LOMR - NAVD88 Plan: FRW NAVD88 Model 10/14/2010 3:30:42 PM Geom: Geometry per NAVD88 topography Flow: 100 -yr Q per 3-hour HEC-1 storm River \(=\) Pontatoc Cnyn Reach \(=\) Pontatoc Cnyn RS \(=0.0074\)

Finger Rock Wash LOMR - NAVD88 Plan: FRW NAVD88 Model 10/14/2010 3:30:42 PM
Geom: Geometry per NAVD88 topography Flow: 100 -yr Q per 3-hour HEC-1 storm
River \(=\) Pontatoc Cnyn Reach \(=\) Pontatoc Cnyn RS \(=0.000\) Section upstream of Junction FR-9

Finger Rock Wash LOMR - NAVD88 Plan: FRW NAVD88 Model 10/14/2010 3:30:42 PM
Geom: Geometry per NAVD88 topography Flow: 100-yr Q per 3-hour HEC-1 storm River \(=\) Finger Rock Wash Reach \(=\) Main Reach \(1 \quad\) RS \(=4.800\) Upstream section in study reach

Finger Rock Wash LOMR - NAVD88 Plan: FRW NAVD88 Model 10/14/2010 3:30:42 PM Geom: Geometry per NAVD88 topography Flow: 100-yr Q per 3-hour HEC-1 storm River \(=\) Finger Rock Wash Reach \(=\) Main Reach \(1 \quad\) RS \(=4.79276\)

Finger Rock Wash LOMR - NAVD88 Plan: FRW NAVD88 Model 10/14/2010 3:30:42 PM Geom: Geometry per NAVD88 topography Flow: 100-yr Q per 3-hour HEC-1 storm River \(=\) Finger Rock Wash Reach \(=\) Main Reach 1 RS \(=4.783 \quad 75\)

Finger Rock Wash LOMR - NAVD88 Plan: FRW NAVD88 Model 10/14/2010 3:30:42 PM
Geom: Geometry per NAVD88 topography Flow: 100-yr Q per 3-hour HEC-1 storm River \(=\) Finger Rock Wash Reach \(=\) Main Reach \(1 \quad\) RS \(=4.76773\)

Finger Rock Wash LOMR - NAVD88 Plan: FRW NAVD88 Model 10/14/2010 3:30:42 PM Geom: Geometry per NAVD88 topography Flow: 100-yr Q per 3-hour HEC-1 storm

River \(=\) Finger Rock Wash Reach \(=\) Main Reach 1 RS \(=4.75672\)

Finger Rock Wash LOMR - NAVD88 Plan: FRW NAVD88 Model 10/14/2010 3:30:42 PM Georn: Geometry per NAVD88 topography Flow: 100-yr Q per 3-hour HEC-1 storm

River \(=\) Finger Rock Wash Reach \(=\) Main Reach \(1 \quad\) RS \(=4.748 \quad 71\)

Finger Rock Wash LOMR - NAVD88
Plan: FRW NAVD88 Model 10/14/2010 3:30:42 PM
Geom: Geometry per NAVD88 topography Flow: 100-yr Q per 3-hour HEC-1 storm River \(=\) Finger Rock Wash Reach \(=\) Main Reach \(3 \quad\) RS \(=4.4758\)

Finger Rock Wash LOMR - NAVD88 Plan: FRW NAVD88 Model 10/14/2010 3:30:42 PM Geom: Geometry per NAVD88 topography Flow: 100-yr Q per 3-hour HEC-1 storm

River \(=\) Finger Rock Wash Reach \(=\) Main Reach \(3 \quad\) RS \(=4.44757\)

Finger Rock Wash LOMR - NAVD88 Plan: FRW NAVD88 Model 10/14/2010 3:30:42 PM
Geom: Geometry per NAVD88 topography Flow: 100-yr Q per 3-hour HEC-1 storm
River \(=\) Finger Rock Wash Reach \(=\) Main Reach 3 RS \(=4.426\)

Finger Rock Wash LOMR - NAVD88
Plan: FRW NAVD88 Model 10/14/2010 3:30:42 PM
Geom: Geometry per NAVD88 topography Flow: 100-yr Q per 3-hour HEC-1 storm River \(=\) Finger Rock Wash Reach \(=\) Main Reach \(3 \quad\) RS \(=4.289\)

Finger Rock Wash LOMR - NAVD88 Plan: FRW NAVD88 Model 10/14/2010 3:30:42 PM Geom: Geometry per NAVD88 topography Flow: 100-yr Q per 3-hour HEC-1 storm River \(=\) Finger Rock Wash Reach \(=\) Main Reach \(3 \quad\) RS \(=4.26253\)

Finger Rock Wash LOMR - NAVD88 Plan: FRW NAVD88 Model 10/14/2010 3:30:42 PM Geom: Geometry per NAVD88 topography Flow: 100-yr Q per 3-hour HEC-1 storm

River \(=\) Finger Rock Wash Reach \(=\) Main Reach \(3 \quad\) RS \(=4.243\)

Finger Rock Wash LOMR - NAVD88 Plan: FRW NAVD88 Model 10/14/2010 3:30:42 PM
Geom: Geometry per NAVD88 topography Flow: 100-yr Q per 3-hour HEC-1 storm River \(=\) Finger Rock Wash Reach \(=\) Main Reach 3 RS \(=3.89146\)

Finger Rock Wash LOMR - NAVD88 Plan: FRW NAVD88 Model 10/14/2010 3:30:42 PM Geom: Geometry per NAVD88 topography Flow: 100-yr Q per 3-hour HEC-1 storm River \(=\) Finger Rock Wash Reach \(=\) Main Reach 3 RS \(=3.85545\)

Finger Rock Wash LOMR - NAVD88 Plan: FRW NAVD88 Model 10/14/2010 3:30:42 PM Geom: Geometry per NAVD88 topography Flow: 100-yr Q per 3-hour HEC-1 storm

River \(=\) Finger Rock Wash Reach \(=\) Main Reach \(3 \quad\) RS \(=3.81344\)

Station (ft)

Finger Rock Wash LOMR - NAVD88 Plan: FRW NAVD88 Model 10/14/2010 3:30:42 PM Geom: Geometry per NAVD88 topography Flow: 100-yr Q per 3-hour HEC-1 storm River \(=\) Finger Rock Wash Reach \(=\) Main Reach 4 RS \(=3.18535\)

Finger Rock Wash LOMR - NAVD88 Plan: FRW NAVD88 Model 10/14/2010 3:30:42 PM Geom: Geometry per NAVD88 topography Flow: 100-yr Q per 3-hour HEC-1 storm

River \(=\) Finger Rock Wash Reach \(=\) Main Reach \(4 \quad\) RS \(=3.11634\)

Finger Rock Wash LOMR - NAVD88 Plan: FRW NAVD88 Model 10/14/2010 3:30:42 PM Geom: Geometry per NAVD88 topography Flow: 100-yr Q per 3-hour HEC-1 storm

River \(=\) Finger Rock Wash Reach \(=\) Main Reach \(4 \quad\) RS \(=3.03133\)

Finger Rock Wash LOMR - NAVD88 Plan: FRW NAVD88 Model 10/14/2010 3:30:42 PM
Geom: Geometry per NAVD88 topography Flow: 100-yr Q per 3-hour HEC-1 storm
River \(=\) Finger Rock Wash Reach \(=\) Main Reach \(4 \quad\) RS \(=2.87632\)

Finger Rock Wash LOMR - NAVD88 Plan: FRW NAVD88 Model 10/14/2010 3:30:42 PM Geom: Geometry per NAVD88 topography Flow: 100-yr Q per 3-hour HEC-1 storm

River \(=\) Finger Rock Wash Reach \(=\) Main Reach \(4 \quad\) RS \(=2.82431\)

Finger Rock Wash LOMR - NAVD88 Plan: FRW NAVD88 Model 10/14/2010 3:30:42 PM Geom: Geometry per NAVD88 topography Flow: 100-yr Q per 3-hour HEC-1 storm River \(=\) Finger Rock Wash Reach \(=\) Main Reach \(4 \quad\) RS \(=2.75130\)

Station (ft)

\section*{E. 3 - PIMA COUNTY REGIONAL FLOOD CONTROL DISTRICT} FLOODPLAIN ORDINANCE 2010-FC5 (APPLICABLE SECTIONS)

\begin{tabular}{lr}
DOCKET: & 13810 \\
PAGE : & 3313 \\
NO. OF PAGES : & 61 \\
SEQUENCE : & 20100940799 \\
& \(05 / 17 / 2010\) \\
ORDIN & \(18: 00\) \\
& \\
PICKUP & \\
AMOUNT PAID & \(\$\) \\
\end{tabular}

ORDINANCE NO. 2010-FC 5

\section*{AN ORDINANCE OF THE BOARD OF DIRECTORS OF THE PIMA COUNTY FLOOD CONTROL DISTRICT RELATING TO FLOODPLAIN MANAGEMENT; REVISING THE PIMA COUNTY FLOODPLAIN AND EROSION HAZARD MANAGEMENT ORDINANCE, TITLE 16 OF THE PIMA COUNTY CODE.}

WHEREAS, on December 16, 1974, the Pima County Board of Supervisors adopted Ordinance No. 1974-86, called the Pima County Floodplain and Erosion Hazard Management Ordinance (the "Floodplain Ordinance"), and

WHEREAS, on July 12, 1983, and on July 24, 1984, the Pima County Board of Supervisors adopted Ordinance Nos. 1983-FCl and 1984-FC1 replacing Ordinance No. 1974-
86 ,and

WHEREAS, the Arizona Legislature authorized the boards of directors of county flood control districts to adopt floodplain management regulations designed to promote the public health, safety and general welfare pursuant to Arizona Revised Statutes, Title 48, Section 483603, and

WHEREAS, on May 7, 1985, the Board of Supervisors, acting as the Board of Directors of the Pima County Flood Control District, adopted Ordinance No. 1985-FCI replacing Ordinance No. 1983-FC1, as amended by Ordinance No. 1984-FC1, and

WHEREAS, on April 12, 1988, the Board of Supervisors, acting as the Board of Directors of the Pima County Flood Control District, adopted Ordinance No. 1988-FC1 replacing Ordinance No. 1984-FC1, and

WHEREAS, on December 6, 1988, the Board of Supervisors, acting as the Board of Directors of the Pima County Flood Control District, adopted Ordinance No. 1988-FC2 replacing Ordinance No. 1988-FC1, and

WHEREAS, Ordinance No. 1988-FC2 was amended by Ordinance Nos. 1994-FC2 as adopted on July 19, 1994, 1995-FC1 as adopted August 1, 1995, and 1998-FC1 as adopted July
14, 1998, and

WHEREAS, the Pima County Board of Supervisors, acting as the Board of Directors of the Flood Control District, officially amended Title 16 of the Pima County Code on September 6, 2005 by Ordinance No. 2005-FC2, and

WHEREAS, the Pima County Flood Control District Board of Directors has determined it to be in the best interests of the residents of Pima County that the current Floodplain Ordinance, as codified in Title 16 of the Pima County Code, be amended to establish the most current floodplain erosion and riparian habitat regulations,

NOW THEREFORE, IT IS ORDAINED BY THE BOARD OF DIRECTORS OF THE FLOOD CONTROL DISTRICT OF PIMA COUNTY,

SECTION 1. Title 16 of the Pima County Code shall hereby read as follows:
TITLE 16
Chapters:
16.04 General Provisions
16.08 Definitions
16.12 Exemptions and Nonconforming Uses
16.16 Floodplain Maps and Boundaries
16.20 Use-Permits General Provisions
16.24 Floodway Requirements
16.26 Floodway Fringe Area Requirements
16.28 Erosion Hazard Areas and Building Setbacks
16.30 Watercourse and Riparian Habitat Protection and Mitigation Requirements
16.34 Manufactured Homes and Manufactured Home Parks and Subdivisions
16.36 Subdivision and Development
16.38 Maintenance of Private Drainage Improvements
16.42 Sediment and Erosion Control
16.44 Vehicular Access
16.48 Runoff Detention Systems
16.52 Sand, Gravel and Other Excavation Operations
16.54 Administration and Compliance
16.56 Appeals and Variances
16.60 Amendments
16.64 Enforcement

\section*{Chapter 16.08}
DEFINITIONS
Sections:
16.08.010 Application of definitions and general usage.
16.08.020 Appeal.
16.08.030 Arizona Department of Water Resources.
16.08.040 Balanced drainage basin.
16.08.050 Base flood.
16.08.060 Base flood elevation.
16.08.070 Basement.
16.08.080 Board.
16.08.090 Board of Supervisors.
16.08.100 Chief Engineer.
16.08.110 County Engineer.
16.08.120 Critical drainage basin.
16.08.130 Critical or balanced drainage basin management plan.
16.08.140 Cumulative substantial damage.
16.08.150 Cumulative substantial improvement.
16.08.160 Detention system.
16.08.170 Development.
16.08.180 District.
16.08.190 Drainage area.
16.08.200 Dry well.
16.08.210 Dwelling unit.
16.08.220 Encroachment.
16.08.230 Erosion.
16.08.240 Erosion hazard area.
16.08.250 Exemption.
16.08.260 Flood Control District Advisory Committee.
16.08.270 Flood Insurance Study.
16.08.280 Flood or flood waters.
16.08.290 Floodplain.
16.08.300 Floodplain Administrator.
16.08.310 Floodplain management.
16.08.320 Floodplain management regulations.
16.08.330 Floodplain use permit.
16.08.340 Flood proofing.
16.08.350 Floodway area.
16.08.360 Floodway fringe area.
16.08.370 Geologic floodplain.
16.08.380 Habitat mitigation.
16.08.390 Hardship.
16.08.400 Highest adjacent grade.
16.08.410 Historic structure.
16.08.420 Hydroriparian.
16.08.430 Important Riparian Area.
16.08.440 Levee.
16.08.450 Lowest floor.
16.08.460 Manufactured home.
16.08.470 Manufactured home park or subdivision.
16.08.480 Market value.
16.08.490 Mean sea level.
16.08.500 Mesoriparian.
16.08.510 Mining reclamation plan.
16.08.520 New construction.
16.08.530 Nonconforming use.
16.08.540 Obstruction.
16.08.550 Person.
16.08.560 Pima County.
16.08.570 Reach.
16.08.580 Reasonable repair.
16.08.590 Regulatory flood elevation.
16.08.600 Regulatory floodplain or floodprone area.
16.08.610 Retention system.
16.08.620 Riparian habitat.
16.08.630 Setback.
16.08.640 Sheet flooding area.
16.08.650 Special Flood Hazard Area.
16.08.660 Start of construction.
16.08.670 Structure.
16.08.680 Substantial damage.
16.08.690 Substantial improvement.
16.08.700 Technical Review Committee.
16.08.710 Variance.
16.08.720 Violation.
16.08.730 Waiver by the Chief Engineer.
16.08.740 Watercourse.
16.08.750 Watercourse master plan.
16.08.760 Watershed.
16.08.770 Written Finding by the Chief Engineer
16.08.780 Xeroriparian.
16.08.010

Application of definitions and general usage.
The following definitions and general usage shall apply to words and phrases used in Title 16 of this code.
A. When parts of the Arizona Revised Statutes are adopted by reference or referred to in this title, the abbreviation A.R.S. will be used.
B. When parts of the Arizona Administrative Code are adopted by reference or referred to in this title, the abbreviation A.A.C. will be used.
C. References to the U.S. Code of Federal Regulations refer sequentially to the title of the Code of Federal Regulations (CFR), part, section and paragraph, e.g., 44 CFR 62.01(a), means Title 44, Code of Federal Regulations, Part 62 Section .01, Paragraph (a)).
D. When parts of the National Federal Flood Insurance Program are adopted or referenced, the following terms shall be used:
1. "NFIP" means National Flood Insurance Program.
2. "FEMA" means the Federal Emergency Management Agency under the U.S. Department of Homeland Security.
3. "FIRM" means Flood Insurance Rate Map as adopted by FEMA that delineates special flood hazards and risk premium zones.
4. "FBFM" means Flood Boundary and Floodway Map as adopted by FEMA to delineate areas of special flood hazards including floodways.
5. "FHBM" means Flood Hazard Boundary Map as adopted by FEMA for areas of flood hazards.
6. "Community" is the term used by FEMA for all political bodies that administer floodplain regulations whether those are towns, cities, counties, districts, parishes, etc.
7. "Jurisdiction" is a term used by FEMA and ADWR that includes communities, states, tribal nations and other federal land owners like the Bureau of Land Management and the National Forest Service.
8. "Reasonably safe from flooding" is a term used to indicate that conditions of the National Flood Insurance Program are met for the base flood.
E. "State Standard" means a document defining standards for floodplain management as adopted by the Arizona Department of Water Resources pursuant to A.R.S. Section § 483605(A). An abbreviation for a specific standard of SS3-96 means State Standard Number 3 as adopted in 1996.
F. All units of measure contained in this title, whether expressed or implied, are intended to be in the English system of units. The following units of measures and abbreviations will be used:
1. When referring to the volume of flow, "cubic feet per second" will be abbreviated as cfs.
2. When referring to the velocity of the flow, "feet per second" will be abbreviated as fps.
G. When referring to timeframes for action, and unless otherwise noted, "days" shall mean business days. (Ord. 2010 FC-1; Ord. 2005 FC-2 § 2 (part), 2005; Ord. 1999 FC-1 § 1 (part), 1999; Ord. 1988 FC-2 Art. 4 (part), 1988)

\subsection*{16.08.020}

\section*{Appeal}
"Appeal" means a written request for a technical review of the Chief Engineer's written finding, as defined in 16.08.770, concerning the denial of a floodplain use permit, or a boundary determination of a regulatory floodplain, floodway, erosion hazard area, or riparian habitat. The appeal of a final decision and order of the Chief Engineer regarding a floodplain violation shall be pursuant to 16.64.070. (Ord. 2010 FC-1)

\subsection*{16.08.030}

Arizona Department of Water Resources.
"Arizona Department of Water Resources," known from this point forward as ADWR, is the state agency assigned with oversight of flood control as provided for in Title 48 Chapter 21 of the A.R.S. (Ord. 2005 FC-2 § 2 (part), 2005).

\subsection*{16.08.040}

\section*{Balanced drainage basin.}
"Balanced drainage basin" means a drainage basin or watershed which contains flood water channels, natural or manmade, and/or flood control structures that are adequate to contain existing runoff from the base flood produced by the basin or watershed, but in which additional runoff may not be safely contained by said channels or structures. All drainage basins shall be considered to be balanced basins unless a basin has been designated as a critical drainage basin. (Ord. 2010 FC-1; Ord. 1999 FC-1 § 1 (part), 1999; Ord. 1988 FC-2 Art. 4 (part), 1988)

\subsection*{16.08.050}

\section*{Base flood.}
"Base flood" means a flood with a one-percent probability of being equaled or exceeded in any given year. Commonly referred to as the 100-year flood, this flood shall be determined from an analysis of floods on a particular watercourse and other watercourses in the same general region in accordance with the criteria established by the director of the ADWR, or the Flood Control District Board, which criterion is hereby incorporated by reference and made a part of this title. (Ord. 2010-FC-1; Ord. 2005 FC-2 § 2 (part), 2005; Ord. 1999 FC-1 § 1 (part), 1999; Ord. 1988 FC-2 Art. 4 (part), 1988)

\subsection*{16.08.060}

\section*{Base flood elevation.}
"Base flood elevation" means the calculated water-surface elevation of the base flood. (Ord. 1999-FC-1 §§ 1 (part) 1999; Ord. 1988-FC2 Art. 4 (part), 1988)

\subsection*{16.08.070}

Basement.
"Basement" means any area of a building having its floor sub-grade (below ground level) on all sides. (Ord. 2005-FC2 § 2 (part), 2005)

\subsection*{16.08.080}

Board.
"Board" means the Board of Supervisors of Pima County sitting as the Board of Directors for the Flood Control District, known from this point forward as the Board, as the governing body for codes, ordinances and other regulations relating to floodplain management within Pima County, but excluding Indian and military reservations and incorporated communities that elected to assume separate floodplain management duties and powers, as set forth in the A.R.S., Title 48, Chapter 21 Districts. (Ord. 2005 FC-2 § 2 (part), 2005; Ord. 1999 FC-1 § 1 (part), 1999; Ord. 1988 FC-2 Art. 4 (part), 1988)
16.08.090

\section*{Board of Supervisors.}
"Board of Supervisors," means the governing body of Pima County as defined in Title 11, Chapter 2, of the A.R.S. (Ord. 2005-FC2 § 2 (part), 2005)

\subsection*{16.08.100}

Chief Engineer.
"Chief Engineer" means an official of Pima County or authorized representative of the Flood Control District whose duties are as set forth in A.R.S. Section 48-3603, and who is an Arizona registered civil engineer in the state of Arizona. For the Flood Control District, the Chief Engineer is also the director of the Pima County Flood Control District. The Chief Engineer, or an authorized designee, is in charge of enforcement of this title, and is responsible for administrating appeals and waivers to engineering standards specified in this title. (Ord. 2005 FC-2 § 2 (part), 2005)

\subsection*{16.08.110}

County Engineer.
"County Engineer" means an official of Pima County whose duties are set forth in A.R.S. Section 11-562 and 48-3603. The County Engineer is also the director of the Pima County Department of Transportation. (Ord. 2005 FC-2 § 2 (part), 2005; Ord. 1999 FC-1 § 1 (part), 1999; Ord. 1988 FC-2 Art. 4 (part), 1988)

\subsection*{16.08.120}

\section*{Critical drainage basin.}
"Critical drainage basin" means a drainage basin or watershed that contains flood water channels, natural or manmade, and/or flood control structures that cannot convey existing runoff during a base flood produced by the basin or watershed, and which has a documented history of severe hazards. (Ord. 1999 FC-1 § 1 (part), 1999; Ord. 1988 FC-2 Art. 4 (part), 1988)

\subsection*{16.08.130}

\section*{Critical or balanced drainage basin management plan.}
"Critical or balanced drainage basin management plan" means a site-specific plan for a balanced or critical basin or watershed which has been prepared for and approved by Pima County, and provides a conceptual plan for orderly development of flood control, floodplain management, and associated erosion hazard-control measures that may be necessary as a result of urbanization within the basin or watershed. (Ord. 2005 FC-2 § 2 (part), 2005; Ord. 1999 FC-1 § 1 (part), 1999; Ord. 1988 FC-2 Art. 4 (part), 1988)

\subsection*{16.08.140}

\section*{Cumulative substantial damage.}
"Cumulative substantial damage" means the total cost of all repairs to a structure that has incurred repetitive loss or damage in order to determine the applicability of the substantial improvement provisions of this Title. When the total cost of all repairs to the repetitive loss structure equals or exceeds the \(50 \%\) substantial improvement threshold, the structure must be brought into compliance. (Ord. 2010 FC-1; Ord. 2005 FC-2 § 2 (part), 2005)
16.08.150

\section*{Cumulative substantial improvement.}
"Cumulative substantial improvement" means the total cost of all improvements, modifications, additions, reconstruction, or repairs to a structure in order to determine the applicability of the substantial improvement provisions of this Title. When the total cost of all improvements, modifications, additions, reconstruction or repairs equals or exceeds the \(50 \%\) substantial improvement threshold, the structure must be brought into compliance. The cumulative substantial improvement provision does not apply to tenant improvements of commercial structures or to the subsequent remodeling of any residential facility (e.g. kitchen or bathroom) that have been remodeled previously and accounted for under this provision. (Ord. 2010 FC-1; Ord. 2005-FC2 § 2 (part), 2005)

\subsection*{16.08.160}

Detention system.
"Detention system" means a type of flood control system that delays the downstream progress of flood waters in a controlled manner, generally through the combined use of a temporary storage area and a metered outlet device, which causes a lengthening of the duration of flow and thereby reduces downstream flood peaks. (Ord. 1999 FC-1 § 1 (part), 1999; Ord. 1988 FC-2 Art. 4 (part), 1988)

\subsection*{16.08.170}

\section*{Development.}
"Development" means any manmade change to improved or unimproved real estate, including, but not limited to, buildings or other structures, mining, dredging, filling, grading, paving, fencing, excavating or drilling or storage of equipment or materials. (Ord. 2005 FC-2 § 2 (part), 2005; Ord. 1999 FC-1 § 1 (part), 1999; Ord. 1988 FC-2 Art. 4 (part), 1988)

\subsection*{16.08.180}

\section*{District.}
"District" means the County Flood Control District, as established by Title 48, Chapter 21 of the A.R.S., which is named in Pima County as the Pima County Flood Control District and known from this point forward as the District. (Ord. 2005 FC-2 § 2 (part), 2005)

\subsection*{16.08.190}

\section*{Drainage area.}
"Drainage area" means the upstream contributing watershed area measured at a single point of drainage concentration and is expressed in units of area. Other terms for this are catchment area, watershed, and river basin. (Ord. 2010 FC-1; Ord. 1999 FC-1 § 1 (part), 1999; Ord. 1988 FC-2 Art. 4 (part), 1988)

\subsection*{16.08.200}

Dry well.
"Dry well" means a deep hole covered and designed in such a manner so as to hold storm water runoff until it infiltrates into the ground. (Ord. 1999 FC-1 § 1 (part), 1999; Ord. 1988 FC-2 Art. 4 (part), 1988)

\subsection*{16.08.210}

\section*{Dwelling unit.}
"Dwelling unit" means a place of residence that may be located in a single or multiple dwelling building or a manufactured home. (Ord. 1999 FC-1 § 1 (part), 1999; Ord. 1988 FC-2 Art. 4 (part), 1988)

\subsection*{16.08.220}

\section*{Encroachment.}
"Encroachment" means the placement of uses, materials, fill, or structures into the regulatory floodplain in a manner that impedes or adversely modifies the flow conveyance capacity of the channel and/or regulatory floodplain of a watercourse.
A. An equal degree of encroachment is the standard applied to the evaluation of the effect of an encroachment within the regulatory floodplain with respect to the degree in which flood water heights or flow velocities may be changed as a result of the encroachment and assumes that all property owners on both sides of the watercourse are provided with an equal right to encroach to the same degree within that reach of the watercourse and modify the flow capacity within the floodplain including increasing the flood height or flow velocity.
B. Since the factors affecting hydraulic efficiency are usually not uniform within a reach, this standard may not result in equally measured distances between floodway limit lines and the regulatory floodplain boundaries of a watercourse. (Ord. 2010 FC-1; Ord. 2005 FC-2 § 2 (part), 2005; Ord. 1999 FC-1 § 1 (part), 1999; Ord. 1988 FC-2 Art. 4 (part), 1988)

\subsection*{16.08.230}

\section*{Erosion}
"Erosion" means the physical process where flowing flood water removes sediment and earthen material causing the banks and beds of stream channels to wear away and degrade over time. (Ord. 2005 FC-2 § 2 (part), 2005)

\subsection*{16.08.240}

\section*{Erosion hazard area.}
"Erosion hazard area" means the lands adjoining a watercourse regulated by this title that are deemed by the Chief Engineer to be subject to flood-related erosion losses. (Ord. 1999 FC-1 § 1 (part), 1999; Ord. 1988 FC-2 Art. 4 (part), 1988)

\subsection*{16.08.250}

\section*{Exemption.}
"Exemption" to this title means that a federal, state and/or local law has identified a land use, construction activity, and/or other action as allowed and immune to local regulations. Exempted uses shall not be affected or prohibited by the provisions of this title including those exempted land uses as provided for in A.R.S. Section 11-830 and 48-3609 as identified in Section 16.12 of this title. (Ord. 2005 FC-2 § 2 (part), 2005)

\subsection*{16.08.260}

\section*{Flood Control District Advisory Committee.}
"Flood Control District Advisory Committee" means the technical committee established by resolution of the Board, to act as an advisory committee to the Board on technical floodplain management and District issues. (Ord. 2005 FC-2 § 2 (part), 2005)

\subsection*{16.08.270}

Flood Insurance Study.
"Flood Insurance Study" means an engineering study conducted through FEMA to identify certain flood hazard areas in an engineering study. For Pima County, the flood insurance study is a report entitled, "The Flood Insurance Study for the Unincorporated Areas of Pima County, Arizona," dated February 15, 1983, with accompanying FIRMs and flood boundary and floodway maps. This flood insurance study includes its accompanying maps along with all subsequent amendments by the federal government to the flood insurance study. (Ord. 2005-FC2 § 2 (part), 2005)

\subsection*{16.08.280}

Flood or floodwater.
"Flood" or "floodwater" means a temporary rise in water level including groundwater or overflow of water onto lands not normally covered by water. (Ord. 1999 FC-1 § 1 (part), 1999; Ord. 1988 FC-2 Art. 4 (part), 1988)

\subsection*{16.08.290}

\section*{Floodplain.}
"Floodplain" means any areas within a watercourse which have been or may be covered partially or wholly by flood waters from the base flood including land that have been, or may be, subject to flooding from storm water runoff, overflow of flood waters from a watercourse, alluvial fans, sheet flood zones, or other property subject to flooding. The floodplain includes the stream channel, the floodway, and the floodway fringe area. (Ord. 2010 FC-1; Ord. 2005 FC-2 § 2 (part), 2005)

\subsection*{16.08.300}

\section*{Floodplain Administrator.}
"Floodplain Administrator" means the Chief Engineer or authorized representative of the District appointed by the Chief Engineer, who is also a registered civil engineer in the state of Arizona, whose duty is to oversee administration and enforcement of the floodplain management regulations contained within this ordinance as required by the NFIP. (Ord. 2005 FC-2 § 2 (part), 2005)

\subsection*{16.08.310}

\section*{Floodplain management.}
"Floodplain management" means the operation of an integrated natural resource management program, encompassing corrective and preventive measures for reducing flood and erosion damage. Floodplain management includes, but is not limited to, emergency preparedness planning, flood control works and floodplain management regulations. (Ord. 1999 FC-1 § 1 (part) 999; Ord. 1988 FC-2 Art. 4 (part), 1988)

\subsection*{16.08.320}

\section*{Floodplain management regulations.}
"Floodplain management regulations" means the codes, ordinances and other regulations relating to the use of land and construction within the regulatory floodplain, including zoning ordinances,
subdivision regulations, building codes, housing codes, setback requirements, open area regulations and similar methods of control affecting the use and development of these areas. (Ord. 1999 FC-1 § 1 (part), 1999; Ord. 1988 FC-2 Art. 4 (part), 1988)

\subsection*{16.08.330}

\section*{Floodplain use permit.}
"Floodplain use permit" means an official document that authorizes specific activity within a regulatory floodplain, riparian habitat, or erosion hazard area. (Ord. 2010 FC-1; Ord. 2005 FC-2 § 2 (part), 2005; Ord. 1999 FC-1 § 1 (part), 1999; Ord. 1988 FC-2 Art. 4 (part), 1988)

\subsection*{16.08.340}

\section*{Flood proofing.}
"Flood proofing" means provisions, changes or adjustments primarily for the purpose of reducing or eliminating flood damages to property and improvements subject to flooding. (Ord. 1999 FC-1 § 1 (part), 1999; Ord. 1988 FC-2 Art. 4 (part), 1988)

\subsection*{16.08.350}

\section*{Floodway area.}
"Floodway area" means that portion of the floodplain which must be preserved in order to maintain the flood carrying capacity of the base flood. Floodway areas regulated by this title include:
A. Federal floodway areas as delineated by FEMA;
B. Administrative floodways for major watercourses with a base flood peak discharge of 2,000 cfs or more as determined through engineering analyses using ADWR standards or other applicable engineering method.
1. Administrative floodway areas include the primary channel of the watercourse and any adjacent land areas that are necessary to convey the base flood without cumulatively increasing the water-surface elevation more than 1 foot above the base flood elevation under normal flow conditions;
2. In addition, when geologic features confine the flow of a watercourse the following additional areas shall be considered floodway areas:
a. Areas necessary to convey the base flood without increasing the water surface elevation more than a tenth (0.1) of a foot above the base flood elevation under normal flow conditions,
b. Areas of frequent inundation as defined by the \(4 \%\) annual chance (25-year) flood,
c. Areas with excessive flow depths and velocities \(\left(\mathrm{dv}^{2}\right)\), as defined in 16.26.050.G, and
d. Active flow paths and channels based on the presence of unconsolidated alluvium related to fluvial processes and the potential for the flow paths to meander over time.
3. A watercourse can be considered confined when the ratio of the wetted top-widths of the floodplains associated with the base flood and the 25-year flood is 1.25 or less and the height of the geologic features are at least 1.5 times the hydraulic depth of the base flood. The watercourse shall be considered confined through all reaches where this criteria is present both upstream and downstream of the subject area.
C. The primary channel of all regulatory minor watercourses with a base flood peak discharge of less than 2,000 cfs; (Ord. 2010 FC-1; Ord. 2005 FC-2 § 2 (part), 2005; Ord. 1999 FC-1 § 1 (part), 1999; Ord. 1998 FC-1 Section 1, 1998; Ord. 1988 FC-2 Art. 4 (part), 1988)

\subsection*{16.08.360}

Floodway fringe area.
"Floodway fringe area" is a term used by FEMA to designate the floodplain area lying outside the floodway, but within the regulatory floodplain. For the purposes of this title, the floodway fringe area is also the regulatory floodplain wherever a floodway has not been defined for a regulatory watercourse. (Ord. 2010 FC-1; Ord. 2005 FC-2 § 2 (part), 2005; Ord. 1999 FC-1 § 1 (part), 1999; Ord. 1988 FC-2 Art. 4 (part), 1988)

\subsection*{16.08.370}

\section*{Geologic floodplain.}
"Geologic floodplain" means those lands adjacent to a watercourse that have been subject to fluvial processes during the Holocene epoch (i.e., approximately the past 10,000 years). The geologic floodplain may be different from the regulatory floodplain. (Ord. 2010 FC-1; Ord. 1999 FC-1 § 1 (part), 1999; Ord. 1988 FC-2 Art. 4 (part), 1988)

\subsection*{16.08.380}

\section*{Habitat mitigation.}
"Habitat mitigation" for purposes of Chapter 16.30 of the Pima County Code means providing a new riparian habitat of similar quality to that which was removed as a result of physical improvements or development to a piece of property located within floodplain, an erosion hazard area, or riparian habitat regulated by this ordinance. (Ord. 2005 FC-2 § 2 (part), 2005)

\subsection*{16.08.390}

Hardship.
Hardship means, for the purposes of approving variances of regulation under the NFIP, the exceptional hardship which would result from a failure to grant the requested variance. The governing body requires that the variance be exceptional, unusual and peculiar to the property involved. Mere economic or financial hardship alone is not exceptional. Inconvenience, aesthetic considerations, physical disabilities, personal preferences or the disapproval of one's neighbors likewise cannot, as a rule, qualify as an exceptional hardship. All of these problems can be resolved through other means without granting a variance, even if the alternative is more expensive, or requires the property owner to build elsewhere or put the parcel to a different use than originally intended. (Ord. 2005 FC-2 § 2 (part), 2005)

\subsection*{16.08.400}

\section*{Highest adjacent grade.}
"Highest adjacent grade" means the highest natural elevation of the ground surface prior to construction next to the proposed walls of a structure. (Ord. 2005-FC2 § 2 (part), 2005)

\subsection*{16.08.410}

\section*{Historic structure.}
"Historic structure" means a building:
A. Listed individually in the National Register of Historic Places (a listing maintained by the Department of Interior) or preliminarily determined by the Secretary of the Interior (Secretary) as meeting the requirements for individual listing on the National Register;
B. Certified or preliminarily determined by the Secretary as contributing to the historical significance of a registered historic district or a district preliminarily determined by the Secretary to qualify as a registered historic district;
C. Individually listed on a state inventory of historic places in states with historic preservation programs which have been approved by the Secretary; or
D. Individually listed on a local inventory of historic places in communities with historic preservation programs that have been certified either by an approved state program as determined by the Secretary; or directly by the Secretary in states without approved programs. (Ord. 2005 FC-2 § 2 (part), 2005)

\subsection*{16.08.420}

\section*{Hydroriparian.}
"Hydroriparian" for purposes of this title, means riparian habitat designated as hydroriparian on maps adopted by the Board. These riparian habitats are generally associated with perennial watercourses and/or springs. Plant communities are dominated by obligate or preferential wetland plant species such as willow and cottonwood. (Ord. 2005 FC-2 § 2 (part), 2005)

\subsection*{16.08.430}

\section*{Important Riparian Area.}
"Important Riparian Area," for purposes of this title, means riparian areas designated as Important Riparian Areas on maps adopted by the Board for their hydrologic, geomorphic, and biological values. These areas provide a critical function for landscape linkage and connectivity with other habitats and provide biological corridors. Important Riparian Areas include hydroriparian, mesoriparian, and xeroriparian class A, B, C, and D habitat areas. (Ord. 2005 FC2 § 2 (part), 2005; Ord. 1999 FC-1 § 1 (part), 1999; Ord. 1994 FC-2 (part), 1994: Ord. 1988 FC2 Art. 10 (B), 1988)

\subsection*{16.08.440}

\section*{Levee.}
"Levee" means a manmade structure, usually an earthen embankment, designed and constructed in accordance with sound engineering practices for the purpose of controlling, or diverting the flow of water so as to provide protection from temporary flooding. (Ord. 1999 FC-1 § 1 (part), 1999; Ord. 1988 FC-2 Art. 4 (part), 1988)

\subsection*{16.08.450}

\section*{Lowest floor.}
"Lowest floor" means the floor of the lowest enclosed area of any structure. This includes any part of the structure having a basement, a floor sub-grade below ground level and crawl spaces under manufactured housing, which are considered to be the lowest finished floor if they are not vented and constructed of flood resistant materials to the regulatory flood elevation. (Ord. 2010 FC-1; Ord. 2005 FC-2 § 2 (part), 2005; Ord. 1999 FC-1 § 1 (part), 1999; Ord. 1988 FC-2 Art. 4 (part), 1988)

\subsection*{16.08.460 \\ Manufactured home.}
"Manufactured home" means a structure transportable in one or more sections, which is built on a permanent chassis and designed to be used with or without a permanent foundation when connected to the required utilities. Manufactured home construction, installment standards, and placement within floodplains are regulated under A.R.S. in Title 41, Chapter 21, Article 2, Office of Manufactured Housing. For floodplain management purposes, the term manufactured home also includes mobile homes, park trailers, travel trailers, recreational vehicles, and other similar vehicles placed on a site for more than 180 consecutive days. (Ord. 2010 FC-1; Ord. 2005 FC-2 § 2 (part), 2005; Ord. 1999 FC-1 § 1 (part), 1999; Ord. 1988 FC-2 Art. 4 (part), 1988)

\subsection*{16.08.470}

Manufactured home park or subdivision.
"Manufactured home park or subdivision" means a parcel or contiguous parcels of land divided into four or more manufactured home lots for sale or rent. (Ord. 1999 FC-1 § 1 (part), 1999; Ord. 1988FC-2 Art. 4 (part), 1988)

\subsection*{16.08.480}

Market value.
"Market value" means the determination of the estimated cost to replace the structure in new condition and adjusting that cost figure by the amount of depreciation that has accrued since the structure was constructed. The cost of replacement of the structure shall be based on a square foot cost factor determined by reference to a building cost estimating guide recognized by the building construction industry. The amount of depreciation shall be determined by taking into account the age and physical deterioration of the structure and functional obsolescence as approved by the floodplain administrator, but shall not include economic or other forms of external obsolescence. Use of replacement costs or accrued depreciation factors different from those contained in recognized building cost estimating guides may be considered only if such factors are included in a report prepared by an independent professional appraiser and supported by a written explanation of the differences. (Ord. 2005-FC2 § 2 (part), 2005)

\subsection*{16.08.490}

\section*{Mean sea level.}
"Mean sea level," for purposes of the NFIP, means the National Geodetic Vertical Datum (NGVD) of 1929 or other datum to which base flood elevations are referenced, as shown on a community's FIRM. (Ord. 1999 FC-1 § 1 (part), 1999; Ord. 1988 FC-2 Art. 4 (part), 1988)

\subsection*{16.08.500}

\section*{Mesoriparian.}
"Mesoriparian" for purposes of this title, means riparian habitat designated as mesoriparian on maps adopted by the Board. These riparian habitats generally are associated with perennial or intermittent watercourses or shallow groundwater. Plant communities may be dominated by species that are also found in drier habitats (e.g., mesquite), but contain some preferential riparian plant species such as ash or netleaf hackberry. (Ord. 2005 FC-2 § 2 (part), 2005)

\subsection*{16.08.510 \\ Mining reclamation plan.}
"Mining reclamation plan" means a plan for sand and gravel operations that defines hydrologic and hydraulic constraints; outlines methods of extraction, operation and site development; and provides procedures for final site reclamation pursuant to the Arizona Aggregate Mined Land Reclamation Act in Title 27 of the Arizona Revised Statutes (A.R.S. §27-1201, et seq.). (Ord. 2005 FC-2 § 2 (part), 2005)

\subsection*{16.08.520}

\section*{New construction.}
"New construction" means structures and any subsequent improvements to such structures for which the "start of construction" commenced on or after the effective date of adoption of:
A. An initial FIRM or after December 31, 1974, whichever is later, within federally regulated flood hazard zones.
B. This title for floodplain management regulations including regulation of erosion and riparian habitat as provided herein. (Ord. 2010 FC-1)

\subsection*{16.08.530}

\section*{Nonconforming use.}
"Nonconforming use" means an existing legal use that does not comply with this Title and was either:
A. Constructed prior to December 16, 1974, which predates the requirement for written authorization for development within a floodplain, or
B. Constructed on or after December 16, 1974, in compliance with the terms and conditions of the written authorization in effect at the time of construction. (Ord. 2010 FC-1)

\subsection*{16.08.540}

\section*{Obstruction.}
"Obstruction" means any physical alteration within, to, along, across or projecting into any watercourse that may impede, retard, or change the direction of the flow of water, either in itself or by catching or collecting debris carried by such water, or that is placed where a flow of water might carry the same downstream. Examples include, but are not limited to, the following: Any dam, wall, embankment, levee, dike, pile, abutment, projection, excavation, channel rectification, bridge, conduit, culvert, building, wire, fence, rock, gravel, refuse, fill, structure or vegetation. (Ord. 1999 FC-1 § 1 (part), 1999; Ord. 1988 FC-2 Art. 4 (part), 1988)

\subsection*{16.08.550}

\section*{Person.}
"Person" means any individual, the individual's agent, a firm, partnership, association, or corporation or an agent of the aforementioned groups, this state or its political subdivision thereof. (Ord. 2005 FC-2 § 2 (part), 2005; Ord. 1999 FC-1 § 1 (part), 1999; Ord. 1988 FC-2 Art. 4 (part), 1988)

\subsection*{16.08.560}

\section*{Pima County.}
"Pima County" means the political subdivision established by Title 11, Chapter 1 of the A.R.S. and from this point forward is referred to as the County. (Ord. 2005 FC-2 § 2 (part), 2005)
16.08.570

Reach.
"Reach" is a hydraulic engineering term used to describe longitudinal segments of a stream or watercourse. In an urban area, an example of a reach would be the segment of a watercourse located between two consecutive bridge crossings. (Ord. 1999 FC-1 § 1 (part), 1999; Ord. 1988 FC-2 Art. 4 (part), 1988)
16.08.580

\section*{Reasonable repair.}
"Reasonable repair" means those activities necessary in order to facilitate continuation or improvement of an existing legal use. Reasonable repair is considered to occur when the first alteration commences for any wall, ceiling, floor or other structural part of the building whether or not that alteration affects the exterior dimensions of the structure. (Ord. 2005 FC-2 § 2 (part), 2005)

\subsection*{16.08.590}

\section*{Regulatory flood elevation.}
"Regulatory flood elevation" means the elevation that is 1 foot above the calculated watersurface elevation of the base flood. (Ord. 1999 FC-1 § 1 (part), 1999; Ord. 1988 FC-2 Art. 4 (part), 1988)

\subsection*{16.08.600}

\section*{Regulatory floodplain or floodprone area.}
"Regulatory floodplain or floodprone area" means that portion of the geologic floodplain associated with a watercourse, including its channel, or any other floodplain or floodprone area that would be inundated by the base flood, including all base floods where the base flood peak discharge is 100 cfs or greater, those areas that are subject to sheet flooding except when the maximum potential contributing watershed area is less than 20 acres, those areas identified on subdivision plats or development plans, those areas designated by FEMA, including areas designated as Shaded Zone X as well as those areas that the Chief Engineer, using the best available data, has determined is subject to a flood hazard during the base flood. (Ord. 2010 FC1; Ord. 2005 FC-2 § 2 (part), 2005; Ord. 1999 FC-1 § 1 (part), 1999; Ord. 1988 FC-2 Art. 4 (part), 1988)

\subsection*{16.08.610}

\section*{Retention system.}
"Retention system" means a type of flood control system that stops the downstream progress of flood waters by employing methods of total containment. (Ord. 2005 FC-2 § 2 (part), 2005; Ord. 1999 FC-1 § 1 (part), 1999; Ord. 1988 FC2 Art. 4 (part), 1988)

\subsection*{16.08.620}

\section*{Riparian habitat.}
"Riparian habitat," for purposes of this title, means riparian habitat designated as riparian on maps adopted by the Board. These habitats are generally characterized by vegetation that is different in plant species composition or an increase in the size and/or density of vegetation as compared to upland areas occurring in association with any regulatory floodplain and stream
channel where waters flow at least periodically in a channel or as dispersed flow, or other features associated with a floodplain such as a spring, cienega, lake, watercourse, river, stream, creek, wash, arroyo, or other surface body of water. (Ord. 2005 FC-2 § 2 (part), 2005)

\subsection*{16.08.630}

Setback.
"Setback" means the minimum horizontal distance between a structure and a watercourse. On each side of a watercourse, the setback is measured from the top edge of the channel bank, the top edge of the closest channel or braid when multiple channels or braids exist, or the edge of the regulatory floodway, whichever is most representative of the erosion hazard. (Ord. 2010 FC-1; Ord. 2005 FC-2 § 2 (part), 2005; Ord. 1999 FC-1 § 1 (part), 1999; Ord. 1988 FC-2 Art. 4 (part), 1988)

\subsection*{16.08.640}

\section*{Sheet flooding area.}
"Sheet flooding area" means the area which may be subject to flooding with depths of one foot or less during the base flood even though a clearly defined channel does not exist and the path of the flooding is often unpredictable and indeterminate. Sheet flooding areas include:
A. FEMA designated Shaded Zone X when the designation refers to areas subject to a depth of flow of 1 foot or less during the base flood; and
B. Areas that the Chief Engineer, using the best available data, has determined are subject to sheet flooding during the base flood. (Ord. 2010 FC-1; Ord. 2005 FC-2 § 2 (part), 2005; Ord. 1999 FC-1 § 1 (part), 1999; Ord. 1988 FC-2 Art. 4 (part), 1988)

\subsection*{16.08.650}

\section*{Special Flood Hazard Area.}
"Special Flood Hazard Area" means an area designated by FEMA as having a special flood hazard, and that is land subject to a 1 percent or greater chance of flooding in any given year, and from this point forward abbreviated as SFHA. An SFHA may be designated as a Zone A, AO, AH, AE, A 1-30, A99.
A. Zone A, no base flood elevation has been determined;
B. Zone AE, the base flood elevation has been determined;
C. Zone AH, flood depths of 1 to 3 feet in areas that are usually areas of ponding with the base flood elevations determined;
D. Zone AO, flood depths of 1 to 3 feet in areas usually subject to sheet flow with the average depths determined. (Ord. 2010 FC-1; Ord. 2005 FC-2 § 2 (part), 2005)

\subsection*{16.08.660}

\section*{Start of construction.}
"Start of construction" means the date the building permit was issued, for purposes of determining exemptions to Title 16 under Section 16.12.010, provided the actual commencement of physical construction activities occurs within 180 calendar days of the permit date. This applies to building permits for a new building or the substantial improvement of an existing building, including the actual commencement of construction, repair, reconstruction, rehabilitation, addition, placement or other improvement. The actual start means the first placement of permanent construction of a structure on a site, such as the pouring of slab or
footings, the installation of piles, the construction of columns or any work beyond the stage of excavation including those improvements intended for the placement of a manufactured home. For a substantial improvement, the actual start of construction means the first alteration of any wall, ceiling, floor or other structural part of a building, whether or not that alteration affects the external dimensions of the building. (Ord. 2010 FC-1; Ord. 2005 FC-2 § 2 (part), 2005)

\subsection*{16.08.670}

\section*{Structure.}
"Structure" means any walled and roofed building that is principally above ground; this includes a gas or liquid storage tank or a manufactured home. Habitable structures are those structures intended for human occupation, whether utilized on a full or part-time basis, as defined under County Code, Title 15, Building Codes. For purposes of this title, a private drainage improvement is considered a structure. (Ord. 2010 FC-1; Ord. 2005 FC-2 § 2 (part), 2005; Ord. 1999 FC-1 § 1 (part), 1999; Ord. 1988 FC-2 Art. 4 (part), 1988)

\subsection*{16.08.680}

\section*{Substantial damage.}
"Substantial damage" means damage of any origin sustained by a structure whereby the cost of restoring the structure to its before damaged condition would equal or exceed 50 percent of the market value of the structure before the damage occurred. This term also applies to structures which have incurred repetitive loss or damage where the cumulative total of the loss or damage equals or exceeds 50 percent of the structure's market value regardless of the actual repair work performed. (Ord. 2010 FC-1; Ord. 2005 FC-2 § 2 (part), 2005)

\subsection*{16.08.690}

\section*{Substantial improvement.}
"Substantial improvement" means any reconstruction, rehabilitation, addition or other improvement of a structure, the cost of which equals or exceeds 50 percent of the market value of the structure before the "start of construction" of the improvement as determined by:
A. The latest assessment rolls of the County Assessor before the improvement or repair is started, or
B. The market value as determined by estimating the cost to replace the structure in new condition and adjusting that cost figure by the amount of depreciation that has accrued since the structure was constructed. The cost of replacement of the structure shall be based on a square foot cost factor determined by reference to a building cost estimating guide recognized by the building construction industry. The amount of depreciation shall be determined by taking into account the age and physical deterioration of the structure and functional obsolescence as approved by the floodplain administrator, but shall not include economic or other forms of external obsolescence. Use of replacement costs or accrued depreciation factors different from those contained in recognized building cost estimating guides may be considered only if such factors are included in a report prepared by an independent professional appraiser and supported by a written explanation of the differences.
C. This term includes structures which have incurred Substantial damage regardless of the actual repair work performed.
D. The term does not, however, include either:
1. Any project for improvement of a structure to correct existing violations of state or local health, sanitary or safety code specifications which have been identified by the local code enforcement official and which are the minimum necessary to assure safe living conditions; or,
2. Any alteration of a "historic structure," provided that the alteration would not preclude the structure's continued designation as a "historic structure." (Ord. 2010 FC-1; Ord. 2005 FC-2 § 2 (part), 2005)

\subsection*{16.08.700}

\section*{Technical Review Committee.}
"Technical Review Committee" means the Flood Control District Advisory Committee that, when requested by the Board, provides review of technical matters concerning interpretation and enforcement of this title. (Ord. 2005 FC-2 § 2 (part), 2005)

\subsection*{16.08.710}

Variance.
"Variance" means to have the Board grant relief from the requirements of this title that would allow construction in a manner that would otherwise be prohibited by this title including:
A. Variances of adopted Special Flood Hazard Areas as designated by FEMA. Such variances shall conform to the variance requirements of the National Flood Insurance Program as provided for within 44 CFR 66 and A.R.S. 48-3609 and as provided for in Chapter 16.56 of this Title.
B. Variances to adopted District regulations as provided by this title. Such variances shall conform to the variance requirements provided in Chapter 16.56 of this title. (Ord. 2010 FC1; Ord. 2005 FC-2 § 2 (part), 2005; Ord. 1999 FC-1 § 1 (part), 1999; Ord. 1988 FC-2 Art. 4 (part), 1988)

\subsection*{16.08.720}

\section*{Violation.}
"Violation" means the failure of a structure or other development to be fully compliant with the District's floodplain management regulations. A structure or other development without the elevation certificate, other certifications or other evidence of compliance required in this ordinance is presumed to be in violation until such time as that documentation is provided. (Ord. 1999 FC-1 § 1 (part), 1999; Ord. 1988 FC-2 Art. 4 (part), 1988)

\subsection*{16.08.730}

Waiver by the Chief Engineer.
"Waiver by the Chief Engineer" means to modify or substitute one technical requirements or standard for another where provisions in this title allow the Chief Engineer to exercise technical judgment in establishing permit requirements, for example, waiving erosion setback requirements based on geotechnical evidence. (Ord. 2005-FC2 § 2 (part), 2005)

\subsection*{16.08.740}

\section*{Watercourse.}
"Watercourse" means any lake, river, stream, creek, wash, arroyo, or other body of water or channel having banks and a bed through which waters flow at least periodically. The watercourse
includes the streambed, channel banks, floodway and floodway fringe areas, and areas subject to sheet flooding. (Ord. 2010 FC-1; Ord. 2005 FC-2 § 2 (part), 2005); Ord. 1999 FC-1 § 1 (part), 1999; Ord. 1988 FC-2 Art. 4 (part), 1988)

\subsection*{16.08.750}

\section*{Watercourse master plan.}
"Watercourse master plan" means a master plan adopted by the District Board that provides uniform but separate rules for watercourses where a higher level of protection is warranted for public safety or to preserve the integrity of the watercourse as provided for in A. R. S. Section 48-3609-01. (Ord. 2005 FC-2 § 2 (part), 2005)

\subsection*{16.08.760}

Watershed.
"Watershed" means the contributing drainage area located upstream of a specific point along a watercourse. (Ord. 1999 FC-1 § 1 (part), 1999; Ord. 1988 FC-2 Art. 4 (part), 1988)

\subsection*{16.08.770}

\section*{Written Finding by the Chief Engineer.}
"Written Finding by the Chief Engineer" means a written determination issued by the Chief Engineer after consideration of technical facts and the provisions of this Title concerning the conditions or denial of a floodplain use permit or a boundary determination of a regulatory floodplain, floodway, erosion hazard area or riparian habitat. (Ord. 2010 FC-1)

\subsection*{16.08.780}

\section*{Xeroriparian.}
"Xeroriparian" for purposes of this title, means riparian habitat designated as xeroriparian on maps adopted by the Board. These riparian habitats are generally associated with an ephemeral water supply. These communities typically contain plant species also found in upland habitats; however, these plants are typically larger and/or occur at higher densities than adjacent uplands. (Ord. 2005 FC-2 § 2 (part), 2005)

\section*{Chapter 16.26}

\section*{FLOODWAY FRINGE AREA REQUIREMENTS}

\section*{Sections:}
16.26.010 Uses allowed.
16.26.020 Conditions applicable to all uses.
16.26.030 Elevations and flood proofing.
16.26.040 Fill and fill materials.
16.26.050 Structures-Construction restrictions.
16.26.055 Critical facilities.
16.26.060 Storage of materials and equipment.
16.26.070 Utilities and sanitary facilities.
16.26.080 Public right-of-way.

\subsection*{16.26.090 Floodway fringe appeals and variances.}

\subsection*{16.26.010}

\section*{Uses allowed.}

Any use, to the extent not prohibited by this title or any other title or law, is allowed within the floodway fringe area, (Ord. 1999 FC-1 § 1 (part), 1999; Ord. 1988 FC-2 Art. 9 (A), 1988)

\subsection*{16.26.020}

\section*{Conditions applicable to all uses.}
A. The following general conditions, as set out in Sections 16.26.030 through 16.26.070, shall apply to all uses within the floodway fringe area and, for purposes of this chapter, other regulatory floodplain areas where a floodway has not been defined or delineated including but not limited to A, AO, AE, AH, A1-30 and Shaded X Zones as provided on adopted FIRMs, or those regulatory floodplain areas defined by this title.
B. No development, storage of materials or equipment, or other uses shall be permitted which, acting alone or in combination with existing or future uses, create a danger or hazard to life or property.
C. No encroachment may increase the base flood level more than one tenth (0.1) of a foot or increase flood velocities more than \(10 \%\) or 1 fps , whichever is less, at any property line, except when it can be demonstrated that the post-development velocity is not an erosive velocity. The velocity subject to this standard may be the overbank velocity, the channel velocity, or both, as appropriate based on the type of development and its location within the floodplain.
D. Consideration of the effects of a proposed use or development shall be based on the assumption that there will be an equal degree of encroachment extending for a significant reach on both sides of the watercourse. (Ord. 2010 FC-1; Ord. 2005 FC-2 § 2 (part), 2005; Ord. 1999 FC-1 § 1 (part), 1999; Ord. 1988 FC-2 Art. 9 (B) (part), 1988)

\subsection*{16.26.030}

Elevation and flood proofing.
A. New construction and substantial improvement of any habitable structure, either residential or nonresidential, shall have the lowest floor, including the basement, or in the case of manufactured housing the lowest structural member, elevated at or above the regulatory flood elevation, which is one foot above the base flood elevation. Certification of elevation shall be required pursuant to Section 16.20.070.
B. New construction and substantial improvement of any habitable structure, either residential or nonresidential, in a numbered AO Zone (AO1, AO2, AO3, etc.) shall have the lowest floor, including basement, or in the case of manufactured housing the lowest structural member, elevated above highest adjacent natural grade at least one foot higher than the depth designated by the numbered zone on the FIRM, or at least two feet above highest adjacent natural grade if no depth number is specified. Certification of elevation shall be required pursuant to 16.20.070.
C. In sheet flooding or ponding areas, such as Zones AO and AH, require drainage paths around structures on slopes to guide water away from structures.
D. Non-residential, non-habitable structures shall either be elevated in conformance with subsections A. and B., or together with attendant utility and sanitary facilities:
1. Be flood proofed so that below the regulatory flood elevation the structure is watertight with walls substantially impermeable to the passage of water;
2. Have structural components capable of resisting hydrostatic and hydrodynamic loads and effects of buoyancy; and
3. Be certified by an Arizona registered engineer or architect that the standards of this subsection are satisfied. Such certifications shall be provided to the Floodplain Administrator on a form approved by the District.
E. All new construction and substantial improvements with fully enclosed areas below the regulatory flood elevation that are useable solely for parking of vehicles, building access or limited storage in an area other than a basement and which are subject to flooding shall be constructed of flood resistant materials to the regulatory flood elevation, have all service facilities elevated at or above the regulatory flood elevation, and be designed to automatically equalize hydrostatic flood forces on exterior walls by allowing for the entry and exit of flood waters. Designs for meeting this requirement must either be certified by an Arizona registered civil engineer or architect or meet or exceed the following minimum criteria:
1. A minimum of two openings on different sides of each enclosed area that have a total net area of not less than one square inch for every square foot of enclosed area subject to flooding shall be provided;
2. The bottom of all openings shall be no higher than one foot above grade; and
3. Openings may be equipped with screens, louvers, valves or other coverings or devices provided that they permit the automatic entry and exit of flood waters.
F. Manufactured homes shall meet the above standards and also the standards in 16.34. (Ord. 2010 FC-1; Ord. 2005 FC-2 § 2 (part), 2005)

\subsection*{16.26.040}

\section*{Fill and fill materials.}
A. Any fill proposed to be deposited in the floodway fringe area must be shown to have some beneficial purpose, and the amount thereof shall not be greater than is needed to achieve that purpose, as demonstrated by a plan submitted by the owner showing the uses to which the filled land will be put and the final dimensions of the proposed fill or other materials.
B. Such fill or other materials shall be protected against erosion by a method approved by the District including riprap, vegetative cover, bulk-heading, or other approved methods, unless a study, prepared by an Arizona registered civil engineer, demonstrates that erosion protection is not required.
C. If the permittee proposes to remove a structure or a portion of the property from a FEMA floodplain through the LOMR-F process, the permittee shall provide evidence the fill was adequately compacted by submitting the results of compaction testing certified by an Arizona registered engineer. (Ord. 2010 FC-1; Ord. 2005 FC-2 § 2 (part), 2005; Ord. 1999 FC-1 § 1 (part), 1999; Ord. 1988 FC-2 Art. 9 (B) (1), 1988)

\subsection*{16.26.050}

\section*{Structures - Construction restrictions.}
A. Structures, residential and nonresidential, shall be constructed so as to offer the minimum obstruction to the flow of flood waters. Wherever possible, structures shall be constructed with the same alignment as the direction of flood flow; and so far as practicable, shall be placed approximately on the same alignment as those of adjoining structures.
B. All structures, residential and nonresidential, shall be firmly anchored to prevent flotation, collapse or lateral movement which might otherwise result in damage to other structures or restriction of bridge openings and other narrow sections of the watercourse. Anchoring for manufactured housing will be in conformance with state standards as established by the Office of Manufactured Housing under A. R. S. Title 41, Chapter 16, Article 2.
C. Service facilities such as electrical and heating equipment shall be constructed at or above the regulatory flood elevation for the particular area, or, in the case of nonresidential structures, be adequately flood proofed.
D. Any structure designed or utilized for human habitation, whether residential or nonresidential, that is used on a full-time or part-time basis shall have the lowest floor elevated at or above the regulatory flood elevation. Certification of elevation is required pursuant to Section 16.20.070.
E. Non-habitable, enclosed areas within the regulatory floodplain and below the regulatory flood elevation shall be designed in accordance with 16.26.030.E.
F. If fill is used to elevate any structure, the minimum elevation of the fill shall be at or above the base flood elevation, shall extend at such elevation for a distance of at least 10 feet beyond the outside limit of the structure, and shall be adequately protected from erosion pursuant to Section 16.26.040.B unless a study or analysis prepared by an Arizona registered civil engineer demonstrates that a lesser distance or the absence of erosion protection is acceptable.
G. Structures, residential or nonresidential, designed or utilized for human habitation, whether on a full-time or part-time basis, and which will be completely surrounded by floodwaters during the base flood shall only be permitted when:
1. The product of the flow depth (d), in feet, times the square of the flow velocity (v), in feet per second, of the flood waters of the base flood does not exceed the numerical value of 18 for a period in excess of 30 minutes at any point adjacent to the structure and associated improvements, including fill, and
2. The flood waters of the base flood do not exceed 3 feet in depth at any point adjacent to the structure and associated improvements, including fill.
3. For purposes of this section, depth and velocity shall be post development values and shall be calculated as follows:
a. When flow distribution information is available, it shall be used to provide the most representative values for flood depth and velocity.
b. When approximate information is available, average depths and velocities may be used. (Ord. 2010 FC-1; Ord. 2005 FC-2 § 2 (part), 2005; 1998 FC-1 Section 2, 1998; Ord. 1988 FC-2 Art. 9 (B) (2), 1988)

\subsection*{16.26.055}

\section*{Critical facilities.}
A. Critical facility means any of the following:
1. A structure or facility that produces, uses or stores highly volatile, flammable, explosive, toxic, and/or water reactive materials;
2. Hospitals, emergency medical facilities, nursing homes and/or housing facilities likely to have occupants who may not be sufficiently mobile to avoid injury or death during a flood;
3. Essential emergency response facilities, such as police stations, fire stations, emergency shelters and/or operation centers that are needed for public safety and/or flood response activities before, during and after a flood; and
4. Public and private utility facilities, such as, but not limited to power, water and wastewater treatment, and/or communications, that are vital to maintaining or restoring normal services to flooded areas before, during and after a flood.
B. Applicability. The critical facility requirements shall only apply along watercourses which have FEMA designated floodplains. Where the 0.2 percent chance floodplain has not been established, the Chief Engineer may require that this floodplain be delineated by the applicant.
C. Critical facilities shall be located outside of the 0.2 percent annual chance (500-year) floodplain, if possible. If a critical facility must be located in a 0.2 percent annual chance (500-year) floodplain, it must be demonstrated that there is either a critical need to locate it within the floodplain, or that there is not a suitable alternative site, as justified by an Arizona registered civil engineer. Any critical facility located within a 0.2 percent annual chance (500-year) floodplain shall be protected from that event. Protection includes, but is not limited to, elevating the lowest floor and all utilities and mechanical services to a minimum of one foot above the base flood or to the 0.2 percent annual chance (500-year) floodplain water surface elevation, whichever is greater, providing elevated access ramps, if appropriate, adequately protecting the facility from both lateral and vertical erosion associated with the 0.2 percent annual chance (500-year) floodplain, providing all weather access during the base flood and developing an emergency response plan.
D. Existing critical facilities within the 0.2 percent annual chance (500-year) floodplain that propose substantial improvements and/or repairs shall be protected from the 0.2 percent annual chance (500-year) flood event. Protection includes, but is not limited to, elevating or flood proofing the lowest floor and all utilities and mechanical services to a minimum of one foot above the base flood or to the 0.2 percent annual chance (500-year) floodplain water surface elevation, whichever is greater, providing elevated access ramps, if appropriate, adequately protecting the facility from both lateral and vertical erosion associated with the
0.2 percent annual chance (500-year) floodplain, providing all weather access to the base flood and developing an emergency response plan.

\subsection*{16.26.060}

\section*{Storage of materials and equipment.}
A. The storage and/or processing of materials that are buoyant, flammable, explosive, hazardous, or that could be injurious to human, animal, or plant life in times of flooding is prohibited.
B. Storage of other material or equipment may be allowed if it is not subject to major damage by floods and is firmly anchored to prevent flotation or is readily removable from the area within the limited time available after flood warning. (Ord. 2005 FC-2 § 2 (part), 2005; Ord. 1999-FC-1 §§ 1 (part) 1999; Ord. 1988-FC2 Art. 9 (B) (3), 1988)

\subsection*{16.26.070}

\section*{Utilities and sanitary facilities.}
A. Water supply, water treatment, and sewage collection and disposal systems built in a regulatory floodplain or erosion hazard area shall be designed to prevent or minimize infiltration of flood waters into these systems and to prevent the discharge of materials from these systems into flood waters.
B. On-site sanitary waste disposal systems shall be located or designed to avoid impairment to them or contamination from them during flooding.
C. Other utilities, such as gas pipelines, fuel pipelines, and non-potable waterlines shall be designed and constructed to ensure they are not impaired during the base flood, including the potential for long term scour. (Ord. 2010 FC-1; Ord. 2005 FC-2 § 2 (part), 2005; Ord. 1999 FC-1 § 1 (part), 1999; Ord. 1988 FC-2 Art. 9 (B) (4), 1988)

\subsection*{16.26.080}

\section*{Public right-of-way.}

Any proposed development, disturbance, or grading within public right-of-way that is located in a floodway fringe shall require a floodplain use permit pursuant to this title. All provisions of this title shall apply to such activities. No uses shall be permitted which the Chief Engineer determines would adversely affect the function of the public right-of-way, floodplain, or riparian habitat. (Ord. 2010 FC-1; Ord. 2005 FC-2 § 2 (part), 2005)

\subsection*{16.26.090}

\section*{Floodway fringe appeals and variances.}
A. Appeals. Any applicant requesting an appeal of a written finding of the Chief Engineer regarding the conditions of or denial of a permit or to delineate a floodplain may appeal to the Board as provided for in Chapter 16.56 of this title.
B. Variance. Any property owner requesting a variance shall request a variance of the Board through the Chief Engineer as provided for in Chapter 16.56 of this title. (Ord. 2010 FC-1; Ord. 2005 FC-2 § 2 (part), 2005)

\section*{Chapter 16.28}

\section*{EROSION HAZARD AREAS AND BUILDING SETBACKS}

\section*{Sections:}
16.28.010 Building setback requirements.
16.28.020 Setbacks near major watercourses.
16.28.030 Setbacks from minor washes.
16.28.040 Appeals and variances.
16.28.010

\section*{Building setback requirements.}

In erosion hazard areas where watercourses are subject to flow-related erosion hazards, building setbacks are required from the primary channel or channels as set forth in Sections 16.28.020 and 16.28.030. (Ord. 2005 FC-2 § 2 (part), 2005; Ord. 1999 FC-1 § 1 (part), 1999; Ord. 1988 FC-2 Art. 12 (part), 1988)

\subsection*{16.28.020}

Setbacks near major watercourses.
For major watercourses with base flood peak discharges of 2,000 cfs or greater, the following building setbacks shall be required where approved bank protection is not provided:
A. Along the following major natural watercourses, where no unusual conditions exist, a minimum (default) building setback shall be provided at the time of the development, unless an alternative setback is determined by an engineering analysis, prepared by an Arizona registered civil engineer, based on ADWR standards or other applicable engineering methods, which establishes acceptable safe limits for the development and is approved by the Chief Engineer.
B. Along natural channels where no unusual conditions exist (such as a pronounced channel curvature), the default building setback for erosion hazard protection shall be:
1. A distance of 500 feet along the Santa Cruz River, Rillito Creek, Pantano Wash, Tanque Verde Creek, San Pedro River, and the Canada del Oro Wash;
2. A distance of 250 feet along major watercourses with base flood peak discharges greater than 10,000 cfs;
3. A distance of 100 feet along all major watercourses with base flood peak discharges of \(10,000 \mathrm{cfs}\) or less, but more than \(5,000 \mathrm{cfs}\); and
4. A distance of 75 feet along all other major watercourses with base flood peak discharges of \(5,000 \mathrm{cfs}\) or less, but more than or equal to \(2,000 \mathrm{cfs}\).
C. Along major natural watercourses where unusual conditions do exist that may increase or decrease the required erosion hazard setback, building setbacks shall be established on a case-by-case basis by the Chief Engineer using the standard adopted by the ADWR or other applicable engineering methods which establish safe limits for the development. Unusual conditions include but are not limited to historical meandering of the watercourse, large
excavation pits, poorly defined or poorly consolidated banks, natural channel armoring, proximity to stabilized structures such as bridges or rock outcrops, and changes in the direction, amount and velocity of the flow of waters within the watercourse.
D. When determining building setback requirements, the Chief Engineer shall consider the danger to life and property due to existing flood heights or velocities and historical channel meandering.
E. For constructed channels, structural bank protection to prevent erosion is required for major watercourses with base flood peak discharges of more than \(2,000 \mathrm{cfs}\) unless a written waiver of the requirement is granted by the Chief Engineer. A waiver of the requirement for structural bank protection may be granted based on an acceptable engineering study, which has been prepared and sealed by an Arizona registered civil engineer, demonstrating an appropriate building setback for an earthen channel, based on soil and natural flow conditions. (Ord. 2010 FC-1; Ord. 2005 FC-2 § 2 (part), 2005; Ord. 1999 FC-1 § 1 (part), 1999; Ord. 1988 FC-2 Art. 12 (A), 1988).

\subsection*{16.28.030}

\section*{Setbacks from minor washes.}
A. For minor natural washes with a base flood peak discharge of less than 2,000 cfs, the following building setbacks shall be required:
1. A distance of 50 feet for watercourses with base flood peak discharges of less than 2,000 cfs, but more than 500 cfs;
2. A distance of 25 feet for watercourses with base flood peak discharges of 500 cfs to 100 cfs;
3. Alternative safe limits for erosion setbacks approved in writing by the Chief Engineer based on an acceptable engineering study prepared and sealed by an Arizona registered civil engineer. However, at no time shall a setback of less than 25 feet from the top of channel bank be permitted in order to provide for reasonable access and stability of nearby structure foundations, except as allowed pursuant to subpart B of this provision.
B. Along minor natural washes where unusual conditions exist, building setbacks shall be established on a case-by-case basis by the Chief Engineer, using ADWR standards or other applicable engineering methods or an acceptable engineering study is prepared and sealed by an Arizona registered civil engineer and approved by the Chief Engineer. When determining building setback requirements, the Chief Engineer shall consider danger to life and property due to existing flood heights or velocities and historical channel meandering. Unusual conditions include but are not limited to historical meandering of the watercourse, large excavation pits, poorly defined or poorly consolidated banks, natural channel armoring, proximity to stabilized structures such as bridges or rock outcrops, and changes in the direction, amount, and velocity of flow of the waters in the watercourse.
C. For constructed channels, channel banks are required to be stabilized to prevent erosion along minor watercourses with base flood peak discharges of less than 2,000 cfs, but greater than 500 cfs . Stabilization is required unless a waiver to the requirement is granted by the Chief Engineer based on an engineering study prepared and sealed by an Arizona registered civil engineer which demonstrates an appropriate building setback for an earthen channel, based on soil and natural flow conditions. For constructed channels with a base flood peak discharge of less than 500 cfs , channel stabilization may be required based on engineering
analysis and assessment of soil conditions and flow velocities. (Ord. 2010 FC-1; Ord. 2005 FC-2 § 2 (part), 2005; Ord. 1999-FC-1 §§ 1 (part) 1999; Ord. 1988-FC2 Art. 12 (B), 1988)

\subsection*{16.28.040}

Appeals and variances.
A. Appeals. Any applicant disputing a written finding of the Chief Engineer denying a permit or delineating an erosion hazard setback may appeal to the Board as provided in Chapter 16.56 of this title.
B. Variances. Any property owner requesting a variance from the requirements of this Title shall submit a request for a variance to the Board through the Chief Engineer as provided in Chapter 16.56 of this title. (Ord. 2010 FC-1; Ord. 2005 FC-2 § 2 (part), 2005)

SECTION 2. The various Pima County Flood Control District officers and employees are hereby authorized and directed to perform all acts necessary or desirable to give effect to this ordinance.

PASSED AND ADOPTED this 4 th day of May , 2010 by the Pima County Flood Control District Board of Directors, Pima County, Arizona.

Suzanne Shields, Director
Pima County Flood Control District

Deputy County Attorney for the District

\section*{E. 4 - HEC-RAS MODEL (WITH SKYLINE DRIVE CULVERT) INPUT/OUTPUT}
HEC-RAS Version 4.0.0 March 2008
U.S. Army Corps of Engineers
Hydrologic Engineering Center 609 Second Street Davis, California
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline X & X & XXXXXX & \multicolumn{2}{|r|}{XXXX} & & \multicolumn{2}{|l|}{XXXX} & \multicolumn{2}{|c|}{XX} & XXXX \\
\hline X & X & X & X & X & & X & X & X & \(x\) & X \\
\hline \(X\) & X & \(X\) & X & & & \(X\) & \(X\) & X & \(X\) & X \\
\hline XXXXXXX & & XXXX & X & & XXX & & & & & XXXX \\
\hline X & X & X & X & & & X & X & X & X & X \\
\hline X & X & X & X & X & & X & X & X & X & X \\
\hline X & X & XXXXXX & & & & X & X & X & X & XXXXX \\
\hline
\end{tabular}
PROJECT DATA
Project Title: Finger Rock Wash LOMR - NAVD88
Project File : FRW88.prj
Run Date and Time: 10/14/2010 3:30:42 PM
Project in English units
Project Description:
Finger Rock Wash Floodplain Re-mapping \& LOMR
PLAN DATA
Plan Title: FRW NAVD88 Model
Plan File : Z:\PROJECTS \27000\27028-PCRFCD-Finger Rock Wash \(\backslash\) HecRas \(\backslash F R W 88 . P 01\)
```

Geometry Title: Geometry per NAVD88 topography Geometry File : Z:\PROJECTS \27000\27028-PCRFCD-Finger Rock Wash $\backslash$ HecRas $\backslash F R W 88 . G 01$

```
\begin{tabular}{ll}
Flow Title & \(: 100-y r\) Q per \(3-\) hour HEC-1 storm \\
Flow File & \(: Z: \backslash P R O J E C T S \backslash 27000 \backslash 27028-P C R F C D-F i n g e r ~ R o c k ~ W a s h ~\) \\
ZHecRas \(\backslash F R W 88 . F 01\)
\end{tabular}
Plan Summary Information:
\begin{tabular}{rllll}
Number of: & Cross Sections & \(=141\) & Multiple Openings & \(=0\) \\
& Culverts & \(=5\) & Inline Structures & \(=0\) \\
& Bridges & \(=\) & Lateral Structures & \(=16\)
\end{tabular}
Computational Information
Water surface calculation tolerance \(=0.01\)
Critical depth calculation tolerance \(=0.01\)
Maximum number of iterations \(=20\)
Maximum difference tolerance \(=0.3\)
Flow tolerance factor \(=0.001\)
Computation Options
Critical depth computed only where necessary
Conveyance Calculation Method: At breaks in \(n\) values only
Friction Slope Method: Average Conveyance
Computational Flow Regime: Subcritical Flow
FLOW DATA
Flow Title: 100-yr Q per 3-hour HEC-1 storm
Flow File : Z:\PROJECTS \(227000 \backslash 27028\)-PCRFCD-Finger Rock Wash \(\backslash\) HecRas \(\backslash F R W 88 . F 01\)
Flow Data (cfs)
* River Reach RS * 100-yr *
* Coronado Split FCor Split Reach 0.854 * 1922 *
* Finger Rock WashMain Reach 14.800 * 2324 *
* Finger Rock WashMain Reach 24.596 * 5284 *
* Finger Rock WashMain Reach 3 4.477 * 3362 *
* Finger Rock WashMain Reach 43.656 * 6162 *
* Finger Rock WashMain Reach 43.403 * 6060 *
* Finger Rock WashMain Reach 42.876 * 6368 *
* Finger Rock WashMain Reach 42.125 * 6114 *
* Finger Rock WashMain Reach 41.884 * 5756 *
* Finger Rock WashMain Reach 400.898 * 5653 *

\section*{GEOMETRY DATA}

Geometry Title: Geometry per NAVD88 topography
Geometry File : Z:\PROJECTS \(\backslash 27000 \backslash 27028-P C R F C D-F i n g e r ~ R o c k ~ W a s h \backslash H e c R a s \backslash F R W 88 . G 01 ~\)
Reach Connection Table

* River Reach * Upstream Boundary * Downstream Boundary *

* Coronado Split F Cor Split Reach * Cor Split * Cor Splt Rtn
* Finger Rock Wash Main Reach 1 * * FR-9
* Finger Rock Wash Main Reach 2 * FR-9 * Cor Split
* Finger Rock Wash Main Reach 3 * Cor Split * Cor Splt Rtn
* Finger Rock Wash Main Reach 4 * Cor Splt Rtn * *
* Pontatoc Cnyn Pontatoc Cnyn *

\section*{JUNCTION INFORMATION}

Name: FR-9
Description: Pontatoc Cnyn Confluence
Energy computation Method

Name: Cor Splt Rtn
Description: Return of Coronado Split Flow
Energy computation Method
\begin{tabular}{cccrr}
\begin{tabular}{c}
Length across Junction \\
River
\end{tabular}\(\quad\) Reach & \multicolumn{2}{c}{ Tributary } & & \\
River & Reach & Length & Angle \\
Finger Rock WashMain Reach 3 & to Finger Rock WashMain Reach 4 & 480 & 480
\end{tabular}

CROSS SECTION

RIVER: Coronado Split F
REACH: Cor Split Reach RS: 0.854
INPUT
Description: Main chnl x-sect 4.477, Sect downstream of Jct Cor Split
Station Elevation Data num= 15
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline 1000 & 2980 & 1008 & 2976 & 1036 & 2974 & 1049 & 2972 & 1057 & 2970.8 \\
\hline 1070 & 2970.8 & 1091 & 2970.1 & 1093 & 2970 & 1104 & 2968 & 1108 & 2967.8 \\
\hline 1115 & 2968 & 1124 & 2970 & 1153 & 2972 & 1176 & 2974 & 1221 & 2984 \\
\hline Manning's Sta & \begin{tabular}{l}
n Value \\
n Val
\end{tabular} & Sta & num= n Val & \[
\begin{aligned}
& 6 \\
& \text { Sta }
\end{aligned}
\] & n Val & Sta & n Val & Sta & n Val \\
\hline 1000 & . 083 & 1049 & . 03 & 1091 & 1.061 & 1124 & . 083 & 1153 & . 03 \\
\hline 1176 & . 083 & & & & & & & & \\
\hline Bank Sta: & \[
\begin{aligned}
& \text { Left } \\
& 1049
\end{aligned}
\] & \[
\begin{array}{r}
\text { Right } \\
1091
\end{array}
\] & Lengths: & Left 34 & Channel 34 & \[
\begin{array}{r}
\text { Right } \\
36
\end{array}
\] & Coeff & \begin{tabular}{l}
Contr. \\
. 1
\end{tabular} & \[
\begin{gathered}
\text { Expan. } \\
.3
\end{gathered}
\] \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

LATERAL STRUCTURE

RIVER: Coronado Split F
REACH: Cor Split Reach RS: 0.851

LATERAL STRUCTURE OUTPUT Profile \#100-yr Lat Struct
\begin{tabular}{|c|c|c|c|}
\hline * E.G. US. (ft) & 2976.49 & * Weir Sta US (ft) & \\
\hline * W.S. US. (ft) & * 2974.65 & * Weir Sta DS (ft) & \\
\hline * E.G. DS (ft) & * 2974.08 & * Min El Weir Flow (ft) & \\
\hline * W.S. DS (ft) & 2972.70 & * Wr Top Wdth (ft) & \\
\hline * Q US (cfs) & 1922.44 & * Weir Max Depth (ft) & \\
\hline * Q Leaving Total (cfs) & 162.50 & * Weir Avg Depth (ft) & \\
\hline * Q DS (cfs) & 1760.35 & * Weir Flow Area (sq ft) & \\
\hline * Perc Q Leaving & 8.43 & * Weir Coef & \\
\hline * Q Weir (cfs) & 162.50 & * Weir Submerg & \\
\hline * Q Gates (cfs) & * & * Q Gate Group (cfs) & \\
\hline * Q Culv (cfs) & 0.00 & * Gate Open Ht (ft) & \\
\hline * Q Lat RC (cfs) & * & * Gate \#Open & \\
\hline & * & * Gate Area (sq ft) & \\
\hline * Q Breach (cfs) & * & * Gate Submerg & \\
\hline * Breach Avg Velocity (ft/s) & & * Gate Invert (ft) & \\
\hline * Breach Flow Area (sq ft) & * & * Gate Weir Coef & \\
\hline
\end{tabular}

Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: Divided flow computed for this cross-section
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
Note: Manning's \(n\) values were composited to a single value in the main channel.
LATERAL STRUCTURE

RIVER: Coronado Split F
RS: 0.839
INPUT
Description:
Lateral structure position = Next ot right bank station
\begin{tabular}{lll}
Distance from Upstream XS & \(=\) & \\
Deck/Roadway Width & \(=\) & 5 \\
Weir Coefficient & \(=\) & 2
\end{tabular}
\begin{tabular}{lll}
Weir Coefficient & \(=\) & 2 \\
Weir Flow Reference & \(=\) & Energy \\
\end{tabular}

Weir crest shape = Broad Crested

LATERAL STRUCTURE OUTPUT Profile \#100-yr Lat Struct
\begin{tabular}{lllll}
\(*\) & E.G. US. (ft) & \(* 2974.08\) & * Weir Sta US (ft) & * 0.00 \\
* W.S. US. (ft)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline * E.G. DS (ft) & 2967.69 & * Min El Weir Flow (ft) & & 2964.40 \\
\hline * W.S. DS (ft) & * 2966.41 & * Wr Top Wdth (ft) & & 76.07 \\
\hline * Q US (cfs) & 1760.35 & * Weir Max Depth (ft) & & 3.29 \\
\hline * Q Leaving Total (cfs) & * 283.89 & * Weir Avg Depth (ft) & * & 1.44 \\
\hline * Q DS (cfs) & * 1476.49 & * Weir Flow Area (sq ft) & & 109.87 \\
\hline * Perc Q Leaving & 16.13 & * Weir Coef & & 2.000 \\
\hline * Q Weir (cfs) & 283.89 & * Weir Submerg & & 0.00 \\
\hline * Q Gates (cfs) & * & * Q Gate Group (cfs) & & \\
\hline * Q Culv (cfs) & 0.00 & * Gate Open Ht (ft) & & \\
\hline * Q Lat RC (cfs) & & * Gate \#Open & & \\
\hline & * & * Gate Area (sq ft) & & \\
\hline * Q Breach (cfs) & & * Gate Submerg & & \\
\hline * Breach Avg Velocity (ft/s) & & * Gate Invert (ft) & & \\
\hline * Breach Flow Area (sq ft) & & * Gate Weir Coef & & \\
\hline
\end{tabular}

Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Coronado Split F
REACH: Cor Split Reach
RS: 0.830
INPUT
Description: Main chnl x-sect 4.447
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{Station Elevation Data num= 21} \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline 1000 & 2968 & 1016.982 & 94.913 & 1022 & 2964 & 1026 & 2963.5 & 1057 & 2963.5 \\
\hline 1061 & 2964 & 1079 & 2964.4 & 1096 & 2964 & 1150 & 2964 & 1173 & 2962 \\
\hline 1176 & 2960 & 1179 & 2958 & 1185 & 2956 & 1190 & 2954.5 & 1198 & 2956 \\
\hline 1211 & 2960 & 1230 & 2964 & 1247 & 2966 & 1288 & 2967 & 1306 & 2968 \\
\hline 1317 & 2972 & & & & & & & & \\
\hline \multicolumn{10}{|l|}{Manning's n Values num=} \\
\hline Sta & n Val & Sta & n Val \\
\hline 1000 & . 083 & 1022 & . 03 & 1061 & . 083 & 1176 & . 061 & 1211 & . 083 \\
\hline \multicolumn{2}{|l|}{Bank Sta: Left} & \multirow[t]{2}{*}{Right} & \multirow[t]{2}{*}{Lengths:} & \multicolumn{2}{|l|}{Left Channel} & \multirow[t]{2}{*}{Right
103} & \multirow[t]{2}{*}{Coeff} & \multirow[t]{2}{*}{\begin{tabular}{l}
Contr. \\
. 1
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Expan. } \\
.3
\end{gathered}
\]} \\
\hline 101 & . 98 & & & 90 & 90 & & & & \\
\hline \multicolumn{2}{|l|}{Ineffective Flow} & num= & 1 & & & & & & \\
\hline Sta L & Sta R & Elev & Permanen & & & & & & \\
\hline 1079 & 1317 & 2970 & T & & & & & & \\
\hline
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & 2967.69 & * Element & & Left OB & & Channel & & Right OB \\
\hline * Vel Head (ft) & 1.28 & * Wt. n-Val. & & 0.083 & & 0.036 & & \\
\hline * W.S. Elev (ft) & * 2966.41 & * Reach Len. (ft) & & 90.00 & & 90.00 & & 103.00 \\
\hline * Crit W.S. (ft) & * 2966.41 & * Flow Area (sq ft) & & 6.18 & & 161.22 & & \\
\hline * E.G. Slope (ft/ft) & *0.013518 & * Area (sq ft) & & 6.18 & & 161.22 & & 707.11 \\
\hline * Q Total (cfs) & * 1476.49 & * Flow (cfs) & & 10.50 & & 1465.98 & & \\
\hline * Top Width (ft) & 255.17 & * Top Width (ft) & & 8.25 & & 62.02 & & 184.91 \\
\hline * Vel Total (ft/s) & 8.82 & * Avg. Vel. (ft/s) & & 1.70 & & 9.09 & & \\
\hline * Max Chl Dpth (ft) & 11.91 & * Hydr. Depth (ft) & & 0.75 & & 2.60 & & \\
\hline * Conv. Total (cfs) & 12699.1 & * Conv. (cfs) & & 90.3 & & 12608.7 & & \\
\hline * Length Wtd. (ft) & * 90.00 & * Wetted Per. (ft) & & 8.38 & & 62.17 & & \\
\hline * Min Ch El (ft) & 2963.50 & * Shear (lb/sq ft) & & 0.62 & & 2.19 & & \\
\hline * Alpha & 1.06 & * Stream Power (lb/ft s) & & 1.06 & & 19.90 & & \\
\hline * Frctn Loss (ft) & 1.29 & * Cum Volume (acre-ft) & & 0.86 & & 6.76 & & 75.28 \\
\hline * C \& E Loss (ft) & 0.14 & * Cum SA (acres) & & 0.02 & & 6.43 & & 12.49 \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

LATERAL STRUCTURE

RIVER: Coronado Split F
REACH: Cor Split Reach

Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Coronado Split F
REACH: Cor Split Reach RS: 0.813

\section*{CROSS SECTION OUTPUT Profile \#100-yr}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline * Top Width (ft) & & 257.84 & & Top Width (ft) & * & & * & 101.01 & * & 156.84 & * \\
\hline * Vel Total (ft/s) & & 7.28 & & Avg. Vel. (ft/s) & * & & * & 7.28 & * & & * \\
\hline * Max Chl Dpth (ft) & & 9.67 & * & Hydr. Depth (ft) & * & & * & 1.62 & * & & * \\
\hline * Conv. Total (cfs) & & 9610.8 & & Conv. (cfs) & * & & * & 9610.8 & * & & * \\
\hline * Length Wtd. (ft) & & 100.00 & & Wetted Per. (ft) & * & & * & 101.49 & * & & * \\
\hline * Min Ch El (ft) & & 2959.00 & & Shear (lb/sq ft) & * & & * & 1.56 & * & & * \\
\hline * Alpha & & 1.00 & & Stream Power (lb/ft s) & * & & * & 11.35 & * & & * \\
\hline * Frctn Loss (ft) & & 2.29 & & Cum Volume (acre-ft) & * & 0.85 & * & 6.43 & * & 73.55 & * \\
\hline * C \& E Loss (ft) & & 0.09 & & Cum SA (acres) & * & 0.02 & * & 6.26 & * & 12.09 & * \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: Divided flow computed for this cross-section
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

LATERAL STRUCTURE

RIVER: Coronado Split F
REACH: Cor Split Reach RS: 0.804
INPUT
Description:
Lateral structure position
\(=\) Next ot right bank station
Distance from Upstream XS =
\begin{tabular}{lll}
Deck/Roadway Width & \(=\) & 5 \\
Weir Coefficient & \(=\) & 2
\end{tabular}

Weir Flow Reference = Energy Grade
Weir Embankment Coordinates num = 6
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Sta} & \multirow[t]{2}{*}{Elev} & \multirow[t]{2}{*}{Sta} & \multirow[t]{2}{*}{Elev} & \multirow[t]{2}{*}{Sta} & 6 & \multirow[b]{2}{*}{Sta} & \multirow[b]{2}{*}{Elev} & \multirow[b]{2}{*}{Sta} & \multirow[b]{2}{*}{Elev} \\
\hline & & & & & Elev & & & & \\
\hline 0 & 2972 & 10 & 2972 & 10.1 & 2959.6 & 46 & 2958 & 75 & 2956 \\
\hline 100 & 295 & & & & & & & & \\
\hline
\end{tabular}

Weir crest shape = Broad Crested

LATERAL STRUCTURE OUTPUT Profile \#100-yr Lat Struct
\begin{tabular}{|c|c|c|c|}
\hline * E.G. US. (ft) & 2962.49 & * Weir Sta US (ft) & 10.00 \\
\hline * W.S. US. (ft) & * 2961.67 & * Weir Sta DS (ft) & 100.00 \\
\hline * E.G. DS (ft) & 2956.57 & * Min El Weir Flow (ft) & 2955.00 \\
\hline * W.S. DS (ft) & 2956.03 & * Wr Top Wdth (ft) & 89.92 \\
\hline * Q US (cfs) & 1194.36 & * Weir Max Depth (ft) & 2.29 \\
\hline * Q Leaving Total (cfs) & 482.56 & * Weir Avg Depth (ft) & 1.93 \\
\hline * Q DS (cfs) & 711.84 & * Weir Flow Area (sq ft) & 173.34 \\
\hline * Perc Q Leaving & 40.40 & * Weir Coef & 2.000 \\
\hline * Q Weir (cfs) & 482.56 & * Weir Submerg & 0.00 \\
\hline * Q Gates (cfs) & * 0.0 & * Q Gate Group (cfs) & * \\
\hline * Q Culv (cfs) & 0.00 & * Gate Open Ht (ft) & \\
\hline * Q Lat RC (cfs) & * & * Gate \#Open & * \\
\hline & * & * Gate Area (sq ft) & * \\
\hline * Q Breach (cfs) & * & * Gate Submerg & * \\
\hline * Breach Avg Velocity (ft/s) & * & * Gate Invert (ft) & * \\
\hline * Breach Flow Area (sq ft) & & * Gate Weir Coef & * \\
\hline
\end{tabular}

Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Coronado Split F
REACH: Cor Split Reach
RS: 0.794

\section*{INPUT}

Description: Main chnl x-sect 4.409
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Station & vation & Sta & Elev & 25 & Elev & Sta & Elev & Sta & Elev \\
\hline *** & ****** & & & & & ***** & **** & **** & \\
\hline 1000 & 2959 & 1004 & 2958 & 1012 & 2956 & 1016.412 & . 779 & 1032 & 2955 \\
\hline 1038 & 2954.8 & 1044 & 2955 & 1058 & 2955 & 1063 & 2954 & 1065 & 2954 \\
\hline
\end{tabular}

Warning: Divided flow computed for this cross-section.
Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

LATERAL STRUCTURE

RIVER: Coronado Split F
REACH: Cor Split Reach RS: 0.784
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{INPUT} \\
\hline \multicolumn{8}{|l|}{Description:} \\
\hline \multicolumn{3}{|l|}{Lateral structure position = Next ot right bank station} & \multicolumn{5}{|c|}{\(=\) Next ot right bank station} \\
\hline Distance & om Ups & m X & \multicolumn{5}{|l|}{} \\
\hline Deck/Road & Widt & & \multicolumn{5}{|l|}{5} \\
\hline Weir Coef & cient & & \multicolumn{5}{|l|}{2} \\
\hline \multicolumn{8}{|l|}{Weir Flow Reference = Energy Grade} \\
\hline \multicolumn{8}{|l|}{Weir Embankment Coordinates num} \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline 0 & 2955 & 33 & 2954.5 & 33.1 & 2965 & 105 & 2965 \\
\hline Weir cres & shape & & & & \(=\mathrm{Br}\) & rest & \\
\hline
\end{tabular}

LATERAL STRUCTURE OUTPUT Profile \#100-yr Lat Struct
\begin{tabular}{|c|c|c|c|c|c|}
\hline * E.G. US. (ft) & * 2956.57 & * Weir Sta US (ft) & * & 0.00 & * \\
\hline * W.S. US. (ft) & * 2956.03 & * Weir Sta DS (ft) & & 33.10 & * \\
\hline * E.G. DS (ft) & * 2951.36 & * Min El Weir Flow (ft) & & 2954.50 & * \\
\hline * W.S. DS (ft) & * 2950.78 & * Wr Top Wdth (ft) & & 33.00 & * \\
\hline * Q US (cfs) & 711.84 & * Weir Max Depth (ft) & * & 1.57 & * \\
\hline * Q Leaving Total (cfs) & 68.52 & * Weir Avg Depth (ft) & & 1.00 & * \\
\hline * Q DS (cfs) & 643.28 & * Weir Flow Area (sq ft) & * & 32.94 & * \\
\hline * Perc Q Leaving & 9.63 & * Weir Coef & & 2.000 & \\
\hline * Q Weir (cfs) & 68.52 & * Weir Submerg & & 0.00 & * \\
\hline * Q Gates (cfs) & * & * Q Gate Group (cfs) & & & \\
\hline * Q Culv (cfs) & 0.00 & * Gate Open Ht (ft) & & & * \\
\hline * Q Lat RC (cfs) & * & * Gate \#Open & & & \\
\hline * & * & * Gate Area (sq ft) & & & * \\
\hline * Q Breach (cfs) & * & * Gate Submerg & & & * \\
\hline * Breach Avg Velocity (ft/s) & & * Gate Invert (ft) & & & * \\
\hline * Breach Flow Area (sq ft) & & * Gate Weir Coef & & & * \\
\hline
\end{tabular}

Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Coronado Split F
REACH: Cor Split Reach
RS: 0.774
INPUT
Description: Main chnl x-sect 4.392

\section*{CROSS SECTION OUTPUT Profile \#100-yr}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & 2951.36 & Element & * & Left OB & * & Channel & * & Right OB \\
\hline * Vel Head (ft) & 0.57 & Wt. n-Val. & * & & * & 0.083 & * & \\
\hline * W.S. Elev (ft) & 2950.78 & * Reach Len. (ft) & * & 139.00 & * & 136.00 & * & 95.00 \\
\hline * Crit W.S. (ft) & * 2950.31 & * Flow Area (sq ft) & * & & * & 105.73 & * & \\
\hline * E.G. Slope (ft/ft) & *0.043251 & * Area (sq ft) & * & & * & 105.73 & * & 959.74 \\
\hline * Q Total (cfs) & * 643.28 & * Flow (cfs) & * & & * & 643.28 & * & \\
\hline * Top Width (ft) & 301.21 & * Top Width (ft) & * & & * & 50.02 & * & 251.19 \\
\hline * Vel Total (ft/s) & 6.08 & * Avg. Vel. (ft/s) & * & & * & 6.08 & * & \\
\hline * Max Chl Dpth (ft) & 10.78 & * Hydr. Depth (ft) & * & & * & 2.11 & * & \\
\hline * Conv. Total (cfs) & 3093.2 & * Conv. (cfs) & * & & * & 3093.2 & * & \\
\hline * Length Wtd. (ft) & 136.00 & * Wetted Per. (ft) & * & & * & 50.61 & * & \\
\hline * Min Ch El (ft) & * 2947.70 & * Shear (lb/sq ft) & * & & * & 5.64 & * & \\
\hline * Alpha & 1.00 & * Stream Power (lb/ft s) & * & & * & 34.32 & * & \\
\hline * Frctn Loss (ft) & * 5.01 & * Cum Volume (acre-ft) & * & 0.85 & * & 5.83 & * & 69.23 \\
\hline * C \& E Loss (ft) & * 0.11 & * Cum SA (acres) & * & 0.00 & * & 5.82 & * & 11.12 \\
\hline
\end{tabular}

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections
Warning: The composite Mannings \(n\) value for the channel was larger than the largest entered \(n\) value or smaller than the smallest entered \(n\) value.
Note: Manning's \(n\) values were composited to a single value in the main channel.
LATERAL STRUCTURE

RIVER: Coronado Split F
REACH: Cor Split Reach
RS: 0.762

\section*{INPUT}

Description:
Lateral structure position = Next ot right bank station
Distance from Upstream XS =
Deck/Roadway Width
Weir Coefficient
\begin{tabular}{lc}
\(=\) & 5 \\
\(=\) & 2 \\
\(=\) & Energy \\
Grade
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline LATERAL STRUCTURE OUTPUT & le \#100 & Lat Struct & & & \\
\hline * E.G. US. (ft) & 2951.36 & * Weir Sta US (ft) & & 47.10 & \\
\hline * W.S. US. (ft) & * 2950.78 & * Weir Sta DS (ft) & & 112.10 & \\
\hline * E.G. DS (ft) & * 2946.24 & * Min El Weir Flow (ft) & & 2945.00 & \\
\hline * W.S. DS (ft) & * 2946.03 & * Wr Top Wdth (ft) & & 57.37 & \\
\hline * Q US (cfs) & 643.28 & * Weir Max Depth (ft) & & 2.17 & * \\
\hline * Q Leaving Total (cfs) & 350.85 & * Weir Avg Depth (ft) & & 2.09 & \\
\hline * Q DS (cfs) & 291.81 & * Weir Flow Area (sq ft) & & 120.16 & \\
\hline * Perc Q Leaving & 54.64 & * Weir Coef & & 2.000 & \\
\hline * Q Weir (cfs) & * 350.85 & * Weir Submerg & & 0.00 & \\
\hline * Q Gates (cfs) & * 0 & * Q Gate Group (cfs) & & & \\
\hline * Q Culv (cfs) & 0.00 & * Gate Open Ht (ft) & & & \\
\hline * Q Lat RC (cfs) & * & * Gate \#Open & & & \\
\hline * \({ }^{\text {d }}\) & & * Gate Area (sq ft) & & & \\
\hline * Q Breach (cfs) & * & * Gate Submerg & & & \\
\hline * Breach Avg Velocity (ft/s) & & * Gate Invert (ft) & & & \\
\hline * Breach Flow Area (sq ft) & & * Gate Weir Coef & & & * \\
\hline
\end{tabular}

Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Coronado Split F
RS: 0.749
INPUT
Description: Main chnl x-sect 4.371
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Station & vation & ta & m= & 31 & & & & & \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline 1000 & 2951.5 & 1011 & 2950 & 1015.96 & 9. 708 & 1045 & 2948 & 1062 & 2947 \\
\hline 1082 & 2947 & 1101 & 2946 & 1139 & 2944 & 1155 & 2943 & 1172 & 2944 \\
\hline 1204 & 2945 & 1226 & 2945 & 1233 & 2944 & 1249 & 2942 & 1271 & 2941 \\
\hline 1324 & 2940 & 1336 & 2938 & 1346 & 2936 & 1356 & 2936 & 1363 & 2938 \\
\hline 1369 & 2940 & 1395 & 2942 & 1413 & 2943 & 1470 & 2944 & 1498 & 2946 \\
\hline 1512 & 2948 & 1526 & 2950 & 1535 & 2952 & 1543 & 2954 & 1551 & 2956 \\
\hline
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & 2946.24 & * Element & & Left OB & & Channel & & ight OB \\
\hline * Vel Head (ft) & 0.21 & * Wt. n-Val. & & & & 0.083 & & \\
\hline * W.S. Elev (ft) & 2946.03 & * Reach Len. (ft) & & 114.00 & & 114.00 & & 114.00 \\
\hline * Crit W.S. (ft) & * & * Flow Area (sq ft) & & & & 79.67 & & \\
\hline * E.G. Slope (ft/ft) & *0.026866 & * Area (sq ft) & & & & 79.67 & & 1209.15 \\
\hline * Q Total (cfs) & * 291.81 & * Flow (cfs) & & & & 291.81 & & \\
\hline * Top Width (ft) & * 335.80 & * Top Width (ft) & & & & 54.58 & & 281.22 \\
\hline * Vel Total (ft/s) & 3.66 & * Avg. Vel. (ft/s) & & & & 3.66 & & \\
\hline * Max Chl Dpth (ft) & * 10.03 & * Hydr. Depth (ft) & & & & 1.46 & & \\
\hline * Conv. Total (cfs) & * 1780.3 & * Conv. (cfs) & & & & 1780.3 & & \\
\hline * Length Wtd. (ft) & * 114.00 & * Wetted Per. (ft) & & & & 57.70 & & \\
\hline * Min Ch El (ft) & * 2943.00 & * Shear (lb/sq ft) & & & * & 2.32 & * & \\
\hline
\end{tabular}

Warning: Divided flow computed for this cross-section.
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

LATERAL STRUCTURE

RIVER: Coronado Split F
REACH: Cor Split Reach RS: 0.738

LATERAL STRUCTURE OUTPUT Profile \#100-yr Lat Struct
\begin{tabular}{|c|c|c|c|c|c|}
\hline * E.G. US. (ft) & * 2946.24 & * Weir Sta US (ft) & & 77.00 & * \\
\hline * W.S. US. (ft) & * 2946.03 & * Weir Sta DS (ft) & & 114.00 & \\
\hline * E.G. DS (ft) & * 2941.63 & * Min El Weir Flow (ft) & & 2941.00 & \\
\hline * W.S. DS (ft) & 2941.29 & * Wr Top Wdth (ft) & & 36.91 & \\
\hline * Q US (cfs) & 291.81 & * Weir Max Depth (ft) & & 1.13 & \\
\hline * Q Leaving Total (cfs) & 61.48 & * Weir Avg Depth (ft) & * & 0.88 & * \\
\hline * Q DS (cfs) & 229.97 & * Weir Flow Area (sq ft) & * & 32.46 & \\
\hline * Perc Q Leaving & 21.19 & * Weir Coef & & 2.000 & \\
\hline * Q Weir (cfs) & 61.48 & * Weir Submerg & & 0.00 & \\
\hline * Q Gates (cfs) & * & * Q Gate Group (cfs) & & & \\
\hline * Q Culv (cfs) & 0.00 & * Gate Open Ht (ft) & & & \\
\hline * Q Lat RC (cfs) & & * Gate \#Open & & & \\
\hline & * & * Gate Area (sq ft) & & & \\
\hline * Q Breach (cfs) & * & * Gate Submerg & & & \\
\hline * Breach Avg Velocity (ft/s) & & * Gate Invert (ft) & & & \\
\hline * Breach Flow Area (sq ft) & & * Gate Weir Coef & & & * \\
\hline
\end{tabular}

Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Coronado Split F
REACH: Cor Split Reach RS: 0.727

\section*{INPUT}

Description: Main chnl x-sect 4.353
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Station El & levation & Data & num= & 33 & & & & & \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline ****** & * & & & & & & & & \\
\hline 1000 & 2946 & 1021.9729 & 944.003 & 1022 & 2944 & 1036 & 2942 & 1055 & 2941 \\
\hline 1072 & 2941 & 1081 & 2942 & 1090 & 2942 & 1100 & 2942 & 1127 & 2940 \\
\hline 1141 & 2940 & 1158 & 2941 & 1172 & 2940 & 1201 & 2938 & 1211 & 2937.5 \\
\hline 1225 & 2938 & 1260 & 2937 & 1277 & 2936 & 1291 & 2934 & 1322 & 2934 \\
\hline 1357 & 2932 & 1373 & 2930 & 1377 & 2930 & 1385 & 2932 & 1393 & 2934 \\
\hline 1405 & 2936 & 1435 & 2938 & 1505 & 2940 & 1523 & 2942 & 1547 & 2943 \\
\hline 1587 & 2944 & 1602 & 2946 & 1615 & 2948 & & & & \\
\hline Manning's & \(n\) Value & & num= & 5 & & & & & \\
\hline Sta & n Val & Sta & \(n \mathrm{Val}\) & Sta & n Val & Sta & n Val & Sta & n Val \\
\hline ********** & ******** & ******** & ********* & **** & ******* & **** & 岡*** & **** & ***** \\
\hline 1000 & . 083 & 1055 & . 03 & 1081 & . 083 & 1322 & . 061 & 1393 & . 083 \\
\hline Bank Sta: & Left & Right & Lengths & Left & annel & Right & Coeff & ontr. & Expan \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: Divided flow computed for this cross-section.
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

LATERAL STRUCTURE

RIVER: Coronado Split F
REACH: Cor Split Reach RS: 0.718

\section*{LATERAL STRUCTURE OUTPUT Profile \#100-yr Lat Struct}
\begin{tabular}{|c|c|c|c|c|c|}
\hline * E.G. US. (ft) & 2941.63 & * Weir Sta US (ft) & & 0.00 & * \\
\hline * W.S. US. (ft) & 2941.29 & * Weir Sta DS (ft) & & 28.10 & * \\
\hline * E.G. DS (ft) & 2936.80 & * Min El Weir Flow (ft) & & 2940.00 & \\
\hline * W.S. DS (ft) & 2936.43 & * Wr Top Wdth (ft) & & 24.24 & \\
\hline * Q US (cfs) & 229.97 & * Weir Max Depth (ft) & & 0.63 & \\
\hline * Q Leaving Total (cfs) & 19.90 & * Weir Avg Depth (ft) & & 0.55 & \\
\hline * Q DS (cfs) & 210.03 & * Weir Flow Area (sq ft) & & 13.35 & \\
\hline * Perc Q Leaving & 8.67 & * Weir Coef & & 2.000 & \\
\hline * Q Weir (cfs) & 19.90 & * Weir Submerg & & 0.00 & \\
\hline * Q Gates (cfs) & * & * Q Gate Group (cfs) & & & \\
\hline * Q Culv (cfs) & 0.00 & * Gate Open Ht (ft) & & & \\
\hline * Q Lat RC (cfs) & & * Gate \#Open & & & \\
\hline & * & * Gate Area (sq ft) & & & \\
\hline * Q Breach (cfs) & & * Gate Submerg & & & \\
\hline * Breach Avg Velocity (ft/s) & & * Gate Invert (ft) & & & \\
\hline * Breach Flow Area (sq ft) & & * Gate Weir Coef & & & * \\
\hline
\end{tabular}

Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Coronado Split F
REACH: Cor Split Reach RS: 0.708

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: Divided flow computed for this cross-section.
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

\section*{LATERAL STRUCTURE}

RIVER: Coronado Split F
REACH: Cor Split Reach RS: 0.700

\section*{INPUT}

Description:
Lateral structure position = Next ot right bank station
Distance from Upstrean XS
Deck/Roadway Width \(=5\)
Weir Coefficient \(=\)
Weir Flow Reference = Energy Grade
Weir Embankment Coordinates num = 7

Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Coronado Split F
REACH: Cor Split Reach RS: 0.691

CROSS SECTION OUTPUT Profile \#100-yr

Warning: Divided flow computed for this cross-section.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

LATERAL STRUCTURE

RIVER: Coronado Split F
RS: 0.684
INPUT
Description:
Lateral structure position = Next ot right bank station
Distance from Upstream xs \(=\)
\begin{tabular}{lll}
Deck/Roadway Width & \(=\) & 5 \\
Weir Coefficient & \(=\) & 2
\end{tabular}

Weir Flow Reference = Energy Grade
Weir Embankment Coordinates num = 2
\begin{tabular}{ccc}
Sta Elev & Sta & Elev \\
\(* ~\)
\end{tabular}

Weir crest shape \(\quad=\) Broad Crested

LATERAL STRUCTURE OUTPUT Profile \#100-yr Lat Struct
\begin{tabular}{|c|c|c|c|c|}
\hline * E.G. US. (ft) & * 2932.34 & * Weir Sta US (ft) & * & \\
\hline * W.S. US. (ft) & * 2932.21 & * Weir Sta DS (ft) & & \\
\hline * E.G. DS (ft) & * 2927.53 & * Min El Weir Flow (ft) & & 2940.00 \\
\hline * W.S. DS (ft) & * 2926.99 & * Wr Top Wdth (ft) & & \\
\hline * Q US (cfs) & 165.05 & * Weir Max Depth (ft) & & \\
\hline * Q Leaving Total (cfs) & 0.00 & * Weir Avg Depth (ft) & & \\
\hline * Q DS (cfs) & 165.05 & * Weir Flow Area (sq ft) & & \\
\hline * Perc Q Leaving & 0.00 & * Weir Coef & & 2.000 \\
\hline * Q Weir (cfs) & 0.00 & * Weir Submerg & & \\
\hline * Q Gates (cfs) & * 0 & * Q Gate Group (cfs) & & \\
\hline * Q Culv (cfs) & 0.00 & * Gate Open Ht (ft) & & \\
\hline * Q Lat RC (cfs) & * & * Gate \#Open & & \\
\hline * Q Lat RC (cfs) & * & * Gate Area (sq ft) & & \\
\hline * Q Breach (cfs) & * & * Gate Submerg & & \\
\hline * Breach Avg Velocity (ft/s) & * & * Gate Invert (ft) & & \\
\hline * Breach Flow Area (sq ft) & * & * Gate Weir Coef & & \\
\hline
\end{tabular}

Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
cross section

RIVER: Coronado Split F
REACH: Cor Split Reach
RS: 0.677

INPUT
Description: Main chnl x-sect 4.289
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Station El & levation & Data & num= & 39 & & & & & \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline 1000 & 2930 & 1020 & 2928 & 1086 & 2927.5 & 1111 & 2928 & 1119 & 2929 \\
\hline 1130 & 2929 & 1137 & 2929 & 1145 & 2928 & 1159 & 2926 & 1172 & 2925 \\
\hline 1178 & 2926 & 1191 & 2928 & 1208 & 2929 & 1223 & 2929 & 1235 & 2928 \\
\hline 1245 & 2926 & 1251 & 2924 & 1258 & 2922 & 1269 & 2920 & 1297 & 2918 \\
\hline 1354 & 2918 & 1372 & 2916 & 1419 & 2916 & 1428 & 2915 & 1443 & 2915 \\
\hline 1453 & 2916 & 1458 & 2916.5 & 1465 & 2916.5 & 1472 & 2916 & 1479 & 2914 \\
\hline 1501 & 2912.5 & 1511 & 2914 & 1516 & 2916 & 1525 & 2918 & 1531 & 2920 \\
\hline 1535 & 2922 & 1549 & 2926 & 1561 & 2928 & 1603 & 2928.5 & & \\
\hline \[
\begin{gathered}
\text { Manning's } \\
\text { Sta }
\end{gathered}
\] & \begin{tabular}{l}
n Values \\
n Val
\end{tabular} & Sta & \begin{tabular}{l}
num= \\
n Val
\end{tabular} & \[
\begin{aligned}
& 5 \\
& \text { Sta }
\end{aligned}
\] & n Val & Sta & n Val & Sta & n Val \\
\hline & ********* & ******** & ******** & 1111 & ******** & **** & ***** & **** & ***** \\
\hline 1000 & . 083 & 1086 & . 03 & 1111 & . 083 & 1472 & . 061 & 1516 & . 083 \\
\hline Bank Sta: & \[
\begin{aligned}
& \text { Left } \\
& 1020
\end{aligned}
\] & \[
\begin{array}{r}
\text { Right } \\
1208
\end{array}
\] & Lengths: & Left 78 & Channel 83 & \[
\begin{array}{r}
\text { Right } \\
155
\end{array}
\] & Coeff & Contr.
\[
.1
\] & \[
\begin{gathered}
\text { Expan. } \\
.3
\end{gathered}
\] \\
\hline Ineffectiv & ve Flow & num= & 1 & & & & & & \\
\hline
\end{tabular}

Warning: Divided flow computed for this cross-section.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

LATERAL STRUCTURE

RIVER: Coronado Split F
RS: 0.670
INPUT
Description:
Lateral structure position = Next ot right bank station
Distance from Upstream Xs
\begin{tabular}{lll}
Deck/Roadway Width & \(=\) & 5 \\
Weir Coefficient & \(=\) & 2
\end{tabular}

Weir Flow Reference = Energy Grade
Weir Embankment Coordinates num
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline 0 & 2940 & 3 & 2940 & 3.1 & 2929 & 28 & 2928 & 63 & 2926 \\
\hline 73 & 2925 & 73.1 & 2934 & 83 & 2934 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline LATERAL STRUCTURE OUTPUT Pr & file \#100- & Lat Struct & & & \\
\hline E G. US (ft) & & * Weir Sta us (ft) & & & \\
\hline \[
\begin{aligned}
& \text { * E.G. US. (ft) } \\
& \text { * W.S. US. (ft) }
\end{aligned}
\] & \(*\)
+
+2926.59 & * Weir Sta US (ft) & & & * \\
\hline * E.G. DS (ft) & * 2921.56 & * Min El Weir Flow (ft) & & 2925.00 & * \\
\hline * W.S. DS (ft) & * 2921.27 & * Wr Top Wdth (ft) & & & \\
\hline * Q US (cfs) & 165.05 & * Weir Max Depth (ft) & & & \\
\hline * Q Leaving Total (cfs) & 0.00 & * Weir Avg Depth (ft) & & & \\
\hline * Q DS (cfs) & 165.05 & * Weir Flow Area (sq ft) & & & \\
\hline * Perc Q Leaving & 0.00 & * Weir Coef & & 2.000 & \\
\hline * Q Weir (cfs) & 0.00 & * Weir Submerg & & & \\
\hline * Q Gates (cfs) & * & * Q Gate Group (cfs) & & & \\
\hline * Q Culv (cfs) & 0.00 & * Gate Open Ht (ft) & & & \\
\hline * Q Lat RC (cfs) & & * Gate \#Open & & & \\
\hline & * & * Gate Area (sq ft) & & & \\
\hline * Q Breach (cfs) & & * Gate Submerg & & & * \\
\hline * Breach Avg Velocity (ft/s) & & * Gate Invert (ft) & & & * \\
\hline * Breach Flow Area (sq ft) & & * Gate Weir Coef & & & * \\
\hline
\end{tabular}

Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Coronado Split F
REACH: Cor Split Reach

Warning: Divided flow computed for this cross-section.
Warning: The cross-section end points had to be extended vertically for the computed water surface.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

LATERAL STRUCTURE

RIVER: Coronado Split F
REACH: Cor Split Reach
RS: 0.652

LATERAL STRUCTURE OUTPUT Profile \#100-yr Lat Struct

\(\begin{array}{lll}\text { * E.G. DS (ft) } & \text { * } 2916.84 \text { * Min El Weir Flow (ft) * } 2921.80 \text { * } \\ \text { * W.S. DS (ft) } & \text { * } 2916.67 \text { * Wr Top Wdth (ft) }\end{array}\)
\begin{tabular}{|c|c|c|c|c|}
\hline Q US (cfs) & 165.05 & Weir Max Depth (ft) & & \\
\hline * Q Leaving Total (cfs) & 0.00 & * Weir Avg Depth (ft) & & \\
\hline * Q DS (cfs) & 165.05 & * Weir Flow Area (sq ft) & & \\
\hline * Perc Q Leaving & 0.00 & * Weir Coef & & 2.000 \\
\hline * Q Weir (cfs) & 0.00 & * Weir Submerg & & \\
\hline * Q Gates (cfs) & * & * Q Gate Group (cfs) & & \\
\hline * Q Culv (cfs) & 0.00 & * Gate Open Ht (ft) & & \\
\hline * Q Lat RC (cfs) & * & * Gate \#Open & & \\
\hline) & * & * Gate Area (sq ft) & & \\
\hline * Q Breach (cfs) & * & * Gate Submerg & & \\
\hline * Breach Avg Velocity (ft/s) & * & * Gate Invert (ft) & & \\
\hline * Breach Flow Area (sq ft) & * & * Gate Weir Coef & & \\
\hline
\end{tabular}

Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Coronado Split F
RS: 0.642
INPUT
Description: Main chnl x-sect 4.243
Station Elevation Data num= 56

CROSS SECTION OUTPUT Profile \#100-yr

Warning: Divided flow computed for this cross-section.
Warning: The cross-section end points had to be extended vertically for the computed water surface.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

LATERAL STRUCTURE

RIVER: Coronado Split F
REACH: Cor Split Reach RS: 0.625
INPUT
Description:
Lateral structure position = Next ot right bank station
\(\begin{array}{lll}\text { Distance from Upstream XS } & = & \\ \text { Deck/Roadway Width } & = & 5 \\ \text { Weir Coefficient } & = & 2\end{array}\)
\(\begin{array}{lll}\text { Weir Coefficient } & = & 2 \\ \text { Weir Flow Reference } & = & \text { Energy } \\ \text { Grade }\end{array}\)

Weir crest shape = Broad Crested
\begin{tabular}{|c|c|c|c|c|}
\hline LATERAL STRUCTURE OUTPUT Pr & ile \#100 & Lat Struct & & \\
\hline E.G. US. (ft) & * 2916.84 & Weir Sta US (ft) & * & * \\
\hline * W.S. US. (ft) & + 2916.67 & * Weir Sta DS (ft) & * & \\
\hline * E.G. DS (ft) & * 2909.07 & * Min El Weir Flow (ft) & 2917.00 & * \\
\hline * W.S. DS (ft) & * 2908.95 & * Wr Top Wdth (ft) & * & \\
\hline * Q US (cfs) & 165.05 & * Weir Max Depth (ft) & * & * \\
\hline * Q Leaving Total (cfs) & 0.00 & * Weir Avg Depth (ft) & * & \\
\hline * Q DS (cfs) & * 165.05 & * Weir Flow Area (sq ft) & * 00 & \\
\hline * Perc Q Leaving & 0.00 & * Weir Coef & 2.000 & * \\
\hline * Q Weir (cfs) & 0.00 & * Weir Submerg & * & \\
\hline * Q Gates (cfs) & * & Q Gate Group (cfs) & * & \\
\hline * Q Culv (cfs) & 0.00 & * Gate Open Ht (ft) & * & \\
\hline * Q Lat RC (cfs) & * & * Gate \#Open & * & \\
\hline & * & Gate Area (sq ft) & * & \\
\hline * Q Breach (cfs) & * & * Gate Submerg & * & \\
\hline * Breach Avg Velocity (ft/s) & & * Gate Invert (ft) & * & * \\
\hline * Breach Flow Area (sq ft) & * & * Gate Weir Coef & * & * \\
\hline
\end{tabular}

Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Coronado Split F
REACH: Cor Split Reach RS: 0.608
INPUT
Description: Main chnl x-sect 4.225
Station Elevation Data num= 38
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Station & ation & a & um= & 8 & & & & & \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline 1000 & 2920 & 1007 & 2918 & 1015 & 2916 & 1022 & 2914 & 1029 & 2912 \\
\hline 1036 & 2910 & 1043 & 2909 & 1068 & 2908 & 1086 & 2908 & 1103 & 2909.3 \\
\hline 1177 & 2908.3 & 1243 & 2910 & 1243.092 & 2910.013 & 1257 & 2912 & 1277 & 2913 \\
\hline 1296 & 2913 & 1311 & 2912 & 1317 & 2910 & 1323 & 2908 & 1329 & 2906 \\
\hline 1336 & 2904 & 1355 & 2902 & 1375 & 2903.8 & 1410 & 2903.9 & 1437 & 2902 \\
\hline 1469 & 2900 & 1526 & 2898 & 1550 & 2897 & 1567 & 2898 & 1571 & 2900 \\
\hline 1577 & 2902 & 1588 & 2904 & 1630 & 2906 & 1692 & 2908 & 1703 & 2910 \\
\hline 1718 & 2912 & 1747 & 2914 & 1778 & 2914 & & & & \\
\hline Manning's Sta & \begin{tabular}{l}
n Values \\
n Val
\end{tabular} & Sta & \begin{tabular}{l}
num= \\
n Val
\end{tabular} & \[
\begin{aligned}
& 5 \\
& \text { Sta }
\end{aligned}
\] & n Val & Sta & n Val & Sta & \\
\hline & & & & & Val & & n Val & & \\
\hline 1000 & . 083 & 1036 & . 03 & 1086 & . 083 & 1437 & . 061 & 1577 & . 083 \\
\hline Bank Sta: & \[
\begin{aligned}
& \text { Left } \\
& 1029
\end{aligned}
\] & \[
\begin{array}{r}
\text { Right } \\
1277
\end{array}
\] & Lengths & \multicolumn{2}{|l|}{\begin{tabular}{rrr}
Left Channel \\
147 & 147
\end{tabular}} & \[
\begin{array}{r}
\text { Right } \\
105
\end{array}
\] & \multicolumn{2}{|l|}{\begin{tabular}{l}
Coeff Contr. \\
. 1
\end{tabular}} & \[
\begin{gathered}
\text { Expan } \\
.3
\end{gathered}
\] \\
\hline
\end{tabular}
\begin{tabular}{cccc}
Ineffective Flow & num & \\
Sta L & Sta R & Elev & Permanent \\
1277 & 1778 & 2920 & T
\end{tabular}

Blocked Obstructions num= 1
Sta L Sta R Elev
122612802926
CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & * 2909.07 & * Element & * & Left OB & * & Channel & & Right OB & * \\
\hline * Vel Head (ft) & * 0.13 & * Wt. n-Val. & * & & * & 0.068 & * & & * \\
\hline * W.S. Elev (ft) & * 2908.95 & * Reach Len. (ft) & * & 147.00 & * & 147.00 & * & 105.00 & * \\
\hline * Crit W.S. (ft) & * 2908.84 & * Flow Area (sq ft) & * & & * & 57.83 & * & & * \\
\hline * E.G. Slope (ft/ft) & *0.048982 & * Area (sq ft) & * & & * & 57.83 & * & 2347.64 & * \\
\hline * Q Total (cfs) & * 165.05 & * Flow (cfs) & * & & * & 165.05 & * & & * \\
\hline * Top Width (ft) & 504.22 & * Top Width (ft) & * & & * & 127.17 & * & 377.06 & * \\
\hline * Vel Total (ft/s) & 2.85 & * Avg. Vel. (ft/s) & * & & * & 2.85 & * & & * \\
\hline * Max Chl Dpth (ft) & 11.95 & * Hydr. Depth (ft) & * & & * & 0.45 & * & & * \\
\hline * Conv. Total (cfs) & 745.7 & * Conv. (cfs) & * & & * & 745.7 & * & & * \\
\hline * Length Wtd. (ft) & * 147.00 & * Wetted Per. (ft) & * & & * & 127.23 & * & & * \\
\hline * Min Ch El (ft) & * 2908.00 & * Shear (lb/sq ft) & * & & * & 1.39 & * & & * \\
\hline * Alpha & * 1.00 & * Stream Power (lb/ft s) & * & & * & 3.97 & * & & * \\
\hline * Frctn Loss (ft) & 6.54 & * Cum Volume (acre-ft) & * & 0.85 & * & 4.70 & * & 21.18 & * \\
\hline * C \& E Loss (ft) & 0.00 & * Cum SA (acres) & * & & * & 4.47 & * & 4.48 & * \\
\hline
\end{tabular}

Warning: Divided flow computed for this cross-section.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections
Note: Manning's \(n\) values were composited to a single value in the main channel.
LATERAL STRUCTURE

RIVER: Coronado Split F
RS: 0.595

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{\multirow[t]{2}{*}{LATERAL STRUCTURE OUTPUT Profile \#100-yr Lat Struct}} \\
\hline & & & & & & & \\
\hline * E.G. US. (ft) & * & 2909.07 & & Weir Sta US (ft) & * & 31.00 & \\
\hline * W.S. US. (ft) & * & 2908.95 & & Weir Sta DS (ft) & * & 124.00 & \\
\hline * E.G. DS (ft) & * & 2902.53 & & Min El Weir Flow (ft) & * & 2904.00 & \\
\hline * W.S. DS (ft) & * & 2902.38 & W & Wr Top Wdth (ft) & * & 45.00 & \\
\hline * Q US (cfs) & * & 165.05 & W & Weir Max Depth (ft) & * & 0.82 & \\
\hline * Q Leaving Total (cfs) & * & 43.70 & & Weir Avg Depth (ft) & * & 0.59 & \\
\hline * Q DS (cfs) & * & 120.82 & & Weir Flow Area (sq ft) & * & 26.51 & \\
\hline * Perc Q Leaving & * & 26.80 & & Weir Coef & * & 2.000 & \\
\hline * Q Weir (cfs) & * & 43.70 & & Weir Submerg & * & 0.00 & \\
\hline * Q Gates (cfs) & * & & & Q Gate Group (cfs) & * & & \\
\hline * Q Culv (cfs) & * & 0.00 & & Gate Open Ht (ft) & * & & \\
\hline * Q Lat RC (cfs) & * & & & Gate \#Open & * & & \\
\hline * Q & * & & & Gate Area (sq ft) & * & & \\
\hline * Q Breach (cfs) & * & & & Gate Submerg & * & & \\
\hline * Breach Avg Velocity (ft/s) & & & & Gate Invert (ft) & * & & \\
\hline Breach Flow Area (sq ft) & & & & Gate Weir Coef & * & & \\
\hline
\end{tabular}

Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Coronado Split F
REACH: Cor Split Reach RS: 0.581
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{INPUT} \\
\hline \multicolumn{9}{|l|}{Description: Main chnl x-sect 4.205} \\
\hline \multicolumn{2}{|l|}{Station Elevation Data} & num= & \multicolumn{6}{|l|}{31} \\
\hline Sta Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline \multicolumn{9}{|l|}{**} \\
\hline 10002910 & 1015 & 2908 & 1026 & 2906 & 1040 & 2904 & 1058 & 2902 \\
\hline
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & & 2902.53 & & Element & * & Left OB & * & Channel & & Right OB \\
\hline * Vel Head (ft) & & 0.15 & & Wt. n-Val. & * & & * & 0.044 & * & \\
\hline * W.S. Elev (ft) & & 2902.38 & & Reach Len. (ft) & * & 103.00 & * & 103.00 & * & 70.00 \\
\hline * Crit W.S. (ft) & & 2902.37 & & Flow Area (sq ft) & * & & * & 38.88 & * & \\
\hline * E.G. Slope (ft/ft) & & 0.039222 & & Area (sq ft) & * & & * & 38.88 & * & 2181.80 \\
\hline * Q Total (cfs) & & 120.82 & & Flow (cfs) & * & & * & 120.82 & * & \\
\hline * Top Width (ft) & & 533.12 & & Top Width (ft) & * & & * & 122.98 & * & 410.14 \\
\hline * Vel Total (ft/s) & & 3.11 & & Avg. Vel. (ft/s) & * & & * & 3.11 & * & \\
\hline * Max Chl Dpth (ft) & & 13.38 & & Hydr. Depth (ft) & * & & * & 0.32 & * & \\
\hline * Conv. Total (cfs) & & 610.1 & & Conv. (cfs) & * & & * & 610.1 & * & \\
\hline * Length Wtd. (ft) & & 103.00 & & Wetted Per. (ft) & * & & * & 123.39 & * & \\
\hline * Min Ch El (ft) & & 2902.00 & & Shear (lb/sq ft) & * & & * & 0.77 & * & \\
\hline * Alpha & & 1.00 & & Stream Power (lb/ft s) & * & & * & 2.40 & * & \\
\hline * Frctn Loss (ft) & & 6.75 & & Cum Volume (acre-ft) & * & 0.85 & * & 4.54 & * & 15.72 \\
\hline * C \& E Loss (ft) & & 0.01 & & Cum SA (acres) & \(\star\) & & * & 4.05 & * & 3.53 \\
\hline
\end{tabular}

Warning: Divided flow computed for this cross-section.
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

LATERAL STRUCTURE

RIVER: Coronado Split F
REACH: Cor Split Reach RS: 0.571
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{INPUT} \\
\hline \multicolumn{6}{|l|}{Description:} \\
\hline \multicolumn{6}{|l|}{Lateral structure position = Next ot right bank station} \\
\hline \multicolumn{6}{|l|}{Distance from Upstream XS =} \\
\hline \multicolumn{6}{|l|}{Deck/Roadway Width \(=5\)} \\
\hline \multicolumn{6}{|l|}{Weir Coefficient \(=2\)} \\
\hline \multicolumn{6}{|l|}{Weir Flow Reference = Energy Grade} \\
\hline \multicolumn{6}{|l|}{Weir Embankment Coordinates num = 2} \\
\hline \multicolumn{6}{|c|}{Sta Elev Sta Elev} \\
\hline \multicolumn{6}{|l|}{********************************} \\
\hline & 02912 & 103 & 2912 & & \\
\hline
\end{tabular}

Weir crest shape \(\quad=\) Broad Crested

LATERAL STRUCTURE OUTPUT Profile \#100-yr Lat Struct
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline * E.G. US. (ft) & & 2902.53 & & Weir Sta US (ft) & & & * \\
\hline * W.S. US. (ft) & * & 2902.38 & & Weir Sta DS (ft) & * & & * \\
\hline * E.G. DS (ft) & & 2895.78 & & Min El Weir Flow (ft) & & 2912.00 & * \\
\hline * W.S. DS (ft) & * & 2895.54 & & Wr Top Wdth (ft) & * & & * \\
\hline * Q US (cfs) & * & 120.82 & & Weir Max Depth (ft) & * & & * \\
\hline * Q Leaving Total (cfs) & * & 0.00 & & Weir Avg Depth (ft) & * & & * \\
\hline * Q DS (cfs) & * & 120.82 & & Weir Flow Area (sq ft) & * & & * \\
\hline * Perc Q Leaving & * & 0.00 & & Weir Coef & & 2.000 & * \\
\hline * Q Weir (cfs) & * & 0.00 & & Weir Submerg & & & * \\
\hline * Q Gates (cfs) & * & & & Q Gate Group (cfs) & & & * \\
\hline * Q Culv (cfs) & * & 0.00 & & Gate Open Ht (ft) & & & * \\
\hline * Q Lat RC (cfs) & & & & Gate \#Open & & & * \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline * & * & * Gate Area (sq ft) & * & \\
\hline * Q Breach (cfs) & * & * Gate Submerg & & \\
\hline * Breach Avg Velocity (ft/s) & & * Gate Invert (ft) & & \\
\hline * Breach Flow Area (sq ft) & & * Gate Weir Coef & & * \\
\hline
\end{tabular}

Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Coronado Split F
REACH: Cor Split Reach RS: 0.561
INPUT
Description: Main chnl x-sect 4.189

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & 2895.78 & Element & & Left OB & & Channel & & Right OB \\
\hline * Vel Head (ft) & 0.24 & Wt. n-Val. & & & & 0.083 & & \\
\hline * W.S. Elev (ft) & * 2895.54 & * Reach Len. (ft) & & 178.00 & & 178.00 & & 150.00 \\
\hline * Crit W.S. (ft) & 2895.54 & * Flow Area (sq ft) & & & * & 30.79 & & \\
\hline * E.G. Slope (ft/ft) & *0.130710 & * Area (sq ft) & & & * & 30.79 & & 1245.86 \\
\hline * Q Total (cfs) & 120.82 & * Flow (cfs) & & & & 120.82 & & \\
\hline * Top Width (ft) & 348.59 & * Top Width (ft) & & & * & 65.18 & & 283.42 \\
\hline * Vel Total (ft/s) & 3.92 & * Avg. Vel. (ft/s) & & & * & 3.92 & & \\
\hline * Max Chl Dpth (ft) & 12.04 & * Hydr. Depth (ft) & & & & 0.47 & & \\
\hline * Conv. Total (cfs) & 334.2 & * Conv. (cfs) & & & * & 334.2 & & \\
\hline * Length Wtd. (ft) & 178.00 & * Wetted Per. (ft) & & & & 65.22 & & \\
\hline * Min Ch El (ft) & * 2895.00 & * Shear (lb/sq ft) & & & & 3.85 & & \\
\hline * Alpha & 1.00 & * Stream Power (lb/ft s) & & & & 15.12 & & \\
\hline * Frctn Loss (ft) & 7.10 & * Cum Volume (acre-ft) & & 0.85 & & 4.46 & & 12.97 \\
\hline * C \& E Loss (ft) & 0.03 & * Cum SA (acres) & & & * & 3.83 & & 2.98 \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: Divided flow computed for this cross-section.
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

LATERAL STRUCTURE

RIVER: Coronado Split F
REACH: Cor Split Reach

Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Coronado Split F
REACH: Cor Split Reach RS: 0.527
INPUT
Description: Main chnl x-sect 4.169
Station Elevation Data num= 48
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline & & & & & & & & ** & \\
\hline 1000 & 2894 & 1029 & 2892 & 1061 & 2890 & 1170 & 2890 & 1185 & 2888 \\
\hline 1206 & 2886.5 & 1221 & 2886.5 & 1238 & 2888 & 1250 & 2890 & 1250.862 & . 091 \\
\hline 1269 & 2892 & 1283 & 2892 & 1295 & 2890 & 1304 & 2889.9 & 1318 & 2890 \\
\hline 1326 & 2892 & 1335 & 2894 & 1350 & 2895 & 1367 & 2895 & 1397 & 2894 \\
\hline 1411 & 2892 & 1422 & 2890 & 1463 & 2888 & 1491 & 2887 & 1511 & 2888 \\
\hline 1520 & 2890 & 1537 & 2890 & 1551 & 2888 & 1564 & 2886 & 1586 & 2884 \\
\hline 1595 & 2882 & 1607 & 2880 & 1631 & 2878 & 1634 & 2877.6 & 1641 & 2878 \\
\hline 1646 & 2880 & 1651 & 2882 & 1656 & 2884 & 1661 & 2886 & 1686 & 2888 \\
\hline 1715 & 2890 & 1746 & 2892 & 1754 & 2894 & 1763 & 2896 & 1781 & 2898 \\
\hline 1809 & 2898 & 1821 & 2896 & 1911 & 2896 & & & & \\
\hline
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\(* ~\)
\(*\) E.G. Elev (ft) \(\quad * 2887.93 *\) Element
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline * Vel Head (ft) & & 0.14 & & Wt. n -Val. & * & & * & 0.061 & * & \\
\hline * W.S. Elev (ft) & & 2887.79 & & Reach Len. (ft) & * & 240.00 & * & 238.00 & * & 165.00 \\
\hline * Crit W.S. (ft) & & 2887.46 & & Flow Area (sq ft) & * & & * & 40.24 & * & \\
\hline * E.G. Slope (ft/ft) & & 0.019044 & & Area (sq ft) & * & & * & 40.24 & * & 637.09 \\
\hline * Q Total (cfs) & & 120.82 & * & Flow (cfs) & * & & * & 120.82 & * & \\
\hline * Top Width (ft) & & 204.25 & & Top Width (ft) & * & & * & 47.58 & * & 156.67 \\
\hline * Vel Total (ft/s) & & 3.00 & & Avg. Vel. (ft/s) & * & & * & 3.00 & * & \\
\hline * Max Chl Dpth (ft) & & 10.19 & * & Hydr. Depth (ft) & * & & * & 0.85 & * & \\
\hline * Conv. Total (cfs) & & 875.5 & & Conv. (cfs) & * & & * & 875.5 & * & \\
\hline * Length Wtd. (ft) & & 238.00 & & Wetted Per. (ft) & * & & * & 47.68 & * & \\
\hline * Min Ch El (ft) & & 2886.50 & & Shear (lb/sq ft) & * & & * & 1.00 & * & \\
\hline * Alpha & & 1.00 & & Stream Power (lb/ft s) & * & & * & 3.01 & * & \\
\hline * Frctn Loss (ft) & & 8.08 & & Cum Volume (acre-ft) & * & 0.85 & * & 4.31 & * & 9.72 \\
\hline * C \& E Loss (ft) & & 0.03 & & Cum SA (acres) & * & & * & 3.60 & * & 2.22 \\
\hline
\end{tabular}

Warning: Divided flow computed for this cross-section.
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Coronado Split F
REACH: Cor Split Reach RS: 0.482
INPUT
Description:

\begin{tabular}{rrrrrrr}
Bank Sta: Left & Right & Lengths: Left Channel & Right & Coeff Contr. \\
1051.43 & 1120.7 & 220 & 181 & 160 & .1 & .3
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline E.G. Elev (ft) & 2879.82 & Element & & Left OB & & Channel & & Right OB \\
\hline * Vel Head (ft) & 0.45 & Wt. n-Val. & & & & 0.070 & & \\
\hline * W.S. Elev (ft) & * 2879.37 & * Reach Len. (ft) & & 220.00 & & 181.00 & & 160.00 \\
\hline * Crit W.S. (ft) & 2879.37 & * Flow Area (sq ft) & & & & 22.54 & & \\
\hline * E.G. Slope (ft/ft) & *0.076830 & * Area (sq ft) & & & & 22.54 & & \\
\hline * Q Total (cfs) & 120.82 & * Flow (cfs) & & & & 120.82 & & \\
\hline * Top Width (ft) & 25.68 & Top Width (ft) & & & & 25.68 & & \\
\hline * Vel Total (ft/s) & 5.36 & * Avg. Vel. (ft/s) & & & & 5.36 & & \\
\hline * Max Chl Dpth (ft) & 1.37 & * Hydr. Depth (ft) & & & & 0.88 & & \\
\hline * Conv. Total (cfs) & 435.9 & * Conv. (cfs) & & & & 435.9 & & \\
\hline * Length Wtd. (ft) & * 181.00 & * Wetted Per. (ft) & & & & 25.91 & & \\
\hline * Min Ch El (ft) & * 2878.00 & * Shear (lb/sq ft) & & & & 4.17 & & \\
\hline * Alpha & 1.00 & * Stream Power (lb/ft s) & & & & 22.36 & & \\
\hline * Frctn Loss (ft) & 2.95 & * Cum Volume (acre-ft) & & 0.85 & & 4.14 & & 8.52 \\
\hline * C \& E Loss (ft) & 0.12 & * Cum SA (acres) & & & * & 3.40 & & 1.92 \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Coronado Split F
REACH: Cor Split Reach
RS: 0.448
INPUT
Description:
Station Elevation Data num= 11
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline \multicolumn{10}{|l|}{**} \\
\hline 1000 & 2878 & 1013.15 & 2876 & 1024.41 & 2874 & 1036.15 & 2872 & 1049.85 & 2870 \\
\hline 1073.71 & 2868 & 1102.78 & 2868 & 1108.61 & 2870 & 1114.04 & 2872 & 1118.01 & 2874 \\
\hline 1121.98 & 2876 & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Manning's n Values} & num= & \multicolumn{2}{|l|}{3} \\
\hline Sta & n Val & Sta & n Val & Sta & n Val \\
\hline \multicolumn{6}{|l|}{**} \\
\hline 1000 & . 08310 & . 71 & . 07 & 1102.78 & . 083 \\
\hline
\end{tabular}

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Note: Manning's \(n\) values were composited to a single value in the main channel
CROSS SECTION

RIVER: Coronado Split F
REACH: Cor Split Reach RS: 0.423

INPUT
Description:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Station & tion & Data & num= & 8 & & & & & \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline **** & , & ***** & **** & ***** & *** & ***** & **** & ****** & **** \\
\hline 1000 & 2872 & 1034.99 & 2870 & 1046.44 & 2868 & 1062.54 & 2866 & 1077.58 & 2866 \\
\hline 1087.07 & 2868 & 1096. 19 & 2870 & 1102.95 & 2872 & & & & \\
\hline
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & & 2867.48 & * & Element & * & Left OB & * & Channel & & Right OB \\
\hline * Vel Head (ft) & & 0.41 & * & Wt. n -Val. & * & & * & 0.070 & * & \\
\hline * W.S. Elev (ft) & & 2867.07 & & Reach Len. (ft) & * & 152.00 & * & 129.00 & * & 125.00 \\
\hline * Crit W.S. (ft) & & 2867.07 & & Flow Area (sq ft) & * & & * & 23.42 & * & \\
\hline * E.G. Slope (ft/ft) & & 0.078212 & & Area (sq ft) & * & & * & 23.42 & * & \\
\hline * Q Total (cfs) & & 120.82 & & Flow (cfs) & * & & * & 120.82 & * & \\
\hline * Top Width (ft) & & 28.73 & & Top Width (ft) & * & & * & 28.73 & * & \\
\hline * Vel Total (ft/s) & & 5.16 & & Avg. Vel. (ft/s) & * & & * & 5.16 & * & \\
\hline * Max Chl Dpth (ft) & & 1.07 & * & Hydr. Depth (ft) & * & & * & 0.82 & * & \\
\hline * Conv. Total (cfs) & & 432.0 & & Conv. (cfs) & * & & * & 432.0 & * & \\
\hline * Length Wtd. (ft) & & 129.00 & & Wetted Per. (ft) & * & & * & 28.91 & * & \\
\hline * Min Ch El (ft) & & 2866.00 & & Shear (lb/sq ft) & * & & * & 3.96 & * & \\
\hline * Alpha & & 1.00 & & Stream Power (lb/ft s) & * & & * & 20.41 & * & \\
\hline * Frctn Loss (ft) & & 0.15 & & Cum Volume (acre-ft) & * & 0.85 & * & 3.83 & * & 8.52 \\
\hline * C \& E Loss (ft) & & 0.12 & & Cum SA (acres) & * & & * & 3.11 & * & 1.92 \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
Note: Manning's \(n\) values were composited to a single value in the main channel.
CROSS SECTION

RIVER: Coronado Split F
REACH: Cor Split Reach RS: 0.399

\section*{INPUT}

Description:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Station E & vation & Data & num= & 15 & & & & & \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline 1000 & 2870 & 1005.43 & 2868 & 1010.86 & 2866 & 1016.29 & 2864 & 1021.65 & 2862 \\
\hline 1026.98 & 2860 & 1083.64 & 2858 & 1124 & 2857 & 1218 & 2856.5 & 1250.5 & 2858 \\
\hline 1269.94 & 2860 & 1280.25 & 2862 & 1288.4 & 2864 & 1296 & 2866 & 1307 & 2868 \\
\hline Manning's & n Value & & num= & 3 & & & & & \\
\hline Sta & n Val & Sta & n Val & Sta & n Val & & & & \\
\hline 1000 & . 083 & 1124 & . 07 & 1218 & . 083 & & & & \\
\hline Bank Sta:
\[
102
\] & Left
\[
1.65 \quad 128
\] & \[
\begin{array}{r}
\text { Right } \\
280.25
\end{array}
\] & Lengths & \[
\begin{array}{r}
\text { s: Left } \\
119
\end{array}
\] & Channel 86 & Right 82 & Coeff & f Contr.
\[
.1
\] & \[
\begin{gathered}
\text { Expan. } \\
.3
\end{gathered}
\] \\
\hline
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & 2858.51 & Element & & Left OB & & Channel & & Right OB \\
\hline * Vel Head (ft) & 0.00 & * Wt. n-Val. & & & & 0.073 & & \\
\hline * W.S. Elev (ft) & * 2858.51 & * Reach Len. (ft) & & 119.00 & & 86.00 & * & 82.00 \\
\hline * Crit W.S. (ft) & & * Flow Area (sq ft) & & & & 251.83 & & \\
\hline * E.G. Slope (ft/ft) & *0.000333 & * Area (sq ft) & & & & 251.83 & * & \\
\hline * Q Total (cfs) & * 120.82 & * Flow (cfs) & & & & 120.82 & & \\
\hline * Top Width (ft) & 186.21 & * Top Width (ft) & & & & 186.21 & & \\
\hline * Vel Total (ft/s) & 0.48 & * Avg. Vel. (ft/s) & * & & & 0.48 & & \\
\hline * Max Chl Dpth (ft) & 2.01 & * Hydr. Depth (ft) & & & & 1.35 & & \\
\hline * Conv. Total (cfs) & 6618.3 & * Conv. (cfs) & & & & 6618.3 & & \\
\hline * Length Wtd. (ft) & * 86.00 & * Wetted Per. (ft) & * & & & 186.29 & & \\
\hline * Min Ch El (ft) & * 2856.50 & * Shear (lb/sq ft) & & & & 0.03 & & \\
\hline * Alpha & * 1.00 & * Stream Power (lb/ft s) & & & & 0.01 & & \\
\hline * Frctn Loss (ft) & 0.10 & * Cum Volume (acre-ft) & & 0.85 & & 3.42 & & 8.52 \\
\hline * C \& E Loss (ft) & 0.06 & * Cum SA (acres) & & & & 2.79 & & 1.92 \\
\hline
\end{tabular}

Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Coronado Split F
RS: 0.382
INPUT
Description:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline n & ation & a & = & 14 & & & & & \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline 1000 & 2868 & 1006.63 & 2866 & 1013.26 & 2864 & 1019.89 & 2862 & 1030.18 & 2860 \\
\hline 1039.22 & 2858 & 1048.25 & 2856 & 1052.16 & 2856 & 1059.28 & 2858 & 1066.56 & 2860 \\
\hline 1073.85 & 2862 & 1081.71 & 2864 & 1089.87 & 2866 & 1098.03 & 2868 & & \\
\hline
\end{tabular}

\begin{tabular}{rrrrrrr}
Bank Sta: Left & Right \\
1030.18 & 1066.56 & Lengths: Left & Channel & Right & Coeff Contr. & Expan. \\
& 155 & 161 & 150 & .1 & .3
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Coronado Split F
REACH: Cor Split Reach RS: 0.352

\section*{INPUT}

Description:

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Bank Sta: Left Right
\[
1007.851109 .05
\] & \(t\) Lengths: & \[
\begin{array}{r}
\text { Left } \\
157
\end{array}
\] & \[
\begin{array}{rr}
\text { t } & \text { Channel } \\
7 & 177
\end{array}
\] & Right
\[
184
\] & & ff Contr . 1 & & \[
\begin{gathered}
\text { Expan. } \\
.3
\end{gathered}
\] & & \\
\hline \multicolumn{11}{|l|}{CROSS SECTION OUTPUT Profile \#100-yr} \\
\hline & 2848 & * & men & & * & , & & & & \\
\hline * Vel Head (ft) & * 0.23 & * W & Wt. n -Val & & * & & * & 0.060 & & \\
\hline * W.S. Elev (ft) & * 2848.18 & * R & Reach Len & (ft) & * & 157.00 & * & 177.00 & & 184.00 \\
\hline * Crit W.S. (ft) & * 2848.18 & * F & Flow Area & (sq ft) & * & & * & 31.65 & & \\
\hline * E.G. Slope (ft/ft) & *0.068970 & & Area (sq f & & * & & * & 31.65 & & \\
\hline * Q Total (cfs) & * 120.82 & & Flow (cfs) & & * & & * & 120.82 & & \\
\hline * Top Width (ft) & 70.33 & * T & Top Width & (ft) & * & & * & 70.33 & & \\
\hline * Vel Total (ft/s) & 3.82 & * A & Avg. Vel. & (ft/s) & * & & * & 3.82 & & \\
\hline * Max Chl Dpth (ft) & 0.68 & * H & Hydr. Dept & (ft) & * & & * & 0.45 & * & \\
\hline * Conv. Total (cfs) & 460.0 & * C & Conv. (cfs) & & * & & * & 460.0 & * & \\
\hline * Length Wtd. (ft) & * 177.00 & * W & Wetted Per & . (ft) & * & & * & 70.40 & * & \\
\hline * Min Ch El (ft) & * 2847.50 & * S & Shear (lb/ & sq ft) & * & & * & 1.94 & & \\
\hline * Alpha & * 1.00 & * S & Stream Pow & ver (lb/ft s) & * & & * & 7.39 & & \\
\hline * Frctn Loss (ft) & * 4.21 & * C & Cum Volume & (acre-ft) & * & 0.85 & * & 3.05 & & 8.52 \\
\hline * C \& E Loss (ft) & * 0.04 & * C & Cum SA (ac & res) & * & & * & 2.43 & & 1.92 \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
Note: Manning's \(n\) values were composited to a single value in the main channel.
CROSS SECTION

RIVER: Coronado Split F
REACH: Cor Split Reach

\section*{INPUT}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & 2843.46 & Element & & Left OB & & Channel & & Right OB \\
\hline * Vel Head (ft) & 0.08 & * Wt. n-Val. & & & & 0.065 & & \\
\hline * W.S. Elev (ft) & * 2843.38 & * Reach Len. (ft) & & 252.00 & & 253.00 & & 253.00 \\
\hline * Crit W.S. (ft) & * & * Flow Area (sq ft) & & & & 52.98 & & \\
\hline * E.G. Slope (ft/ft) & *0.011933 & * Area (sq ft) & & & & 52.98 & & \\
\hline * Q Total (cfs) & * 120.82 & * Flow (cfs) & & & & 120.82 & & \\
\hline * Top Width (ft) & 60.62 & * Top Width (ft) & & & & 60.62 & & \\
\hline * Vel Total (ft/s) & 2.28 & * Avg. Vel. (ft/s) & & & & 2.28 & & \\
\hline * Max Chl Dpth (ft) & 1.38 & * Hydr. Depth (ft) & & & & 0.87 & & \\
\hline * Conv. Total (cfs) & 1106.0 & * Conv. (cfs) & & & & 1106.0 & & \\
\hline * Length Wtd. (ft) & * 253.00 & * Wetted Per. (ft) & & & & 60.72 & & \\
\hline * Min Ch El (ft) & * 2842.00 & * Shear (lb/sq ft) & & & & 0.65 & & \\
\hline * Alpha & 1.00 & * Stream Power (lb/ft s) & & & & 1.48 & & \\
\hline * Frctn Loss (ft) & 4.30 & * Cum Volume (acre-ft) & & 0.85 & & 2.88 & & 8.52 \\
\hline * C \& E Loss (ft) & 0.00 & * Cum SA (acres) & & & & 2.16 & & 1.92 \\
\hline
\end{tabular}

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Coronado Split F
REACH: Cor Split Reach RS: 0.271
INPUT
Description:

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Manning's n Values} & num= & 3 & \\
\hline Sta & \(n\) Val Sta & \(n\) Val & Sta & n Val \\
\hline \multicolumn{5}{|l|}{****:} \\
\hline 1000 & . 0831057.81 & . 07 & 1149.47 & . 083 \\
\hline
\end{tabular}
\begin{tabular}{rrrrrrr}
Bank Sta: Left & Right \\
1042.13 & 1158.94 & Lengths: Left Channel & Right & Coeff Contr. & Expan. \\
\hline
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & 2839.15 & * Element & & Left OB & & Channel & & Right OB \\
\hline * Vel Head (ft) & 0.12 & * Wt. n-Val. & & & & 0.070 & & \\
\hline * W.S. Elev (ft) & * 2839.03 & * Reach Len. (ft) & & 155.00 & & 262.00 & & 299.00 \\
\hline * Crit W.S. (ft) & * & * Flow Area (sq ft) & & & & 43.42 & & \\
\hline * E.G. Slope (ft/ft) & *0.026097 & * Area (sq ft) & & & & 43.42 & & \\
\hline * Q Total (cfs) & * 120.82 & * Flow (cfs) & & & & 120.82 & * & \\
\hline * Top Width (ft) & 59.32 & * Top Width (ft) & & & & 59.32 & & \\
\hline * Vel Total (ft/s) & 2.78 & * Avg. Vel. (ft/s) & & & & 2.78 & & \\
\hline * Max Chl Dpth (ft) & 1.03 & * Hydr. Depth (ft) & & & * & 0.73 & & \\
\hline * Conv. Total (cfs) & 747.9 & * Conv. (cfs) & & & & 747.9 & & \\
\hline * Length Wtd. (ft) & * 262.00 & * Wetted Per. (ft) & & & & 59.41 & & \\
\hline * Min Ch El (ft) & 2838.00 & * Shear (lb/sq ft) & * & & & 1.19 & & \\
\hline * Alpha & 1.00 & * Stream Power (lb/ft s) & & & & 3.31 & & \\
\hline * Frctn Loss (ft) & 5.06 & * Cum Volume (acre-ft) & & 0.85 & & 2.60 & & 8.52 \\
\hline * C \& E Loss (ft) & 0.03 & * Cum SA (acres) & & & & 1.81 & & 1.92 \\
\hline
\end{tabular}

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Note: Manning's \(n\) values were composited to a single value in the main channel.

\section*{CROSS SECTION}

RIVER: Coronado Split F
REACH: Cor Split Reach RS: 0.221
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{INPUT} \\
\hline \multicolumn{10}{|l|}{Description: @ Havasu Rd crossing} \\
\hline Station E & levation & Data & num= & \multicolumn{6}{|l|}{14} \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline \multicolumn{10}{|l|}{***} \\
\hline 1000 & 2850 & 1010.68 & 2848 & 1022.32 & 2846 & 1034.08 & 2844 & 1046.07 & 2842 \\
\hline 1054 & 2840 & 1068.91 & 2838 & 1088.29 & 2836 & 1115.96 & 2834 & 1124 & 2832.5 \\
\hline 1132 & 2832.5 & 1155.41 & 2834 & 1174.63 & 2836 & 1209.98 & 2838 & & \\
\hline
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & * & 2834.07 & * & Element & * & Left OB & * & Channel & * & Right OB & \\
\hline * Vel Head (ft) & & 0.38 & * & Wt. n-Val. & * & & * & 0.030 & * & & \\
\hline * W.S. Elev (ft) & * & 2833.69 & * & Reach Len. (ft) & * & 219.00 & * & 185.00 & * & 166.00 & * \\
\hline * Crit W.S. (ft) & & 2833.69 & * & Flow Area (sq ft) & * & & * & 24.50 & * & & \\
\hline * E.G. Slope (ft/ft) & & . 014854 & * & Area (sq ft) & * & & * & 24.50 & * & & * \\
\hline * Q Total (cfs) & & 120.82 & * & Flow (cfs) & * & & * & 120.82 & * & & * \\
\hline * Top Width (ft) & & 33.04 & * & Top Width (ft) & * & & * & 33.04 & * & & * \\
\hline * Vel Total (ft/s) & & 4.93 & * & Avg. Vel. (ft/s) & * & & * & 4.93 & * & & * \\
\hline * Max Chl Dpth (ft) & & 1.19 & * & Hydr. Depth (ft) & * & & * & 0.74 & * & & * \\
\hline * Conv. Total (cfs) & & 991.3 & * & Conv. (cfs) & * & & * & 991.3 & * & & * \\
\hline * Length Wtd. (ft) & & 184.72 & * & Wetted Per. (ft) & * & & * & 33.18 & * & & * \\
\hline * Min Ch El (ft) & & 2832.50 & * & Shear (lb/sq ft) & * & & * & 0.68 & * & & * \\
\hline * Alpha & & 1.00 & * & Stream Power (lb/ft s) & * & & * & 3.38 & * & & * \\
\hline * Frctn Loss (ft) & & 2.73 & * & Cum Volume (acre-ft) & * & 0.85 & * & 2.40 & * & 8.52 & * \\
\hline * C \& E Loss (ft) & & 0.09 & * & Cum SA (acres) & * & & * & 1.54 & * & 1.92 & * \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Coronado Split F
REACH: Cor Split Reach RS: 0.186
INPUT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{Description: Main chnl x-sect 3.891} \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline \multicolumn{10}{|l|}{***} \\
\hline 1000 & 2843.8 & 1010 & 2842 & 1021 & 2840 & 1033 & 2838 & 1041 & 2834 \\
\hline 1046 & 2832 & 1051 & 2830 & 1062 & 2828 & 1088 & 2826 & 1100 & 2826 \\
\hline 1147 & 2826.4 & 1157 & 2826.4 & 1167 & 2826 & 1200 & 2826 & 1321 & 2827.6 \\
\hline 1347 & 2827.6 & 1408 & 2826 & 1519 & 2826 & 1538 & 2827 & 1550 & 2827 \\
\hline 1560 & 2826 & 1577 & 2824 & 1596 & 2822 & 1613 & 2821 & 1630 & 2821 \\
\hline 1639 & 2822 & 1662 & 2824 & 1697 & 2826 & 1753.5 & 2828 & 1764 & 2832 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Manning's n Values
Sta n Val}} & \multicolumn{2}{|r|}{num=} & \multicolumn{2}{|l|}{3} \\
\hline & & Sta & n Val & Sta & n Val \\
\hline & & & & & \\
\hline 1000 & . 083 & 1046 & . 061 & 1147 & . 083 \\
\hline
\end{tabular}
\begin{tabular}{ccrrrrrr}
Bank Sta: Left & Right & Lengths: Left Channel & Right & Coeff Contr. & Expan. \\
1046 & 1147 & & 383 & 383 & 200 & .1 & .3
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{rr}
\text { Sta L } & \text { Sta R } \\
1152 & 1790.38
\end{array}
\] & \[
\begin{aligned}
& \text { Elev } \\
& 2830
\end{aligned}
\] & Permanent T & & & & & & & & \\
\hline \multicolumn{11}{|l|}{CROSS SECTION OUTPUT Profile \#100-yr} \\
\hline E.G. Elev (ft) & & * 2827.00 & * Element & & Left OB & & Channel & & ight OB & \\
\hline * Vel Head (ft) & & 0.08 & * Wt. n-Val. & & & & 0.061 & & 0.083 & \\
\hline * W.S. Elev (ft) & & * 2826.92 & * Reach Len. (ft) & & 383.00 & & 383.00 & & 200.00 & \\
\hline * Crit W.S. (ft) & & & * Flow Area (sq ft) & & & & 50.10 & & 2.58 & \\
\hline * E.G. Slope (ft/ft) & & *0.014669 & * Area (sq ft) & & & & 50.10 & & 721.46 & \\
\hline * Q Total (cfs) & & 120.82 & * Flow (cfs) & & & & 117.22 & & 3.60 & \\
\hline * Top Width (ft) & & 528.54 & * Top Width (ft) & & & & 70.91 & & 457.63 & \\
\hline * Vel Total (ft/s) & & 2.29 & * Avg. Vel. (ft/s) & & & & 2.34 & & 1.40 & \\
\hline * Max Chl Dpth (ft) & & 5.92 & * Hydr. Depth (ft) & & & & 0.71 & & 0.52 & \\
\hline * Conv. Total (cfs) & & 997.6 & * Conv. (cfs) & & & & 967.8 & & 29.7 & \\
\hline * Length Wtd. (ft) & & * 380.27 & * Wetted Per. (ft) & & & & 70.95 & & 5.00 & \\
\hline * Min Ch El (ft) & & * 2826.00 & * Shear (lb/sq ft) & & & & 0.65 & & 0.47 & \\
\hline * Alpha & & 1.02 & * Stream Power (lb/ft s) & & & & 1.51 & & 0.66 & \\
\hline * Frctn Loss (ft) & & 10.72 & * Cum Volume (acre-ft) & & 0.85 & & 2.24 & & 7.14 & \\
\hline * C \& E Loss (ft) & & 0.01 & * Cum SA (acres) & & & & 1.31 & & 1.05 & \\
\hline
\end{tabular}

Warning: Divided flow computed for this cross-section.
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Coronado Split F
REACH: Cor Split Reach RS: 0.114
INPUT
Description: Main chnl x-sect 3.855
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Station El & levation & Data & num= & 26 & & & & & \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline 1000 & 2826.4 & 1007.5 & 2826 & 1017 & 2824 & 1039 & 2822 & 1059 & 2820 \\
\hline 1073 & 2818 & 1090 & 2816 & 1112.7 & 2815.4 & 1124 & 2815.4 & 1170 & 2816 \\
\hline 1197 & 2818 & 1238 & 2820 & 1288 & 2820 & 1396 & 2819 & 1429 & 2819 \\
\hline 1463 & 2818 & 1478 & 2816.3 & 1484 & 2816.3 & 1504 & 2818 & 1525 & 2820 \\
\hline 1556 & 2822 & 1576 & 2824 & 1583 & 2828 & 1590 & 2830 & 1610 & 2832 \\
\hline 1628 & 2832.3 & & & & & & & & \\
\hline Manning's & n Values & & num= & 3 & & & & & \\
\hline Sta & n Val & Sta & n Val & Sta & n Val & & & & \\
\hline 1000 & . 083 & 1059 & . 061 & 1238 & . 083 & & & & \\
\hline Bank Sta: & Left R & Right & Lengths: & Left & Channel & Right & Coeff & Contr . & Expan. \\
\hline & 1059 & 1238 & & 165 & 184 & 215 & & . 1 & . 3 \\
\hline Ineffectiv & ve Flow & num= & 1 & & & & & & \\
\hline Sta L & Sta R & Elev & Permanen & & & & & & \\
\hline 12401 & 1628.74 & 2825 & T & & & & & & \\
\hline
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & 2816.28 & * Element & & Left OB & & Channel & & Right OB \\
\hline * Vel Head (ft) & 0.21 & * Wt. n-Val. & & & & 0.061 & & \\
\hline * W.S. Elev (ft) & * 2816.07 & * Reach Len. (ft) & & 165.00 & * & 184.00 & & 215.00 \\
\hline * Crit W.S. (ft) & * 2816.07 & * Flow Area (sq ft) & & & & 33.09 & & \\
\hline * E.G. Slope (ft/ft) & *0.074787 & * Area (sq ft) & & & & 33.09 & & \\
\hline * Q Total (cfs) & 120.82 & * Flow (cfs) & & & * & 120.82 & & \\
\hline * Top Width (ft) & 81.55 & * Top Width (ft) & & & * & 81.55 & & \\
\hline * Vel Total (ft/s) & 3.65 & * Avg. Vel. (ft/s) & & & * & 3.65 & & \\
\hline * Max Chl Dpth (ft) & 0.67 & * Hydr. Depth (ft) & & & * & 0.41 & & \\
\hline * Conv. Total (cfs) & 441.8 & * Conv. (cfs) & & & * & 441.8 & & \\
\hline * Length Wtd. (ft) & * 184.00 & * Wetted Per. (ft) & & & * & 81.57 & & \\
\hline * Min Ch El (ft) & * 2815.40 & * Shear (lb/sq ft) & & & * & 1.89 & & \\
\hline * Alpha & 1.00 & * Stream Power (lb/ft s) & & & * & 6.92 & & \\
\hline * Frctn Loss (ft) & 5.87 & * Cum Volume (acre-ft) & & 0.85 & & 1.87 & & 5.49 \\
\hline * C \& E Loss (ft) & 0.02 & * Cum SA (acres) & & & & 0.64 & & \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Coronado Split F
REACH: Cor Split Reach RS: 0.079
INPUT
Description: Main chnl x-sect 3.813

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Manning's n Values} & num= n Val & \multicolumn{2}{|l|}{} & & & \\
\hline ******** & **** & ******* & ****** & **** & ** & & & \\
\hline 1000 & . 083 & 1033 & . 061 & 1097 & . 083 & & & \\
\hline Bank Sta: & \[
\begin{aligned}
& \text { Left } \\
& 1033
\end{aligned}
\] & Right 1097 & Lengths: & Left
\[
415
\] & Channel 415 & \[
\begin{array}{r}
\text { Right } \\
250
\end{array}
\] & \begin{tabular}{l}
Coeff Contr. \\
. 1
\end{tabular} & Expan. . 3 \\
\hline
\end{tabular}
\begin{tabular}{rrcc}
Ineffective Flow & num & \multicolumn{1}{c}{1} \\
Sta L & Sta R & Elev & Permanent \\
1107 & 1762.93 & 2820 & \(T\)
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline E.G. Elev (ft) & 2810.05 & * Element & & Left OB & & Channel & & Right OB \\
\hline * Vel Head (ft) & 0.14 & * Wt. n-Val. & & & & 0.061 & & \\
\hline * W.S. Elev (ft) & 2809.91 & * Reach Len. (ft) & & 415.00 & & 415.00 & & 250.00 \\
\hline * Crit W.S. (ft) & * & * Flow Area (sq ft) & & & & 40.59 & & \\
\hline * E.G. Slope (ft/ft) & *0.017603 & * Area (sq ft) & & & & 40.59 & & \\
\hline * Q Total (cfs) & 120.82 & * Flow (cfs) & & & & 120.82 & & \\
\hline * Top Width (ft) & 45.75 & * Top Width (ft) & & & & 45.75 & & \\
\hline * Vel Total (ft/s) & 2.98 & * Avg. Vel. (ft/s) & & & & 2.98 & & \\
\hline * Max Chl Dpth (ft) & 1.51 & * Hydr. Depth (ft) & & & & 0.89 & & \\
\hline * Conv. Total (cfs) & 910.6 & * Conv. (cfs) & & & & 910.6 & & \\
\hline * Length Wtd. (ft) & * 415.00 & * Wetted Per. (ft) & & & & 45.93 & & \\
\hline * Min Ch El (ft) & * 2808.40 & * Shear (lb/sq ft) & & & & 0.97 & & \\
\hline * Alpha & 1.00 & * Stream Power (lb/ft s) & & & & 2.89 & & \\
\hline * Frctn Loss (ft) & 12.39 & * Cum Volume (acre-ft) & & 0.85 & & 1.72 & & 5.49 \\
\hline * C \& E Loss (ft) & 0.02 & * Cum SA (acres) & & & & 0.38 & & \\
\hline
\end{tabular}

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Coronado Split F
REACH: Cor Split Reach RS: 0
INPUT
Description: Main chnl x-sect 3.748, Sect upstream of Jct Cor Split Rtn
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Station & ation & & m= & 28 & & & & & \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline 1000 & 2825 & 1020 & 2824 & 1028 & 2822 & 1036 & 2820 & 1044 & 2818 \\
\hline 1053 & 2816 & 1067 & 2814 & 1077 & 2812 & 1112 & 2810 & 1116 & 2808 \\
\hline 1120 & 2806 & 1125 & 2804 & 1129 & 2802 & 1133 & 2800 & 1137 & 2798 \\
\hline 1149 & 2796 & 1155 & 2796 & 1186 & 2798 & 1203 & 2800 & 1249 & 2802 \\
\hline 1479 & 2802 & 1561 & 2802 & 1567 & 2804 & 1573 & 2806 & 1578 & 2808 \\
\hline 1583 & 2810 & 1589 & 2812 & 1603 & 2813 & & & & \\
\hline
\end{tabular}

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{11331203} & \multicolumn{3}{|c|}{\(0 \quad 0\)} & \multicolumn{2}{|l|}{. 1} & \multicolumn{2}{|l|}{. 3} & & \\
\hline \multicolumn{11}{|l|}{CROSS SECTION OUTPUT Profile \#100-yr} \\
\hline * E.G. Elev (ft) & * 2797.63 & * & Element & * & Left OB & * & Channel & * & Right OB & \\
\hline * Vel Head (ft) & * 0.38 & * & Wt. n -Val. & * & & * & 0.061 & * & & \\
\hline * W.S. Elev (ft) & * 2797.26 & & Reach Len. (ft) & * & 480.00 & * & 480.00 & * & 480.00 & \\
\hline * Crit W.S. (ft) & * 2797.26 & * & Flow Area (sq ft) & * & & * & 24.50 & * & & \\
\hline * E.G. Slope (ft/ft) & *0.061351 & & Area (sq ft) & * & & * & 24.50 & * & & * \\
\hline * Q Total (cfs) & * 120.82 & & Flow (cfs) & * & & * & 120.82 & * & & * \\
\hline * Top Width (ft) & 33.01 & & Top Width (ft) & * & & * & 33.01 & * & & \\
\hline * Vel Total (ft/s) & 4.93 & & Avg. Vel. (ft/s) & * & & * & 4.93 & * & & \\
\hline * Max Chl Dpth (ft) & 1.26 & * & Hydr. Depth (ft) & * & & * & 0.74 & * & & \\
\hline * Conv. Total (cfs) & 487.8 & & Conv. (cfs) & * & & * & 487.8 & * & & \\
\hline * Length Wtd. (ft) & * 480.00 & & Wetted Per. (ft) & * & & * & 33.15 & * & & \\
\hline * Min Ch El (ft) & * 2796.00 & & Shear (lb/sq ft) & * & & * & 2.83 & * & & \\
\hline * Alpha & 1.00 & & Stream Power (lb/ft s) & * & & * & 13.96 & * & & * \\
\hline * Frctn Loss (ft) & 4.40 & & Cum Volume (acre-ft) & * & 0.85 & * & 1.41 & * & 5.49 & * \\
\hline * C \& E Loss (ft) & 0.01 & & Cum SA (acres) & * & & * & & * & & * \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 1 RS: 4.800

CROSS SECTION OUTPUT Profile \#100-yr

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 1 RS: 4.792
INPUT
Description: 76

\begin{tabular}{rrrrrrr}
Bank Sta: Left & Right \\
1010.64 & 1055.66 & Lengths: Left Channel & Right & Coeff Contr. & Expan. \\
\hline
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline E.G. Elev (ft) & 3078.41 & Element & & Left OB & & Channel & & Right OB & \\
\hline * Vel Head (ft) & 1.86 & * Wt. n-Val. & & 0.086 & & 0.066 & * & 0.086 & \\
\hline * W.S. Elev (ft) & 3076.55 & * Reach Len. (ft) & & 43.00 & & 47.00 & & 50.00 & \\
\hline * Crit W.S. (ft) & 3076.16 & * Flow Area (sq ft) & & 0.20 & & 212.07 & & 0.28 & \\
\hline * E.G. Slope (ft/ft) & *0.032590 & * Area (sq ft) & & 0.20 & & 212.07 & & 0.28 & \\
\hline * Q Total (cfs) & 2324.00 & * Flow (cfs) & & 0.23 & & 2323.43 & & 0.34 & \\
\hline * Top Width (ft) & 46.80 & * Top Width (ft) & & 0.74 & & 45.02 & & 1.03 & \\
\hline * Vel Total (ft/s) & 10.93 & * Avg. Vel. (ft/s) & & 1.14 & & 10.96 & & 1.21 & \\
\hline * Max Chl Dpth (ft) & 7.55 & * Hydr. Depth (ft) & & 0.27 & & 4.71 & & 0.27 & \\
\hline * Conv. Total (cfs) & 12873.5 & * Conv. (cfs) & & 1.3 & & 12870.3 & & 1.9 & \\
\hline * Length Wtd. (ft) & 47.00 & * Wetted Per. (ft) & & 0.92 & & 47.92 & & 1.17 & \\
\hline * Min Ch El (ft) & 3069.00 & * Shear (lb/sq ft) & & 0.45 & & 9.00 & & 0.49 & \\
\hline * Alpha & 1.00 & * Stream Power (lb/ft s) & & 0.51 & & 98.66 & & 0.59 & \\
\hline * Frctn Loss (ft) & 1.74 & * Cum Volume (acre-ft) & & 0.00 & & 0.53 & & 0.00 & \\
\hline * C \& E Loss (ft) & 0.06 & * Cum SA (acres) & & 0.00 & & 1.37 & & 0.11 & \\
\hline
\end{tabular}

Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 1 RS: 4.783

\section*{INPUT}

Description: 75
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline ion & on & Data & num= & 31 & & & & & \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline 1000 & 3082 & 1009.09 & 3082 & 1014 & 3080 & 1015 & 3080 & 1015.01 & 3077.8 \\
\hline 1017 & 3076 & 1020 & 3074 & 1021.5 & 3073 & 1023 & 3072 & 1025 & 3071 \\
\hline 1027 & 3070 & 1033 & 3068 & 1045 & 3067 & 1046.47 & 3067 & 1049 & 3068 \\
\hline 1051 & 3069 & 1053 & 3070 & 1054 & 3071 & 1055 & 3072 & 1056.5 & 3073 \\
\hline 1058 & 3074 & 1059 & 3075 & 1060.6 & 3076 & 1061.5 & 3077 & 1063 & 3078 \\
\hline 1063.65 & 3079 & 1065.9 & 3079.9 & 1065.91 & 3083 & 1066.91 & 3083 & 1066.92 & 3082.9 \\
\hline
\end{tabular}

10703084

CROSS SECTION OUTPUT Profile \#100-yr \(\qquad\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline E.G. Elev (ft) & 3076.62 & * Element & & Left OB & Channel & & Right OB \\
\hline * Vel Head (ft) & 2.44 & * Wt. n-Val. & * & 0.086 & 0.066 & * & 0.086 \\
\hline * W.S. Elev (ft) & 3074.17 & * Reach Len. (ft) & * & 23.00 & 24.00 & & 24.00 \\
\hline * Crit W.S. (ft) & 3074.17 & * Flow Area (sq ft) & * & 0.02 & 185.30 & & 0.01 \\
\hline * E.G. Slope (ft/ft) & *0.042258 & * Area (sq ft) & & 0.02 & 185.30 & & 0.01 \\
\hline * Q Total (cfs) & 2324.00 & * Flow (cfs) & & 0.01 & 2323.98 & & 0.01 \\
\hline * Top Width (ft) & 38.43 & * Top Width (ft) & * & 0.26 & 38.00 & & 0.17 \\
\hline * Vel Total (ft/s) & 12.54 & * Avg. Vel. (ft/s) & * & 0.61 & 12.54 & & 0.55 \\
\hline * Max Chl Dpth (ft) & 7.17 & * Hydr. Depth (ft) & * & 0.09 & 4.88 & & 0.09 \\
\hline * Conv. Total (cfs) & 11305.3 & * Conv. (cfs) & & 0.1 & 11305.1 & & 0.0 \\
\hline * Length Wtd. (ft) & 24.00 & * Wetted Per. (ft) & * & 0.31 & 41.54 & & 0.24 \\
\hline * Min Ch El (ft) & 3067.00 & * Shear (lb/sq ft) & * & 0.19 & 11.77 & & 0.16 \\
\hline * Alpha & 1.00 & * Stream Power (lb/ft s) & * & 0.12 & 147.59 & & 0.09 \\
\hline * Frctn Loss (ft) & 0.50 & * Cum Volume (acre-ft) & & 0.00 & 0.31 & & 0.00 \\
\hline * C \& E Loss (ft) & 0.42 & * Cum SA (acres) & * & 0.00 & 1.33 & & 0.11 \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 1 RS: 4.778

CROSS SECTION OUTPUT Profile \#100-yr

CULVERT

RIVER: Finger Rock Wash
REACH: Main Reach 1 RS: 4.771
INPUT
Description: Playa de Coronado Crossing @ HEC-1 Sta. RES-9

Number of Culverts \(=1\)

\begin{tabular}{|c|c|c|c|}
\hline E.G. DS (ft) & 3071.17 & Culv Frctn Ls (ft) & 1.72 \\
\hline * W.S. DS (ft) & 3068.17 & * Culv Exit Loss (ft) & 1.42 \\
\hline * Delta EG (ft) & 3.82 & * Culv Entr Loss (ft) & 0.68 \\
\hline * Delta WS (ft) & 5.20 & * Q Weir (cfs) & * \\
\hline * E.G. IC (ft) & * 3074.97 & * Weir Sta Lft (ft) & * \\
\hline * E.G. OC (ft) & 3074.99 & * Weir Sta Rgt (ft) & * \\
\hline * Culvert Control & Outlet & * Weir Submerg & \\
\hline * Culv WS Inlet (ft) & * 3070.91 & * Weir Max Depth (ft) & * \\
\hline * Culv WS Outlet (ft) & * 3067.11 & * Weir Avg Depth (ft) & * \\
\hline * Culv Nml Depth (ft) & 4.15 & * Weir Flow Area (sq ft) & * \\
\hline * Culv Crt Depth (ft) & 5.71 & Min El Weir Flow (ft) & 3080.33 \\
\hline
\end{tabular}

Warning: Since the culvert has supercritical flow, the program should be run in mixed flow in order to check if the cross section downstream of the culvert has supercritical flow.
Note: The flow in the culvert is entirely supercritical.
CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 1 RS: 4.767
INPUT
Description: 73
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Station Elevation Data} & num= & \multicolumn{2}{|l|}{6} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Sta Elev}} & \multirow[b]{2}{*}{Sta} & \multirow[b]{2}{*}{Elev} \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & & & & \\
\hline \multicolumn{10}{|l|}{***} \\
\hline 1000 & 3079 & 1029 & 3063 & 1044 & 3062.2 & 1072 & 3062.2 & 1087 & 3079 \\
\hline \multicolumn{10}{|l|}{10943079.5} \\
\hline \multicolumn{3}{|l|}{Manning's n Values} & num= & \multicolumn{2}{|l|}{3} & & & & \\
\hline Sta & n Val & Sta & n Val & Sta & n Val & & & & \\
\hline \multicolumn{10}{|l|}{***} \\
\hline 1000 & . 086 & 1000 & . 066 & 1087 & \multicolumn{2}{|l|}{. 086} & & & \\
\hline \multirow[t]{2}{*}{Bank Sta:} & Left R & Right & \multirow[t]{2}{*}{Lengths:} & \multirow[t]{2}{*}{\[
\begin{array}{r}
\text { Left } \\
35
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
\text { Channel } \\
60
\end{array}
\]} & \multirow[t]{2}{*}{Right 63} & \multirow[t]{2}{*}{Coeff} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Contr . } \\
.3
\end{gathered}
\]} & \multirow[t]{2}{*}{Expan . 5} \\
\hline & \[
1000
\] & 1087 & & & & & & & \\
\hline \multicolumn{2}{|l|}{Ineffective Flow} & num= & 2 & & & & & & \\
\hline Sta L & Sta R & Elev & Permanent & & & & & & \\
\hline 1000 & 1044 & 3072.5 & T & & & & & & \\
\hline 1072 & 1094 & 3072.5 & T & & & & & & \\
\hline
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & * 3071.17 & * Element & * & Left OB & * & Channel & & Right OB \\
\hline * Vel Head (ft) & 3.01 & * Wt. n-Val. & * & & * & 0.066 & * & \\
\hline * W.S. Elev (ft) & * 3068.17 & * Reach Len. (ft) & * & 35.00 & * & 60.00 & * & 63.00 \\
\hline * Crit W.S. (ft) & * 3068.17 & * Flow Area (sq ft) & * & & * & 167.01 & * & \\
\hline * E.G. Slope (ft/ft) & * 0.035317 & * Area (sq ft) & * & & * & 290.53 & * & \\
\hline * Q Total (cfs) & * 2324.00 & * Flow (cfs) & * & & * & 2324.00 & * & \\
\hline * Top Width (ft) & 57.69 & * Top Width (ft) & * & & * & 57.69 & * & \\
\hline * Vel Total (ft/s) & 13.92 & * Avg. Vel. (ft/s) & * & & * & 13.92 & * & \\
\hline * Max Chl Dpth (ft) & 5.96 & * Hydr. Depth (ft) & * & & * & 5.96 & * & \\
\hline * Conv. Total (cfs) & * 12366.4 & * Conv. (cfs) & * & & * & 12366.4 & * & \\
\hline * Length Wtd. (ft) & * 60.00 & * Wetted Per. (ft) & * & & * & 28.00 & * & \\
\hline * Min Ch El (ft) & * 3062.20 & * Shear (lb/sq ft) & * & & * & 13.15 & * & \\
\hline * Alpha & 1.00 & * Stream Power (lb/ft s) & * & & * & 183.00 & * & \\
\hline * Frctn Loss (ft) & 2.36 & * Cum Volume (acre-ft) & * & 0.09 & * & 5.10 & * & 0.71 \\
\hline * C \& E Loss (ft) & 0.72 & * Cum SA (acres) & * & 0.00 & * & 1.24 & * & 0.11 \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 1
RS: 4.756

\section*{INPUT}

Description: 72
\(\begin{array}{rccccccc}\text { Station Elevation Data } \\ \text { Sta } & \text { Elev } & \text { num } & & & \\ \text { Sta } & \text { Elev } & \text { Sta } & \text { Elev } & \text { Sta } & \text { Elev } & \text { Sta }\end{array}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 1000 & 3076 & 1006 & 3074 & 1009.5 & 53072 & 1013 & 3070 & 1016 & 3068 \\
\hline 1020 & 3066 & 1024 & 3064 & 1040 & 3062 & 1060 & 3060 & 1068 & 3059 \\
\hline 1075 & 3060 & 1092 & 3062 & 1098 & 3064 & 1103 & 3066 & 1111 & 3068 \\
\hline 1120 & 3070 & 1122 & 3072 & 1125 & - 3074 & 1128 & 3077 & 1129 & 3077 \\
\hline \multicolumn{10}{|l|}{1129.013076 .8} \\
\hline \multicolumn{3}{|l|}{Manning's n Values} & \multicolumn{3}{|l|}{num= 3} & & & & \\
\hline Sta & n Val & Sta & n Val & Sta & n Val & & & & \\
\hline \multicolumn{10}{|l|}{***} \\
\hline 1000 & . 086 & 1024 & . 066 & 1098 & 8.086 & & & & \\
\hline Bank Sta: & \[
\begin{aligned}
& \text { Left } \\
& 1024
\end{aligned}
\] & ght & Lengths & \[
\begin{array}{r}
\text { Left } \\
35
\end{array}
\] & \[
\begin{array}{r}
\text { Channel } \\
39
\end{array}
\] & Right 40 & Coeff & \[
\begin{gathered}
\text { Contr. } \\
.1
\end{gathered}
\] & Expan. .3 \\
\hline
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & * 3065.98 & * Element & * & Left OB & * & Channel & & Right OB \\
\hline * Vel Head (ft) & 1.56 & Wt. n -Val. & * & 0.086 & * & 0.066 & & 0.086 \\
\hline * W.S. Elev (ft) & 3064.42 & * Reach Len. (ft) & * & 35.00 & * & 39.00 & & 40.00 \\
\hline * Crit W.S. (ft) & * 3064.42 & * Flow Area (sq ft) & * & 0.18 & * & 231.74 & & 0.22 \\
\hline * E.G. Slope (ft/ft) & *0.043914 & * Area (sq ft) & * & 0.18 & * & 231.74 & & 0.22 \\
\hline * Q Total (cfs) & * 2324.00 & * Flow (cfs) & * & 0.21 & * & 2323.52 & & 0.27 \\
\hline * Top Width (ft) & 75.90 & Top Width (ft) & \(\star\) & 0.84 & * & 74.00 & & 1.06 \\
\hline * Vel Total (ft/s) & 10.01 & Avg. Vel. (ft/s) & * & 1.19 & * & 10.03 & & 1.22 \\
\hline * Max Chl Dpth (ft) & 5.42 & * Hydr. Depth (ft) & * & 0.21 & * & 3.13 & & 0.21 \\
\hline * Conv. Total (cfs) & 11090.1 & Conv. (cfs) & * & 1.0 & * & 11087.8 & & 1.3 \\
\hline * Length Wtd. (ft) & 39.00 & * Wetted Per. (ft) & * & 0.94 & * & 74.80 & & 1.14 \\
\hline * Min Ch El (ft) & 3059.00 & * Shear (lb/sq ft) & * & 0.52 & * & 8.49 & & 0.54 \\
\hline * Alpha & 1.00 & Stream Power (lb/ft s) & * & 0.62 & * & 85.16 & & 0.66 \\
\hline * Frctn Loss (ft) & 1.80 & * Cum Volume (acre-ft) & * & 0.09 & * & 4.74 & & 0.71 \\
\hline * C \& E Loss (ft) & 0.10 & * Cum SA (acres) & * & 0.00 & * & 1.15 & * & 0.11 \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 1 RS: 4.748

\section*{INPUT}

Description: 71
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Station Ele & & Data & num= & 51 & & & & & \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline & & & & & & & & & \\
\hline 1000 & 3070 & 1001.21 & 3069 & 1002.65 & 3068 & 1004.11 & 3067 & 1005.57 & 3066 \\
\hline 1007.21 & 3065 & 1008.84 & 3064 & 1011.16 & 3063 & 1013.54 & 3062 & 1015.76 & 3061 \\
\hline 1017.47 & 3060 & 1020.5 & 3059 & 1032.76 & 3059 & 1038.48 & 3059 & 1044.06 & 3058 \\
\hline 10453057 & 7.785 & 1048.43 & 3057 & 1052.8 & 3056 & 1060 & 3056 & 1072.03 & 3056 \\
\hline 1074.27 & 3057 & 1076305 & 7.772 & 1076.51 & 3058 & 1078.76 & 3059 & 1080 & . 408 \\
\hline 1081.8 & 3060 & 1088.46 & 3061 & 1096 & 3061 & 1115.44 & 3061 & 1116.95 & 3061 \\
\hline 1119.88 & 3061 & 1124.22 & 3061 & 1127.6 & 3062 & 1130.45 & 3063 & 1133.68 & 3064 \\
\hline 1135.12 & 3065 & 1136.18 & 3066 & 1137.24 & 3067 & 1138.3 & 3068 & 1139.49 & 3069 \\
\hline 1140.91 & 3070 & 1142.4 & 3071 & 1143.86 & 3072 & 1145.93 & 3073 & 1148.11 & 3074 \\
\hline 1151.16 & 3075 & 1154.01 & 3076 & 1156.51 & 3076 & 1160.55 & 3075 & 1164.91 & 3074 \\
\hline 1202.48 & 3073 & & & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{rrrrrr}
Bank Sta: Left & Right & Lengths: Left Channel & Right & Coeff Contr. Expan. \\
1015.76 & 1124.22 & 59 & 62 & 63 & .1
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & * 3062.63 & * Element & * & Left OB & * & Channel & * & Right OB \\
\hline * Vel Head (ft) & * 1.21 & * Wt. n-Val. & * & 0.086 & * & 0.066 & * & 0.086 \\
\hline * W.S. Elev (ft) & * 3061.42 & * Reach Len. (ft) & * & 59.00 & * & 62.00 & * & 63.00 \\
\hline * Crit W.S. (ft) & * 3061.42 & * Flow Area (sq ft) & * & 0.19 & * & 262.84 & * & 0.29 \\
\hline * E.G. Slope (ft/ft) & *0.048301 & * Area (sq ft) & * & 0.19 & * & 262.84 & * & 0.29 \\
\hline * Q Total (cfs) & * 2324.00 & * Flow (cfs) & * & 0.24 & * & 2323.39 & * & 0.38 \\
\hline * Top Width (ft) & * 110.78 & * Top Width (ft) & * & 0.92 & * & 108.46 & * & 1.40 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline * Vel Total (ft/s) & & 8.83 & * & Avg. Vel. (ft/s) & * & 1.25 & * & 8.84 & * & 1.29 \\
\hline * Max Chl Dpth (ft) & & 5.41 & * & Hydr. Depth (ft) & * & 0.21 & * & 2.42 & * & 0.21 \\
\hline * Conv. Total (cfs) & & 10574.5 & * & Conv. (cfs) & * & 1.1 & * & 10571.7 & * & 1.7 \\
\hline * Length Wtd. (ft) & & 62.06 & * & Wetted Per. (ft) & * & 1.01 & * & 110.08 & * & 1.46 \\
\hline * Min Ch El (ft) & & 3056.00 & * & Shear (lb/sq ft) & * & 0.57 & * & 7.20 & * & 0.60 \\
\hline * Alpha & & 1.00 & & Stream Power (lb/ft s) & * & 0.71 & * & 63.64 & * & 0.78 \\
\hline * Frctn Loss (ft) & & 2.74 & & Cum Volume (acre-ft) & * & 0.09 & * & 4.52 & * & 0.71 \\
\hline * C \& E Loss (ft) & & 0.01 & * & Cum SA (acres) & * & 0.00 & * & 1.07 & * & 0.10 \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 1 RS: 4.737
INPUT
Description: 70

1219.563063
\begin{tabular}{|c|c|c|c|c|c|}
\hline Manning's & Value & & num= & 3 & \\
\hline Sta & n Val & Sta & \(n \mathrm{Val}\) & Sta & n Val \\
\hline 1000 & . 086 & 1026.6 & . 066 & 1089.39 & . 086 \\
\hline
\end{tabular}
\begin{tabular}{rrrrrrr}
Bank Sta: Left & Right \\
1026.6 & 1089.39 & Lengths: Left Channel & Right & Coeff Contr. & Expan. \\
\hline & 69 & 66 & 64 & .1 & .3
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & 3057.09 & * Element & & Left OB & Channel & & Right OB \\
\hline * Vel Head (ft) & 1.34 & * Wt. n-Val. & & 0.086 & 0.066 & & 0.086 \\
\hline * W.S. Elev (ft) & 3055.75 & * Reach Len. (ft) & & 69.00 & 66.00 & & 64.00 \\
\hline * Crit W.S. (ft) & 3055.75 & * Flow Area (sq ft) & & 0.49 & 205.40 & & 77.65 \\
\hline * E.G. Slope (ft/ft) & *0.040601 & * Area (sq ft) & & 0.49 & 205.40 & & 77.65 \\
\hline * Q Total (cfs) & 2324.00 & * Flow (cfs) & & 0.80 & 2023.72 & & 299.48 \\
\hline * Top Width (ft) & 134.39 & * Top Width (ft) & & 1.30 & 62.79 & & 70.30 \\
\hline * Vel Total (ft/s) & 8.20 & * Avg. Vel. (ft/s) & & 1.65 & 9.85 & & 3.86 \\
\hline * Max Chl Dpth (ft) & 5.75 & * Hydr. Depth (ft) & & 0.38 & 3.27 & & 1.10 \\
\hline * Conv. Total (cfs) & 11533.7 & * Conv. (cfs) & & 4.0 & 10043.5 & & 1486.3 \\
\hline * Length Wtd. (ft) & * 65.87 & * Wetted Per. (ft) & & 1.50 & 64.18 & & 70.51 \\
\hline * Min Ch El (ft) & * 3050.00 & * Shear (lb/sq ft) & & 0.82 & 8.11 & & 2.79 \\
\hline * Alpha & 1.29 & * Stream Power (lb/ft s) & & 1.35 & 79.93 & & 10.77 \\
\hline * Frctn Loss (ft) & 3.01 & * Cum Volume (acre-ft) & & 0.09 & 4.18 & & 0.66 \\
\hline * C \& E Loss (ft) & 0.11 & * Cum SA (acres) & * & 0.00 & 0.95 & & 0.05 \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: Divided flow computed for this cross-section.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Finger Rock Wash

INPUT
Description: 69

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\begin{array}{rrr}\text { Bank Sta: Left } & \text { Right } \\ 1027.27 & 1191.79\end{array}\) & Lengths: & Left 118 & Channel
102 & \[
\begin{array}{r}
\text { Right } \\
100
\end{array}
\] & Coeff & \[
\begin{gathered}
\text { Contr } \\
.1
\end{gathered}
\] & & \[
\begin{gathered}
\text { Expan. } \\
.3
\end{gathered}
\] & & & \\
\hline \multicolumn{12}{|l|}{CROSS SECTION OUTPUT Profile \#100-yr} \\
\hline * E.G. Elev (ft) & * 3049.20 & & Element & & & Left OB & * & Channel & & ght OB & \\
\hline * Vel Head (ft) & 0.97 & & Wt. n-Val. & & * & & & 0.066 & & & \\
\hline * W.S. Elev (ft) & * 3048.23 & & Reach Len. & (ft) & & 118.00 & & 102.00 & & 100.00 & \\
\hline * Crit W.S. (ft) & * 3048.23 & & Flow Area & (sq ft) & * & & & 294.00 & & & \\
\hline * E.G. Slope (ft/ft) & *0.051673 & & Area (sq ft & & * & & & 294.00 & & & \\
\hline * Q Total (cfs) & * 2324.00 & & Flow (cfs) & & & & & 2324.00 & & & \\
\hline * Top Width (ft) & * 152.07 & & Top Width (& & * & & * & 152.07 & & & \\
\hline * Vel Total (ft/s) & 7.90 & & Avg. Vel. (& (ft/s) & & & & 7.90 & & & \\
\hline * Max Chl Dpth (ft) & 3.23 & & Hydr. Depth & (ft) & * & & * & 1.93 & & & \\
\hline * Conv. Total (cfs) & * 10223.6 & & Conv. (cfs) & & * & & & 10223.6 & & & \\
\hline * Length Wtd. (ft) & * 102.00 & & Wetted Per. & (ft) & * & & & 153.16 & & & \\
\hline * Min Ch El (ft) & * 3045.00 & & Shear (lb/sq & (ft) & * & & & 6.19 & & & \\
\hline * Alpha & 1.00 & & Stream Powe & (\(\mathrm{lb} / \mathrm{ft} \mathrm{s)}\) & * & & & 48.95 & & & \\
\hline * Frctn Loss (ft) & 5.07 & * & Cum Volume & (acre-ft) & & 0.09 & & 3.80 & & 0.60 & \\
\hline * C \& E Loss (ft) & 0.03 & & Cum SA (acr & (es) & & 0.00 & & 0.79 & & 0.00 & \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 1 RS: 4.705
INPUT
Description: 68
Station Elevation Data num= 43
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline 1000 & 3051 & 1002.3 & 3050 & 1004.6 & 3049 & 1006.79 & 3048 & 1008.84 & 3047 \\
\hline 1010.43 & 3046 & 1012.76 & 3045 & 1016.23 & 3044 & 1018.62 & 3043 & 1021.45 & 3042 \\
\hline 1025.38 & 3041 & 1030.91 & 3040 & 1041.04 & 3039 & 1045 & 3038.61 & 1051.19 & 3038 \\
\hline 1069.75 & 3037 & 1070 & 3037 & 1071.1 & 3037 & 1076.34 & 3038 & 1081.78 & 3039 \\
\hline 1082 & 3039 & 1100.42 & 3039 & 1105.65 & 3038 & 1110.5 & 3038 & 1117.67 & 3039 \\
\hline 11183039 & . 136 & 1120.09 & 3040 & 1122.5 & 3041 & 1124.63 & 3042 & \multicolumn{2}{|l|}{11283042.977} \\
\hline 1128.08 & 3043 & 1131.67 & 3044 & 1135.12 & 3045 & 1137.85 & 3046 & 1149.79 & 3047 \\
\hline 1152.8 & 3048 & 1155.8 & 3049 & 1158.85 & 3050 & 1163.3 & 3051 & 1167.32 & 3052 \\
\hline 1176.94 & 3052 & 1179.76 & 3052 & 1196.91 & 3053 & & & & \\
\hline
\end{tabular}

\begin{tabular}{rrrrrrr}
Bank Sta: Left & Right \\
1016.23 & 1131.67 & Lengths: Left Channel & Right & Coeff Contr. & Expan. \\
1016 & 48 & 50 & .1 & .3
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & * 3042.51 & * Element & * & Left OB & * & Channel & & Right OB & \\
\hline * Vel Head (ft) & * 1.31 & * Wt. n-Val. & * & & * & 0.066 & * & & \\
\hline * W.S. Elev (ft) & * 3041.20 & * Reach Len. (ft) & * & 45.00 & * & 48.00 & * & 50.00 & * \\
\hline * Crit W.S. (ft) & * 3041.20 & * Flow Area (sq ft) & * & & * & 252.94 & * & & * \\
\hline * E.G. Slope (ft/ft) & *0.047923 & * Area (sq ft) & * & & * & 252.94 & * & & * \\
\hline * Q Total (cfs) & * 2324.00 & * Flow (cfs) & * & & * & 2324.00 & * & & \\
\hline * Top Width (ft) & 98.34 & * Top Width (ft) & * & & * & 98.34 & * & & \\
\hline * Vel Total (ft/s) & 9.19 & * Avg. Vel. (ft/s) & * & & * & 9.19 & * & & \\
\hline * Max Chl Dpth (ft) & 4.20 & * Hydr. Depth (ft) & * & & * & 2.57 & * & & \\
\hline * Conv. Total (cfs) & * 10616.1 & * Conv. (cfs) & * & & * & 10616.1 & * & & \\
\hline * Length Wtd. (ft) & 48.00 & * Wetted Per. (ft) & * & & * & 99.37 & * & & \\
\hline * Min Ch El (ft) & * 3037.00 & * Shear (lb/sq ft) & * & & * & 7.62 & * & & * \\
\hline * Alpha & 1.00 & * Stream Power (lb/ft s) & * & & * & 69.97 & * & & * \\
\hline * Frctn Loss (ft) & 2.22 & * Cum Volume (acre-ft) & * & 0.09 & * & 3.16 & * & 0.60 & * \\
\hline * C \& E Loss (ft) & 0.03 & * Cum SA (acres) & * & 0.00 & * & 0.49 & * & 0.00 & * \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 1 RS: 4.696
INPUT
Description: 67

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Manning's n Values} & num= & 3 & \\
\hline Sta & n Val & Sta & n Val & Sta & n Val \\
\hline \multicolumn{6}{|l|}{***} \\
\hline 1000 & 08610 & . 71 & 066 & . 37 & 086 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Bank Sta: Left Right 1014.711088 .37 & 7 Lengths: & \[
\begin{array}{r}
\text { Left } \\
74
\end{array}
\] & \[
\begin{array}{rr}
\text { t Channel } \\
4 & 72
\end{array}
\] & \[
\begin{array}{r}
\text { Right } \\
68
\end{array}
\] & & ff Contr . 1 & & \[
\begin{gathered}
\text { Expan. } \\
.3
\end{gathered}
\] & & & \\
\hline \multicolumn{12}{|l|}{\multirow[t]{2}{*}{CROSS SECTION OUTPUT Profile \#100-yr}} \\
\hline & & & & & & & & & & & \\
\hline * E.G. Elev (ft) & * 3039.02 & * E & Element & & * & Left OB & & Channel & & Right OB & \\
\hline * Vel Head (ft) & * 1.63 & * W & Wt. n -Val & & * & & & 0.066 & & & \\
\hline * W.S. Elev (ft) & * 3037.39 & * R & Reach Len & (ft) & * & 74.00 & * & 72.00 & * & 68.00 & * \\
\hline * Crit W.S. (ft) & * 3037.39 & * F & Flow Area & (sq ft) & * & & & 226.64 & * & & \\
\hline * E.G. Slope (ft/ft) & *0.044804 & * A & Area (sq f & ft) & * & & * & 226.64 & * & & \\
\hline * Q Total (cfs) & * 2324.00 & * F & Flow (cfs) & & * & & * & 2324.00 & * & & \\
\hline * Top Width (ft) & 70.42 & * T & Top Width & (ft) & * & & * & 70.42 & * & & \\
\hline * Vel Total (ft/s) & 10.25 & * A & Avg. Vel. & (ft/s) & * & & * & 10.25 & * & & * \\
\hline * Max Chl Dpth (ft) & 6.39 & * H & Hydr. Dept & (ft) & * & & * & 3.22 & * & & \\
\hline * Conv. Total (cfs) & * 10979.4 & * C & Conv. (cfs) & & * & & * & 10979.4 & * & & * \\
\hline * Length Wtd. (ft) & * 72.00 & * W & Wetted Per & . (ft) & * & & * & 71.81 & * & & \\
\hline * Min Ch El (ft) & * 3031.00 & * S & Shear (lb/ & sq ft) & * & & * & 8.83 & * & & \\
\hline * Alpha & * 1.00 & * S & Stream Pow & ver (lb/ft s) & * & & * & 90.53 & * & & * \\
\hline * Frctn Loss (ft) & 2.84 & * C & Cum Volume & (acre-ft) & * & 0.09 & * & 2.90 & * & 0.60 & * \\
\hline * C \& E Loss (ft) & 0.00 & * C & Cum SA (ac & res) & * & 0.00 & * & 0.40 & * & 0.00 & * \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

RIVER: Finger Rock Wash
REACH: Main Reach 1
INPUT
Description: 66
Station Elevation Data num= 51
\begin{tabular}{ccccccccrr}
Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\(* ~\)
\end{tabular}
1113.143041

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & 3031.88 & * Element & & Left OB & & Channel & & Right OB \\
\hline * Vel Head (ft) & 1.66 & * Wt. n-Val. & & 0.086 & & 0.066 & * & 0.086 \\
\hline * W.S. Elev (ft) & * 3030.22 & * Reach Len. (ft) & & 47.00 & & 49.00 & & 53.00 \\
\hline * Crit W.S. (ft) & 3029.95 & * Flow Area (sq ft) & & 0.02 & & 225.04 & & 0.06 \\
\hline * E.G. Slope (ft/ft) & *0.035091 & * Area (sq ft) & & 0.02 & & 225.04 & & 0.06 \\
\hline * Q Total (cfs) & 2324.00 & * Flow (cfs) & & 0.01 & * & 2323.95 & & 0.04 \\
\hline * Top Width (ft) & 56.64 & * Top Width (ft) & & 0.15 & & 55.96 & & 0.53 \\
\hline * Vel Total (ft/s) & 10.32 & * Avg. Vel. (ft/s) & & 0.51 & & 10.33 & & 0.71 \\
\hline * Max Chl Dpth (ft) & 7.22 & * Hydr. Depth (ft) & & 0.11 & & 4.02 & & 0.11 \\
\hline * Conv. Total (cfs) & * 12406.3 & * Conv. (cfs) & & 0.0 & & 12406.0 & & 0.2 \\
\hline * Length Wtd. (ft) & 49.00 & * Wetted Per. (ft) & & 0.27 & & 58.73 & & 0.57 \\
\hline * Min Ch El (ft) & 3023.00 & * Shear (lb/sq ft) & & 0.14 & & 8.39 & & 0.22 \\
\hline * Alpha & 1.00 & * Stream Power (lb/ft s) & & 0.07 & & 86.69 & & 0.16 \\
\hline * Frctn Loss (ft) & 1.90 & * Cum Volume (acre-ft) & & 0.09 & & 2.53 & & 0.60 \\
\hline * C \& E Loss (ft) & 0.03 & * Cum SA (acres) & & 0.00 & & 0.30 & & 0.00 \\
\hline
\end{tabular}

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 1 RS: 4.673
INPUT
Description: 65
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Station & io & Data & = & 48 & & & & & \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline ******** & & & & & & & & & \\
\hline 1000 & 3046 & 1004.55 & 3045 & 1008.24 & 3044 & 1011.66 & 3043 & 1013.63 & 3042 \\
\hline 1015.18 & 3041 & 1017.18 & 3040 & 1019.09 & 3039 & 1020.79 & 3038 & 1022.46 & 3037 \\
\hline 1024.71 & 3036 & 1026.86 & 3035 & 1028 & 4.441 & 1028.9 & 3034 & 1030.8 & 3033 \\
\hline 1032.15 & 3032 & 1033.6 & 3031 & 1035.13 & 3030 & 1036.67 & 3029 & 1038.2 & 3028 \\
\hline 1039.73 & 3027 & 10403 & . 887 & 1042.12 & 3026 & 1044.97 & 3025 & 1049.05 & 3024 \\
\hline 1054.13 & 3023 & 1060 & 3023 & 1065 & 3023 & 1070.73 & 3023 & 1077.27 & 3024 \\
\hline 1088.11 & 3025 & 1089.91 & 3026 & 1091 & . 602 & 1091.72 & 3027 & 1093.52 & 3028 \\
\hline 1095.32 & 3029 & 1097.13 & 3030 & 1098.93 & 3031 & 1100.73 & 3032 & 1102.54 & 3033 \\
\hline 1104.34 & 3034 & 1106.18 & 3035 & 1108.03 & 3036 & 1109.89 & 3037 & 1111.74 & 3038 \\
\hline 1113.59 & 3039 & 1122.04 & 3040 & 1130.16 & 3041 & & & & \\
\hline
\end{tabular}

\begin{tabular}{rrrrrrr}
Bank Sta: Left & Right & Lengths: Left Channel & Right & Coeff Contr. & Expan. \\
1035.13 & 1097.13 & 173 & 155 & 129 & .1 & .3
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 1
RS: 4.643
INPUT
Description: Section upstream of Junction FR-9

\(1137.83 \quad 3033\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Manning's & n Values & & num= & 3 & \\
\hline Sta & n Val & Sta & n Val & Sta & n Val \\
\hline * & ***** & *** & ***** & *** & ***** \\
\hline 1000 & 086 & . 83 & 066 & . 74 & 086 \\
\hline
\end{tabular}
\begin{tabular}{rrrrrrr}
Bank Sta: Left & Right & Lengths: Left Channel & Right & Coeff Contr. & Expan \\
1016.83 & 1092.74 & 0 & 0 & 0 & .1 & .3
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & 3017.64 & * Element & & Left OB & & Channel & & Right OB \\
\hline * Vel Head (ft) & 1.56 & * Wt. n-Val. & & 0.086 & & 0.066 & & 0.086 \\
\hline * W.S. Elev (ft) & 3016.08 & * Reach Len. (ft) & & 252.00 & & 252.00 & & 252.00 \\
\hline * Crit W.S. (ft) & 3016.08 & * Flow Area (sq ft) & & 0.01 & & 231.85 & & 0.01 \\
\hline * E.G. Slope (ft/ft) & *0.045460 & * Area (sq ft) & & 0.01 & & 231.85 & & 0.01 \\
\hline * Q Total (cfs) & 2324.00 & * Flow (cfs) & & 0.01 & & 2323.99 & & 0.00 \\
\hline * Top Width (ft) & 76.52 & * Top Width (ft) & & 0.32 & * & 75.91 & & 0.29 \\
\hline * Vel Total (ft/s) & 10.02 & * Avg. Vel. (ft/s) & & 0.42 & * & 10.02 & & 0.42 \\
\hline * Max Chl Dpth (ft) & 5.08 & * Hydr. Depth (ft) & & 0.04 & & 3.05 & & 0.04 \\
\hline * Conv. Total (cfs) & 10899.8 & * Conv. (cfs) & & 0.0 & * & 10899.8 & & 0.0 \\
\hline * Length Wtd. (ft) & * 252.00 & * Wetted Per. (ft) & & 0.33 & & 76.83 & & 0.30 \\
\hline * Min Ch El (ft) & * 3011.00 & * Shear (lb/sq ft) & & 0.11 & & 8.56 & & 0.11 \\
\hline * Alpha & 1.00 & * Stream Power (lb/ft s) & & 0.05 & & 85.84 & & 0.05 \\
\hline * Frctn Loss (ft) & 6.77 & * Cum Volume (acre-ft) & & 0.09 & & 1.50 & & 0.60 \\
\hline * C \& E Loss (ft) & 0.08 & * Cum SA (acres) & & & & & & \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 2 RS: 4.596
INPUT
Description: Section downstream of Junction FR-9

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & 3002.81 & * Element & & Left OB & & Channel & & Right OB \\
\hline * Vel Head (ft) & 2.32 & * Wt. n-Val. & & 0.083 & & 0.061 & & 0.083 \\
\hline * W.S. Elev (ft) & 3000.49 & * Reach Len. (ft) & & 258.00 & & 256.00 & & 261.00 \\
\hline * Crit W.S. (ft) & 3000.49 & * Flow Area (sq ft) & & 30.61 & & 285.62 & & 207.09 \\
\hline * E.G. Slope (ft/ft) & *0.022146 & * Area (sq ft) & & 30.61 & & 285.62 & & 207.09 \\
\hline * Q Total (cfs) & 5284.00 & * Flow (cfs) & & 155.30 & & 3934.92 & & 1193.78 \\
\hline * Top Width (ft) & 112.00 & * Top Width (ft) & & 9.67 & & 37.74 & & 64.59 \\
\hline * Vel Total (ft/s) & 10.10 & * Avg. Vel. (ft/s) & & 5.07 & & 13.78 & & 5.76 \\
\hline * Max Chl Dpth (ft) & 9.49 & * Hydr. Depth (ft) & & 3.17 & & 7.57 & & 3.21 \\
\hline * Conv. Total (cfs) & 35507.0 & * Conv. (cfs) & * & 1043.6 & & 26441.5 & & 8021.9 \\
\hline * Length Wtd. (ft) & * 256.92 & * Wetted Per. (ft) & & 11.65 & & 38.55 & & 65.07 \\
\hline * Min Ch El (ft) & * 2991.00 & * Shear (lb/sq ft) & & 3.63 & & 10.24 & & 4.40 \\
\hline * Alpha & 1.47 & * Stream Power (lb/ft s) & & 18.44 & & 141.12 & & 25.37 \\
\hline * Frctn Loss (ft) & 6.35 & * Cum Volume (acre-ft) & & 0.51 & & 4.51 & & 1.59 \\
\hline * C \& E Loss (ft) & 0.08 & * Cum SA (acres) & * & 0.12 & & 0.55 & & 0.47 \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 2 RS: 4.547
INPUT
Description: 62
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline ion & ation & Data & m= & 40 & & & & & \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline 1000 & 3000 & 1005.81 & 2999 & 1008.43 & 2998 & 1011.08 & 2997 & 1013.93 & 2996 \\
\hline 1016.54 & 2995 & 1018.19 & 2994 & 1019.73 & 2993 & 1021 & 2992 & 1022.27 & 2991 \\
\hline 1023.54 & 2990 & 1024.81 & 2989 & 1026.39 & 2988 & 1028.26 & 2987 & 1030 & . 064 \\
\hline 1030.12 & 2986 & 1031.99 & 2985 & 1033.89 & 2984 & 1035 & 3.931 & 1050 & 2983 \\
\hline 1072.77 & 2984 & 10752 & . 308 & 1080 & 4.999 & 1080.01 & 2985 & 1084.43 & 2986 \\
\hline 1086.4 & 2987 & 1089.24 & 2988 & 1091.53 & 2989 & 1093.63 & 2990 & 1099.25 & 2991 \\
\hline 1105.34 & 2992 & 1111.97 & 2993 & 1116.31 & 2994 & 1131.63 & 2995 & 1136.95 & 2996 \\
\hline 1141.21 & 2997 & 1145.05 & 2998 & 1147.2 & 2999 & 1149.28 & 3000 & 1149.37 & 3000 \\
\hline
\end{tabular}
\begin{tabular}{cccll}
Manning's \(n\) Values & & \begin{tabular}{l}
num= \\
Sta \\
\(n\) Val
\end{tabular} & Sta & 3 \\
\(n\) Val & Sta & \(n\) Val
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 1000.0831035 & . 061 & 1075 & 5 . 083 & & & & & & \\
\hline \(\begin{array}{rrr}\text { Bank Sta: Left } & \text { Right } \\ 1035 & 1075\end{array}\) & Lengths: & Left 202 & \begin{tabular}{rr}
Channel & Right \\
203 & 209
\end{tabular} & Coeff & f Contr.
\[
.1
\] & \[
\begin{gathered}
\text { Expan. } \\
.3
\end{gathered}
\] & & & \\
\hline \multicolumn{10}{|l|}{CROSS SECTION OUTPUT Profile \#100-yr} \\
\hline * E.G. Elev (ft) & * 2993.88 & & Element & L & Left OB & Channel & & Right OB & \\
\hline * Vel Head (ft) & 3.10 & & Wt. n -Val. & & 0.083 & 0.061 & & 0.083 & \\
\hline * W.S. Elev (ft) & * 2990.78 & & Reach Len. (ft) & & 202.00 & 203.00 & & 209.00 & \\
\hline * Crit W.S. (ft) & * 2990.78 & & Flow Area (sq ft) & & 49.04 & 290.13 & & 81.32 & \\
\hline * E.G. Slope (ft/ft) & *0.027749 & & Area (sq ft) & & 49.04 & 290.13 & & 81.32 & \\
\hline * Q Total (cfs) & * 5284.00 & & Flow (cfs) & & 331.75 & 4406.19 & & 546.07 & \\
\hline * Top Width (ft) & 75.44 & * Top & op Width (ft) & & 12.45 & 40.00 & & 23.00 & \\
\hline * Vel Total (ft/s) & 12.57 & & Avg. Vel. (ft/s) & * & 6.76 & 15.19 & & 6.71 & \\
\hline * Max Chl Dpth (ft) & 7.78 & & Hydr. Depth (ft) & & 3.94 & 7.25 & & 3.54 & \\
\hline * Conv. Total (cfs) & * 31720.2 & * C & Conv. (cfs) & & 1991.5 & 26450.6 & & 3278.1 & \\
\hline * Length Wtd. (ft) & * 203.50 & & Wetted Per. (ft) & & 14.35 & 40.07 & & 24.07 & \\
\hline * Min Ch El (ft) & * 2983.00 & & Shear (lb/sq ft) & & 5.92 & 12.54 & & 5.85 & \\
\hline * Alpha & 1.27 & * S & Stream Power (lb/ft s) & * & 40.04 & 190.49 & & 39.30 & \\
\hline * Frctn Loss (ft) & 4.69 & * C & cum Volume (acre-ft) & * & 0.28 & 2.82 & & 0.73 & \\
\hline * C \& E Loss (ft) & 0.09 & * C & um SA (acres) & * & 0.06 & 0.32 & & 0.21 & \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 2 RS: 4.509
INPUT
Description: 61
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Station E & tion & ata & m= & 17 & & & & & \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline 1000 & 2992 & 1022 & 2977 & 1025 & 2974 & 1037 & 2972 & 1043 & 2971 \\
\hline 1050 & 2972 & 1052 & 2973 & 1055 & 2974 & 1060 & 2977 & 1063 & 2978 \\
\hline 1069 & 2980 & 1087 & 2980 & 1098 & 2980 & 1109 & 2982 & 1146 & 2990 \\
\hline 1156 & 2992 & 1184 & 2994 & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Manning's & n Valu & & num= & \multicolumn{2}{|l|}{3} & & & \\
\hline Sta & n Val & Sta & n Val & Sta & a Val & & & \\
\hline ******** & ***** & ******* & ****** & **** & ** & & & \\
\hline 1000 & . 083 & 1022 & . 061 & 1060 & 0 . 083 & & & \\
\hline Bank Sta: & \[
\begin{aligned}
& \text { Left } \\
& 1022
\end{aligned}
\] & \[
\begin{array}{r}
\text { Right } \\
1060
\end{array}
\] & Lengths: & Left 95 & Channel 90 & \[
\begin{array}{r}
\text { Right } \\
60
\end{array}
\] & Coeff Contr. . 1 & \[
\begin{gathered}
\text { Expan. } \\
.3
\end{gathered}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & 2984.83 & Element & & Left OB & & Channel & & Right OB \\
\hline * Vel Head (ft) & 2.80 & * Wt. n-Val & & 0.083 & & 0.061 & * & 0.083 \\
\hline * W.S. Elev (ft) & * 2982.03 & * Reach Len. (ft) & & 95.00 & & 90.00 & & 60.00 \\
\hline * Crit W.S. (ft) & 2982.03 & * Flow Area (sq ft) & & 18.55 & & 342.14 & & 101.97 \\
\hline * E.G. Slope (ft/ft) & *0.019448 & * Area (sq ft) & & 18.55 & & 342.14 & & 101.97 \\
\hline * Q Total (cfs) & 5284.00 & * Flow (cfs) & & 75.43 & * & 4798.09 & & 410.48 \\
\hline * Top Width (ft) & 94.52 & * Top Width (ft) & & 7.38 & & 38.00 & & 49.14 \\
\hline * Vel Total (ft/s) & 11.42 & * Avg. Vel. (ft/s) & & 4.07 & & 14.02 & & 4.03 \\
\hline * Max Chl Dpth (ft) & 11.03 & * Hydr. Depth (ft) & & 2.52 & & 9.00 & & 2.08 \\
\hline * Conv. Total (cfs) & + 37890.0 & * Conv. (cfs) & & 540.9 & & 34405.6 & & 2943.4 \\
\hline * Length Wtd. (ft) & 88.85 & * Wetted Per. (ft) & & 8.93 & & 40.79 & & 49.81 \\
\hline * Min Ch El (ft) & 2971.00 & * Shear (lb/sq ft) & & 2.52 & & 10.18 & & 2.49 \\
\hline * Alpha & 1.38 & * Stream Power (lb/ft s) & & 10.26 & & 142.81 & & 10.01 \\
\hline * Frctn Loss (ft) & 1.82 & * Cum Volume (acre-ft) & & 0.12 & & 1.34 & & 0.29 \\
\hline * C \& E Loss (ft) & 0.15 & * Cum SA (acres) & & 0.01 & & 0.14 & & 0.04 \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & 2979.46 & Element & & Left OB & & Channel & & Right OB \\
\hline * Vel Head (ft) & 2.28 & * Wt. n-Val. & & 0.083 & & 0.050 & * & 0.083 \\
\hline * W.S. Elev (ft) & 2977.18 & * Reach Len. (ft) & & & & & & \\
\hline * Crit W.S. (ft) & * 2977.18 & * Flow Area (sq ft) & & 1.33 & & 434.42 & & 4.40 \\
\hline * E.G. Slope (ft/ft) & *0.021636 & * Area (sq ft) & & 1.33 & & 434.42 & & 4.40 \\
\hline * Q Total (cfs) & * 5284.00 & * Flow (cfs) & & 2.27 & & 5273.66 & & 8.07 \\
\hline * Top Width (ft) & 102.74 & * Top Width (ft) & & 2.26 & & 93.00 & & 7.48 \\
\hline * Vel Total (ft/s) & 12.01 & * Avg. Vel. (ft/s) & & 1.71 & & 12.14 & & 1.83 \\
\hline * Max Chl Dpth (ft) & 7.18 & * Hydr. Depth (ft) & & 0.59 & & 4.67 & & 0.59 \\
\hline * Conv. Total (cfs) & 35923.3 & * Conv. (cfs) & & 15.4 & & 35853.0 & & 54.9 \\
\hline * Length Wtd. (ft) & & * Wetted Per. (ft) & & 2.55 & & 93.87 & & 7.57 \\
\hline * Min Ch El (ft) & 2970.00 & * Shear (lb/sq ft) & & 0.70 & & 6.25 & & 0.78 \\
\hline * Alpha & 1.02 & * Stream Power (lb/ft s) & & 1.20 & & 75.89 & & 1.44 \\
\hline * Frctn Loss (ft) & 1.69 & * Cum Volume (acre-ft) & & 0.10 & & 0.54 & & 0.22 \\
\hline * C \& E Loss (ft) & 0.16 & * Cum SA (acres) & & & & & & \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: A flow split was encountered. The program first calculated the momentum of both channels below the junction. An energy balance was performed across the junction from the stream with the highest momentum downstream to the section upstream.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 3 RS: 4.477

\section*{INPUT}

Description: Section downstream of Junction Cor Split
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Station E & levation & Data & num= & 15 & & & & & \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline 1000 & 2980 & 1008 & 2976 & 1036 & 2974 & 1049 & 2972 & 1057 & 2970.8 \\
\hline 1070 & 2970.8 & 1091 & 2970.1 & 1093 & 2970 & 1104 & 2968 & 1108 & 2967.8 \\
\hline 1115 & 2968 & 1124 & 2970 & 1153 & 2972 & 1176 & 2974 & 1221 & 2984 \\
\hline Manning's Sta & \begin{tabular}{l}
n Value \\
n Val
\end{tabular} & Sta & \begin{tabular}{l}
num= \\
n Val
\end{tabular} & \[
\begin{aligned}
& 6 \\
& \text { Sta }
\end{aligned}
\] & n Val & Sta & n Val & Sta & n Val \\
\hline 1000 & . 083 & 1049 & . 03 & 1091 & . 061 & 1124 & . 083 & 1153 & . 03 \\
\hline 1176 & . 083 & & & & & & & & \\
\hline Bank Sta: & Left
\[
1091
\] & Right
\[
1124
\] & Lengths: & Left 33 & Channel 35 & \[
\begin{array}{r}
\text { Right } \\
36
\end{array}
\] & Coeff & \begin{tabular}{l}
Contr. \\
. 1
\end{tabular} & Expan.
\[
.3
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{rr}
\text { Sta L } & \text { Sta R } \\
1000 & 1093
\end{array}
\] & \[
\begin{aligned}
& \text { Elev } \\
& 2980
\end{aligned}
\] & Permanent T & & & & & & & \\
\hline \multicolumn{10}{|l|}{CROSS SECTION OUTPUT Profile \#100-yr} \\
\hline * E.G. Elev (ft) & & * 2976.49 & Element & & Left OB & * & Channel & & Right OB \\
\hline * Vel Head (ft) & & 1.75 & * Wt. n-Val. & & & & 0.061 & & 0.063 \\
\hline * W.S. Elev (ft) & & * 2974.74 & * Reach Len. (ft) & & 33.00 & & 35.00 & & 36.00 \\
\hline * Crit W.S. (ft) & & * 2974.74 & * Flow Area (sq ft) & & & * & 189.95 & & 149.55 \\
\hline * E.G. Slope (ft/ft) & & *0.021572 & * Area (sq ft) & & 194.29 & * & 199.32 & & 149.55 \\
\hline * Q Total (cfs) & & * 3361.56 & * Flow (cfs) & & & & 2255.85 & & 1105.71 \\
\hline * Top Width (ft) & & * 153.64 & * Top Width (ft) & & 65.32 & * & 33.00 & & 55.32 \\
\hline * Vel Total (ft/s) & & 9.90 & * Avg. Vel. (ft/s) & & & * & 11.88 & & 7.39 \\
\hline * Max Chl Dpth (ft) & & 6.94 & * Hydr. Depth (ft) & & & * & 6.13 & & 2.70 \\
\hline * Conv. Total (cfs) & & * 22887.5 & * Conv. (cfs) & & & & 15359.2 & & 7528.3 \\
\hline * Length Wtd. (ft) & & * 35.21 & * Wetted Per. (ft) & & & & 31.41 & & 55.55 \\
\hline * Min Ch El (ft) & & * 2967.80 & * Shear (lb/sq ft) & & & * & 8.14 & & 3.63 \\
\hline * Alpha & & 1.15 & * Stream Power (lb/ft s) & & & & 96.73 & & 26.80 \\
\hline * Frctn Loss (ft) & & 0.82 & * Cum Volume (acre-ft) & & 25.28 & & 32.25 & & 17.79 \\
\hline * C \& E Loss (ft) & & 0.01 & * Cum SA (acres) & & 12.94 & & 6.99 & & 5.33 \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 3 RS: 4.47
INPUT
Description: 58
Station Elevation Data num= 27

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & * 2974.58 & * Element & & Left OB & * & Channel & & Right OB \\
\hline * Vel Head (ft) & 1.71 & * Wt. n-Val. & * & & * & 0.061 & * & 0.060 \\
\hline * W.S. Elev (ft) & * 2972.88 & * Reach Len. (ft) & * & 90.00 & * & 122.00 & * & 140.00 \\
\hline * Crit W.S. (ft) & * 2972.88 & * Flow Area (sq ft) & * & & * & 289.43 & * & 63.71 \\
\hline * E.G. Slope (ft/ft) & *0.025122 & * Area (sq ft) & * & 198.67 & * & 289.43 & * & 63.71 \\
\hline * Q Total (cfs) & * 3523.65 & * Flow (cfs) & * & & * & 3154.85 & * & 368.80 \\
\hline * Top Width (ft) & 169.41 & * Top Width (ft) & * & 69.45 & * & 59.63 & * & 40.33 \\
\hline * Vel Total (ft/s) & 9.98 & * Avg. Vel. (ft/s) & * & & * & 10.90 & * & 5.79 \\
\hline * Max Chl Dpth (ft) & 6.68 & * Hydr. Depth (ft) & * & & * & 4.85 & * & 1.58 \\
\hline * Conv. Total (cfs) & 22231.4 & * Conv. (cfs) & * & & * & 19904.6 & * & 2326.8 \\
\hline * Length Wtd. (ft) & 122.97 & * Wetted Per. (ft) & * & & * & 61.01 & * & 40.44 \\
\hline * Min Ch El (ft) & 2966.20 & * Shear (lb/sq ft) & * & & * & 7.44 & * & 2.47 \\
\hline * Alpha & 1.10 & * Stream Power (lb/ft s) & * & & * & 81.10 & * & 14.30 \\
\hline * Frctn Loss (ft) & 3.26 & * Cum Volume (acre-ft) & & 25.13 & * & 32.05 & * & 17.70 \\
\hline * C \& E Loss (ft) & 0.12 & * Cum SA (acres) & * & 12.89 & * & 6.95 & * & 5.29 \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: Divided flow computed for this cross-section.

Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

CROSS SECTION OUTPUT Profile \#100-yr
* Vel Head (ft) * 2.90 * Wt. n-Val. * 0.083 * 0.061 * 0.083 *
* W.S. Elev (ft) * 2963.63 * Reach Len. (ft) * 90.00 * 112.00 * 103.00 *
* Crit W.S. (ft) * 2963.63 * Flow Area (sq ft) * 23.21 * 235.86 * 31.33
* E.G. Slope (ft/ft) *0.028049 * Area (sq ft) * 27.43 * 235.86 * 31.33 *
* Q Total (cfs) * 3523.65 * Flow (cfs) * 71.15 * 3314.70 * 137.80
* Top Width (ft) * 107.13 * Top Width (ft) * 54.88 * 35.00 * 17.25 *
* Vel Total (ft/s) * 12.13 * Avg. Vel. (ft/s) * \(\quad\) * \(\quad\) * 0.07 * 14.05 * 4.40
* Max Chl Dpth (ft) * 9.13 * Hydr. Depth (ft) * 1.07 * 6.74 * \(1.82 *\)
* Conv. Total (cfs) * 21039.5 * Conv. (cfs) * * 424.9 * 19791.9 * 822.8 *
* Length Wtd. (ft) * 110.90 * Wetted Per. (ft) * 22.44 * 36.89 * 17.63
* Min Ch El (ft) * 2954.50 * Shear (lb/sq ft) * \(\quad\) * 1.81 * 11.20 * 3.11

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: Divided flow computed for this cross-section.
Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 3 RS: 4.426
INPUT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{Description:} \\
\hline \multicolumn{3}{|l|}{Station Elevation Data} & num= & \multicolumn{6}{|l|}{33} \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline \multicolumn{10}{|l|}{} \\
\hline 1000 & 2966 & 1006 & 2964 & 1012 & 2962 & 1012.432 & . 928 & 1024 & 2960 \\
\hline 1036 & 2959 & 1053 & 2959 & 1063 & 2960 & 1067 & 2961 & 1073 & 2961 \\
\hline 1078 & 2961 & 1083 & 2960 & 1098 & 2960 & 1115 & 2961 & 1170 & 2961 \\
\hline 1185 & 2960 & 1210 & 2958 & 1219 & 2956 & 1233 & 2954 & 1246 & 2952 \\
\hline 1253 & 2952 & 1265 & 2954 & 1273 & 2956 & 1281 & 2958 & 1286 & 2958 \\
\hline
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline E.G. Elev (ft) & 2961.33 & Element & * & Left OB & * & Channel & & Right OB \\
\hline * Vel Head (ft) & 1.92 & Wt. n -Val. & * & 0.083 & * & 0.061 & * & 0.083 \\
\hline * W.S. Elev (ft) & 2959.41 & * Reach Len. (ft) & * & 102.00 & * & 90.00 & * & 100.00 \\
\hline * Crit W.S. (ft) & * 2959.41 & * Flow Area (sq ft) & * & 34.13 & * & 309.17 & * & 85.49 \\
\hline * E.G. Slope (ft/ft) & * 0.023024 & * Area (sq ft) & * & 42.97 & * & 309.17 & * & 85.49 \\
\hline * Q Total (cfs) & * 4089.64 & * Flow (cfs) & * & 108.65 & * & 3625.79 & * & 355.21 \\
\hline * Top Width (ft) & 151.31 & * Top Width (ft) & * & 52.67 & * & 54.00 & * & 44.64 \\
\hline * Vel Total (ft/s) & 9.54 & Avg. Vel. (ft/s) & * & 3.18 & * & 11.73 & * & 4.15 \\
\hline * Max Chl Dpth (ft) & 7.41 & Hydr. Depth (ft) & * & 1.28 & * & 5.73 & * & 1.92 \\
\hline * Conv. Total (cfs) & 26952.2 & Conv. (cfs) & * & 716.0 & * & 23895.2 & * & 2340.9 \\
\hline * Length Wtd. (ft) & 92.05 & Wetted Per. (ft) & * & 26.91 & * & 54.71 & * & 45.20 \\
\hline * Min Ch El (ft) & 2952.00 & * Shear (lb/sq ft) & * & 1.82 & * & 8.12 & * & 2.72 \\
\hline * Alpha & 1.36 & Stream Power (lb/ft s) & * & 5.80 & * & 95.27 & * & 11.30 \\
\hline * Frctn Loss (ft) & 2.17 & * Cum Volume (acre-ft) & * & 24.82 & * & 30.61 & * & 17.41 \\
\hline * C \& E Loss (ft) & 0.14 & * Cum SA (acres) & * & 12.65 & * & 6.70 & * & 5.12 \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: Divided flow computed for this cross-section
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 3 RS: 4.409

\section*{INPUT}

Description: 56

CROSS SECTION OUTPUT Profile \#100-yr
* E.G. Elev (ft) * 2955.05 * Element * Left OB * Channel * Right OB *
* Vel Head (ft) * 1.45 * Wt. n-Val. * 0.083 * 0.061 * 0.083 *
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline * W.S. Elev (ft) & * 2953.59 & * Reach Len. (ft) & * & 98.00 & * & 90.00 & * & 75.00 \\
\hline * Crit W.S. (ft) & * 2953.59 & * Flow Area (sq ft) & * & 64.81 & * & 269.00 & * & 193.06 \\
\hline * E.G. Slope (ft/ft) & *0.024250 & * Area (sq ft) & * & 64.81 & * & 269.00 & * & 193.06 \\
\hline * Q Total (cfs) & * 4089.64 & * Flow (cfs) & * & 326.59 & * & 2966.60 & * & 796.45 \\
\hline * Top Width (ft) & 186.04 & * Top Width (ft) & * & 25.00 & * & 54.00 & * & 107.04 \\
\hline * Vel Total (ft/s) & 7.76 & Avg. Vel. (ft/s) & * & 5.04 & * & 11.03 & * & 4.13 \\
\hline * Max Chl Dpth (ft) & 6.09 & Hydr. Depth (ft) & * & 2.59 & * & 4.98 & * & 1.80 \\
\hline * Conv. Total (cfs) & 26262.0 & Conv. (cfs) & * & 2097.2 & * & 19050.3 & * & 5114.5 \\
\hline * Length Wtd. (ft) & 87.31 & Wetted Per. (ft) & * & 26.67 & * & 54.26 & * & 107.25 \\
\hline * Min Ch El (ft) & 2947.50 & * Shear (lb/sq ft) & * & 3.68 & * & 7.50 & * & 2.73 \\
\hline * Alpha & 1.55 & * Stream Power (lb/ft s) & * & 18.54 & * & 82.77 & * & 11.24 \\
\hline * Frctn Loss (ft) & 2.16 & * Cum Volume (acre-ft) & * & 24.69 & * & 30.02 & * & 17.09 \\
\hline * C \& E Loss (ft) & 0.07 & * Cum SA (acres) & * & 12.56 & * & 6.59 & * & 4.95 \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 3 RS: 4.392
INPUT
Description:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Station Elevation & ata & num= & 40 & & & & & \\
\hline Sta Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline * & *** & ******* & *** & * & ** & * & ** & * \\
\hline 10002964 & 1030 & 2962 & 1040 & 2960 & 1049 & 2958 & 1056 & 2956 \\
\hline 1063.392954 .153 & 1064 & 2954 & 1067 & 2953 & 1085 & 2952 & 1100 & 2951.5 \\
\hline 11082952 & 1110 & 2952 & 1112 & 2952 & 1122 & 2950 & 1130 & 2948 \\
\hline 11412947.7 & 1153 & 2948 & 1165 & 2950 & 1173 & 2952 & 1186 & 2952 \\
\hline 12302950 & 1288 & 2950 & 1296 & 2948 & 1303 & 2944 & 1307 & 2942 \\
\hline 13122940 & 1316 & 2940 & 1334 & 2942 & 1346 & 2944 & 1352 & 2945 \\
\hline 13622945 & 1370 & 2944 & 1380 & 2944 & 1392 & 2946 & 1421 & 2948 \\
\hline 14592950 & 1516 & 2950 & 1537 & 2952 & 1558 & 2954 & 1588 & 2956 \\
\hline Manning's n Values & & num= & 5 & & & & & \\
\hline Sta n Val & Sta & n Val \\
\hline ********** & ** & **** & ** & ** & * & ** & *** & ***** \\
\hline 1000 . 083 & 1067 & . 03 & 1108 & . 083 & 1303 & . 061 & 1346 & . 083 \\
\hline
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & * 2950.22 & * Element & * & Left OB & * & Channel & & Right OB \\
\hline * Vel Head (ft) & * 2.17 & * Wt. n-Val. & * & 0.083 & * & 0.061 & * & 0.083 \\
\hline * W.S. Elev (ft) & * 2948.05 & * Reach Len. (ft) & * & 125.00 & * & 107.00 & * & 95.00 \\
\hline * Crit W.S. (ft) & * 2948.05 & * Flow Area (sq ft) & * & 14.34 & * & 275.07 & * & 187.63 \\
\hline * E.G. Slope (ft/ft) & *0.025287 & * Area (sq ft) & * & 18.91 & * & 275.07 & * & 187.63 \\
\hline * Q Total (cfs) & * 4640.72 & * Flow (cfs) & * & 58.98 & * & 3608.54 & * & 973.20 \\
\hline * Top Width (ft) & * 149.59 & * Top Width (ft) & * & 30.67 & * & 43.00 & * & 75.91 \\
\hline * Vel Total (ft/s) & 9.73 & * Avg. Vel. (ft/s) & * & 4.11 & * & 13.12 & * & 5.19 \\
\hline * Max Chl Dpth (ft) & 8.05 & * Hydr. Depth (ft) & * & 1.99 & * & 6.40 & * & 2.47 \\
\hline * Conv. Total (cfs) & 29183.6 & * Conv. (cfs) & * & 370.9 & * & 22692.7 & * & 6120.1 \\
\hline * Length Wtd. (ft) & 107.60 & * Wetted Per. (ft) & * & 8.26 & * & 44.13 & * & 76.29 \\
\hline * Min Ch El (ft) & 2940.00 & * Shear (lb/sq ft) & * & 2.74 & * & 9.84 & * & 3.88 \\
\hline * Alpha & 1.48 & * Stream Power (lb/ft s) & * & 11.27 & * & 129.08 & * & 20.14 \\
\hline * Frctn Loss (ft) & 2.51 & * Cum Volume (acre-ft) & & 24.60 & * & 29.46 & * & 16.76 \\
\hline * C \& E Loss (ft) & * 0.17 & * Cum SA (acres) & * & 12.50 & * & 6.49 & * & 4.79 \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: Divided flow computed for this cross-section.

Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: Divided flow computed for this cross-section.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 3 RS: 4.353
INPUT
Description:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Station Elevation Data} & num= & \multicolumn{6}{|l|}{32} \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline \multicolumn{10}{|l|}{***} \\
\hline 1000 & \multicolumn{3}{|l|}{29461021.972944 .003} & 1022 & 2944 & 1036 & 2942 & 1055 & 2941 \\
\hline
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & 2939.03 & Element & & Left OB & * & Channel & * & Right OB \\
\hline * Vel Head (ft) & 2.01 & * Wt. n-Val. & * & 0.083 & * & 0.061 & * & 0.083 \\
\hline * W.S. Elev (ft) & * 2937.02 & * Reach Len. (ft) & * & 85.00 & * & 105.00 & * & 101.00 \\
\hline * Crit W.S. (ft) & 2937.02 & * Flow Area (sq ft) & * & 130.72 & * & 345.39 & * & 32.03 \\
\hline * E.G. Slope (ft/ft) & * 0.030789 & * Area (sq ft) & * & 130.72 & * & 345.39 & * & 32.03 \\
\hline * Q Total (cfs) & * 4992.19 & * Flow (cfs) & * & 669.03 & * & 4211.76 & * & 111.40 \\
\hline * Top Width (ft) & 160.98 & * Top Width (ft) & * & 62.68 & * & 71.00 & * & 27.29 \\
\hline * Vel Total (ft/s) & 9.82 & Avg. Vel. (ft/s) & * & 5.12 & * & 12.19 & * & 3.48 \\
\hline * Max Chl Dpth (ft) & 7.02 & * Hydr. Depth (ft) & * & 2.09 & * & 4.86 & * & 1.17 \\
\hline * Conv. Total (cfs) & 28450.8 & * Conv. (cfs) & * & 3812.8 & * & 24003.1 & * & 634.9 \\
\hline * Length Wtd. (ft) & 98.38 & * Wetted Per. (ft) & * & 62.86 & * & 71.67 & * & 27.49 \\
\hline * Min Ch El (ft) & * 2930.00 & * Shear (lb/sq ft) & * & 4.00 & * & 9.26 & * & 2.24 \\
\hline * Alpha & 1.34 & * Stream Power (lb/ft s) & * & 20.46 & * & 112.95 & * & 7.79 \\
\hline * Frctn Loss (ft) & 3.80 & * Cum Volume (acre-ft) & * & 23.80 & * & 28.09 & * & 16.28 \\
\hline * C \& E Loss (ft) & 0.09 & * Cum SA (acres) & * & 12.11 & * & 6.25 & * & 4.49 \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 3 RS: 4.333
INPUT
Description:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Station & vat & Data & num= & 38 & & & & & \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline ****** & **** & ***** & ***** & *** & ***** & ******* & *** & ***** & ****** \\
\hline 1000 & 2942 & 1018 & 2940 & 1035 & 2938 & 1036.142 & 37.931 & 1068 & 2936 \\
\hline 1076 & 2935.5 & 1110 & 2935.5 & 1115 & 2936 & 1128 & 2937 & 1130 & 2937 \\
\hline 1175 & 2937 & 1180 & 2938 & 1227 & 2938 & 1233 & 2934 & 1245 & 2933.4 \\
\hline 1256 & 2934 & 1276 & 2934 & 1323 & 2932 & 1352 & 2930 & 1360 & 2928 \\
\hline 1384 & 2926.2 & 1406 & 2926.2 & 1413 & 2928 & 1422 & 2930 & 1432 & 2930 \\
\hline 1439 & 2928 & 1448 & 2926 & 1450 & 2925.5 & 1451 & 2926 & 1469 & 2928 \\
\hline 1489 & 2930 & 1502 & 2932 & 1516 & 2934 & 1531 & 2936 & 1561 & 2938 \\
\hline 1567 & 2940 & 1573 & 2942 & 1591 & 2943 & & & & \\
\hline Manning's & n Value & & num= & 5 & & & & & \\
\hline Sta & n Val & Sta & n Val \\
\hline ********* & *** & * & ******* & ***** & ******** & ******** & ****** & ****** & ****** \\
\hline 1000 & . 083 & 1068 & . 03 & 1175 & . 083 & 1432 & . 061 & 1489 & . 083 \\
\hline Bank Sta: & Left & Right & Lengths: & Left & Channel & Right & Coeff & Contr. & Expan \\
\hline & 1432 & 1489 & & 88 & 96 & 95 & & . 1 & . 3 \\
\hline
\end{tabular}
\begin{tabular}{crcc}
Ineffective Flow & num & 1 \\
Sta L & Sta R & Elev & Permanent \\
1000 & 1227 & 2945 & T
\end{tabular}

Blocked Obstructions num= 1
Sta L Sta R Elev

CROSS SECTION OUTPUT Profile \#100-yr

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 3 RS: 4.315

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & * 2926.85 & & Element & * & Left OB & * & Channel & & Right OB \\
\hline * Vel Head (ft) & 2.01 & & Wt. n -Val. & * & 0.083 & * & 0.061 & * & 0.083 \\
\hline * W.S. Elev (ft) & 2924.84 & & Reach Len. (ft) & * & 93.00 & * & 135.00 & * & 140.00 \\
\hline * Crit W.S. (ft) & * 2924.84 & & Flow Area (sq ft) & * & 188.88 & * & 338.32 & * & 18.00 \\
\hline * E.G. Slope (ft/ft) & *0.032374 & & Area (sq ft) & * & 188.88 & * & 338.32 & * & 18.00 \\
\hline * Q Total (cfs) & * 5073.97 & & Flow (cfs) & * & 815.93 & * & 4184.84 & * & 73.20 \\
\hline * Top Width (ft) & 213.65 & * & Top Width (ft) & * & 130.28 & * & 71.00 & * & 12.37 \\
\hline * Vel Total (ft/s) & 9.31 & * & Avg. Vel. (ft/s) & * & 4.32 & * & 12.37 & * & 4.07 \\
\hline * Max Chl Dpth (ft) & 5.34 & * & Hydr. Depth (ft) & * & 1.45 & * & 4.77 & * & 1.46 \\
\hline * Conv. Total (cfs) & 28199.9 & & Conv. (cfs) & * & 4534.7 & * & 23258.3 & * & 406.8 \\
\hline * Length Wtd. (ft) & 122.48 & & Wetted Per. (ft) & * & 130.66 & * & 71.36 & * & 12.69 \\
\hline * Min Ch El (ft) & 2919.50 & & Shear (lb/sq ft) & * & 2.92 & * & 9.58 & * & 2.87 \\
\hline * Alpha & 1.49 & * & Stream Power (lb/ft s) & * & 12.62 & * & 118.53 & * & 11.66 \\
\hline * Frctn Loss (ft) & 3.42 & & Cum Volume (acre-ft) & * & 22.86 & * & 26.84 & * & 16.21 \\
\hline * C \& E Loss (ft) & 0.21 & & Cum SA (acres) & * & 11.72 & * & 5.96 & * & 4.42 \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: Divided flow computed for this cross-section.
Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 3 RS: 4.289
INPUT
Description:

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & 2920.50 & * Element & Left OB & & Channel & & Right OB \\
\hline * Vel Head (ft) & 1.31 & * Wt. n-Val. & 0.083 & & 0.061 & & 0.083 \\
\hline * W.S. Elev (ft) & 2919.18 & * Reach Len. (ft) & 107.00 & & 143.00 & & 155.00 \\
\hline * Crit W.S. (ft) & 2919.18 & * Flow Area (sq ft) & 453.03 & & 240.10 & & 21.76 \\
\hline * E.G. Slope (ft/ft) & *0.024305 & * Area (sq ft) & 453.03 & & 240.10 & & 21.76 \\
\hline * Q Total (cfs) & * 5118.95 & * Flow (cfs) & 2241.94 & & 2791.24 & & 85.78 \\
\hline * Top Width (ft) & 248.13 & * Top Width (ft) & 191.58 & & 44.00 & & 12.55 \\
\hline * Vel Total (ft/s) & 7.16 & * Avg. Vel. (ft/s) & 4.95 & & 11.63 & & 3.94 \\
\hline * Max Chl Dpth (ft) & 6.68 & * Hydr. Depth (ft) & 2.36 & & 5.46 & & 1.73 \\
\hline * Conv. Total (cfs) & 32834.8 & * Conv. (cfs) & 14380.6 & & 17904.0 & & 550.2 \\
\hline * Length Wtd. (ft) & 133.22 & * Wetted Per. (ft) & 191.88 & & 44.83 & & 12.96 \\
\hline * Min Ch El (ft) & 2912.50 & * Shear (lb/sq ft) & 3.58 & & 8.13 & & 2.55 \\
\hline * Alpha & 1.65 & * Stream Power (lb/ft s) & 17.73 & & 94.48 & & 10.04 \\
\hline * Frctn Loss (ft) & 2.79 & * Cum Volume (acre-ft) & 22.18 & & 25.95 & & 16.15 \\
\hline C \& E Loss (ft) & 0.01 & * Cum SA (acres) & 11.38 & & 5.78 & & 4.38 \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 3
RS: 4.262
INPUT
Description: 53
Station Elevation Data num= 42

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 3 RS: 4.243
INPUT
Description:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Station & levation & Data & num= & 56 & & & & & \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline 1000 & 2930 & 1010 & 2928 & 1020 & 2926 & 1030 & 2924 & 1040 & 2922 \\
\hline 1052 & 2920 & 1052.322 & 919.974 & 1077 & 2918 & 1094 & 2917.3 & 1126 & 2916.7 \\
\hline 1133 & 2916 & 1150 & 2915 & 1171 & 2916 & 1196 & 2918 & 1196.342 & 18.023 \\
\hline 1211 & 2919 & 1224 & 2918 & 1245 & 2917.4 & 1255 & 2918 & 1293 & 2920 \\
\hline 1338 & 2921.8 & 1371 & 2920 & 1378 & 2918 & 1385 & 2916 & 1390 & 2914 \\
\hline 1395 & 2912 & 1400 & 2910 & 1411 & 2908 & 1421 & 2906 & 1431 & 2905 \\
\hline 1433 & 2905 & 1445 & 2906 & 1456 & 2908 & 1487 & 2910 & 1497 & 2910 \\
\hline 1514 & 2908 & 1534 & 2906 & 1541 & 2904 & 1548 & 2902 & 1556 & 2900 \\
\hline 1579 & 2899.5 & 1585 & 2899.5 & 1595 & 2900 & 1601 & 2902 & 1608 & 2904 \\
\hline 1614 & 2906 & 1625 & 2908 & 1638 & 2909 & 1656 & 2909 & 1670 & 2908 \\
\hline 1700 & 2908 & 1706 & 2910 & 1712 & 2912 & 1720 & 2914 & 1728 & 2916 \\
\hline 1791 & 2916 & & & & & & & & \\
\hline Manning's & n Value & & num= & 5 & & & & & \\
\hline Sta & n Val & Sta & n Va \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 1000 & . 083 & 1094 & . 03 & 1126 & . 083 & 1534 & . 061 & 1614 & . 083 \\
\hline Bank Sta: & Left & Right & Lengths: & Left & Channel & Right & Coeff & Contr. & Expan. \\
\hline & 1534 & 1614 & & 128 & 97 & 82 & & . 1 & . 3 \\
\hline Ineffectiv & F Flow & num= & 1 & & & & & & \\
\hline Sta L & Sta R & Elev & Permanent & & & & & & \\
\hline 1000 & 1338 & 2930 & T & & & & & & \\
\hline \multicolumn{3}{|l|}{Blocked Obstructions} & \multirow[t]{2}{*}{num=} & \multirow[t]{2}{*}{1} & & & & & \\
\hline Sta L & Sta R & Elev & & & & & & & \\
\hline ********** & ****** & ******* & & & & & & & \\
\hline 1274 & 1303 & 2935 & & & & & & & \\
\hline
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & * 2908.81 & * Element & * & Left OB & * & Channel & * & Right OB \\
\hline * Vel Head (ft) & 2.23 & * Wt. n-Val. & * & 0.083 & * & 0.061 & * & 0.083 \\
\hline * W.S. Elev (ft) & * 2906.58 & * Reach Len. (ft) & * & 128.00 & * & 97.00 & * & 82.00 \\
\hline * Crit W.S. (ft) & * 2906.58 & * Flow Area (sq ft) & * & 30.39 & * & 416.70 & * & 0.93 \\
\hline * E.G. Slope (ft/ft) & *0.028024 & * Area (sq ft) & * & 30.39 & * & 416.70 & * & 0.93 \\
\hline * Q Total (cfs) & * 5118.95 & * Flow (cfs) & * & 85.18 & * & 5032.57 & * & 1.20 \\
\hline * Top Width (ft) & 119.09 & * Top Width (ft) & * & 35.90 & * & 80.00 & * & 3.19 \\
\hline * Vel Total (ft/s) & 11.43 & * Avg. Vel. (ft/s) & * & 2.80 & * & 12.08 & * & 1.30 \\
\hline * Max Chl Dpth (ft) & 7.08 & * Hydr. Depth (ft) & * & 0.85 & * & 5.21 & * & 0.29 \\
\hline * Conv. Total (cfs) & * 30578.6 & * Conv. (cfs) & * & 508.9 & * & 30062.5 & * & 7.2 \\
\hline * Length Wtd. (ft) & * 97.28 & * Wetted Per. (ft) & * & 36.13 & * & 81.75 & * & 3.25 \\
\hline * Min Ch El (ft) & * 2899.50 & * Shear (lb/sq ft) & * & 1.47 & * & 8.92 & * & 0.50 \\
\hline * Alpha & * 1.10 & * Stream Power (lb/ft s) & * & 4.12 & * & 107.70 & * & 0.65 \\
\hline * Frctn Loss (ft) & 3.02 & * Cum Volume (acre-ft) & * & 21.09 & * & 23.84 & * & 16.03 \\
\hline * C \& E Loss (ft) & 0.16 & * Cum SA (acres) & * & 10.72 & * & 5.39 & * & 4.30 \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
warning: Divided flow computed for this cross-section
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 3 RS: 4.225

INPUT

CROSS SECTION OUTPUT Profile \#100-yr
* E.G. Elev (ft) * 2904.29 * Element \(\mathrm{feft} \mathrm{OB}^{*}\) Channel * Right OB *
* Vel Head (ft) * 1.68 * Wt. n-Val. * 0.083 * 0.061 * 0.083 *
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline W.S. Elev (ft) & * 2902.61 & * Reach Len. (ft) & * & 121.00 & * & 105.00 & * & 105.00 \\
\hline * Crit W.S. (ft) & * 2902.61 & * Flow Area (sq ft) & * & 6.42 & * & 490.54 & * & 1.01 \\
\hline * E.G. Slope (ft/ft) & *0.034643 & * Area (sq ft) & * & 6.42 & * & 490.54 & * & 1.01 \\
\hline * Q Total (cfs) & * 5118.95 & * Flow (cfs) & * & 9.65 & * & 5107.80 & * & 1.51 \\
\hline * Top Width (ft) & 164.49 & * Top Width (ft) & * & 21.15 & * & 140.00 & * & 3.34 \\
\hline * Vel Total (ft/s) & 10.28 & * Avg. Vel. (ft/s) & * & 1.50 & * & 10.41 & * & 1.49 \\
\hline * Max Chl Dpth (ft) & 5.61 & * Hydr. Depth (ft) & * & 0.30 & * & 3.50 & * & 0.30 \\
\hline * Conv. Total (cfs) & 27502.4 & Conv. (cfs) & * & 51.8 & * & 27442.4 & * & 8.1 \\
\hline * Length Wtd. (ft) & 105.12 & * Wetted Per. (ft) & * & 21.23 & * & 140.94 & * & 3.40 \\
\hline * Min Ch El (ft) & 2897.00 & * Shear (lb/sq ft) & * & 0.65 & * & 7.53 & * & 0.65 \\
\hline * Alpha & 1.02 & * Stream Power (lb/ft s) & * & 0.98 & * & 78.38 & * & 0.96 \\
\hline * Frctn Loss (ft) & 3.42 & * Cum Volume (acre-ft) & * & 21.04 & * & 22.83 & * & 16.03 \\
\hline * C \& E Loss (ft) & 0.01 & * Cum SA (acres) & * & 10.63 & * & 5.15 & * & 4.29 \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: Divided flow computed for this cross-section.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 3
RS: 4.205
INPUT
Description: 52

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & * 2898.86 & & Element & * & Left OB & * & Channel & & Right OB & \\
\hline * Vel Head (ft) & 1.75 & & Wt. n-Val. & * & 0.083 & * & 0.061 & * & 0.083 & * \\
\hline * W.S. Elev (ft) & * 2897.10 & & Reach Len. (ft) & * & 75.00 & * & 83.00 & * & 70.00 & * \\
\hline * Crit W.S. (ft) & * 2897.10 & & Flow Area (sq ft) & * & 30.49 & * & 475.30 & * & 5.79 & * \\
\hline * E.G. Slope (ft/ft) & *0.030665 & * & Area (sq ft) & * & 30.49 & * & 475.30 & * & 5.79 & * \\
\hline * Q Total (cfs) & * 5163.18 & * & Flow (cfs) & * & 64.25 & * & 5086.76 & * & 12.18 & * \\
\hline * Top Width (ft) & 183.81 & & Top Width (ft) & * & 55.32 & * & 118.00 & * & 10.49 & * \\
\hline * Vel Total (ft/s) & 10.09 & & Avg. Vel. (ft/s) & * & 2.11 & * & 10.70 & * & 2.10 & * \\
\hline * Max Chl Dpth (ft) & 8.10 & & Hydr. Depth (ft) & * & 0.55 & * & 4.03 & * & 0.55 & * \\
\hline * Conv. Total (cfs) & 29484.7 & & Conv. (cfs) & * & 366.9 & * & 29048.3 & * & 69.5 & * \\
\hline * Length Wtd. (ft) & 82.62 & & Wetted Per. (ft) & * & 55.33 & * & 119.60 & * & 10.55 & \\
\hline * Min Ch El (ft) & 2889.00 & & Shear (lb/sq ft) & * & 1.05 & * & 7.61 & * & 1.05 & \\
\hline * Alpha & 1.11 & & Stream Power (lb/ft s) & * & 2.22 & * & 81.42 & * & 2.21 & * \\
\hline * Frctn Loss (ft) & 2.11 & & Cum Volume (acre-ft) & * & 20.99 & * & 21.66 & * & 16.02 & * \\
\hline * C \& E Loss (ft) & 0.03 & & Cum SA (acres) & * & 10.53 & * & 4.83 & * & 4.28 & * \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical
depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 3 RS: 4.169

\section*{INPUT}

Description:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Station & ion & & num= & 48 & & & & & \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline 1000 & 2894 & 1029 & 2892 & 1061 & 2890 & 1170 & 2890 & 1185 & 2888 \\
\hline 1206 & 2886.5 & 1221 & 2886.5 & 1238 & 2888 & 1250 & 2890 & 1250.862 & 0.091 \\
\hline 1269 & 2892 & 1283 & 2892 & 1295 & 2890 & 1304 & 2889.9 & 1318 & 2890 \\
\hline 1326 & 2892 & 1335 & 2894 & 1350 & 2895 & 1367 & 2895 & 1397 & 2894 \\
\hline 1411 & 2892 & 1422 & 2890 & 1463 & 2888 & 1491 & 2887 & 1511 & 2888 \\
\hline 1520 & 2890 & 1537 & 2890 & 1551 & 2888 & 1564 & 2886 & 1586 & 2884 \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 3 RS: 4.151
INPUT
Description: 51
Station Elevation Data num= 31

CROSS SECTION OUTPUT Profile \#100-yr

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline * Q Total (cfs) & & 5163.18 & * & Flow (cfs) & * & & * & 5157.46 & * & 5.72 & * \\
\hline * Top Width (ft) & & 129.85 & & Top Width (ft) & * & & * & 101.88 & * & 27.97 & * \\
\hline * Vel Total (ft/s) & & 11.39 & * & Avg. Vel. (ft/s) & * & & * & 11.51 & * & 1.06 & * \\
\hline * Max Chl Dpth (ft) & & 6.99 & * & Hydr. Depth (ft) & * & & * & 4.40 & * & 0.19 & * \\
\hline * Conv. Total (cfs) & & 29084.4 & * & Conv. (cfs) & * & & * & 29052.1 & * & 32.2 & * \\
\hline * Length Wtd. (ft) & & 258.40 & * & Wetted Per. (ft) & * & & * & 103.17 & * & 27.98 & * \\
\hline * Min Ch El (ft) & * & 2875.00 & * & Shear (lb/sq ft) & * & & * & 8.54 & * & 0.38 & * \\
\hline * Alpha & * & 1.02 & * & Stream Power (lb/ft s) & * & & * & 98.35 & * & 0.40 & * \\
\hline * Frctn Loss (ft) & * & 7.67 & & Cum Volume (acre-ft) & * & 20.82 & * & 18.87 & * & 15.92 & * \\
\hline * C \& E Loss (ft) & & 0.32 & & Cum SA (acres) & * & 10.35 & * & 4.26 & * & 4.16 & * \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: Divided flow computed for this cross-section.
Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & * & 2873.26 & & Element & * & Left OB & * & Channel & * & Right OB \\
\hline * Vel Head (ft) & * & 0.98 & & Wt. n -Val. & * & 0.083 & * & 0.061 & & 0.083 \\
\hline * W.S. Elev (ft) & & 2872.27 & & Reach Len. (ft) & * & 244.00 & * & 248.00 & * & 236.00 \\
\hline * Crit W.S. (ft) & & 2872.27 & & Flow Area (sq ft) & * & 526.30 & * & 170.62 & * & 133.43 \\
\hline * E.G. Slope (ft/ft) & & 0.027984 & * & Area (sq ft) & * & 526.30 & * & 170.62 & * & 133.43 \\
\hline * Q Total (cfs) & & 5163.18 & * & Flow (cfs) & * & 2428.21 & * & 1925.34 & * & 809.63 \\
\hline * Top Width (ft) & & 358.03 & & Top Width (ft) & \(\star\) & 275.14 & * & 37.00 & * & 45.89 \\
\hline * Vel Total (ft/s) & & 6.22 & * & Avg. Vel. (ft/s) & * & 4.61 & * & 11.28 & * & 6.07 \\
\hline * Max Chl Dpth (ft) & & 4.77 & & Hydr. Depth (ft) & * & 1.91 & * & 4.61 & * & 2.91 \\
\hline * Conv. Total (cfs) & * & 30864.7 & & Conv. (cfs) & * & 14515.5 & * & 11509.4 & * & 4839.9 \\
\hline * Length Wtd. (ft) & * & 244.13 & & Wetted Per. (ft) & * & 275.25 & * & 37.02 & * & 46.26 \\
\hline * Min Ch El (ft) & * & 2867.50 & & Shear (lb/sq ft) & * & 3.34 & * & 8.05 & * & 5.04 \\
\hline * Alpha & * & 1.64 & * & Stream Power (lb/ft s) & * & 15.41 & * & 90.85 & * & 30.57 \\
\hline * Frctn Loss (ft) & & 7.76 & & Cum Volume (acre-ft) & * & 19.28 & * & 17.02 & * & 15.53 \\
\hline * C \& E Loss (ft) & * & 0.10 & & Cum SA (acres) & * & 9.55 & * & 3.85 & * & 3.95 \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{Description: 49} \\
\hline Station E & levation & Data & num= & 43 & & & & & \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline & & & & & & & & & \\
\hline 1000 & 2880 & 1009 & 2878 & 1018 & 2876 & 1030 & 2874 & 1035 & 2872 \\
\hline 1040 & 2870 & 1050 & 2866 & 1060 & 2862 & 1075 & 2860 & 1092 & 2858 \\
\hline 1128 & 2857 & 1137 & 2857 & 1153 & 2858 & 1193 & 2858 & 1211 & 2857.2 \\
\hline 1219 & 2857.2 & 1229 & 2858 & 1266 & - 2859 & 1294 & 2860 & 1302 & 2860 \\
\hline 1321 & 2859 & 1340 & 2858 & 1348 & - 2858 & 1383 & 2859 & 1405 & 2858.8 \\
\hline 1424 & 2858 & 1426 & 2858 & 1434 & 2860 & 1445 & 2864 & 1456 & 2868 \\
\hline 1482.3 & 2868 & 1490.9 & 2866 & 1513 & 3862 & 1577.5 & 2862 & 1593 & 2864 \\
\hline 1612 & 2866 & 1641.7 & 2868 & 1694 & 4868 & 1710 & 2870 & 1725 & 2872 \\
\hline 1738 & 2874 & 1751 & 2878 & 1756 & - 2879 & & & & \\
\hline \multicolumn{3}{|l|}{Manning's n Values} & \multicolumn{3}{|l|}{num=} & & & & \\
\hline Sta & \multicolumn{2}{|l|}{n Val Sta} & n Val & Sta & n Val & & & & \\
\hline 1000 & . 083 & 1321 & . 061 & 1383 & & & & & \\
\hline \multirow[t]{2}{*}{Bank Sta:} & \multirow[t]{2}{*}{Left
1321} & \multirow[t]{2}{*}{\[
\begin{array}{r}
\text { Right } \\
1383
\end{array}
\]} & \multirow[t]{2}{*}{Lengths} & \multirow[t]{2}{*}{Left 304} & \multirow[t]{2}{*}{Channel 306} & \multirow[t]{2}{*}{\[
\begin{array}{r}
\text { Right } \\
306
\end{array}
\]} & \multicolumn{2}{|l|}{Coeff Contr.} & Expan. \\
\hline & & & & & & & & . 1 & . 3 \\
\hline
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & 2861.30 & Element & & Left OB & & Channel & & Right OB \\
\hline * Vel Head (ft) & 0.64 & Wt. n-Val. & & 0.083 & & 0.061 & & 0.083 \\
\hline * W.S. Elev (ft) & 2860.67 & * Reach Len. (ft) & & 304.00 & & 306.00 & & 306.00 \\
\hline * Crit W.S. (ft) & * & * Flow Area (sq ft) & & 587.92 & & 138.25 & & 101.14 \\
\hline * E.G. Slope (ft/ft) & *0.036373 & * Area (sq ft) & & 587.92 & & 138.25 & & 101.14 \\
\hline * Q Total (cfs) & 5163.18 & * Flow (cfs) & & 3537.60 & * & 1095.73 & & 529.86 \\
\hline * Top Width (ft) & 365.82 & * Top Width (ft) & & 250.99 & & 62.00 & & 52.83 \\
\hline * Vel Total (ft/s) & 6.24 & * Avg. Vel. (ft/s) & & 6.02 & & 7.93 & & 5.24 \\
\hline * Max Chl Dpth (ft) & 3.67 & * Hydr. Depth (ft) & & 2.34 & & 2.23 & & 1.91 \\
\hline * Conv. Total (cfs) & 27072.3 & * Conv. (cfs) & & 18548.8 & & 5745.3 & & 2778.2 \\
\hline * Length Wtd. (ft) & 305.28 & * Wetted Per. (ft) & & 251.30 & & 62.04 & & 53.21 \\
\hline * Min Ch El (ft) & 2858.00 & * Shear (lb/sq ft) & & 5.31 & & 5.06 & & 4.32 \\
\hline * Alpha & 1.05 & * Stream Power (lb/ft s) & & 31.97 & & 40.11 & & 22.61 \\
\hline * Frctn Loss (ft) & 11.89 & * Cum Volume (acre-ft) & & 16.16 & & 16.14 & & 14.90 \\
\hline * C \& E Loss (ft) & 0.06 & * Cum SA (acres) & & 8.07 & & 3.56 & & 3.68 \\
\hline
\end{tabular}

Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 3 RS: 3.997

\section*{INPUT}

Description: 48
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Station & tion & Data & \(\mathrm{m}=\) & 30 & & & & & \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline ********* & & & & & & & & & \\
\hline 1000 & 2857 & 1004 & 2856 & 1014 & 2854 & 1062 & 2852 & 1097 & 2850 \\
\hline 1110 & 2848 & 1149 & 2846 & 1163 & 2845.7 & 1203 & 2845.7 & 1246 & 2845 \\
\hline 1270 & 2845 & 1285.6 & 2846 & 1302 & 2847 & 1311 & 2847 & 1326 & 2846 \\
\hline 1349 & 2844 & 1359 & 2844 & 1369 & 2846 & 1378 & 2848 & 1384 & 2850 \\
\hline 1396.4 & 2854 & 1411 & 2856 & 1544.7 & 2858 & 1563 & 2860 & 1592 & 2860 \\
\hline 1623 & 2862 & 1644 & 2864 & 1650 & 2866 & 1661 & 2870 & 1673 & 2872.4 \\
\hline
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & 2849.35 & Element & & Left OB & Channel & & ight OB \\
\hline * Vel Head (ft) & 1.19 & * Wt. n-Val. & & 0.083 & 0.061 & & 0.083 \\
\hline * W.S. Elev (ft) & 2848.16 & * Reach Len. (ft) & * & 267.00 & 279.00 & & 276.00 \\
\hline * Crit W.S. (ft) & 2848.16 & * Flow Area (sq ft) & & 45.40 & 369.16 & & 219.10 \\
\hline * E.G. Slope (ft/ft) & *0.041822 & * Area (sq ft) & & 45.40 & 369.16 & & 219.10 \\
\hline * Q Total (cfs) & 5163.18 & * Flow (cfs) & & 180.50 & 3567.34 & & 1415.34 \\
\hline * Top Width (ft) & 269.54 & * Top Width (ft) & & 40.05 & 136.60 & & 92.89 \\
\hline * Vel Total (ft/s) & 8.15 & * Avg. Vel. (ft/s) & & 3.98 & 9.66 & & 6.46 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline * Max Chl Dpth (ft) & & 4.16 & * & Hydr. Depth (ft) & * & 1.13 & * & 2.70 & * & 2.36 & * \\
\hline * Conv. Total (cfs) & & 25247.4 & * & Conv. (cfs) & * & 882.6 & * & 17443.9 & * & 6920.9 & \\
\hline * Length Wtd. (ft) & & 277.75 & & Wetted Per. (ft) & & 40.12 & * & 136.64 & * & 93.48 & \\
\hline * Min Ch El (ft) & * & 2845.00 & * & Shear (lb/sq ft) & & 2.95 & * & 7.05 & * & 6.12 & * \\
\hline * Alpha & & 1.15 & * & Stream Power (lb/ft s) & & 11.75 & * & 68.16 & * & 39.53 & * \\
\hline * Frctn Loss (ft) & & 9.26 & * & Cum Volume (acre-ft) & & 13.95 & * & 14.36 & * & 13.77 & * \\
\hline * C \& E Loss (ft) & & 0.01 & & Cum SA (acres) & & 7.06 & * & 2.87 & * & 3.17 & * \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 3 RS: 3.944

\section*{INPUT}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{Description: 47} \\
\hline \multicolumn{3}{|l|}{Station Elevation Data} & num= & \multicolumn{3}{|l|}{25} & \multirow[b]{2}{*}{Elev} & \multirow[b]{2}{*}{Sta} & \multirow[b]{2}{*}{Elev} \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & & & \\
\hline \multicolumn{10}{|c|}{*} \\
\hline 1000 & 2843 & 1020 & 2842 & 1043 & 2840 & 1057 & 2838 & 1093 & 2837 \\
\hline 1144 & 2836 & 1169 & 2835.6 & 1181 & 2834 & 1193 & 2832 & 1208 & 2830.5 \\
\hline 1219 & 2830.5 & 1231 & 2832 & 1250 & 2834 & 1279 & 2835 & 1305 & 2834 \\
\hline 1314 & 2833.7 & 1332 & 2834 & 1347 & 2834.3 & 1357 & 2834 & 1372 & 2832.2 \\
\hline 1388 & 2832.6 & 1398 & 2834 & 1405 & 2836 & 1412 & 2838 & 1435 & 2844 \\
\hline \multicolumn{3}{|l|}{Manning's n Values} & num= & \multicolumn{2}{|l|}{3} & & & & \\
\hline Sta & n Val & Sta & n Val & Sta & n Val & & & & \\
\hline \multicolumn{10}{|l|}{***} \\
\hline 1000 & . 083 & 1181 & . 061 & 1250 & . 083 & & & & \\
\hline \multirow[t]{2}{*}{Bank Sta:} & : Left R & \multirow[t]{2}{*}{Right
1250} & \multirow[t]{2}{*}{Lengths:} & \multirow[t]{2}{*}{Left
\[
302
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
\text { Channel } \\
278
\end{array}
\]} & \multirow[t]{2}{*}{Right
\[
263
\]} & \multirow[t]{2}{*}{Coeff} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Contr } . ~ \\
.
\end{gathered}
\]} & Expan. \\
\hline & 1181 & & & & & & & & . 3 \\
\hline
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & * 2837.53 & * Element & & Left OB & & Channel & & Right OB & \\
\hline * Vel Head (ft) & 1.25 & Wt. n -Val. & * & 0.083 & & 0.061 & * & 0.083 & \\
\hline * W.S. Elev (ft) & * 2836.27 & * Reach Len. (ft) & * & 302.00 & & 278.00 & * & 263.00 & \\
\hline * Crit W.S. (ft) & * 2836.27 & * Flow Area (sq ft) & * & 31.36 & & 300.53 & * & 364.22 & \\
\hline * E.G. Slope (ft/ft) & *0.027214 & * Area (sq ft) & * & 31.36 & & 300.53 & * & 364.22 & \\
\hline * Q Total (cfs) & * 5163.18 & * Flow (cfs) & * & 66.98 & & 3207.38 & * & 1888.83 & \\
\hline * Top Width (ft) & 275.84 & * Top Width (ft) & * & 50.88 & & 69.00 & * & 155.95 & \\
\hline * Vel Total (ft/s) & 7.42 & * Avg. Vel. (ft/s) & * & 2.14 & & 10.67 & * & 5.19 & * \\
\hline * Max Chl Dpth (ft) & 5.77 & * Hydr. Depth (ft) & * & 0.62 & & 4.36 & * & 2.34 & \\
\hline * Conv. Total (cfs) & 31298.1 & * Conv. (cfs) & * & 406.0 & & 19442.5 & * & 11449.7 & \\
\hline * Length Wtd. (ft) & * 276.43 & * Wetted Per. (ft) & * & 51.00 & & 69.44 & * & 156.53 & \\
\hline * Min Ch El (ft) & * 2830.50 & * Shear (lb/sq ft) & * & 1.04 & & 7.35 & * & 3.95 & \\
\hline * Alpha & 1.47 & * Stream Power (lb/ft s) & * & 2.23 & & 78.48 & * & 20.50 & \\
\hline * Frctn Loss (ft) & 6.25 & * Cum Volume (acre-ft) & & 13.71 & & 12.21 & * & 11.92 & \\
\hline * C \& E Loss (ft) & 0.07 & * Cum SA (acres) & * & 6.78 & & 2.21 & * & 2.38 & \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 3 RS: 3.891

\section*{INPUT}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{Description: 46} \\
\hline \multicolumn{3}{|l|}{Station Elevation Data} & m= & \multicolumn{6}{|l|}{31} \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline \multicolumn{10}{|l|}{*****} \\
\hline 1000 & 2843.8 & 1010 & 2842 & 1021 & 2840 & 1033 & 2838 & 1041 & 2834 \\
\hline 1051 & 2830 & 1062 & 2828 & 1088 & 2826 & 1100 & 2826 & 1147 & 2826.4 \\
\hline
\end{tabular}
\begin{tabular}{rrrrrrrrrr}
\\
1157 & 2826.4 & 1167 & 2826 & 1200 & 2826 & 1301 & 2827 & 1362 & 2827 \\
1408 & 2826 & 1519 & 2826 & 1538 & 2827 & 1550 & 2827 & 1560 & 2826 \\
1577 & 2824 & 1596 & 2822 & 1613 & 2821 & 1630 & 2821 & 1639 & 2822 \\
1662 & 2824 & 1697 & 2826 & 1753.5 & 2828 & 1764 & 2832 & 1775.3 & 2836 \\
1790 & 2837.8 & & & & & & & &
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline E.G. Elev (ft) & * 2828.25 & * Element & * & Left OB & * & Channel & & Right OB \\
\hline Vel Head (ft) & 1.02 & * Wt. n-Val. & * & 0.083 & * & 0.061 & * & 0.083 \\
\hline W.S. Elev (ft) & * 2827.24 & * Reach Len. (ft) & * & 203.00 & * & 191.00 & * & 183.00 \\
\hline Crit W.S. (ft) & * 2827.24 & * Flow Area (sq ft) & * & 222.66 & * & 549.64 & * & 21.66 \\
\hline E.G. Slope (ft/ft) & * 0.019109 & * Area (sq ft) & * & 418.03 & * & 549.64 & * & 21.66 \\
\hline Q Total (cfs) & * 5163.18 & * Flow (cfs) & * & 461.35 & * & 4662.91 & * & 38.92 \\
\hline Top Width (ft) & * 660.08 & * Top Width (ft) & * & 488.10 & * & 137.00 & * & 34.98 \\
\hline Vel Total (ft/s) & 6.50 & * Avg. Vel. (ft/s) & * & 2.07 & * & 8.48 & * & 1.80 \\
\hline Max Chl Dpth (ft) & 6.24 & * Hydr. Depth (ft) & * & 0.77 & * & 4.01 & * & 0.62 \\
\hline Conv. Total (cfs) & * 37350.6 & * Conv. (cfs) & * & 3337.4 & * & 33731.6 & * & 281.6 \\
\hline Length Wtd. (ft) & * 194.35 & * Wetted Per. (ft) & * & 290.64 & * & 137.45 & * & 35.00 \\
\hline Min Ch El (ft) & * 2821.00 & * Shear (lb/sq ft) & * & 0.91 & * & 4.77 & * & 0.74 \\
\hline Alpha & * 1.55 & * Stream Power (lb/ft s) & * & 1.89 & * & 40.47 & * & 1.33 \\
\hline Frctn Loss (ft) & * 4.49 & * Cum Volume (acre-ft) & * & 12.16 & * & 9.50 & * & 10.76 \\
\hline C \& E Loss (ft) & * 0.01 & * Cum SA (acres) & * & 4.91 & * & 1.55 & * & 1.81 \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 3 RS: 3.855

INPUT
Description: 45

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & * 2822.75 & * Element & * & Left OB & * & Channel & * & Right OB & * \\
\hline * Vel Head (ft) & 1.09 & Wt. n -Val. & * & 0.083 & * & 0.061 & * & 0.083 & \\
\hline * W.S. Elev (ft) & * 2821.67 & * Reach Len. (ft) & * & 203.00 & * & 219.00 & * & 224.00 & * \\
\hline * Crit W.S. (ft) & * 2821.67 & * Flow Area (sq ft) & * & 509.30 & * & 190.22 & * & 77.45 & * \\
\hline * E.G. Slope (ft/ft) & *0.028468 & * Area (sq ft) & * & 1358.93 & * & 190. 22 & * & 77.45 & * \\
\hline * Q Total (cfs) & 5163.18 & * Flow (cfs) & * & 2667.84 & * & 2168.75 & * & 326.60 & * \\
\hline * Top Width (ft) & * 508.46 & * Top Width (ft) & * & 420.65 & * & 41.00 & * & 46.81 & * \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline * Vel Total (ft/s) & * & 6.65 & & Avg. Vel. (ft/s) & * & 5.24 & * & 11.40 & * & 4.22 \\
\hline * Max Chl Dpth (ft) & * & 6.27 & & Hydr. Depth (ft) & * & 2.28 & * & 4.64 & * & 1.65 \\
\hline * Conv. Total (cfs) & * & 30601.4 & & Conv. (cfs) & * & 15811.9 & * & 12853.9 & * & 1935.7 \\
\hline * Length Wtd. (ft) & & 212.47 & & Wetted Per. (ft) & * & 223.02 & * & 41.17 & * & 46.96 \\
\hline * Min Ch El (ft) & & 2816.30 & & Shear (lb/sq ft) & * & 4.06 & * & 8.21 & * & 2.93 \\
\hline * Alpha & & 1.58 & & Stream Power (lb/ft s) & * & 21.26 & * & 93.63 & * & 12.36 \\
\hline * Frctn Loss (ft) & & 6.87 & & Cum Volume (acre-ft) & * & 8.02 & * & 7.88 & * & 10.55 \\
\hline * C \& E Loss (ft) & & 0.00 & & Cum SA (acres) & * & 2.79 & * & 1.16 & * & 1.63 \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 3 RS: 3.813

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & * 2814.91 & & Element & * & Left OB & * & Channel & & Right OB & * \\
\hline * Vel Head (ft) & 1.09 & * & Wt. n-Val. & * & 0.083 & * & 0.061 & * & 0.083 & * \\
\hline * W.S. Elev (ft) & 2813.82 & * & Reach Len. (ft) & * & 353.00 & * & 343.00 & * & 341.00 & * \\
\hline * Crit W.S. (ft) & * 2813.82 & * & Flow Area (sq ft) & * & 333.02 & * & 358.20 & * & 13.55 & \\
\hline * E.G. Slope (ft/ft) & *0.037057 & * & Area (sq ft) & * & 610.89 & * & 358.20 & * & 13.55 & * \\
\hline * Q Total (cfs) & * 5163.18 & * & Flow (cfs) & * & 1662.29 & * & 3457.30 & * & 43.58 & * \\
\hline * Top Width (ft) & 416.10 & * & Top Width (ft) & * & 279.99 & * & 121.20 & * & 14.90 & * \\
\hline * Vel Total (ft/s) & 7.33 & * & Avg. Vel. (ft/s) & * & 4.99 & * & 9.65 & * & 3.22 & \\
\hline * Max Chl Dpth (ft) & 5.22 & * & Hydr. Depth (ft) & * & 1.64 & * & 2.96 & * & 0.91 & \\
\hline * Conv. Total (cfs) & 26821.3 & * & Conv. (cfs) & * & 8635.2 & * & 17959.7 & * & 226.4 & * \\
\hline * Length Wtd. (ft) & 344.37 & * & Wetted Per. (ft) & * & 203.94 & * & 121.30 & * & 15.01 & * \\
\hline * Min Ch El (ft) & 2810.00 & & Shear (lb/sq ft) & * & 3.78 & * & 6.83 & * & 2.09 & \\
\hline * Alpha & 1.31 & * & Stream Power (lb/ft s) & * & 18.86 & * & 65.94 & * & 6.72 & * \\
\hline * Frctn Loss (ft) & 7.54 & * & Cum Volume (acre-ft) & * & 3.43 & * & 6.50 & * & 10.32 & * \\
\hline * C \& E Loss (ft) & 0.02 & & Cum SA (acres) & * & 1.16 & * & 0.75 & * & 1.47 & * \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: Divided flow computed for this cross-section.
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 3

INPUT
Description: Section upstream of Junction Cor Split Rtn
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline tation El & evation & Data & num= & 28 & & & & & \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline 1000 & 2825 & 1020 & 2824 & 1028 & 2822 & 1036 & 2820 & 1044 & 2818 \\
\hline 1053 & 2816 & 1067 & 2814 & 1077 & 2812 & 1112 & 2810 & 1116 & 2808 \\
\hline 1120 & 2806 & 1125 & 2804 & 1129 & 2802 & 1133 & 2800 & 1137 & 2798 \\
\hline 1149 & 2796 & 1155 & 2796 & 1186 & - 2798 & 1203 & 2800 & 1249 & 2802 \\
\hline 1479 & 2802 & 1561 & 2802 & 1567 & 2804 & 1573 & 2806 & 1578 & 2808 \\
\hline 1583 & 2810 & 1589 & 2812 & 1603 & -2813 & & & & \\
\hline Manning's & \(n\) Values & & num= & 3 & & & & & \\
\hline Sta & \(n \mathrm{Val}\) & Sta & \(n\) Val & Sta & n Val & & & & \\
\hline 1000 & . 083 & 1133 & . 061 & 1203 & . 083 & & & & \\
\hline Bank Sta: & \[
\begin{aligned}
& \text { Left } \\
& 1133
\end{aligned}
\] & \[
\begin{array}{r}
\text { Right } \\
1203
\end{array}
\] & Lengths: & Left 0 & \begin{tabular}{l}
Channel \\
0
\end{tabular} & \[
\begin{array}{r}
\text { Right } \\
0
\end{array}
\] & Coeff & Contr.
\[
.1
\] & \[
\begin{gathered}
\text { Expan } \\
.3
\end{gathered}
\] \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 4
RS: 3.656

\section*{INPUT}

Description: Section downstream of Junction Cor Split Rtn
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline ion & ion & Data & um= & 30 & & & & & \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline 1000 & 2804 & 1018 & 2802 & 1024 & 2800 & 1038 & 2796 & 1048 & 2794 \\
\hline 1071 & 2790 & 1083.6 & 2788 & 1101 & 2786 & 1112.5 & 2785 & 1118.9 & 2785 \\
\hline 1134 & 2786 & 1146 & 2788 & 1179 & 2788 & 1196 & 2786 & 1201 & 2786 \\
\hline 1218 & 2788 & 1235 & 2790 & 1281 & 2790 & 1301 & 2788 & 1333 & 2788 \\
\hline 1366 & 2790 & 1421 & 2792 & 1451.6 & 2794 & 1475.1 & 2798 & 1487 & 2800 \\
\hline 1498.6 & 2802 & 1510.5 & 2804 & 1522.3 & 2806 & 1539.9 & 2808 & 1561.6 & 2810 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Vel Head (ft) & 0.45 & Wt. n-Val. & & 0.083 & & 0.061 & & 0.083 \\
\hline * W.S. Elev (ft) & * 2792.41 & * Reach Len. (ft) & & 461.00 & & 482.00 & & 488.00 \\
\hline * Crit W.S. (ft) & & * Flow Area (sq ft) & & 153.75 & & 217.56 & & 995.64 \\
\hline * E.G. Slope (ft/ft) & *0.008957 & * Area (sq ft) & & 153.75 & & 231.19 & & 995.64 \\
\hline * Q Total (cfs) & * 6162.00 & * Flow (cfs) & & 596.87 & & 1760.76 & & 3804.37 \\
\hline * Top Width (ft) & 370.11 & * Top Width (ft) & & 43.85 & & 33.00 & & 293.26 \\
\hline * Vel Total (ft/s) & 4.51 & * Avg. Vel. (ft/s) & & 3.88 & & 8.09 & & 3.82 \\
\hline * Max Chl Dpth (ft) & 7.41 & * Hydr. Depth (ft) & & 3.51 & & 6.59 & & 3.40 \\
\hline * Conv. Total (cfs) & 65110.0 & * Conv. (cfs) & & 6306.8 & & 18604.9 & & 40198.3 \\
\hline * Length Wtd. (ft) & 476.40 & * Wetted Per. (ft) & & 44.33 & & 33.08 & & 293.98 \\
\hline * Min Ch El (ft) & 2785.00 & * Shear (lb/sq ft) & & 1.94 & & 3.68 & & 1.89 \\
\hline * Alpha & 1.44 & * Stream Power (lb/ft s) & & 7.53 & & 29.77 & & 7.24 \\
\hline * Frctn Loss (ft) & 3.42 & * Cum Volume (acre-ft) & & 39.99 & & 21.02 & & 16.32 \\
\hline * C \& E Loss (ft) & 0.05 & Cum SA (acres) & & 62.80 & & 21.89 & & 64.91 \\
\hline
\end{tabular}

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline E.G. Elev (ft) & 2789.40 & Element & & Left OB & & Channel & & Right OB \\
\hline * Vel Head (ft) & 0.29 & * Wt. n-Val. & & 0.083 & & 0.061 & & 0.083 \\
\hline * W.S. Elev (ft) & 2789.10 & * Reach Len. (ft) & & 218.00 & & 230.00 & & 238.00 \\
\hline * Crit W.S. (ft) & * & * Flow Area (sq ft) & & 1003.35 & & 187.30 & & 261.00 \\
\hline * E.G. Slope (ft/ft) & *0.005878 & * Area (sq ft) & & 2559.47 & & 578.15 & & 439.06 \\
\hline * Q Total (cfs) & 6162.00 & * Flow (cfs) & & 4078.35 & & 1035.40 & & 1048.26 \\
\hline * Top Width (ft) & 330.70 & * Top Width (ft) & & 244.31 & & 36.70 & & 49.68 \\
\hline * Vel Total (ft/s) & 4.24 & * Avg. Vel. (ft/s) & & 4.06 & & 5.53 & & 4.02 \\
\hline * Max Chl Dpth (ft) & 16.10 & * Hydr. Depth (ft) & & 5.10 & & 5.10 & & 5.25 \\
\hline * Conv. Total (cfs) & 80374.2 & * Conv. (cfs) & & 53196.0 & & 13505.2 & & 13673.0 \\
\hline * Length Wtd. (ft) & 223.61 & * Wetted Per. (ft) & & 196.87 & & 36.78 & & 52.14 \\
\hline * Min Ch El (ft) & 2773.00 & * Shear (lb/sq ft) & & 1.87 & & 1.87 & & 1.84 \\
\hline * Alpha & 1.04 & * Stream Power (lb/ft s) & & 7.60 & & 10.33 & & 7.38 \\
\hline * Frctn Loss (ft) & 1.65 & * Cum Volume (acre-ft) & & 25.64 & & 16.54 & & 8.29 \\
\hline * C \& E Loss (ft) & 0.01 & * Cum SA (acres) & & 61.27 & & 21.50 & & 62.99 \\
\hline
\end{tabular}

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 4 RS: 3.521
INPUT
Description: 40.5
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Station Elevation Data} & m= & \multicolumn{3}{|l|}{60} & & \multirow[b]{2}{*}{Sta} & \multirow[b]{2}{*}{Elev} \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & & \\
\hline 1000 & 2794 & . 56 & 2794 & 8. 73 & 2794 & . 71 & 2794 & & 93 \\
\hline
\end{tabular}
\begin{tabular}{rrrrrrrrrrr}
& & & & & & & & & & \\
1014.89 & 2792 & 1015.56 & & 2791 & 1017.42 & 2790 & 1019.46 & 2789 & 1024.2 & 2788 \\
1029.64 & 2787 & 1032.54 & & 2786 & 1033.9 & 2785 & 1037.84 & 2784 & 1043.12 & 2783 \\
1046.09 & 2782 & 1049.13 & & 2781 & 1052.37 & 2780 & 1057.13 & 2779 & 1064.31 & 2778 \\
1076.86 & 2777 & 1107.11 & & 2777 & 1107.17 & 2777 & 1117.88 & 2777 & 1124.73 & 2777 \\
1158.18 & 2777 & 1161.87 & & 2776 & 1165.58 & 2775 & 1169.74 & 2774 & 1173.9 & 2773 \\
1180.53 & 2773 & 1182.18 & & 2773 & 1201.47 & 2773 & 1203.91 & 2773 & 1211.61 & 2773 \\
1213.64 & 2773 & 1250.57 & & 2773 & 1252.91 & 2773 & 1299.7 & 2772 & 1303.94 & 2771 \\
1312.3 & 2771 & 1318.06 & & 2772 & 13302772.127 & 13702772.553 & 1411.99 & 2773 \\
1416.95 & 2774 & 1421.6 & & 2775 & 1436.57 & 2776 & 1448.61 & 2777 & 1455.61 & 2778 \\
1459.03 & 2779 & 1461.26 & & 2780 & 1462.91 & 2781 & 1464.56 & 2782 & 1466.21 & 2783 \\
1467.86 & 2784 & 1469.51 & 2785 & 1471.21 & 2786 & 1483.21 & 2788 & 1508.67 & 2790
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Manning's n Values} & num= & 3 & \multirow[b]{2}{*}{n Val} \\
\hline Sta & n Val & Sta & n Val & Sta & \\
\hline ****** & ***** & * & *** & **** & *** \\
\hline 1000 & . 083 & 1330 & . 061 & 1370 & . 083 \\
\hline
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & * 2787.74 & Element & & Left OB & & Channel & & Right OB \\
\hline * Vel Head (ft) & 0.26 & Wt. n -Val. & & 0.083 & * & 0.061 & * & 0.083 \\
\hline * W.S. Elev (ft) & 2787.47 & * Reach Len. (ft) & & 133.00 & * & 144.00 & * & 158.00 \\
\hline * Crit W.S. (ft) & * & * Flow Area (sq ft) & & 1032.84 & * & 138.96 & * & 354.76 \\
\hline * E.G. Slope (ft/ft) & *0.009535 & * Area (sq ft) & & 3696.41 & * & 605.37 & * & 1227.38 \\
\hline * Q Total (cfs) & 6162.00 & * Flow (cfs) & & 4070.66 & \(\star\) & 758.18 & * & 1333.16 \\
\hline * Top Width (ft) & 452.99 & * Top Width (ft) & & 302.94 & * & 40.00 & * & 110.05 \\
\hline * Vel Total (ft/s) & 4.04 & Avg. Vel. (ft/s) & & 3.94 & * & 5.46 & * & 3.76 \\
\hline * Max Chl Dpth (ft) & 16.47 & * Hydr. Depth (ft) & & 3.41 & * & 3.47 & * & 3.22 \\
\hline * Conv. Total (cfs) & 63105.2 & * Conv. (cfs) & & 41687.8 & * & 7764.6 & * & 13652.9 \\
\hline * Length Wtd. (ft) & 140.88 & * Wetted Per. (ft) & \(\star\) & 305.10 & * & 40.00 & * & 112.56 \\
\hline * Min Ch El (ft) & 2772.13 & * Shear (lb/sq ft) & & 2.02 & * & 2.07 & * & 1.88 \\
\hline * Alpha & 1.04 & * Stream Power (lb/ft s) & & 7.94 & * & 11.28 & * & 7.05 \\
\hline Frctn Loss (ft) & 0.06 & * Cum Volume (acre-ft) & & 9.98 & & 13.41 & * & 3.73 \\
\hline C \& E Loss (ft) & 0.07 & * Cum SA (acres) & & 59.90 & * & 21.30 & * & 62.55 \\
\hline
\end{tabular}

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 4 RS: 3.494
INPUT
Description: 40
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline ion & ation & Data & m= & 75 & & & & & \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline 1000 & 2796 & 1015.22 & 2795 & 1033.46 & 2795 & 1034.61 & 2795 & 1037.72 & 2795 \\
\hline 1050.31 & 2795 & 1054.01 & 2795 & 1060.83 & 2795 & 1085.69 & 2794 & 1090.93 & 2793 \\
\hline 1097.61 & 2792 & 1103.77 & 2791 & 1109.34 & 2790 & 1114.54 & 2789 & 1121.79 & 2788 \\
\hline 1133.93 & 2787 & 1141.67 & 2786 & 1147.09 & 2785 & 1154.76 & 2785 & 1154.82 & 2785 \\
\hline 1157.37 & 2784 & 1159.06 & 2783 & 1160.75 & 2782 & 1162.43 & 2781 & 1164.66 & 2780 \\
\hline 1167.61 & 2779 & 1171.65 & 2778 & 1182.72 & 2777 & 1197.26 & 2776 & 1221.93 & 2775 \\
\hline 1244.29 & 2774 & 1244.54 & 2774 & 1246.59 & 2774 & 1273.66 & 2773 & 1295.88 & 2772 \\
\hline 1303.83 & 2772 & 1304.6 & 2772 & 1310.36 & 2772 & 1311.04 & 2772 & 13602 & 1.092 \\
\hline 1364.96 & 2771 & 1375.66 & 2770 & 1382.32 & 2767.3 & 1386 & 2767.3 & 1392 & 2770 \\
\hline 1405.27 & 2770 & 1407.62 & 2770 & 1451.24 & 2770 & 1452.85 & 2770 & 1478.67 & 2770 \\
\hline 1484.79 & 2770 & 1494.29 & 2770 & 1497.46 & 2770 & 1533.64 & 2771 & 1557.13 & 2772 \\
\hline 1569.03 & 2773 & 1575.23 & 2774 & 1577.71 & 2775 & 1579.96 & 2776 & 1582.48 & 2777 \\
\hline 1585.09 & 2778 & 1587.84 & 2779 & 1589.26 & 2780 & 1590.85 & 2781 & 1592.65 & 2782 \\
\hline 1594.05 & 2783 & 1595.32 & 2784 & 1596.59 & 2785 & 1597.86 & 2786 & 1599.22 & 2787 \\
\hline 1601.99 & 2788 & 1603.63 & 2789 & 1631.28 & 2790 & 1632.35 & 2790 & 1636.54 & 2790 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Manning's n Values} & num= & \multicolumn{2}{|l|}{3} \\
\hline Sta & n Val & Sta & n Val & Sta & n Val \\
\hline \multicolumn{6}{|l|}{**} \\
\hline 1000 & . 021 & 4.96 & . 02 & . 64 & . 02 \\
\hline
\end{tabular}
\begin{tabular}{ccccrrrr}
Bank Sta: Left & Right & Lengths: Left & Channel & Right & Coeff Contr. \\
1364.96 & 1533.64 & & 145 & 145 & 145 & & .3
\end{tabular}

CULVERT

RIVER: Finger Rock Wash
REACH: Main Reach 4
RS: 3.479
INPUT
Description: Skyline Dr. Crossing @ HEC-1 Sta. RES-7
\begin{tabular}{llr}
Distance from Upstream XS & \(=\) & 65 \\
Deck/Roadway Width & \(=\) & 34 \\
Weir Coefficient & \(=\) & 2.6
\end{tabular}

Upstream Deck/Roadway Coordinates

Upstream Bridge Cross Section Data
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline ion & on & Data & m= & 75 & & & & & \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline 1000 & 2796 & 1015.22 & 2795 & 1033.46 & 2795 & 1034.61 & 2795 & 1037.72 & 2795 \\
\hline 1050.31 & 2795 & 1054.01 & 2795 & 1060.83 & 2795 & 1085.69 & 2794 & 1090.93 & 2793 \\
\hline 1097.61 & 2792 & 1103.77 & 2791 & 1109.34 & 2790 & 1114.54 & 2789 & 1121.79 & 2788 \\
\hline 1133.93 & 2787 & 1141.67 & 2786 & 1147.09 & 2785 & 1154.76 & 2785 & 1154.82 & 2785 \\
\hline 1157.37 & 2784 & 1159.06 & 2783 & 1160.75 & 2782 & 1162.43 & 2781 & 1164.66 & 2780 \\
\hline 1167.61 & 2779 & 1171.65 & 2778 & 1182.72 & 2777 & 1197.26 & 2776 & 1221.93 & 2775 \\
\hline 1244.29 & 2774 & 1244.54 & 2774 & 1246.59 & 2774 & 1273.66 & 2773 & 1295.88 & 2772 \\
\hline 1303.83 & 2772 & 1304.6 & 2772 & 1310.36 & 2772 & 1311.04 & 2772 & 13602 & . 092 \\
\hline 1364.96 & 2771 & 1375.66 & 2770 & 1382.32 & 2767.3 & 1386 & 2767.3 & 1392 & 2770 \\
\hline 1405.27 & 2770 & 1407.62 & 2770 & 1451.24 & 2770 & 1452.85 & 2770 & 1478.67 & 2770 \\
\hline 1484.79 & 2770 & 1494.29 & 2770 & 1497.46 & 2770 & 1533.64 & 2771 & 1557.13 & 2772 \\
\hline 1569.03 & 2773 & 1575.23 & 2774 & 1577.71 & 2775 & 1579.96 & 2776 & 1582.48 & 2777 \\
\hline 1585.09 & 2778 & 1587.84 & 2779 & 1589.26 & 2780 & 1590.85 & 2781 & 1592.65 & 2782 \\
\hline 1594.05 & 2783 & 1595.32 & 2784 & 1596.59 & 2785 & 1597.86 & 2786 & 1599.22 & 2787 \\
\hline 1601.99 & 2788 & 1603.63 & 2789 & 1631.28 & 2790 & 1632.35 & 2790 & 1636.54 & 27 \\
\hline
\end{tabular}

Number of Culverts \(=1\)

Note: The normal depth exceeds the height of the culvert. The program assumes that the normal depth is equal to the height of the culvert.
Note: Culvert critical depth exceeds the height of the culvert.
Note: During the supercritical calculations a hydraulic jump occurred inside of the culvert.
Note: The culvert inlet is submerged and the culvert flows full over part or all of its length. Therefore, the culvert inlet equations are not valid and the supercritical result has been discarded. The outlet answer will be used.

\section*{CROSS SECTION}

RIVER: Finger Rock Wash
REACH: Main Reach 4
RS: 3.466

\section*{INPUT}

Description: 39
Station Elevation Data num= 39
Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 4
RS: 3.440
INPUT
Description: 38
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Station Sta & Eliev & Data Sta & \[
\begin{aligned}
& \text { um= } \\
& \text { Elev }
\end{aligned}
\] & \[
\begin{aligned}
& 32 \\
& \text { Sta }
\end{aligned}
\] & Elev & Sta & Elev & Sta & Elev \\
\hline ********* & & ******** & & ****** & & & & & \\
\hline 1000 & 2786 & 1009.54 & 2784 & 1016.77 & 2782 & 1024.28 & 2780 & 1032.09 & 2778 \\
\hline 1041.5 & 2776 & 1053.61 & 2774 & 1098.4 & 2772 & 1130.78 & 2770 & 1158.16 & 2768 \\
\hline 1170.24 & 2766 & 1197.87 & 2764 & 1282.18 & 2762 & 1320.85 & 2760 & 13302 & 8.775 \\
\hline 1335.79 & 2758 & 1350 & 2757 & 1364.55 & 2758 & 1365 & 2758 & 1403.79 & 2758 \\
\hline 1431.15 & 2758 & 1438.59 & 2760 & 1443.83 & 2762 & 1449.08 & 2764 & 1453.57 & 2766 \\
\hline 1457.89 & 2768 & 1462.2 & 2770 & 1466.56 & 2772 & 1470.92 & 2774 & 1484.06 & 2776 \\
\hline 1496.09 & 2778 & 1508.13 & 2780 & & & & & & \\
\hline
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|}
\hline E.G. Elev (ft) & 2764.78 & * Element & Left OB & Channel & Right OB \\
\hline * Vel Head (ft) & 1.88 & * Wt. n-Val. & 0.075 & 0.050 & 0.075 \\
\hline * W.S. Elev (ft) & 2762.90 & * Reach Len. (ft) & 205.00 & 197.00 & 174.00 \\
\hline * Crit W.S. (ft) & * 2762.90 & * Flow Area (sq ft) & 122.64 & 183.62 & 364.12 \\
\hline * E.G. Slope (ft/ft) & *0.024952 & * Area (sq ft) & 122.64 & 183.62 & * 364.12 \\
\hline * Q Total (cfs) & * 6162.00 & * Flow (cfs) & 486.69 & 2596.45 & * 3078.86 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline * Top Width (ft) & & 201.93 & & Top Width (ft) & * & 85.73 & * & 35.00 & * & 81.19 & * \\
\hline * Vel Total (ft/s) & * & 9.19 & & Avg. Vel. (ft/s) & * & 3.97 & * & 14.14 & * & 8.46 & \\
\hline * Max Chl Dpth (ft) & * & 5.90 & & Hydr. Depth (ft) & * & 1.43 & * & 5.25 & * & 4.48 & \\
\hline * Conv. Total (cfs) & & 39009.7 & & Conv. (cfs) & * & 3081.1 & * & 16437.3 & * & 19491.3 & * \\
\hline * Length Wtd. (ft) & & 186.60 & & Wetted Per. (ft) & * & 85.88 & * & 35.12 & * & 81.99 & \\
\hline * Min Ch El (ft) & & 2757.00 & & Shear (lb/sq ft) & * & 2.22 & * & 8.14 & * & 6.92 & \\
\hline * Alpha & & 1.43 & & Stream Power (lb/ft s) & * & 8.83 & * & 115.16 & * & 58.50 & \\
\hline * Frctn Loss (ft) & & 4.59 & & Cum Volume (acre-ft) & * & 43.51 & * & 32.20 & * & 38.95 & \\
\hline * C \& E Loss (ft) & & 0.14 & & Cum SA (acres) & * & 58.56 & * & 20.00 & * & 62.00 & * \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & * 2758.57 & * Element & * & Left OB & * & Channel & * & Right OB \\
\hline * Vel Head (ft) & 1.41 & * Wt. \(\mathrm{n}-\mathrm{Val}\). & * & 0.075 & * & 0.050 & * & 0.075 \\
\hline * W.S. Elev (ft) & * 2757.16 & * Reach Len. (ft) & * & 91.00 & * & 89.00 & * & 102.00 \\
\hline * Crit W.S. (ft) & * 2757.16 & * Flow Area (sq ft) & * & 205.74 & * & 166.45 & * & 397.53 \\
\hline * E.G. Slope (ft/ft) & *0.024196 & * Area (sq ft) & * & 205.74 & * & 166.45 & * & 397.53 \\
\hline * Q Total (cfs) & 6060.00 & * Flow (cfs) & * & 947.96 & * & 2165.35 & * & 2946.70 \\
\hline * Top Width (ft) & 252.33 & * Top Width (ft) & * & 111.94 & * & 35.00 & * & 105.38 \\
\hline * Vel Total (ft/s) & 7.87 & * Avg. Vel. (ft/s) & * & 4.61 & * & 13.01 & * & 7.41 \\
\hline * Max Chl Dpth (ft) & 5.66 & Hydr. Depth (ft) & * & 1.84 & * & 4.76 & * & 3.77 \\
\hline * Conv. Total (cfs) & 38958.0 & * Conv. (cfs) & * & 6094.1 & * & 13920.4 & * & 18943.5 \\
\hline * Length Wtd. (ft) & * & * Wetted Per. (ft) & * & 112.55 & * & 35.26 & * & 106.57 \\
\hline * Min Ch El (ft) & * 2751.50 & * Shear (lb/sq ft) & * & 2.76 & * & 7.13 & * & 5.63 \\
\hline * Alpha & 1.46 & * Stream Power (lb/ft s) & * & 12.72 & * & 92.76 & * & 41.77 \\
\hline * Frctn Loss (ft) & * 1.46 & * Cum Volume (acre-ft) & * & 42.74 & * & 31.41 & * & 37.43 \\
\hline * C \& E Loss (ft) & * & * Cum SA (acres) & * & 58.10 & * & 19.84 & * & 61.63 \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 4
RS: 3.386

\section*{INPUT}

Description: 37
\(\begin{array}{cccccccc}\text { Station Elevation Data } \\ \text { Sta } & \text { Elev } & \text { Sta } & \text { Elev } & 52 \\ \text { Sta } & \text { Elev } & \text { Sta } & \text { Elev } & \text { Sta Elev }\end{array}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 1000 & 2776 & 1010.47 & 2774 & 1013.17 & 2772 & 1016.96 & 2770 & 1020.87 & 2768 \\
\hline 1024.77 & 2766 & 1028.68 & 2764 & 1032.59 & 2762 & 1036.5 & 2760 & 1040.4 & 2758 \\
\hline 1044.36 & 2756 & 1048.22 & 2754 & 1052.12 & 2752 & 1064.47 & 2752 & 1115.17 & 2752 \\
\hline 1129 & 2750 & 1139.6 & 2752 & 1160.59 & 2752 & \multicolumn{2}{|l|}{11702750.728} & 1175.39 & 2750 \\
\hline 1185.69 & 2748 & 1185.97 & 2748 & 1194.93 & 2750 & \multicolumn{2}{|l|}{12002751.381} & 1202.27 & 2752 \\
\hline 1211.35 & 2752 & 1278.74 & 2752 & 1293.65 & 2754 & 1300.54 & 2756 & 1306.95 & 2758 \\
\hline 1312.9 & 2760 & 1318.1 & 2762 & 1323.3 & 2764 & 1328.5 & 2766 & 1333.7 & 2768 \\
\hline 1339.02 & 2770 & 1343.7 & 2772 & 1348.72 & 2774 & 1354.18 & 2776 & 1361.55 & 2778 \\
\hline 1368.4 & 2780 & 1375.35 & 2782 & 1380.15 & 2784 & 1384.34 & 2786 & 1388.54 & 2788 \\
\hline 1395.51 & 2790 & 1402.74 & 2792 & 1408.43 & 2794 & 1414.34 & 2796 & 1419.34 & 2798 \\
\hline 1423.77 & 2800 & 1427.7 & 2802 & & & & & & \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 4
RS: 3.291
INPUT
Description: 36
Station Elevation Data num= 40

CROSS SECTION OUTPUT Profile \#100-yr

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Slope (ft/ft) & *0.021815 & * Area (sq ft) & * & 642.48 & * & 159.04 & * & & * \\
\hline * Q Total (cfs) & * 6060.00 & * Flow (cfs) & * & 4205.02 & * & 1854.98 & * & & \\
\hline * Top Width (ft) & 226.65 & * Top Width (ft) & * & 190.97 & * & 35.68 & * & & \\
\hline * Vel Total (ft/s) & 7.56 & * Avg. Vel. (ft/s) & * & 6.55 & * & 11.66 & * & & \\
\hline * Max Chl Dpth (ft) & 6.45 & * Hydr. Depth (ft) & * & 3.36 & * & 4.46 & * & & \\
\hline * Conv. Total (cfs) & * 41029.1 & * Conv. (cfs) & * & 28470.0 & * & 12559.1 & * & & \\
\hline * Length Wtd. (ft) & 535.81 & * Wetted Per. (ft) & * & 192.07 & * & 36.72 & * & & \\
\hline * Min Ch El (ft) & 2738.00 & * Shear (lb/sq ft) & * & 4.56 & * & 5.90 & * & & \\
\hline * Alpha & 1.25 & * Stream Power (lb/ft s) & * & 29.82 & * & 68.81 & * & & \\
\hline * Frctn Loss (ft) & 10.91 & * Cum Volume (acre-ft) & * & 36.49 & * & 29.23 & * & 35.24 & * \\
\hline * C \& E Loss (ft) & 0.09 & * Cum SA (acres) & * & 56.12 & * & 19.40 & * & 60.86 & * \\
\hline
\end{tabular}

Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 4 RS: 3.185
INPUT
Description: 35
Station Elevation Data num= 34
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline ion & evation & Data & m= & 34 & & & & & \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline 1000 & 2758 & 1005.55 & 2756 & 1008.85 & 2754 & 1013.14 & 2752 & 1017.55 & 2750 \\
\hline 1021.96 & 2748 & 1026.37 & 2746 & 1030.8 & 2744 & 1035.19 & 2742 & 1039.6 & 2740 \\
\hline 1044.02 & 2738 & 1048.43 & 2736 & 1053.12 & 2734 & 1069.7 & 2732 & 1091.84 & 2730 \\
\hline 1114.94 & 2728 & 1137.3 & 2726 & 1150 & 2725 & 1155 & 5.111 & 1195.2 & 2726 \\
\hline 1205 & 2727.09 & 1213.19 & 2728 & 1224.88 & 2730 & 1229.11 & 2732 & 1233.34 & 2734 \\
\hline 1237.78 & 2736 & 1243.3 & 2738 & 1248.82 & 2740 & 1254.33 & 2742 & 1259.85 & 2744 \\
\hline 1267.05 & 2746 & 1274.76 & 2748 & 1282.47 & 2750 & 1288.43 & 2752 & & \\
\hline
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & * 2733.57 & * & Element & & Left OB & * & Channel & & Right OB \\
\hline * Vel Head (ft) & 1.97 & * & Wt. n -Val. & & 0.075 & * & 0.050 & * & 0.075 \\
\hline * W.S. Elev (ft) & 2731.59 & & Reach Len. (ft) & & 398.00 & * & 360.00 & * & 315.00 \\
\hline * Crit W.S. (ft) & * 2731.42 & & Flow Area (sq ft) & & 286.60 & * & 292.10 & * & 66.11 \\
\hline * E.G. Slope (ft/ft) & *0.019059 & & Area (sq ft) & & 286.60 & * & 292.10 & * & 66.11 \\
\hline * Q Total (cfs) & * 6060.00 & & Flow (cfs) & & 1819.16 & * & 3883.73 & * & 357.12 \\
\hline * Top Width (ft) & 154.02 & & Top Width (ft) & & 80.78 & * & 50.00 & * & 23.25 \\
\hline * Vel Total (ft/s) & 9.40 & & Avg. Vel. (ft/s) & & 6.35 & * & 13.30 & * & 5.40 \\
\hline * Max Chl Dpth (ft) & 6.59 & & Hydr. Depth (ft) & & 3.55 & * & 5.84 & * & 2.84 \\
\hline * Conv. Total (cfs) & 43895.9 & & Conv. (cfs) & & 13177.1 & * & 28131.9 & * & 2586.8 \\
\hline * Length Wtd. (ft) & 351.22 & & Wetted Per. (ft) & & 81.07 & * & 50.07 & * & 23.82 \\
\hline * Min Ch El (ft) & 2725.11 & & Shear (lb/sq ft) & & 4.21 & * & 6.94 & * & 3.30 \\
\hline * Alpha & 1.44 & & Stream Power (lb/ft s) & & 26.70 & * & 92.29 & * & 17.84 \\
\hline * Frctn Loss (ft) & 6.38 & & Cum Volume (acre-ft) & & 31.08 & * & 26.31 & * & 34.80 \\
\hline * C \& E Loss (ft) & 0.18 & & Cum SA (acres) & & 54.54 & * & 18.84 & * & 60.71 \\
\hline
\end{tabular}

Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 4 RS: 3.116

\section*{INPUT}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Station Elevation Data} & \multicolumn{2}{|l|}{num= 31} & \multirow[b]{2}{*}{Elev} & \multirow[b]{2}{*}{Sta} & \multirow[b]{2}{*}{Elev} & \multirow[b]{2}{*}{Sta} & \multirow[b]{2}{*}{Elev} \\
\hline Sta & Elev & Sta & Elev & Sta & & & & & \\
\hline 1000 & 2738 & 1003.43 & 2736 & 1006.86 & 2734 & 1010.29 & 2732 & 1013.72 & 2730 \\
\hline 1019.56 & 2728 & 1024.41 & 2726 & 1028.06 & 2724 & 1030 & . 888 & 1031.55 & 272 \\
\hline
\end{tabular}

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 4 RS: 3.031

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Manning's n Values} & num= 3 & \multicolumn{2}{|l|}{3} & & & \\
\hline Sta & n Val & Sta & n Val & Sta & n Val & & & \\
\hline \multicolumn{9}{|l|}{**} \\
\hline 1000 & . 075 & 1025 & . 05 & 1070 & \multicolumn{2}{|l|}{. 075} & & \\
\hline \multirow[t]{2}{*}{Bank Sta:} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Left } \\
& 1025
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
\text { Right } \\
1070
\end{array}
\]} & \multirow[t]{2}{*}{Lengths:} & \multirow[t]{2}{*}{Left 791} & \multirow[t]{2}{*}{Channel 822} & \multirow[t]{2}{*}{Right
\[
791
\]} & Coeff Contr. & Expan. \\
\hline & & & & & & & . 1 & . 3 \\
\hline
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & 2717.38 & * Element & & Left OB & & Channel & & Right OB \\
\hline * Vel Head (ft) & 1.46 & * Wt. n-Val. & & & & 0.050 & * & 0.075 \\
\hline * W.S. Elev (ft) & * 2715.92 & * Reach Len. (ft) & & 791.00 & & 822.00 & & 791.00 \\
\hline * Crit W.S. (ft) & 2715.84 & * Flow Area (sq ft) & & & & 173.25 & & 547.72 \\
\hline * E.G. Slope (ft/ft) & *0.026725 & * Area (sq ft) & * & & & 173.25 & & 547.72 \\
\hline * Q Total (cfs) & * 6060.00 & * Flow (cfs) & & & * & 2268.62 & & 3791.38 \\
\hline * Top Width (ft) & 212.85 & * Top Width (ft) & & & & 37.64 & & 175.21 \\
\hline * Vel Total (ft/s) & 8.41 & * Avg. Vel. (ft/s) & & & & 13.09 & & 6.92 \\
\hline * Max Chl Dpth (ft) & 5.92 & * Hydr. Depth (ft) & * & & * & 4.60 & * & 3.13 \\
\hline * Conv. Total (cfs) & * 37069.0 & * Conv. (cfs) & & & * & 13877.2 & & 23191.8 \\
\hline * Length Wtd. (ft) & * 808.33 & * Wetted Per. (ft) & & & & 39.15 & & 175.31 \\
\hline * Min Ch El (ft) & * 2710.00 & * Shear (lb/sq ft) & & & & 7.38 & & 5.21 \\
\hline * Alpha & 1.33 & * Stream Power (lb/ft s) & & & & 96.68 & & 36.08 \\
\hline * Frctn Loss (ft) & 16.03 & * Cum Volume (acre-ft) & & 29.70 & & 22.33 & & 27.05 \\
\hline * C \& E Loss (ft) & 0.05 & * Cum SA (acres) & & 54.12 & & 18.12 & & 58.59 \\
\hline
\end{tabular}

Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for
additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 4 RS: 2.876
INPUT
Description: 32

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Manning's Sta & \begin{tabular}{l}
n Values \\
n Val
\end{tabular} & Sta & num= n Val & \[
\begin{aligned}
& 3 \\
& \text { Sta }
\end{aligned}
\] & n Val & & & \\
\hline ********* & ********* & **** & ******* & **** & ** & & & \\
\hline 1000 & . 075 & 1040 & . 05 & 1095 & . 075 & & & \\
\hline Bank Sta: & \[
\begin{aligned}
& \text { Left } \\
& 1040
\end{aligned}
\] & & Lengths: & Left 290 & Channel 273 & \[
\begin{array}{r}
\text { Right } \\
243
\end{array}
\] & \begin{tabular}{l}
Coeff Contr. \\
. 1
\end{tabular} & \[
\begin{gathered}
\text { Expan. } \\
.3
\end{gathered}
\] \\
\hline
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline E.G. Elev (ft) & 2701.29 & * Element & & Left OB & & Channel & & Right OB \\
\hline * Vel Head (ft) & 2.01 & Wt. n-Val & & 0.075 & & 0.050 & & 0.075 \\
\hline * W.S. Elev (ft) & 2699.28 & * Reach Len. (ft) & & 290.00 & & 273.00 & & 243.00 \\
\hline * Crit W.S. (ft) & * 2699.28 & * Flow Area (sq ft) & & 35.86 & & 361.12 & & 316.73 \\
\hline * E.G. Slope (ft/ft) & *0.015483 & * Area (sq ft) & & 35.86 & & 361.12 & & 316.73 \\
\hline * Q Total (cfs) & 6368.00 & * Flow (cfs) & & 174.15 & & 4678.86 & & 1514.99 \\
\hline * Top Width (ft) & 183.46 & * Top Width (ft) & & 11.62 & & 55.00 & & 116.83 \\
\hline * Vel Total (ft/s) & 8.92 & * Avg. Vel. (ft/s) & & 4.86 & & 12.96 & & 4.78 \\
\hline * Max Chl Dpth (ft) & 7.28 & * Hydr. Depth (ft) & & 3.09 & & 6.57 & & 2.71 \\
\hline * Conv. Total (cfs) & 51177.5 & * Conv. (cfs) & & 1399.6 & & 37602.4 & & 12175.5 \\
\hline * Length Wtd. (ft) & * 260.61 & * Wetted Per. (ft) & & 12.97 & & 55.06 & & 117.19 \\
\hline * Min Ch El (ft) & 2692.00 & * Shear (lb/sq ft) & & 2.67 & & 6.34 & & 2.61 \\
\hline * Alpha & 1.63 & * Stream Power (lb/ft s) & & 12.98 & & 82.13 & & 12.50 \\
\hline * Frctn Loss (ft) & 4.48 & * Cum Volume (acre-ft) & & 29.38 & & 17.29 & & 19.20 \\
\hline * C \& E Loss (ft) & 0.20 & * Cum SA (acres) & & 54.01 & & 17.24 & & 55.94 \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 4
RS: 2.824
INPUT
Description: 31
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Station Elevation Data} & = & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{35}} & \multirow[b]{2}{*}{Sta} & \multirow[b]{2}{*}{Elev} & \multirow[b]{2}{*}{Sta} & \multirow[b]{2}{*}{Elev} \\
\hline Sta & Elev & Sta & Elev & Sta & & & & & \\
\hline & & & & & & & & & \\
\hline 1000 & 2718 & 1006.71 & 2716 & 1011.48 & 2714 & 1016.58 & 2712 & 1023.28 & 2710 \\
\hline 1029.06 & 2708 & 1033.75 & 2706 & 1038.44 & 2704 & 1043.14 & 2702 & 1047.83 & 2700 \\
\hline 1052.25 & 2698 & 1055.88 & 2696 & 1059.49 & 2694 & 1060 & 3.717 & 1063.1 & 2692 \\
\hline 1066.72 & 2690 & 1072.71 & 2688 & 1100 & 2688 & 1133.85 & 2688 & 1163.87 & 2690 \\
\hline 1229.69 & 2692 & 1247.21 & 2694 & 1251.62 & 2696 & 1256.04 & 2698 & 1260.46 & 2700 \\
\hline 1264.87 & 2702 & 1269.29 & 2704 & 1273.72 & 2706 & 1278.25 & 2708 & 1282.61 & 2710 \\
\hline 1296.75 & 2712 & 1312.16 & 2714 & 1318.91 & 2716 & 1325.47 & 2718 & 1335.28 & 2720 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Manning's n Values} & \multicolumn{2}{|r|}{num=} & \multicolumn{2}{|l|}{3} \\
\hline Sta & n Val & Sta & n Val & Sta & n Val \\
\hline & & & & ** & \\
\hline 1000 & . 075 & 1060 & . 05 & 1100 & 075 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Bank Sta: Left \(\begin{array}{rr}\text { Right } \\ 1060 & 1100\end{array}\) & Lengths: & \[
\begin{array}{r}
\text { Left } \\
410
\end{array}
\] & \begin{tabular}{l}
t Channel \\
\hline
\end{tabular} & \[
\begin{array}{r}
\text { Right } \\
366
\end{array}
\] & Coeff & f Contr . 1 & & \[
\begin{gathered}
\text { Expan. } \\
.3
\end{gathered}
\] & & & \\
\hline \multicolumn{12}{|l|}{CROSS SECTION OUTPUT Profile \#100-yr} \\
\hline E.G. Elev (ft) & 2695.34 & & Element & & & Left OB & & Channel & & ight OB & * \\
\hline * Vel Head (ft) & 1.33 & * W & Wt. n -Val. & & * & 0.075 & & 0.050 & & 0.075 & \\
\hline * W.S. Elev (ft) & * 2694.01 & & Reach Len. & (ft) & & 410.00 & & 386.00 & & 366.00 & \\
\hline * Crit W.S. (ft) & & & Flow Area (& (sq ft) & * & 0.08 & & 208.34 & & 569.11 & \\
\hline * E.G. Slope (ft/ft) & *0.019195 & * A & Area (sq ft & & & 0.08 & & 208.34 & & 569.11 & \\
\hline * Q Total (cfs) & 6368.00 & * F & Flow (cfs) & & & 0.05 & & 2523.84 & & 3844.11 & \\
\hline * Top Width (ft) & * 187.75 & & Top Width (& & * & 0.52 & & 40.00 & & 147.22 & \\
\hline * Vel Total (ft/s) & 8.19 & & Avg. Vel. (& ft/s) & & 0.69 & & 12.11 & & 6.75 & \\
\hline * Max Chl Dpth (ft) & 6.01 & * H & Hydr. Depth & (ft) & * & 0.14 & & 5.21 & & 3.87 & \\
\hline * Conv. Total (cfs) & * 45962.6 & & Conv. (cfs) & & * & 0.4 & & 18216.4 & & 27745.8 & \\
\hline * Length Wtd. (ft) & * 377.93 & * W & Wetted Per. & (ft) & * & 0.60 & & 41.28 & & 147.44 & \\
\hline * Min Ch El (ft) & * 2688.00 & * S & Shear (lb/s & (ft) & * & 0.15 & & 6.05 & & 4.63 & \\
\hline * Alpha & 1.28 & * S & Stream Powe & (\(\mathrm{lb} / \mathrm{ft} \mathrm{s)}\) & * & 0.10 & & 73.26 & & 31.25 & \\
\hline * Frctn Loss (ft) & 6.51 & & Cum Volume & (acre-ft) & * & 29.26 & & 15.50 & & 16.73 & \\
\hline * C \& E Loss (ft) & 0.07 & * C & Cum SA (acr & (es) & * & 53.97 & & 16.95 & & 55.20 & \\
\hline
\end{tabular}

Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 4 RS: 2.751

\section*{INPUT}

Description: 30
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Station & & & \(\mathrm{m}=\) & 29 & & & & & \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline 1000 & 2708 & 1004.11 & 2706 & 1008.16 & 2704 & 1012.21 & 2702 & 1016.27 & 2700 \\
\hline 1020.32 & 2698 & 1024.37 & 2696 & 1028.43 & 2694 & 1032.48 & 2692 & 1036.53 & 2690 \\
\hline 1040.59 & 2688 & 1044.64 & 2686 & 1048.69 & 2684 & 1052.69 & 2682 & 1070 & 0.516 \\
\hline 1076.02 & 2680 & 1088.5 & 2678 & 1095.78 & 2678 & 110026 & 9.243 & 1102.57 & 2680 \\
\hline 1109.43 & 2682 & 1185.35 & 2684 & 1215.36 & 2686 & 1223.33 & 2688 & 1231.31 & 2690 \\
\hline 1238.74 & 2692 & 1246.08 & 2694 & 1253.42 & 2696 & 1260.03 & 2698 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Manning's & n Valu & & num= & 3 & & & & \\
\hline Sta & n Val & Sta & n Val & Sta & n Val & & & \\
\hline ********* & ***** & ******** & ******* & ** & ***** & & & \\
\hline 1000 & . 075 & 1070 & . 05 & 1100 & . 075 & & & \\
\hline Bank Sta: & \[
\begin{aligned}
& \text { Left } \\
& 1070
\end{aligned}
\] & \[
\begin{array}{r}
\text { Right } \\
1100
\end{array}
\] & Lengths: & Left 454 & \[
\begin{array}{r}
\text { Channel } \\
536
\end{array}
\] & \[
\begin{array}{r}
\text { Right } \\
623
\end{array}
\] & Coeff Contr
\[
.1
\] & \[
\begin{gathered}
\text { Expan. } \\
.3
\end{gathered}
\] \\
\hline
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & 2688.75 & * Element & & Left OB & & Channel & & Right OB \\
\hline * Vel Head (ft) & 1.98 & * Wt. n-Val. & & 0.075 & & 0.050 & & 0.075 \\
\hline * W.S. Elev (ft) & 2686.77 & * Reach Len. (ft) & & 454.00 & & 536.00 & & 623.00 \\
\hline * Crit W.S. (ft) & * & * Flow Area (sq ft) & & 118.35 & & 234.51 & & 398.88 \\
\hline * E.G. Slope (ft/ft) & *0.015564 & * Area (sq ft) & & 118.35 & & 234.51 & & 398.88 \\
\hline * Q Total (cfs) & 6368.00 & * Flow (cfs) & & 762.78 & * & 3397.36 & & 2207.86 \\
\hline * Top Width (ft) & 175.37 & * Top Width (ft) & & 26.93 & & 30.00 & & 118.44 \\
\hline * Vel Total (ft/s) & 8.47 & * Avg. Vel. (ft/s) & & 6.44 & & 14.49 & & 5.54 \\
\hline * Max Chl Dpth (ft) & 8.77 & * Hydr. Depth (ft) & & 4.40 & & 7.82 & & 3.37 \\
\hline * Conv. Total (cfs) & 51043.4 & * Conv. (cfs) & * & 6114.1 & * & 27231.9 & & 17697.4 \\
\hline * Length Wtd. (ft) & * 539.71 & * Wetted Per. (ft) & & 28.11 & & 30.36 & & 119.03 \\
\hline * Min Ch El (ft) & 2678.00 & * Shear (lb/sq ft) & & 4.09 & & 7.51 & & 3.26 \\
\hline * Alpha & 1.78 & * Stream Power (lb/ft s) & & 26.37 & & 108.73 & & 18.02 \\
\hline * Frctn Loss (ft) & 9.49 & * Cum Volume (acre-ft) & & 28.70 & & 13.54 & & 12.67 \\
\hline * C \& E Loss (ft) & 0.02 & * Cum SA (acres) & & 53.84 & & 16.64 & & 54.09 \\
\hline
\end{tabular}

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 4
RS: 2.649

\section*{INPUT}

Description: 29

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline E.G. Elev (ft) & 2679.25 & Element & & Left OB & & Channel & & Right OB \\
\hline * Vel Head (ft) & 1.90 & * Wt. n-Val. & & 0.075 & & 0.050 & & 0.075 \\
\hline * W.S. Elev (ft) & 2677.35 & * Reach Len. (ft) & & 566.00 & & 517.00 & & 474.00 \\
\hline * Crit W.S. (ft) & 2676.51 & * Flow Area (sq ft) & & 338.86 & & 110.21 & & 201.96 \\
\hline * E.G. Slope (ft/ft) & *0.020015 & * Area (sq ft) & & 338.86 & * & 110.21 & & 201.96 \\
\hline * Q Total (cfs) & 6368.00 & * Flow (cfs) & & 2863.58 & & 1751.37 & & 1753.05 \\
\hline * Top Width (ft) & 114.41 & * Top Width (ft) & & 63.94 & & 15.00 & & 35.47 \\
\hline * Vel Total (ft/s) & 9.78 & * Avg. Vel. (ft/s) & & 8.45 & & 15.89 & & 8.68 \\
\hline * Max Chl Dpth (ft) & 7.35 & * Hydr. Depth (ft) & & 5.30 & & 7.35 & & 5.69 \\
\hline * Conv. Total (cfs) & 45011.4 & * Conv. (cfs) & & 20240.9 & & 12379.4 & & 12391.2 \\
\hline * Length Wtd. (ft) & 529.55 & * Wetted Per. (ft) & & 64.73 & & 15.00 & & 37.06 \\
\hline * Min Ch El (ft) & 2670.00 & * Shear (lb/sq ft) & & 6.54 & & 9.18 & & 6.81 \\
\hline * Alpha & 1.28 & * Stream Power (lb/ft s) & & 55.28 & & 145.90 & & 59.11 \\
\hline * Frctn Loss (ft) & 10.11 & * Cum Volume (acre-ft) & & 26.32 & & 11.42 & & 8.37 \\
\hline * C \& E Loss (ft) & 0.04 & Cum SA (acres) & & 53.37 & & 16.36 & & 52.99 \\
\hline
\end{tabular}

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 4 RS: 2.551
INPUT
Description: 28
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline tion & ation & Data & num= & 51 & & & & & \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline 1000 & 2704 & 1004.68 & 2702 & 1009.36 & 2700 & 1015.24 & 2698 & 1022.93 & 2696 \\
\hline 1028.96 & 2694 & 1033.35 & 2692 & 1039.56 & 2690 & 1048.14 & 2688 & 1056.73 & 2686 \\
\hline 1062.53 & 2684 & 1066.78 & 2682 & 1070.55 & 2680 & 1074.47 & 2678 & 1078.73 & 2676 \\
\hline 1083.45 & 2674 & 1088.18 & 2672 & 1092.9 & 2670 & 1097.63 & 2668 & 1102.35 & 2666 \\
\hline 1107.08 & 2664 & 1170.69 & 2662 & 1190 & 0.769 & 1202.05 & 2660 & 1213.98 & 2658 \\
\hline 1218.8 & 2658 & 12202 & 658.406 & 1224.71 & 2660 & 1228.36 & 2662 & 1232.01 & 2664 \\
\hline 1235.66 & 2666 & 1239.31 & 2668 & 1242.96 & 2670 & 1246.61 & 2672 & 1250.26 & 2674 \\
\hline 1253.91 & 2676 & 1257.56 & 2678 & 1261.21 & 2680 & 1264.86 & 2682 & 1268.51 & 2684 \\
\hline 1272.16 & 2686 & 1275.81 & 2688 & 1279.46 & 2690 & 1284.29 & 2692 & 1293.19 & 2694 \\
\hline 1313.25 & 2694 & 1322.62 & 2692 & 1329.62 & 2690 & 1341.94 & 2688 & 1344.32 & 2688 \\
\hline
\end{tabular}
1355.892690

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & 2669.10 & Element & & Left OB & Channel & & Right OB \\
\hline * Vel Head (ft) & 2.27 & * Wt. n-Val. & & 0.075 & 0.050 & * & 0.075 \\
\hline * W.S. Elev (ft) & * 2666.84 & * Reach Len. (ft) & & 513.00 & 494.00 & & 492.00 \\
\hline * Crit W.S. (ft) & 2666.84 & * Flow Area (sq ft) & & 359.00 & 224.24 & & 78.63 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline E.G. Slope (ft/ft) & *0.018223 & * Area (sq ft) & * & 359.00 & * & 224.24 & * & 78.63 & \\
\hline * Q Total (cfs) & * 6368.00 & * Flow (cfs) & * & 2410.04 & & 3419.67 & * & 538.29 & \\
\hline * Top Width (ft) & 136.82 & * Top Width (ft) & * & 89.63 & * & 30.00 & * & 17.19 & \\
\hline * Vel Total (ft/s) & 9.62 & * Avg. Vel. (ft/s) & * & 6.71 & * & 15.25 & * & 6.85 & \\
\hline * Max Chl Dpth (ft) & 8.84 & * Hydr. Depth (ft) & * & 4.01 & * & 7.47 & * & 4.57 & \\
\hline * Conv. Total (cfs) & 47172.5 & * Conv. (cfs) & * & 17853.0 & * & 25332.0 & * & 3987.5 & \\
\hline * Length Wtd. (ft) & 499.72 & * Wetted Per. (ft) & * & 90.27 & * & 30.26 & * & 19.20 & \\
\hline * Min Ch El (ft) & 2658.00 & * Shear (lb/sq ft) & * & 4.52 & * & 8.43 & * & 4.66 & \\
\hline * Alpha & 1.58 & Stream Power (lb/ft s) & * & 30.37 & * & 128.58 & * & 31.89 & \\
\hline * Frctn Loss (ft) & 7.88 & Cum Volume (acre-ft) & & 21.79 & * & 9.43 & & 6.84 & \\
\hline * C \& E Loss (ft) & 0.29 & * Cum SA (acres) & * & 52.37 & * & 16.09 & * & 52.70 & \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 4 RS: 2.458
INPUT
Description: 27

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Manning's n Values} & num= & \multicolumn{2}{|l|}{3} \\
\hline Sta & n Val & Sta & n Val & Sta & n Val \\
\hline \multicolumn{6}{|l|}{***} \\
\hline 1000 & . 075 & 1309 & . 05 & 1371 & . 075 \\
\hline
\end{tabular}
\begin{tabular}{cccccrrr}
Bank Sta: Left & Right & Lengths: Left & Channel & Right & Coeff Contr. & Expan. \\
& 1309 & 1371 & & 518 & 504 & 500 & .1
\end{tabular}\(\quad .3\)

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & 2657.89 & Element & & Left OB & * & Channel & * & Right OB \\
\hline * Vel Head (ft) & 1.31 & Wt. n -Val. & & 0.075 & * & 0.050 & * & 0.075 \\
\hline * W.S. Elev (ft) & 2656.58 & * Reach Len. (ft) & & 518.00 & * & 504.00 & * & 500.00 \\
\hline * Crit W.S. (ft) & 2656.58 & * Flow Area (sq ft) & & 429.80 & * & 360.01 & * & 183.58 \\
\hline * E.G. Slope (ft/ft) & *0.013792 & * Area (sq ft) & & 429.80 & * & 360.01 & * & 393.41 \\
\hline * Q Total (cfs) & 6368.00 & Flow (cfs) & & 1566.34 & * & 4018.89 & * & 782.77 \\
\hline * Top Width (ft) & 498.94 & * Top Width (ft) & & 219.19 & * & 62.00 & * & 217.76 \\
\hline * Vel Total (ft/s) & 6.54 & Avg. Vel. (ft/s) & & 3.64 & * & 11.16 & * & 4.26 \\
\hline * Max Chl Dpth (ft) & 8.58 & Hydr. Depth (ft) & & 1.96 & * & 5.81 & * & 2.48 \\
\hline * Conv. Total (cfs) & 54224.4 & * Conv. (cfs) & & 13337.6 & * & 34221.5 & * & 6665.4 \\
\hline * Length Wtd. (ft) & 509.86 & * Wetted Per. (ft) & * & 219.26 & * & 62.93 & * & 74.00 \\
\hline * Min Ch El (ft) & 2648.00 & * Shear (lb/sq ft) & & 1.69 & * & 4.93 & * & 2.14 \\
\hline * Alpha & 1.97 & * Stream Power (lb/ft s) & & 6.15 & * & 54.99 & * & 9.11 \\
\hline * Frctn Loss (ft) & 6.36 & * Cum Volume (acre-ft) & & 17.14 & * & 6.12 & * & 4.18 \\
\hline * C \& E Loss (ft) & 0.21 & * Cum SA (acres) & & 50.56 & * & 15.57 & * & 51.37 \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 4
RS: 2.362

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline E.G. Elev (ft) & 2647.53 & nt & & Left OB & & Channel & & OB \\
\hline Vel Head (ft) & 0.62 & Wt. n-Val. & & 0.075 & & 0.050 & & 0.075 \\
\hline * W.S. Elev (ft) & 2646.91 & * Reach Len. (ft) & & 281.00 & & 305.00 & & 311.00 \\
\hline * Crit W.S. (ft) & & * Flow Area (sq ft) & & 959.41 & & 208.01 & & 86.92 \\
\hline * E.G. Slope (ft/ft) & *0.011327 & * Area (sq ft) & & 1077.92 & & 208.01 & & 86.92 \\
\hline * Q Total (cfs) & 6368.00 & * Flow (cfs) & & 4079.12 & & 1969.00 & & 319.88 \\
\hline * Top Width (ft) & 493.59 & * Top Width (ft) & & 416.29 & & 40.00 & & 37.30 \\
\hline * Vel Total (ft/s) & 5.08 & * Avg. Vel. (ft/s) & & 4.25 & & 9.47 & & 3.68 \\
\hline * Max Chl Dpth (ft) & 5.91 & * Hydr. Depth (ft) & & 2.86 & & 5.20 & & 2.33 \\
\hline * Conv. Total (cfs) & 59834.1 & * Conv. (cfs) & & 38327.7 & & 18500.8 & & 3005.6 \\
\hline * Length Wtd. (ft) & 288.99 & * Wetted Per. (ft) & & 335.07 & & 40.18 & & 37.70 \\
\hline * Min Ch El (ft) & * 2641.00 & * Shear (lb/sq ft) & & 2.02 & & 3.66 & & 1.63 \\
\hline * Alpha & 1.55 & * Stream Power (lb/ft s) & & 8.61 & & 34.66 & & 6.00 \\
\hline * Frctn Loss (ft) & 2.14 & * Cum Volume (acre-ft) & & 8.18 & & 2.84 & & 1.42 \\
\hline * C \& E Loss (ft) & 0.06 & * Cum SA (acres) & & 46.78 & * & 14.98 & & 49.91 \\
\hline
\end{tabular}

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 4 RS: 2.305
INPUT
Description: 25.5
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Station & ion & Data & \(\mathrm{m}=\) & 19 & & & & & \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline 1000 & 2650 & 1007.2 & 2648 & 1017.67 & 2646 & 1029.52 & 2644 & 1041.36 & 2642 \\
\hline 1072.84 & 2640 & 1224.51 & 2640 & 1291.24 & 2640 & 1325 & 2640 & 1329.14 & 2640 \\
\hline 1342.2 & 2638 & 1347 & 2637 & 1359.15 & 2638 & 13602 & 8.388 & 1363.53 & 2640 \\
\hline 1367.75 & 2642 & 1371.96 & 2644 & 1376.2 & 2646 & 1380.48 & 2648 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Manning's Sta & \begin{tabular}{l}
n Values \\
n Val
\end{tabular} & Sta & num= n Val & \[
\begin{aligned}
& 3 \\
& \text { Sta }
\end{aligned}
\] & n Val \\
\hline & & & & & \\
\hline 1000 & . 075 & 1325 & . 05 & 1360 & . 075 \\
\hline
\end{tabular}
\begin{tabular}{ccccrcrcc}
Bank Sta: Left & Right & Lengths: Left Channel & Right & Coeff Contr. & Expan. \\
1325 & 1360 & & 11 & 195 & 196 & & .3 & .5 \\
Ineffective Flow & num= & 1 & & & & & \\
Sta L & Sta R & Elev & Permanent & & & & \\
1000 & 1102 & 2648 & T & & & &
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline E.G. Elev (ft) & 2645.34 & * Element & & Left OB & & Channel & & Right OB \\
\hline * Vel Head (ft) & 0.42 & * Wt. n-Val. & & 0.075 & & 0.050 & & 0.075 \\
\hline * W.S. Elev (ft) & 2644.91 & * Reach Len. (ft) & & 11.00 & & 195.00 & & 196.00 \\
\hline * Crit W.S. (ft) & & * Flow Area (sq ft) & & 1095.84 & & 228.96 & & 45.65 \\
\hline * E.G. Slope (ft/ft) & *0.005206 & * Area (sq ft) & & 1387.48 & & 228.96 & & 45.65 \\
\hline * Q Total (cfs) & 6368.00 & * Flow (cfs) & & 4528.05 & & 1705.00 & & 134.95 \\
\hline * Top Width (ft) & 349.79 & * Top Width (ft) & & 300.90 & & 35.00 & & 13.90 \\
\hline * Vel Total (ft/s) & 4.65 & * Avg. Vel. (ft/s) & & 4.13 & & 7.45 & & 2.96 \\
\hline * Max Chl Dpth (ft) & 7.91 & * Hydr. Depth (ft) & & 4.91 & & 6.54 & & 3.28 \\
\hline * Conv. Total (cfs) & 88253.5 & * Conv. (cfs) & & 62753.8 & & 23629.5 & & 1870.3 \\
\hline * Length Wtd. (ft) & * 98.46 & * Wetted Per. (ft) & & 223.00 & & 35.38 & & 15.35 \\
\hline * Min Ch El (ft) & * 2637.00 & * Shear (lb/sq ft) & & 1.60 & & 2.10 & & 0.97 \\
\hline * Alpha & 1.26 & * Stream Power (lb/ft s) & & 6.60 & & 15.66 & & 2.86 \\
\hline * Frctn Loss (ft) & 0.43 & * Cum Volume (acre-ft) & & 0.22 & & 1.31 & & 0.95 \\
\hline * C \& E Loss (ft) & 0.17 & * Cum SA (acres) & & 44.46 & & 14.72 & & 49.73 \\
\hline
\end{tabular}

Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.

CROSS SECTION

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & 2644.74 & * Element & Left OB & Channel & Right OB \\
\hline * Vel Head (ft) & 0.98 & Wt. n-Val. & 0.045 & 0.045 & 0.045 \\
\hline * W.S. Elev (ft) & * 2643.76 & * Reach Len. (ft) & 184.00 & 184.00 & 184.00 \\
\hline * Crit W.S. (ft) & 2640.80 & * Flow Area (sq ft) & 271.29 & 203.96 & 325.85 \\
\hline * E.G. Slope (ft/ft) & *0.003675 & * Area (sq ft) & 385.63 & 203.96 & 375.05 \\
\hline * Q Total (cfs) & 6368.00 & * Flow (cfs) & 2168.49 & 1654.59 & 2544.92 \\
\hline * Top Width (ft) & 151.89 & * Top Width (ft) & 69.43 & 25.00 & 57.46 \\
\hline * Vel Total (ft/s) & 7.95 & * Avg. Vel. (ft/s) & 7.99 & 8.11 & 7.81 \\
\hline * Max Chl Dpth (ft) & 8.16 & * Hydr. Depth (ft) & 7.98 & 8.16 & 7.76 \\
\hline * Conv. Total (cfs) & *105041.5 & * Conv. (cfs) & 35769.7 & 27292.7 & 41979.0 \\
\hline * Length Wtd. (ft) & 184.00 & * Wetted Per. (ft) & 34.00 & 25.00 & 42.28 \\
\hline * Min Ch El (ft) & * 2635.60 & * Shear (lb/sq ft) & 1.83 & 1.87 & 1.77 \\
\hline * Alpha & 1.00 & * Stream Power (lb/ft s) & 14.63 & 15.19 & 13.81 \\
\hline * Frctn Loss (ft) & & * Cum Volume (acre-ft) & * & 0.34 & * \\
\hline * C \& E Loss (ft) & & * Cum SA (acres) & 44.42 & 14.58 & 49.57 \\
\hline
\end{tabular}

CULVERT

RIVER: Finger Rock Wash
REACH: Main Reach 4 RS: 2.251
INPUT
Description: Sunrise Dr. Crossing @ HEC-1 Sta. RES-5
Distance from Upstream XS = 45
\(\begin{array}{lll}\text { Deck/Roadway Width } & = & 120 \\ \text { Weir Coefficient } & = & 2.6\end{array}\)
\(\begin{array}{ll}\text { Weir Coefficient } & = \\ \text { Upstream } & \text { Deck/Roadway Coordinates }\end{array}\)
num= \(\quad 16\)
Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord
\begin{tabular}{rrrrrr}
1000 & 2664.86 & 1122 & 2660.37 & 1186 & 2657.78 \\
1236 & 2656.24 & 1294 & 2654.44 & 1339 & 2653.54 \\
1390 & 2652 & 1443 & 2651.74 & 1491 & 2651.19 \\
1543 & 2650.7 & 1594 & 2650.2 & 1645 & 2649.75 \\
1700 & 2649.38 & 1748 & 2649.33 & 1797 & 2649.48 \\
1852 & 2651.54 & & & &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{Upstream Bridge Cross Section Data} \\
\hline \multicolumn{3}{|l|}{Station Elevation Data} & num= & \multicolumn{6}{|l|}{16} \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline \multicolumn{10}{|l|}{**} \\
\hline 1000 & 2664 & 1017 & 2658 & 1037 & 2656 & 1075 & 2648 & 1128 & 2646 \\
\hline 1151 & 2644 & 1164 & 2642 & 1178 & 2640 & 1181 & 2638 & 1184 & 2636 \\
\hline 1222 & 2635.6 & 1247 & 2635.6 & 1282 & 2636 & 1289 & 2638 & 1296 & 2640 \\
\hline 1323 & 2652 & & & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{llrl}
Upstream Embankment side slope & \(=\) & 0 & horiz. to 1.0 vertical \\
Downstream Embankment side slope & \(=\) & 0 horiz. to 1.0 vertical \\
Maximum allowable submergence for weir flow & \(=\) & .95 & \\
Elevation at which weir flow begins & \(=\) & \\
Energy head used in spillway design & \(=\) & \\
Spillway height used in design & \(=\) & \\
Weir crest shape & \(=\) & Broad Crested
\end{tabular}

Number of Culverts \(=1\)

\begin{tabular}{ccccccccc}
Sta. & Sta. & Sta. & Sta. & Sta. & Sta. & Sta. & Sta. & Sta. \\
1194 & 1205 & 1216 & 1227 & 1238 & 1249 & 1260 & 1271 & 1282 \\
Downstream Elevation \(=2632.1\) & & & & & & \\
Centerline & Stations & & & & & & & \\
Sta. & Sta. & Sta. & Sta. & Sta. & Sta. & Sta. & Sta. & Sta. \\
1306 & 1317 & 1328 & 1339 & 1350 & 1361 & 1372 & 1383 & 1394
\end{tabular}

CULVERT OUTPUT Profile \#100-yr Culv Group: Sunrise Dr
\begin{tabular}{|c|c|c|c|}
\hline * Q Culv Group (cfs) & 6368.00 & * Culv Full Len (ft) & * 13.16 \\
\hline * Barrels & 9 & * Culv Vel US (ft/s) & 13.16 \\
\hline * Q Barrel (cfs) & 707.56 & * Culv Vel DS (ft/s) & 20.59 \\
\hline * E.G. US. (ft) & * 2644.74 & * Culv Inv El Up (ft) & 2635.60 \\
\hline * W.S. US. (ft) & 2643.76 & * Culv Inv El Dn (ft) & 2632.10 \\
\hline * E.G. DS (ft) & 2639.23 & * Culv Frctn Ls (ft) & 1.55 \\
\hline * W.S. DS (ft) & 2636.86 & * Culv Exit Loss (ft) & 2.89 \\
\hline * Delta EG (ft) & 5.52 & * Culv Entr Loss (ft) & 1.08 \\
\hline * Delta WS (ft) & 6.90 & * Q Weir (cfs) & \\
\hline * E.G. IC (ft) & 2644.11 & * Weir Sta Lft (ft) & * \\
\hline * E.G. OC (ft) & 2644.74 & * Weir Sta Rgt (ft) & * \\
\hline * Culvert Control & Outlet & * Weir Submerg & * \\
\hline * Culv WS Inlet (ft) & * 2640.98 & * Weir Max Depth (ft) & * \\
\hline * Culv WS Outlet (ft) & * 2635.54 & * Weir Avg Depth (ft) & * \\
\hline * Culv Nml Depth (ft) & 2.87 & * Weir Flow Area (sq ft) & \\
\hline * Culv Crt Depth (ft) & 5.38 & Min El Weir Flow (ft) & 2653.87 \\
\hline
\end{tabular}

Note: The flow in the culvert is entirely supercritical.
CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 4 RS: 2.233

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & & 2639.23 & & Element & * & Left OB & * & Channel & & Right OB \\
\hline * Vel Head (ft) & & 2.37 & & Wt. \(\mathrm{n}-\mathrm{Val}\). & & & * & 0.045 & * & \\
\hline * W.S. Elev (ft) & & 2636.86 & & Reach Len. (ft) & & 420.00 & * & 364.00 & * & 182.00 \\
\hline * Crit W.S. (ft) & & 2636.86 & & Flow Area (sq ft) & & & * & 515.91 & * & \\
\hline * E.G. Slope (ft/ft) & & 0.018075 & & Area (sq ft) & & 15.59 & * & 522.20 & * & 581.65 \\
\hline * Q Total (cfs) & & 6368.00 & & Flow (cfs) & & & * & 6368.00 & * & \\
\hline * Top Width (ft) & & 284.47 & & Top Width (ft) & & 13.01 & * & 112.00 & * & 159.46 \\
\hline * Vel Total (ft/s) & & 12.34 & & Avg. Vel. (ft/s) & & & * & 12.34 & * & \\
\hline * Max Chl Dpth (ft) & & 5.86 & & Hydr. Depth (ft) & & & * & 4.69 & * & \\
\hline * Conv. Total (cfs) & & 47365.5 & & Conv. (cfs) & & & * & 47365.5 & * & \\
\hline * Length Wtd. (ft) & & 341.40 & & Wetted Per. (ft) & & & * & 111.28 & * & \\
\hline * Min Ch El (ft) & & 2632.00 & & Shear (lb/sq ft) & & & * & 5.23 & * & \\
\hline * Alpha & & 1.00 & & Stream Power (lb/ft s) & & & * & 64.58 & * & \\
\hline * Frctn Loss (ft) & & 6.82 & * & Cum Volume (acre-ft) & & 3.88 & * & 18.47 & * & 17.08 \\
\hline * C \& E Loss (ft) & & 0.61 & * & Cum SA (acres) & & 44.24 & * & 14.29 & * & 49.11 \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: Divided flow computed for this cross-section.
Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for
additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Manning's \(n\) Values Sta \(n\) Val & S Sta & num= n Val & \[
\begin{aligned}
& 3 \\
& \text { Sta }
\end{aligned}
\] & n Val & & & \\
\hline 1000 . 066 & 1265 & . 045 & 1355 & 5.066 & & & \\
\hline Bank Sta: Left & \[
\begin{array}{r}
\text { Right } \\
1355
\end{array}
\] & Lengths: & \[
\begin{array}{r}
\text { Left } \\
207
\end{array}
\] & Channel
208 & \[
\begin{array}{r}
\text { Right } \\
209
\end{array}
\] & Coeff Contr.
\[
.1
\] & \[
\begin{gathered}
\text { Expan. } \\
.3
\end{gathered}
\] \\
\hline Ineffective Flow & num= & 1 & & & & & \\
\hline Sta L Sta R & Elev & Permanent & & & & & \\
\hline 14541708.85 & 2640 & T & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & 2628.09 & Element & & Left OB & & Channel & & ight OB \\
\hline * Vel Head (ft) & 1.14 & Wt. n-Val. & & 0.066 & & 0.045 & & 0.066 \\
\hline * W.S. Elev (ft) & 2626.95 & * Reach Len. (ft) & & 207.00 & & 208.00 & & 209.00 \\
\hline * Crit W.S. (ft) & * 2626.76 & * Flow Area (sq ft) & & 241.26 & & 281.63 & & 291.85 \\
\hline * E.G. Slope (ft/ft) & *0.022166 & * Area (sq ft) & & 241.26 & & 281.63 & & 650.57 \\
\hline * Q Total (cfs) & 6368.00 & * Flow (cfs) & & 1395.97 & & 2960.74 & & 2011.29 \\
\hline * Top Width (ft) & 456.40 & * Top Width (ft) & & 106.29 & & 90.00 & & 260.11 \\
\hline * Vel Total (ft/s) & 7.82 & * Avg. Vel. (ft/s) & & 5.79 & & 10.51 & & 6.89 \\
\hline * Max Chl Dpth (ft) & 3.95 & * Hydr. Depth (ft) & & 2.27 & & 3.13 & & 2.95 \\
\hline * Conv. Total (cfs) & 42772.0 & * Conv. (cfs) & & 9376.3 & & 19886.5 & & 13509.3 \\
\hline * Length Wtd. (ft) & 208.28 & * Wetted Per. (ft) & & 106.38 & & 90.06 & & 99.00 \\
\hline * Min Ch El (ft) & 2623.00 & * Shear (lb/sq ft) & & 3.14 & & 4.33 & & 4.08 \\
\hline * Alpha & 1.21 & * Stream Power (lb/ft s) & & 18.16 & & 45.49 & & 28.11 \\
\hline * Frctn Loss (ft) & 4.35 & * Cum Volume (acre-ft) & & 2.65 & & 15.11 & & 14.50 \\
\hline * C \& E Loss (ft) & 0.00 & * Cum SA (acres) & & 43.67 & & 13.45 & & 48.23 \\
\hline
\end{tabular}

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 4
RS: 2.125
INPUT
Description: 23
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Station Elevation Data} & = & \multicolumn{2}{|l|}{35} & \multirow[b]{2}{*}{Sta} & \multirow[b]{2}{*}{Elev} & \multirow[b]{2}{*}{Sta} & \multirow[b]{2}{*}{Elev} \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & & & & \\
\hline & & & & & & & & & \\
\hline 1000 & 2640 & 1006.54 & 2638 & 1012.51 & 2636 & 1018.48 & 2634 & 1034.34 & 2632 \\
\hline 1053.61 & 2630 & 1087.45 & 2628 & 1119.45 & 2626 & 1130.99 & 2624 & 1160.66 & 2622 \\
\hline 1219.44 & 2620 & 12302 & 8.705 & 1235.75 & 2618 & 1250.99 & 2618 & 1270 & 2618.87 \\
\hline 1294.71 & 2620 & 1360.04 & 2620 & 1404.82 & 2620 & 1515.19 & 2620 & 1521.93 & 2620 \\
\hline 1591.65 & 2622 & 1615.97 & 2624 & 1635.58 & 2626 & 1643.86 & 2628 & 1652.13 & 2630 \\
\hline 1660.4 & 2632 & 1668.69 & 2634 & 1675.68 & 2636 & 1679.7 & 2638 & 1683.79 & 2640 \\
\hline 1687.88 & 2642 & 1691.96 & 2644 & 1696.05 & 2646 & 1700.14 & 2648 & 1704.22 & 2650 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1000.0661230 & . 045 & 127 & 70 . 066 & & & & & & & & \\
\hline \(\begin{array}{rrr}\text { Bank Sta: Left } & \text { Right } \\ 1230 & 1270\end{array}\) & Lengths: & \[
\begin{array}{r}
\text { Left } \\
409
\end{array}
\] & Channel 412 & \[
\begin{array}{r}
\text { Right } \\
415
\end{array}
\] & Coeff & \[
\begin{gathered}
\text { f Contr. } \\
.1
\end{gathered}
\] & & \[
\begin{gathered}
\text { Expan. } \\
.3
\end{gathered}
\] & & & \\
\hline Ineffective Flow num= & 1 & & & & & & & & & & \\
\hline Sta L Sta R Elev & Permanent & & & & & & & & & & \\
\hline 14831704.222630 & T & & & & & & & & & & \\
\hline CROSS SECTION OUTPUT Pro & file \#100- & & & & & & & & & & \\
\hline * E.G. Elev (ft) & * 2623.75 & & Element & & & Left OB & & Channel & & B & \\
\hline * Vel Head (ft) & 1.16 & & Wt. n -Val. & & & 0.066 & & 0.045 & & 0.066 & \\
\hline * W.S. Elev (ft) & * 2622.59 & & Reach Len. & (ft) & & 409.00 & & 412.00 & & 415.00 & \\
\hline * Crit W.S. (ft) & * 2622.59 & & Flow Area (& (sq ft) & & 129.89 & & 173.13 & & 564.71 & \\
\hline * E.G. Slope (ft/ft) & *0.019644 & & Area (sq ft & & & 129.89 & & 173.13 & & 778.01 & \\
\hline * Q Total (cfs) & * 6114.00 & & Alow (cfs) & & & 75.06 & & 2125.79 & & 3413.14 & \\
\hline * Top Width (ft) & * 446.80 & & Top Width (& & & 78.03 & * & 40.00 & & 328.77 & \\
\hline * Vel Total (ft/s) & 7.05 & & Avg. Vel. (& ft/s) & & 4.43 & & 12.28 & & 6.04 & \\
\hline * Max Chl Dpth (ft) & 4.59 & * Hy & Hydr. Depth & (ft) & * & 1.66 & & 4.33 & & 2.65 & \\
\hline * Conv. Total (cfs) & * 43622.7 & & Conv. (cfs) & & & 4103.0 & & 15167.3 & & 24352.4 & \\
\hline * Length Wtd. (ft) & * 412.82 & & Wetted Per. & (ft) & & 78.16 & * & 40.06 & & 213.03 & \\
\hline * Min Ch El (ft) & * 2618.00 & & Shear (lb/s & q ft) & * & 2.04 & & 5.30 & & 3.25 & \\
\hline * Alpha & 1.50 & & Stream Powe & (\(1 \mathrm{l} / \mathrm{ft}\) s) & & 9.02 & & 65.07 & & 19.65 & \\
\hline * Frctn Loss (ft) & 1.20 & * C & cum Volume & (acre-ft) & * & 1.76 & & 14.02 & & 11.07 & \\
\hline * C \& E Loss (ft) & 0.29 & * C & um SA (acr & es) & & 43.23 & & 13.14 & & 46.82 & \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 4 RS: 2.047
INPUT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Description: Pontatoc Station Elevation Data} & \multicolumn{4}{|l|}{num=} & \multirow[b]{2}{*}{Elev} & \multirow[b]{2}{*}{Sta} & \multirow[b]{2}{*}{Elev} \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & & & \\
\hline **** & **** & **** & **** & ***** & & **** & & & \\
\hline 1000 & 2634 & 1007.43 & 2632 & 1010.73 & 2630 & 1014.02 & 2628 & 1017.14 & 2626 \\
\hline 1020.26 & 2624 & 1023.95 & 2622 & 1027.64 & 2620 & 1031.33 & 2618 & 1037.28 & 2616 \\
\hline 1045 & 2615.2 & 1055 & 2614.2 & 1088 & 2614.6 & 1110 & 2614.3 & 1154.48 & 2614 \\
\hline 1203.35 & 2614 & 1270 & 2614.8 & 1388.09 & 2616 & 1417.75 & 2618 & 1430.61 & 2620 \\
\hline 1435.06 & 2622 & 1439.51 & 2624 & 1443.96 & 2626 & 1448.34 & 2628 & 1452.73 & 2630 \\
\hline
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & 2620.82 & * Element & & Left OB & Channel & & Right OB \\
\hline * Vel Head (ft) & 0.20 & * Wt. n-Val. & & 0.066 & 0.045 & & 0.066 \\
\hline * W.S. Elev (ft) & 2620.62 & * Reach Len. (ft) & & 139.00 & 145.00 & & 146.00 \\
\hline * Crit W.S. (ft) & * & * Flow Area (sq ft) & & 66.60 & 1425.71 & & 373.64 \\
\hline * E.G. Slope (ft/ft) & *0.001109 & * Area (sq ft) & & 66.60 & 1425.71 & & 744.81 \\
\hline * Q Total (cfs) & 6114.00 & * Flow (cfs) & & 113.11 & 5367.84 & & 633.04 \\
\hline * Top Width (ft) & 405.49 & * Top Width (ft) & & 18.50 & 225.00 & & 161.99 \\
\hline * Vel Total (ft/s) & 3.28 & * Avg. Vel. (ft/s) & & 1.70 & 3.77 & & 1.69 \\
\hline * Max Chl Dpth (ft) & 6.62 & * Hydr. Depth (ft) & & 3.60 & 6.34 & & 3.40 \\
\hline * Conv. Total (cfs) & *183580.0 & * Conv. (cfs) & & 3396.4 & *161175.8 & & 19007.9 \\
\hline * Length Wtd. (ft) & 144.83 & * Wetted Per. (ft) & & 19.53 & 225.06 & & 110.01 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline * Min Ch El (ft) & & 2614.00 & & Shear (lb/sq ft) & * & 0.24 & * & 0.44 & * & 0.24 & \\
\hline * Alpha & & 1.19 & & Stream Power (lb/ft s) & * & 0.40 & * & 1.65 & * & 0.40 & \\
\hline * Frctn Loss (ft) & & 0.07 & & Cum Volume (acre-ft) & * & 0.84 & * & 6.46 & * & 3.82 & \\
\hline * C \& E Loss (ft) & & 0.01 & & Cum SA (acres) & * & 42.78 & * & 11.89 & * & 44.48 & \\
\hline
\end{tabular}

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 4
RS: 2.019

\section*{INPUT}

Description: Pontatoc Cnyn Dr Culvert X-Section \#3
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline ion & & a & & 24 & & & & & \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline 1000 & 2624 & 1004.72 & 2622 & 1010.45 & 2620 & 1024.09 & 2618 & 1048.62 & 2616 \\
\hline 1112 & 2614 & 1122 & 2611 & 1205 & 2611 & 1210 & 2612 & 1305.54 & 2613.23 \\
\hline 1376.84 & 2614 & 1392.22 & 2616 & 1402 & 2617.9 & 1411.12 & 2616 & 1427.23 & 2616 \\
\hline 1436.09 & 2618 & 1449.33 & 2620 & 1470.25 & 2622 & 1482.7 & 2624 & 1489.34 & 2626 \\
\hline 1495.38 & 2628 & 1501.11 & 2630 & 1506.45 & 2632 & 1510.82 & 2634 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Manning's n Values} & num= & 3 & & & \multirow[t]{3}{*}{} & \multirow[b]{4}{*}{\[
\begin{gathered}
\text { Expan. } \\
.5
\end{gathered}
\]} \\
\hline Sta n Val & Sta & \(n\) Val & Sta n Val & n Val & & & \\
\hline 1000 . 025 & 1112 & . 025 & 1210 & . 025 & & & \\
\hline Bank Sta: Left & \[
\begin{array}{r}
\text { Right } \\
1210
\end{array}
\] & Lengths: & \[
\begin{array}{r}
\text { Left } \\
116
\end{array}
\] & Channel 116 & \[
\begin{array}{r}
\text { Right } \\
116
\end{array}
\] & Coeff Contr. . 3 & \\
\hline Ineffective Flow & num= & 2 & & & & & \\
\hline Sta L Sta R & Elev & Permanent & & & & & \\
\hline 10001105 & 2617.4 & T & & & & & \\
\hline 12271510.82 & 2617.4 & T & & & & & \\
\hline
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & 2620.75 & * Element & Left OB & Channel & Right OB \\
\hline * Vel Head (ft) & 0.19 & Wt. n-Val. & 0.025 & 0.025 & 0.025 \\
\hline * W.S. Elev (ft) & 2620.56 & * Reach Len. (ft) & 116.00 & 116.00 & 116.00 \\
\hline * Crit W.S. (ft) & 2615.79 & * Flow Area (sq ft) & 320.20 & 919.24 & 820.83 \\
\hline * E.G. Slope (ft/ft) & *0.000244 & * Area (sq ft) & 461.30 & 919.24 & 1534.95 \\
\hline * Q Total (cfs) & 6114.00 & * Flow (cfs) & 631.13 & 3781.73 & 1701.14 \\
\hline * Top Width (ft) & 446.32 & Top Width (ft) & 103.15 & 98.00 & 245.17 \\
\hline * Vel Total (ft/s) & 2.97 & * Avg. Vel. (ft/s) & 1.97 & 4.11 & 2.07 \\
\hline * Max Chl Dpth (ft) & 9.56 & * Hydr. Depth (ft) & 3.10 & 9.38 & 3.35 \\
\hline * Conv. Total (cfs) & *391441.4 & * Conv. (cfs) & 40407.6 & *242120.7 & *108913.1 \\
\hline * Length Wtd. (ft) & 116.00 & * Wetted Per. (ft) & 103.50 & 98.54 & 246.09 \\
\hline * Min Ch El (ft) & 2611.00 & * Shear (lb/sq ft) & 0.05 & 0.14 & 0.05 \\
\hline * Alpha & 1.37 & * Stream Power (lb/ft s) & 0.09 & 0.58 & 0.11 \\
\hline Frctn Loss (ft) & & * Cum Volume (acre-ft) & & 2.56 & * \\
\hline C \& E Loss (ft) & & * Cum SA (acres) & 42.58 & 11.35 & 43.80 \\
\hline
\end{tabular}

CULVERT

RIVER: Finger Rock Wash
REACH: Main Reach 4 RS: 2.008

\section*{INPUT}

Description: Pontatoc Canyon Dr. Crossing @ HEC-1 Sta. RES-4
\begin{tabular}{llr}
Distance from Upstream XS & \(=\) & 36 \\
Deck/Roadway Width & \(=\) & 46 \\
Weir Coefficient & \(=\) & 2.6
\end{tabular}

Upstream Deck/Roadway Coordinates

\begin{tabular}{rrrrrrrrrr}
1112 & 2614 & 1122 & 2611 & 1205 & 2611 & 1210 & 2612 & 1305.54 & 2613.23 \\
1376.84 & 2614 & 1392.22 & 2616 & 1402 & 2617.9 & 1411.12 & 2616 & 1427.23 & 2616 \\
1436.09 & 2618 & 1449.33 & 2620 & 1470.25 & 2622 & 1482.7 & 2624 & 1489.34 & 2626 \\
1495.38 & 2628 & 1501.11 & 2630 & 1506.45 & 2632 & 1510.82 & 2634 & &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Manning's n Values} & \multicolumn{3}{|l|}{num=} \\
\hline Sta & n Val & Sta & n Val & Sta & n Val \\
\hline \multicolumn{6}{|l|}{***} \\
\hline 1000 & . 025 & 1112 & . 025 & 51210 & . 025 \\
\hline \multirow[t]{2}{*}{Bank Sta:} & Left & \multirow[t]{2}{*}{Right 1210} & \multirow[t]{2}{*}{Coeff} & Contr & \multirow[t]{2}{*}{Expan.} \\
\hline & 1112 & & & . 3 & \\
\hline \multicolumn{2}{|l|}{Ineffective Flow} & num= & \multicolumn{2}{|r|}{2} & \\
\hline Sta L & Sta R & Elev & Permane & ent & \\
\hline 1000 & 1105 & 2617.4 & T & T & \\
\hline 1227 & 1510.82 & 2617.4 & T & T & \\
\hline
\end{tabular}

Downstream Bridge Cross Section Data
Station Elevation Data num= 27
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline ti & ation & Data & = & 27 & & & & & \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline 1000 & 2628 & 1006.45 & 2626 & 1013.01 & 2624 & 1019.57 & 2622 & 1026.13 & 2620 \\
\hline 1046.14 & 2618 & 1081.64 & 2616 & 1098.7 & 2614 & 1115.83 & 2612 & 1248 & 2611 \\
\hline 1258 & 2610 & 1262 & 2609 & 1342 & 2609 & 1359.99 & 2610 & 1452 & 2612 \\
\hline 1507.62 & 2614 & 1534.92 & 2616 & 1545.95 & 2618 & 1556.49 & 2620 & 1564.44 & 2622 \\
\hline 1569.95 & 2624 & 1574.56 & 2626 & 1579.43 & 2628 & 1585.05 & 2630 & 1590.67 & 2632 \\
\hline 1596.3 & 2634 & 1601.92 & 2636 & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{llrl}
Upstream Embankment side slope & \(=\) & 0 horiz. to 1.0 vertical \\
Downstream Embankment side slope & \(=\) & 0 horiz. to 1.0 vertical \\
Maximum allowable submergence for weir flow & \(=\) & .95 \\
Elevation at which weir flow begins & \(=\) & \\
Energy head used in spillway design & \(=\) & \\
Spillway height used in design & \(=\) \\
Weir crest shape & \(=\) & Broad Crested
\end{tabular}

Number of Culverts = 1

Note: During subcritical analysis, the culvert direct step method, the solution went to normal depth. CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 4
RS: 1.997

\section*{INPUT}

Description: Pontatoc Cnyn Dr Culvert X-Section \#2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline ation El & vation & Data & num= & 27 & & & & & \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline 1000 & 2628 & 1006.45 & 2626 & 1013.01 & 2624 & 1019.57 & 2622 & 1026.13 & 2620 \\
\hline 1046.14 & 2618 & 1081.64 & 2616 & 1098.7 & 2614 & 1115.83 & 2612 & 1248 & 2611 \\
\hline 1258 & 2610 & 1262 & 2609 & 1342 & 2609 & 1359.99 & 2610 & 1452 & 2612 \\
\hline 1507.62 & 2614 & 1534.92 & 2616 & 1545.95 & 2618 & 1556.49 & 2620 & 1564.44 & 2622 \\
\hline 1569.95 & 2624 & 1574.56 & 2626 & 1579.43 & 2628 & 1585.05 & 2630 & 1590.67 & 2632 \\
\hline 1596.3 & 2634 & 1601.92 & 2636 & & & & & & \\
\hline Manning's & n Value & & num= & 3 & & & & & \\
\hline Sta & n Val & Sta & n Val & Sta & n Val & & & & \\
\hline 1000 & . 025 & 1248 & . 025 & 1452 & . 025 & & & & \\
\hline \multirow[t]{2}{*}{Bank Sta:} & Left & Right & \multirow[t]{2}{*}{Lengths} & s: Left & Channel & Right & \multirow[t]{2}{*}{Coeff} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Contr } . \\
.3
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Expan. } \\
.5
\end{gathered}
\]} \\
\hline & 1248 & 1452 & & 293 & 308 & 327 & & & \\
\hline
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline E.G. Elev (ft) & 2613.95 & Element & & Left OB & & Channel & & Right OB \\
\hline * Vel Head (ft) & 1.06 & Wt. n-Val. & & 0.025 & & 0.025 & & 0.025 \\
\hline * W.S. Elev (ft) & 2612.89 & * Reach Len. (ft) & & 293.00 & & 308.00 & & 327.00 \\
\hline * Crit W.S. (ft) & * 2612.89 & * Flow Area (sq ft) & & 186.68 & & 582.93 & & 10.94 \\
\hline * E.G. Slope (ft/ft) & *0.005355 & * Area (sq ft) & & 186.68 & & 582.93 & & 10.94 \\
\hline * Q Total (cfs) & 6114.00 & * Flow (cfs) & & 984.54 & & 5101.81 & & 27.66 \\
\hline * Top Width (ft) & 368.43 & * Top Width (ft) & & 139.77 & & 204.00 & & 24.67 \\
\hline * Vel Total (ft/s) & 7.83 & Avg. Vel. (ft/s) & & 5.27 & & 8.75 & & 2.53 \\
\hline * Max Chl Dpth (ft) & 3.89 & * Hydr. Depth (ft) & & 1.34 & & 2.86 & & 0.44 \\
\hline * Conv. Total (cfs) & 83549.3 & * Conv. (cfs) & & 13453.9 & & 69717.4 & & 377.9 \\
\hline * Length Wtd. (ft) & 306.27 & * Wetted Per. (ft) & & 139.82 & & 204.22 & & 24.68 \\
\hline * Min Ch El (ft) & 2609.00 & * Shear (lb/sq ft) & & 0.45 & & 0.95 & & 0.15 \\
\hline * Alpha & 1.12 & * Stream Power (lb/ft s) & & 2.35 & & 8.35 & & 0.37 \\
\hline * Frctn Loss (ft) & 2.65 & * Cum Volume (acre-ft) & & 94.77 & & 39.89 & & 96.73 \\
\hline * C \& E Loss (ft) & 0.22 & * Cum SA (acres) & & 42.26 & & 10.95 & & 43.44 \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 4 RS: 1.939
INPUT
Description: Pontatoc Cnyn Dr Culvert X-Section \#1

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline E.G. Elev (ft) & & 2610.57 & & Element & * & Left OB & * & Channel & & Right OB \\
\hline * Vel Head (ft) & & 1.81 & & Wt. n-Val. & * & 0.066 & * & 0.045 & * & 0.066 \\
\hline * W.S. Elev (ft) & & 2608.77 & & Reach Len. (ft) & * & 269.00 & * & 291.00 & * & 287.00 \\
\hline * Crit W.S. (ft) & & 2608.77 & & Flow Area (sq ft) & * & 270.52 & * & 255.71 & * & 173.06 \\
\hline * E.G. Slope (ft/ft) & & 0.016326 & & Area (sq ft) & * & 851.42 & * & 255.71 & * & 173.06 \\
\hline * Q Total (cfs) & & 6114.00 & & Flow (cfs) & * & 1710.34 & * & 3417.95 & * & 985.71 \\
\hline * Top Width (ft) & & 344.52 & & Top Width (ft) & * & 237.84 & * & 45.00 & * & 61.69 \\
\hline * Vel Total (ft/s) & & 8.74 & & Avg. Vel. (ft/s) & * & 6.32 & * & 13.37 & * & 5.70 \\
\hline * Max Chl Dpth (ft) & & 7.76 & & Hydr. Depth (ft) & * & 3.26 & * & 5.68 & * & 2.81 \\
\hline * Conv. Total (cfs) & & 47850.5 & & Conv. (cfs) & * & 13385.8 & * & 26750.2 & * & 7714.5 \\
\hline * Length Wtd. (ft) & & 282.75 & & Wetted Per. (ft) & * & 83.02 & * & 45.35 & * & 62.11 \\
\hline * Min Ch El (ft) & & 2601.00 & & Shear (lb/sq ft) & * & 3.32 & * & 5.75 & * & 2.84 \\
\hline Alpha & & 1.52 & & Stream Power (lb/ft s) & * & 21.00 & * & 76.82 & * & 16.17 \\
\hline Frctn Loss (ft) & & 4.80 & & Cum Volume (acre-ft) & * & 91.27 & * & 36.93 & * & 96.04 \\
\hline C \& E Loss (ft) & & 0.14 & & Cum SA (acres) & * & 40.99 & * & 10.07 & * & 43.12 \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach \(4 \quad\) RS: 1.884
INPUT
Description: 20
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Station Elevation Data} & num= & \multicolumn{2}{|l|}{35} & \multirow[b]{2}{*}{Sta} & \multirow[b]{2}{*}{Elev} & \multirow[b]{2}{*}{Sta} & \multirow[b]{2}{*}{Elev} \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & & & & \\
\hline \multicolumn{10}{|l|}{} \\
\hline 1000 & 2622 & 1006.18 & 2620 & 1012.37 & 2618 & 1018.56 & 2616 & 1023.46 & 2614 \\
\hline 1029.05 & 2612 & 1034.75 & 2610 & 1040.45 & 2608 & 1046. 22 & 2606 & 1052.07 & 2604 \\
\hline 1067.57 & 2602 & 1094.31 & 2600 & 1118.38 & 2598 & 1118.98 & 2598 & 1136.48 & 2600 \\
\hline 1193.32 & 2600 & 12002 & 599.415 & 1216.17 & 2598 & 1230 & 2597 & \multicolumn{2}{|l|}{12402597.833} \\
\hline 1242.01 & 2598 & 1254.41 & 2600 & 1322.59 & 2602 & 1352.59 & 2604 & 1366.86 & 2606 \\
\hline 1379.05 & 2608 & 1387.75 & 2610 & 1396.46 & 2612 & 1404.57 & 2614 & 1409.14 & 2616 \\
\hline 1413.77 & 2618 & 1418.39 & 2620 & 1423.02 & 2622 & 1427.65 & 2624 & 1432.27 & 2626 \\
\hline
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & * 2604.20 & * Element & & Left OB & * & Channel & & Right OB \\
\hline * Vel Head (ft) & 1.35 & * Wt. \(\mathrm{n}-\mathrm{Val}\). & & 0.066 & * & 0.045 & * & 0.066 \\
\hline * W.S. Elev (ft) & 2602.85 & * Reach Len. (ft) & & 563.00 & * & 578.00 & * & 547.00 \\
\hline * Crit W.S. (ft) & 2602.85 & * Flow Area (sq ft) & & 397.82 & * & 195.20 & * & 188.94 \\
\hline * E.G. Slope (ft/ft) & * 0.017729 & * Area (sq ft) & & 397.82 & * & 195.20 & * & 188.94 \\
\hline * Q Total (cfs) & * 5756.00 & * Flow (cfs) & & 2399.91 & * & 2463.63 & * & 892.46 \\
\hline * Top Width (ft) & * 274.29 & * Top Width (ft) & & 139.00 & * & 40.00 & * & 95.30 \\
\hline * Vel Total (ft/s) & 7.36 & * Avg. Vel. (ft/s) & & 6.03 & * & 12.62 & * & 4.72 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Max Chl Dpth (ft) & 5.85 & * Hydr. Depth (ft) & & 2.86 & & 4.88 & & 1.98 \\
\hline * Conv. Total (cfs) & 43229.6 & * Conv. (cfs) & & 18024.2 & & 18502.8 & & 6702.7 \\
\hline * Length Wtd. (ft) & 567.58 & * Wetted Per. (ft) & & 139.35 & & 40.13 & * & 95.52 \\
\hline * Min Ch El (ft) & 2597.00 & * Shear (lb/sq ft) & & 3.16 & & 5.38 & * & 2.19 \\
\hline * Alpha & 1.60 & * Stream Power (lb/ft s) & & 19.06 & & 67.94 & * & 10.34 \\
\hline * Frctn Loss (ft) & 7.69 & * Cum Volume (acre-ft) & & 87.42 & & 35.42 & & 94.85 \\
\hline * C \& E Loss (ft) & 0.17 & * Cum SA (acres) & & 39.83 & & 9.78 & * & 42.60 \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline E.G. Elev (ft) & 2594.16 & Element & Left OB & & Channel & & Right OB \\
\hline * Vel Head (ft) & 0.79 & Wt. n-Val. & 0.066 & & 0.045 & & 0.066 \\
\hline * W.S. Elev (ft) & 2593.37 & Reach Len. (ft) & 492.00 & & 501.00 & & 513.00 \\
\hline * Crit W.S. (ft) & 2593.37 & * Flow Area (sq ft) & 848.36 & & 254.63 & & 129.97 \\
\hline * E.G. Slope (ft/ft) & *0.010678 & * Area (sq ft) & 848.36 & & 254.63 & & 129.97 \\
\hline * Q Total (cfs) & 5756.00 & Flow (cfs) & 2678.59 & & 2559.18 & & 518.23 \\
\hline * Top Width (ft) & 644.28 & Top Width (ft) & 536.51 & & 50.00 & & 57.77 \\
\hline * Vel Total (ft/s) & 4.67 & Avg. Vel. (ft/s) & 3.16 & & 10.05 & & 3.99 \\
\hline * Max Chl Dpth (ft) & 6.37 & Hydr. Depth (ft) & 1.58 & & 5.09 & & 2.25 \\
\hline * Conv. Total (cfs) & 55702.7 & Conv. (cfs) & 25921.6 & & 24766.0 & & 5015.1 \\
\hline * Length Wtd. (ft) & 499.02 & Wetted Per. (ft) & 536.58 & & 50.37 & & 57.92 \\
\hline * Min Ch El (ft) & 2587.00 & * Shear (lb/sq ft) & 1.05 & & 3.37 & & 1.50 \\
\hline Alpha & 2.34 & Stream Power (lb/ft s) & 3.33 & & 33.87 & & 5.96 \\
\hline * Frctn Loss (ft) & 6.45 & * Cum Volume (acre-ft) & 79.36 & & 32.44 & & 92.85 \\
\hline * C \& E Loss (ft) & 0.11 & * Cum SA (acres) & 35.46 & & 9.19 & & 41.64 \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 4 RS: 1.679
INPUT
Description: 18

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 1000 & 2590 & 1008.64 & 2588 & 1017.28 & 2586 & 1030.71 & 2584 & 1044.52 & 2582 \\
\hline 1085.91 & 2582 & 1131.51 & 2582 & 1159.49 & 2582 & 1181.17 & 2582 & 1206.92 & 2582 \\
\hline 1231.1 & 2582 & 1280.58 & 2582 & 1355 & 2582 & 1355.62 & 2582 & 1380 & 2580.5 \\
\hline 1394.73 & 2582 & 1400 & 2582 & 1408.76 & 2582 & 1589.61 & 2582 & 1600.91 & 2584 \\
\hline 1605.84 & 2586 & 1610.51 & 2588 & 1614.68 & 2590 & 1618.86 & 2592 & 1623.03 & 2594 \\
\hline 1627.21 & 2596 & 1631.39 & 2598 & 1635.56 & 2600 & 1639.58 & 2602 & 1642.84 & 2604 \\
\hline Manning's Sta & \begin{tabular}{l}
n Value \\
n Val
\end{tabular} & Sta & \begin{tabular}{l}
num= \\
n Val
\end{tabular} & \[
\begin{aligned}
& 3 \\
& \text { Sta }
\end{aligned}
\] & n Val & & & & \\
\hline 1000 & . 066 & 1355 & . 045 & 1400 & . 066 & & & & \\
\hline Bank Sta: & \[
\begin{aligned}
& \text { Left } \\
& 1355
\end{aligned}
\] & \[
\begin{array}{r}
\text { Right } \\
1400
\end{array}
\] & Lengths & \[
\begin{array}{r}
\text { s: Left } \\
519
\end{array}
\] & \[
\begin{array}{r}
\text { Channel } \\
500
\end{array}
\] & \[
\begin{array}{r}
\text { Right } \\
467
\end{array}
\] & Coeff & \[
\begin{gathered}
\text { Contr } . \\
.1
\end{gathered}
\] & \[
\begin{gathered}
\text { Expan } \\
.3
\end{gathered}
\] \\
\hline
\end{tabular}

\section*{CROSS SECTION OUTPUT Profile \#100-yr}

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 4 RS: 1.585
INPUT
Description: 17
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Station & tion & Data & m= & 38 & & & & & \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline & & & & & & & & & \\
\hline 1000 & 2598 & 1005.21 & 2596 & 1010.24 & 2594 & 1014.31 & 2592 & 1018.37 & 2590 \\
\hline 1022.9 & 2588 & 1027.75 & 2586 & 1032.6 & 2584 & 1037.29 & 2582 & 1042.84 & 2580 \\
\hline 1052.05 & 2578 & 1061.26 & 2576 & 1070.42 & 2574 & 1078.48 & 2572 & 1085.58 & 2570 \\
\hline 1088.49 & 2570 & 1116.41 & 2570 & 1128.18 & 2570 & 1141.32 & 2572 & 1224.64 & 2572 \\
\hline 1247.31 & 2572 & 1250 & 2572 & 1265.39 & 2572 & 1280 & 2570 & 1294.53 & 2572 \\
\hline 1295 & 2572 & 1313.34 & 2572 & 1375.76 & 2572 & 1384.84 & 2574 & 1392.94 & 2576 \\
\hline 1400.59 & 2578 & 1408.24 & 2580 & 1416.9 & 2582 & 1425.68 & 2584 & 1432.12 & 2586 \\
\hline 1438.49 & 2588 & 1444.99 & 2590 & 1449.88 & 2592 & & & & \\
\hline
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & 2575.12 & * Element & & Left OB & & Channel & & Right OB \\
\hline * Vel Head (ft) & 0.84 & * Wt. n-Val. & & 0.066 & & 0.045 & & 0.066 \\
\hline * W.S. Elev (ft) & * 2574.28 & * Reach Len. (ft) & & 524.00 & & 527.00 & & 479.00 \\
\hline * Crit W.S. (ft) & 2573.91 & * Flow Area (sq ft) & & 507.49 & & 131.86 & & 196.16 \\
\hline * E.G. Slope (ft/ft) & *0.021886 & * Area (sq ft) & & 507.49 & & 131.86 & & 196.16 \\
\hline * Q Total (cfs) & 5756.00 & * Flow (cfs) & & 3353.88 & & 1313.74 & & 1088.38 \\
\hline * Top Width (ft) & 316.86 & * Top Width (ft) & & 180.87 & & 45.00 & & 90.98 \\
\hline * Vel Total (ft/s) & 6.89 & * Avg. Vel. (ft/s) & & 6.61 & & 9.96 & & 5.55 \\
\hline * Max Chl Dpth (ft) & 4.28 & * Hydr. Depth (ft) & & 2.81 & & 2.93 & & 2.16 \\
\hline * Conv. Total (cfs) & 38907.5 & * Conv. (cfs) & & 22670.5 & & 8880.2 & & 7356.8 \\
\hline * Length Wtd. (ft) & * 520.22 & * Wetted Per. (ft) & & 181.58 & & 45.27 & & 91.24 \\
\hline * Min Ch El (ft) & * 2570.00 & * Shear (lb/sq ft) & & 3.82 & & 3.98 & & 2.94 \\
\hline * Alpha & 1.14 & * Stream Power (lb/ft s) & & 25.24 & & 39.65 & & 16.30 \\
\hline * Frctn Loss (ft) & 9.60 & * Cum Volume (acre-ft) & & 63.97 & & 28.82 & & 86.51 \\
\hline * C \& E Loss (ft) & 0.05 & * Cum SA (acres) & & 27.59 & & 8.12 & & 38.55 \\
\hline
\end{tabular}

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{RIVER: Finger Rock Wash} \\
\hline \multicolumn{10}{|l|}{REACH: Main Reach 4 RS: 1.485} \\
\hline \multicolumn{10}{|l|}{INPUT} \\
\hline \multicolumn{10}{|l|}{Description: 16} \\
\hline \multicolumn{3}{|l|}{Station Elevation Data} & num= & 24 & & & & & \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline \multicolumn{10}{|l|}{} \\
\hline 1000 & 2572 & 1003.94 & 2570 & 1007.62 & 2568 & 1011.3 & 2566 & 1015.39 & 2564 \\
\hline 1020.63 & 2562 & 1026.34 & 2560 & 1035.75 & 2560 & 1071.72 & 2560 & 1085.98 & 2560 \\
\hline 1105 & 2562 & 1255 & 2562 & 1265.42 & 2562 & 1276.15 & 2562 & 12852 & 3.642 \\
\hline 1286.93 & 2564 & 1292.57 & 2566 & 1297.43 & 2568 & 1302.28 & 2570 & 1307.13 & 2572 \\
\hline 1311.82 & 2574 & 1316.48 & 2576 & 1321.13 & 2578 & 1325.51 & 2580 & & \\
\hline
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline E.G. Elev (ft) & 2565.47 & Element & & Left OB & & Channel & & Right OB \\
\hline * Vel Head (ft) & 0.66 & Wt. n-Val. & & 0.066 & & 0.045 & & 0.066 \\
\hline * W.S. Elev (ft) & 2564.81 & * Reach Len. (ft) & & 572.00 & & 599.00 & & 632.00 \\
\hline * Crit W.S. (ft) & * & * Flow Area (sq ft) & & 812.88 & & 77.05 & & 2.84 \\
\hline * E.G. Slope (ft/ft) & *0.015781 & * Area (sq ft) & & 812.88 & & 77.05 & & 2.84 \\
\hline * Q Total (cfs) & 5756.00 & * Flow (cfs) & & 5152.60 & & 597.41 & & 6.00 \\
\hline * Top Width (ft) & 275.48 & * Top Width (ft) & & 241.27 & * & 30.00 & & 4.22 \\
\hline * Vel Total (ft/s) & 6.45 & * Avg. Vel. (ft/s) & & 6.34 & & 7.75 & & 2.11 \\
\hline * Max Chl Dpth (ft) & 4.81 & * Hydr. Depth (ft) & & 3.37 & & 2.57 & & 0.67 \\
\hline * Conv. Total (cfs) & 45820.0 & * Conv. (cfs) & & 41016.7 & & 4755.6 & & 47.7 \\
\hline * Length Wtd. (ft) & 590.88 & * Wetted Per. (ft) & & 242.27 & & 30.15 & & 4.39 \\
\hline * Min Ch El (ft) & 2562.00 & * Shear (lb/sq ft) & & 3.31 & & 2.52 & & 0.64 \\
\hline * Alpha & 1.02 & * Stream Power (lb/ft s) & & 20.95 & & 19.52 & & 1.35 \\
\hline * Frctn Loss (ft) & 7.84 & * Cum Volume (acre-ft) & & 56.03 & & 27.55 & & 85.42 \\
\hline * C \& E Loss (ft) & 0.06 & * Cum SA (acres) & & 25.05 & & 7.67 & & 38.02 \\
\hline
\end{tabular}

Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 4 RS: 1.371

\section*{INPUT}

Description: 15
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline ion & & Data & m= & 35 & & & & & \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline 1000 & 2574 & 1005.44 & 2572 & 1011.27 & 2570 & 1016.35 & 2568 & 1021.42 & 2566 \\
\hline 1026.5 & 2564 & 1031.57 & 2562 & 1036.35 & 2560 & 1040.79 & 2558 & 1047.56 & 2556 \\
\hline 1058.52 & 2554 & 1102.9 & 2552 & 1105 & 551.692 & 1116.55 & 2550 & 1124.14 & 2548 \\
\hline 1128.07 & 2548 & 1134.28 & 2550 & 1142.98 & 2552 & 1145 & 2552 & 1162.28 & 2552 \\
\hline 1170.77 & 2550 & 1173.37 & 2550 & 1192.24 & 2552 & 1212.22 & 2554 & 1231.7 & 2556 \\
\hline 1283.54 & 2556 & 1395.36 & 2554 & 1398.67 & 2554 & 1442.78 & 2556 & 1455.53 & 2558 \\
\hline 1467.52 & 2560 & 1474.05 & 2562 & 1479.43 & 2564 & 1486.67 & 2566 & 1495.56 & 2568 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 10001065 & 2565 & T & & & & & & & & & \\
\hline \multicolumn{12}{|l|}{\multirow[t]{2}{*}{CROSS SECTION OUTPUT Profile \#100-yr}} \\
\hline & & & & & & & & & & & \\
\hline * E.G. Elev (ft) & & 2557.56 & * & Element & * & Left OB & * & Channel & * & Right OB & \\
\hline * Vel Head (ft) & & 1.25 & & Wt. n -Val. & * & 0.066 & * & 0.045 & * & 0.066 & \\
\hline * W.S. Elev (ft) & & * 2556.31 & & Reach Len. (ft) & * & 530.00 & * & 508.00 & * & 480.00 & * \\
\hline * Crit W.S. (ft) & & & & Flow Area (sq ft) & * & 140.46 & * & 251.65 & * & 556.86 & * \\
\hline * E.G. Slope (ft/ft) & & *0.011317 & & Area (sq ft) & * & 170.94 & * & 251.65 & * & 556.86 & * \\
\hline * Q Total (cfs) & & 5756.00 & & Flow (cfs) & * & 776.37 & * & 2967.04 & * & 2012.58 & * \\
\hline * Top Width (ft) & & 398.27 & & Top Width (ft) & * & 58.50 & * & 40.00 & * & 299.77 & \\
\hline * Vel Total (ft/s) & & 6.07 & & Avg. Vel. (ft/s) & * & 5.53 & * & 11.79 & * & 3.61 & \\
\hline * Max Chl Dpth (ft) & & 8.31 & & Hydr. Depth (ft) & * & 3.51 & & 6.29 & * & 1.86 & \\
\hline * Conv. Total (cfs) & & * 54107.6 & & Conv. (cfs) & * & 7298.1 & & 27890.8 & & 18918.7 & \\
\hline * Length Wtd. (ft) & & * 504.06 & & Wetted Per. (ft) & * & 40.06 & * & 40.92 & * & 300.40 & * \\
\hline * Min Ch El (ft) & & * 2548.00 & & Shear (lb/sq ft) & * & 2.48 & * & 4.34 & * & 1.31 & * \\
\hline * Alpha & & 2.18 & & Stream Power (lb/ft s) & * & 13.69 & * & 51.22 & * & 4.73 & * \\
\hline * Frctn Loss (ft) & & 6.63 & * & Cum Volume (acre-ft) & * & 49.57 & * & 25.29 & * & 81.36 & \\
\hline * C \& E Loss (ft) & & 0.01 & * & Cum SA (acres) & * & 23.08 & * & 7.19 & * & 35.82 & \\
\hline
\end{tabular}

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 4 RS: 1.275

\section*{INPUT}

Description: 14

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Manning's n Values} & num= & \multicolumn{2}{|l|}{3} & & & \\
\hline Sta & n Val & Sta & \(n\) Val & Sta & n Val & & & \\
\hline 1000 & . 066 & 1215 & . 045 & 1250 & . 066 & & & \\
\hline Bank Sta: & \[
\begin{aligned}
& \text { Left } \\
& 1215
\end{aligned}
\] & \[
\begin{array}{r}
\text { Right } \\
1250
\end{array}
\] & Lengths: & Left 430 & \[
\begin{array}{r}
\text { Channel } \\
526
\end{array}
\] & \begin{tabular}{l}
Right \\
581
\end{tabular} & \[
\begin{gathered}
\text { Coeff Contr. } \\
.1
\end{gathered}
\] & \[
\begin{gathered}
\text { Expan. } \\
.3
\end{gathered}
\] \\
\hline
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & & 2550.91 & & Element & * & Left OB & * & Channel & * & Right OB \\
\hline * Vel Head (ft) & & 1.31 & & Wt. n -Val. & * & 0.066 & * & 0.045 & * & 0.066 \\
\hline * W.S. Elev (ft) & & 2549.60 & & Reach Len. (ft) & * & 430.00 & * & 526.00 & * & 581.00 \\
\hline * Crit W.S. (ft) & & 2549.60 & & Flow Area (sq ft) & * & 352.25 & * & 191.97 & * & 265.00 \\
\hline * E.G. Slope (ft/ft) & & 0.015499 & & Area (sq ft) & * & 352.25 & * & 191.97 & * & 265.00 \\
\hline * Q Total (cfs) & & 5756.00 & & Flow (cfs) & * & 1743.42 & * & 2426.17 & * & 1586.41 \\
\hline * Top Width (ft) & & 269.32 & & Top Width (ft) & * & 150.02 & * & 35.00 & * & 84.30 \\
\hline * Vel Total (ft/s) & & 7.11 & & Avg. Vel. (ft/s) & * & 4.95 & * & 12.64 & * & 5.99 \\
\hline * Max Chl Dpth (ft) & & 8.10 & & Hydr. Depth (ft) & * & 2.35 & * & 5.48 & * & 3.14 \\
\hline * Conv. Total (cfs) & & 46234.3 & & Conv. (cfs) & * & 14003.8 & * & 19487.9 & * & 12742.6 \\
\hline * Length Wtd. (ft) & & 501.73 & & Wetted Per. (ft) & * & 150.12 & * & 35.61 & * & 84.90 \\
\hline * Min Ch El (ft) & & 2541.50 & & Shear (lb/sq ft) & * & 2.27 & * & 5.22 & * & 3.02 \\
\hline * Alpha & & 1.67 & & Stream Power (lb/ft s) & * & 11.24 & * & 65.92 & * & 18.08 \\
\hline * Frctn Loss (ft) & & 8.40 & & Cum Volume (acre-ft) & * & 46.39 & * & 22.71 & * & 76.83 \\
\hline C \& E Loss (ft) & & 0.10 & & Cum SA (acres) & * & 21.81 & * & 6.75 & * & 33.70 \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 4
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{INPUT} \\
\hline \multicolumn{10}{|l|}{Description: 13} \\
\hline \multicolumn{3}{|l|}{Station Elevation Data} & num= & \multicolumn{2}{|l|}{36} & \multirow[b]{2}{*}{Sta} & \multirow[b]{2}{*}{Elev} & \multirow[b]{2}{*}{Sta} & \multirow[b]{2}{*}{Elev} \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & & & & \\
\hline \multirow[t]{2}{*}{\[
1000
\]} & & & & & & & & & \\
\hline & 2552 & 1006.45 & 2550 & 1012.9 & 2548 & 1019.35 & 2546 & 1028.66 & 2544 \\
\hline 1040.56 & 2542 & 1052.29 & 2540 & 1153.74 & 2538 & 1156.16 & 2538 & 1168.57 & 2538 \\
\hline 1305.17 & 2538 & 1312.44 & 2540 & 1317.66 & 2542 & 1322.89 & 2544 & 1326.45 & 2544 \\
\hline 1334.64 & 2542 & 13352 & 2541.912 & 1342.82 & 2540 & 1351.01 & 2538 & 1358.91 & 2536 \\
\hline 1365.28 & 2534 & 1372 & 2533 & 13752 & 2533.491 & 1378.11 & 2534 & 1389.47 & 2536 \\
\hline 1410.56 & 2538 & 1414.48 & 2540 & 1418.39 & 2542 & 1422.35 & 2544 & 1426.87 & 2546 \\
\hline 1431.39 & 2548 & 1435.72 & 2550 & 1440.03 & 2552 & 1444.34 & 2554 & 1448.79 & 2556 \\
\hline 1453.08 & 2558 & & & & & & & & \\
\hline \multicolumn{3}{|l|}{Manning's n Values} & num= & 3 & & & & & \\
\hline Manning's Sta & n Val & Sta & n Val & Sta & n Val & & & & \\
\hline \multirow[t]{2}{*}{\[
1000
\]} & & ******* & ******** & ****** & ******** & & & & \\
\hline & . 066 & 1335 & . 045 & 1375 & . 066 & & & & \\
\hline \multirow[t]{2}{*}{Bank Sta:} & : Left & Right & Lengths & : Left & Channel & Right & Coeff & Contr. & Expan. \\
\hline & 1335 & 1375 & & 460 & 441 & 395 & & 1 & . 3 \\
\hline
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline E.G. Elev (ft) & 2541.55 & Element & & Left OB & & Channel & & Right OB \\
\hline * Vel Head (ft) & 0.98 & Wt. n-Val. & & 0.066 & & 0.045 & & 0.066 \\
\hline * W.S. Elev (ft) & 2540.57 & * Reach Len. (ft) & & 460.00 & & 441.00 & & 395.00 \\
\hline * Crit W.S. (ft) & 2540.52 & * Flow Area (sq ft) & & 561.13 & & 146.68 & & 166.25 \\
\hline * E.G. Slope (ft/ft) & *0.018154 & * Area (sq ft) & & 561.13 & & 146.68 & & 166.25 \\
\hline * Q Total (cfs) & 5756.00 & * Flow (cfs) & & 2803.83 & & 1680.63 & & 1271.54 \\
\hline * Top Width (ft) & 340.08 & * Top Width (ft) & & 264.98 & & 34.51 & & 40.59 \\
\hline * Vel Total (ft/s) & 6.59 & * Avg. Vel. (ft/s) & & 5.00 & & 11.46 & & 7.65 \\
\hline * Max Chl Dpth (ft) & 7.57 & * Hydr. Depth (ft) & & 2.12 & & 4.25 & & 4.10 \\
\hline * Conv. Total (cfs) & 42720.7 & * Conv. (cfs) & & 20809.8 & & 12473.5 & & 9437.3 \\
\hline * Length Wtd. (ft) & * 432.55 & * Wetted Per. (ft) & & 265.42 & & 35.49 & & 41.52 \\
\hline * Min Ch El (ft) & * 2533.00 & * Shear (lb/sq ft) & & 2.40 & & 4.68 & & 4.54 \\
\hline * Alpha & 1.46 & * Stream Power (lb/ft s) & & 11.97 & & 53.67 & & 34.71 \\
\hline * Frctn Loss (ft) & 7.47 & * Cum Volume (acre-ft) & & 41.88 & & 20.66 & & 73.95 \\
\hline * C \& E Loss (ft) & 0.05 & * Cum SA (acres) & & 19.76 & & 6.33 & & 32.87 \\
\hline
\end{tabular}

Warning: Divided flow computed for this cross-section.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 4 RS: 1.092
INPUT
Description: 12
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Station & levation & Data & m= & 32 & & & & & \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline 1000 & 2556 & 1008.65 & 2554 & 1014.42 & 2552 & 1020.2 & 2550 & 1025.98 & 2548 \\
\hline 1034.5 & 2546 & 1043.85 & 2544 & 1049.42 & 2542 & 1051.51 & 2540 & 1055.32 & 2538 \\
\hline 1060.76 & 2536 & 1066.2 & 2534 & 1071.64 & 2532 & 1085.39 & 2530 & 1120 & . 742 \\
\hline 1140.43 & 2528 & 1148.13 & 2526 & 1151 & 2525.5 & 1152.9 & 2526 & 1160.07 & 2528 \\
\hline 1165 & 2528.07 & 1301.59 & 2530 & 1306.3 & 2532 & 1311.01 & 2534 & 1315.73 & 2536 \\
\hline 1320.5 & 2538 & 1325.37 & 2540 & 1330.23 & 2542 & 1335.1 & 2544 & 1341.02 & 2546 \\
\hline
\end{tabular}
\(1347.37 \quad 25481354.85 \quad 2550\)

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{\multirow[t]{6}{*}{}} \\
\hline & & & & & & \\
\hline
\end{tabular}
* E.G. Elev (ft) * 2534.04 * Element * Left OB * Channel * Right OB *
* Vel Head (ft) * 1.47 * Wt. n-Val. * 0.066 * 0.045 * 0.066 *
* W.S. Elev (ft) * 2532.56 * Reach Len. (ft) * 452.00 * 519.00 * 530.00 *
* Crit W.S. (ft) * 2532.31 * Flow Area (sq ft) * 132.40 * 223.19 * 320.91 *
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline * Q Total (cfs) & & 5756.00 & & Flow (cfs) & * & 730.43 & * & 2723.66 & * & 2301.91 & * \\
\hline * Top Width (ft) & & 237.52 & * & Top Width (ft) & * & 49.89 & * & 45.00 & * & 142.63 & * \\
\hline * Vel Total (ft/s) & & 8.51 & * & Avg. Vel. (ft/s) & * & 5.52 & * & 12.20 & * & 7.17 & * \\
\hline * Max Chl Dpth (ft) & & 7.06 & * & Hydr. Depth (ft) & * & 2.65 & * & 4.96 & * & 3.91 & * \\
\hline * Conv. Total (cfs) & & 44863.4 & * & Conv. (cfs) & * & 5693.2 & * & 21228.7 & * & 17941.5 & * \\
\hline * Length Wtd. (ft) & & 519.73 & * & Wetted Per. (ft) & * & 50.16 & * & 45.65 & * & 82.01 & * \\
\hline * Min Ch El (ft) & & 2525.50 & * & Shear (lb/sq ft) & * & 2.71 & * & 5.02 & * & 4.02 & * \\
\hline * Alpha & & 1.31 & * & Stream Power (lb/ft s) & * & 14.97 & * & 61.31 & * & 28.85 & * \\
\hline * Frctn Loss (ft) & & 10.21 & * & Cum Volume (acre-ft) & * & 38.22 & * & 18.79 & * & 70.98 & * \\
\hline * C \& E Loss (ft) & & 0.10 & * & Cum SA (acres) & * & 18.10 & * & 5.93 & * & 32.04 & * \\
\hline
\end{tabular}

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 4 RS: 0.994
INPUT
Description: 11

\(1387.95 \quad 25321392.26 \quad 2534\)

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & * 2523.73 & & Element & & Left OB & * & Channel & & Right OB & \\
\hline * Vel Head (ft) & 1.14 & & Wt. n -Val. & & 0.066 & * & 0.045 & * & 0.066 & * \\
\hline * W.S. Elev (ft) & * 2522.58 & & Reach Len. (ft) & & 496.00 & * & 507.00 & * & 511.00 & * \\
\hline * Crit W.S. (ft) & 2522.58 & & Flow Area (sq ft) & & 29.21 & * & 136.08 & * & 621.07 & * \\
\hline * E.G. Slope (ft/ft) & *0.023847 & & Area (sq ft) & & 29.21 & * & 136.08 & * & 621.07 & * \\
\hline * Q Total (cfs) & * 5756.00 & & Flow (cfs) & & 161.29 & * & 1702.78 & * & 3891.93 & * \\
\hline * Top Width (ft) & 305.56 & & Top Width (ft) & & 14.01 & * & 35.00 & * & 256.54 & * \\
\hline * Vel Total (ft/s) & 7.32 & & Avg. Vel. (ft/s) & & 5.52 & * & 12.51 & * & 6.27 & * \\
\hline * Max Chl Dpth (ft) & 5.08 & & Hydr. Depth (ft) & & 2.08 & * & 3.89 & * & 2.42 & \\
\hline * Conv. Total (cfs) & 37273.7 & & Conv. (cfs) & & 1044.4 & * & 11026.6 & * & 25202.7 & * \\
\hline * Length Wtd. (ft) & 509.17 & & Wetted Per. (ft) & & 14.60 & * & 35.40 & * & 256.66 & \\
\hline * Min Ch El (ft) & * 2517.50 & & Shear (lb/sq ft) & & 2.98 & * & 5.72 & * & 3.60 & \\
\hline * Alpha & 1.38 & & Stream Power (lb/ft s) & & 16.45 & * & 71.61 & * & 22.58 & \\
\hline * Frctn Loss (ft) & 7.00 & & Cum Volume (acre-ft) & & 37.38 & * & 16.65 & * & 64.22 & \\
\hline * C \& E Loss (ft) & 0.21 & & Cum SA (acres) & & 17.77 & * & 5.45 & * & 29.61 & \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.
warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 4
RS: 0.898

INPUT
Description: 10
Station Elevation Data num= 33
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline \multicolumn{10}{|l|}{} \\
\hline 1000 & 2532 & 1004.14 & 2530 & 1008.28 & 2528 & 1012.42 & 2526 & 1016.56 & 2524 \\
\hline 1020.41 & 2522 & 1024.07 & 2520 & 1027.73 & - 2518 & 1032.03 & 2516 & 1049.66 & 2514 \\
\hline 11052 & 512.039 & 1106.11 & 2512 & 1125 & 2511 & 11502511 & 1.779 & 1157.11 & 2512 \\
\hline 1163.13 & 2512 & 1228.82 & 2512 & 1355.73 & 2512 & 1408.19 & 2512 & 1413.31 & 2514 \\
\hline 1417.92 & 2516 & 1422.52 & 2518 & 1427.13 & 2520 & 1431.03 & 2522 & 1434.42 & 2524 \\
\hline 1438.12 & 2526 & 1441.82 & 2528 & 1445.52 & 2530 & 1449.22 & 2532 & 1452.79 & 2534 \\
\hline 1473.86 & 2536 & 1487.63 & 2538 & 1508.23 & 2540 & & & & \\
\hline \multicolumn{10}{|l|}{Manning's n Values num= 3} \\
\hline \multicolumn{10}{|l|}{\multirow[b]{2}{*}{**}} \\
\hline & & & & & & & & & \\
\hline 1000 & . 066 & 1105 & . 045 & 1150 & . 066 & & & & \\
\hline \multirow[t]{2}{*}{Bank Sta:} & Left & Right & Lengths & : Left & Channel & Right & Coeff & Contr. & Expan. \\
\hline & 1105 & 1150 & & 423 & 476 & 497 & & . 1 & . 3 \\
\hline
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & 2515.70 & Element & & Left OB & & Channel & & Right OB \\
\hline * Vel Head (ft) & 0.45 & Wt. n-Val. & & 0.066 & & 0.045 & & 0.066 \\
\hline * W.S. Elev (ft) & * 2515.25 & * Reach Len. (ft) & & 423.00 & & 476.00 & & 497.00 \\
\hline * Crit W.S. (ft) & * & * Flow Area (sq ft) & & 130.29 & & 170.91 & & 853.09 \\
\hline * E.G. Slope (ft/ft) & *0.008874 & * Area (sq ft) & & 130.29 & & 170.91 & & 853.09 \\
\hline * Q Total (cfs) & 5653.00 & * Flow (cfs) & & 432.84 & & 1293.46 & & 3926.70 \\
\hline * Top Width (ft) & 377.54 & * Top Width (ft) & & 66.35 & & 45.00 & & 266.19 \\
\hline * Vel Total (ft/s) & 4.90 & * Avg. Vel. (ft/s) & & 3.32 & & 7.57 & & 4.60 \\
\hline * Max Chl Dpth (ft) & 4.25 & * Hydr. Depth (ft) & & 1.96 & & 3.80 & & 3.20 \\
\hline * Conv. Total (cfs) & 60007.8 & * Conv. (cfs) & & 4594.7 & & 13730.3 & & 41682.8 \\
\hline * Length Wtd. (ft) & 466.54 & * Wetted Per. (ft) & & 66.46 & & 45.04 & & 266.83 \\
\hline * Min Ch El (ft) & 2511.00 & * Shear (lb/sq ft) & & 1.09 & & 2.10 & & 1.77 \\
\hline * Alpha & 1.20 & * Stream Power (lb/ft s) & & 3.61 & & 15.91 & & 8.15 \\
\hline * Frctn Loss (ft) & 6.70 & * Cum Volume (acre-ft) & & 36.47 & & 14.86 & & 55.57 \\
\hline * C \& E Loss (ft) & 0.08 & * Cum SA (acres) & & 17.31 & & 4.99 & & 26.54 \\
\hline
\end{tabular}

Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 4 RS: 0.808
INPUT
Description: 9
Station Elevation Data num= 26
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline 1000 & 2516 & 1005.38 & 2514 & 1011.32 & 2512 & 1017.26 & 2510 & 1025.03 & 2508 \\
\hline 1033.1 & 2506 & 12202 & . 054 & 1225.21 & 2504 & 1236 & 2503 & 1240 & 2503.38 \\
\hline 1246.53 & 2504 & 1286.18 & 2506 & 1291.07 & 2508 & 1295.96 & 2510 & 1300.03 & 2512 \\
\hline 1303.88 & 2514 & 1308.56 & 2516 & 1315.68 & 2518 & 1325.79 & 2520 & 1335.43 & 2522 \\
\hline 1345.06 & 2524 & 1354.7 & 2526 & 1365.01 & 2528 & 1370.55 & 2530 & 1403.6 & 2532 \\
\hline
\end{tabular}
1420.792534

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline E.G. Elev (ft) & 2508.92 & Element & & Left OB & & Channel & & Right OB \\
\hline * Vel Head (ft) & 1.23 & * Wt. n-Val. & & 0.066 & & 0.045 & & 0.066 \\
\hline * W.S. Elev (ft) & 2507.69 & * Reach Len. (ft) & & 481.00 & & 516.00 & & 560.00 \\
\hline * Crit W.S. (ft) & 2507.68 & * Flow Area (sq ft) & & 503.61 & & 82.31 & & 136.30 \\
\hline * E.G. Slope (ft/ft) & *0.027136 & * Area (sq ft) & & 503.61 & & 82.31 & & 136.30 \\
\hline * Q Total (cfs) & 5653.00 & * Flow (cfs) & & 3528.65 & & 1147.29 & & 977.06 \\
\hline * Top Width (ft) & 264.04 & * Top Width (ft) & & 193.72 & & 20.00 & & 50.31 \\
\hline * Vel Total (ft/s) & 7.83 & * Avg. Vel. (ft/s) & & 7.01 & & 13.94 & & 7.17 \\
\hline * Max Chl Dpth (ft) & 4.69 & * Hydr. Depth (ft) & & 2.60 & & 4.12 & & 2.71 \\
\hline * Conv. Total (cfs) & * 34316.7 & * Conv. (cfs) & & 21420.8 & & 6964.7 & & 5931.3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline * Length Wtd. (ft) & & 503.64 & * Wetted Per. (ft) & & 193.94 & * & 20.06 & * & 50.73 & \\
\hline * Min Ch El (ft) & * & 2503.00 & * Shear (lb/sq ft) & & 4.40 & * & 6.95 & * & 4.55 & \\
\hline * Alpha & & 1.29 & * Stream Power (lb/ft s) & & 30.82 & * & 96.87 & * & 32.63 & \\
\hline * Frctn Loss (ft) & & 8.92 & * Cum Volume (acre-ft) & & 33.40 & & 13.48 & & 49.93 & \\
\hline * C \& E Loss (ft) & & 0.02 & * Cum SA (acres) & & 16.05 & * & 4.63 & * & 24.74 & \\
\hline
\end{tabular}

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 4 RS: 0.710
INPUT
Description: 8
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Station E
Sta & vation Elev & Data & \[
\begin{aligned}
& \text { m= } \\
& \text { Elev }
\end{aligned}
\] & 25 & Elev & Sta & Elev & Sta & Elev \\
\hline ***** & & & & & & **** & & & \\
\hline 1000 & 2510 & 1008.95 & 2508 & 1018.27 & 2506 & 1030.42 & 2504 & 1043.94 & 2502 \\
\hline 1062.25 & 2500 & 1110.41 & 2498 & 1377.31 & 2496 & 142024 & 4.414 & 1431.13 & 2494 \\
\hline 1437.84 & 2492 & 1451.46 & 2492 & 1454 & 2491.5 & 1455 & 2492 & 1459 & 2494 \\
\hline 1480.1 & 2496 & 1487.18 & 2498 & 1493.62 & 2500 & 1497.99 & 2502 & 1502.19 & 2504 \\
\hline 1506.1 & 2506 & 1509.82 & 2508 & 1513.55 & 2510 & 1517.27 & 2512 & 1521.89 & 2514 \\
\hline
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & 2499.97 & Element & & Left OB & & Channel & & Right OB \\
\hline * Vel Head (ft) & 1.17 & Wt. n-Val. & & 0.066 & & 0.045 & * & 0.066 \\
\hline * W.S. Elev (ft) & * 2498.81 & * Reach Len. (ft) & & 600.00 & & 497.00 & & 415.00 \\
\hline * Crit W.S. (ft) & * 2498.81 & * Flow Area (sq ft) & & 574.30 & & 207.82 & & 117.36 \\
\hline * E.G. Slope (ft/ft) & *0.012457 & * Area (sq ft) & & 643.45 & & 207.82 & & 117.36 \\
\hline * Q Total (cfs) & 5653.00 & * Flow (cfs) & & 2512.21 & & 2489.31 & & 651.49 \\
\hline * Top Width (ft) & 398.77 & * Top Width (ft) & & 329.00 & & 35.00 & & 34.78 \\
\hline * Vel Total (ft/s) & 6.28 & * Avg. Vel. (ft/s) & & 4.37 & & 11.98 & & 5.55 \\
\hline * Max Chl Dpth (ft) & 7.31 & * Hydr. Depth (ft) & & 2.30 & & 5.94 & & 3.37 \\
\hline * Conv. Total (cfs) & 50649.8 & * Conv. (cfs) & & 22508.9 & & 22303.7 & & 5837.2 \\
\hline * Length Wtd. (ft) & 522.62 & * Wetted Per. (ft) & & 250.04 & & 35.47 & & 35.74 \\
\hline * Min Ch El (ft) & * 2491.50 & * Shear (lb/sq ft) & & 1.79 & & 4.56 & & 2.55 \\
\hline * Alpha & 1.90 & * Stream Power (lb/ft s) & & 7.81 & & 54.58 & & 14.18 \\
\hline * Frctn Loss (ft) & 7.17 & * Cum Volume (acre-ft) & & 27.06 & & 11.76 & & 48.30 \\
\hline * C \& E Loss (ft) & 0.16 & * Cum SA (acres) & & 13.16 & & 4.30 & & 24.19 \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 4 RS: 0.616

\section*{INPUT}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{Description: 7} \\
\hline \multicolumn{10}{|l|}{\multirow[b]{2}{*}{}} \\
\hline & & & & & & & & & \\
\hline 1000 & 2510 & 1016.53 & 2508 & 1025.6 & 2506 & 1034.66 & 2504 & 1041.91 & 2502 \\
\hline 1047.15 & 2500 & 1059.23 & 2498 & 1065.51 & 2496 & 1070.38 & 2494 & 1075.21 & 2492 \\
\hline
\end{tabular}
\begin{tabular}{rrrrrrrrrr}
1079.96 & 2490 & 1084.59 & 2488 & 1090.02 & 2486 & 1120.36 & 2486 & 1200 & 2486 \\
1212.79 & 2486 & 1220 & 2485.5 & 1228.7 & 2486 & 12302486.021 & 1352.78 & 2488 \\
1437.09 & 2488 & 1492.57 & 2488 & 1500.28 & 2490 & 1508.56 & 2492 & 1516.85 & 2494 \\
1522.97 & 2496 & 1528.86 & 2498 & 1533.52 & 2500 & 1538.17 & 2502 & 1542.83 & 2504 \\
1548.75 & 2506 & 1555.49 & 2508 & & & & &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Manning's n Values} & \multicolumn{3}{|l|}{num= 3} & & & \\
\hline Sta n Val & Sta & n Val & Sta & n Val & & & \\
\hline \multicolumn{8}{|c|}{****************************} \\
\hline 1000.066 & 1200 & . 045 & 1230 & . 066 & & & \\
\hline \multirow[t]{2}{*}{Bank Sta:} & Right & \multirow[t]{2}{*}{Lengths:} & Left & Channel & Right & Coeff & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Expan. } \\
.3
\end{gathered}
\]} \\
\hline & 1230 & & 490 & 487 & 525 & \[
.1
\] & \\
\hline Ineffective Flow & num= & 1 & & & & & \\
\hline Sta L Sta R & Elev & Permanent & & & & & \\
\hline 14661555.49 & 2495 & T & & & & & \\
\hline
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & * 2490.15 & * Element & & Left OB & & Channel & & Right OB & \\
\hline * Vel Head (ft) & 0.65 & * Wt. n -Val. & * & 0.066 & * & 0.045 & * & 0.066 & \\
\hline * W.S. Elev (ft) & * 2489.50 & * Reach Len. (ft) & * & 490.00 & * & 487.00 & * & 525.00 & \\
\hline * Crit W.S. (ft) & * & * Flow Area (sq ft) & * & 401.25 & * & 109.00 & * & 475.78 & \\
\hline * E.G. Slope (ft/ft) & * 0.015205 & * Area (sq ft) & * & 401.25 & * & 109.00 & * & 520.01 & \\
\hline * Q Total (cfs) & * 5653.00 & * Flow (cfs) & * & 2497.08 & * & 1048.16 & * & 2107.75 & \\
\hline * Top Width (ft) & 417.24 & * Top Width (ft) & * & 118.89 & * & 30.00 & * & 268.36 & * \\
\hline * Vel Total (ft/s) & 5.73 & * Avg. Vel. (ft/s) & * & 6.22 & * & 9.62 & * & 4.43 & * \\
\hline * Max Chl Dpth (ft) & 4.00 & * Hydr. Depth (ft) & * & 3.38 & * & 3.63 & * & 2.02 & \\
\hline * Conv. Total (cfs) & * 45845.0 & * Conv. (cfs) & * & 20251.0 & * & 8500.4 & * & 17093.6 & \\
\hline * Length Wtd. (ft) & * 509.39 & * Wetted Per. (ft) & * & 119.55 & * & 30.03 & * & 236.02 & \\
\hline * Min Ch El (ft) & * 2485.50 & * Shear (lb/sq ft) & * & 3.19 & * & 3.45 & * & 1.91 & \\
\hline * Alpha & 1.26 & * Stream Power (lb/ft s) & * & 19.83 & * & 33.13 & * & 8.48 & \\
\hline * Frctn Loss (ft) & 8.60 & * Cum Volume (acre-ft) & & 19.87 & * & 9.95 & * & 45.26 & \\
\hline * C \& E Loss (ft) & 0.02 & * Cum SA (acres) & & 10.08 & * & 3.93 & * & 22.75 & \\
\hline
\end{tabular}

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 4 RS: 0.523
INPUT
Description: 6
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Station Elevation Data} & num= & \multicolumn{2}{|l|}{36} & \multirow[b]{2}{*}{Sta} & \multirow[b]{2}{*}{Elev} & \multirow[b]{2}{*}{Sta} & \multirow[b]{2}{*}{Elev} \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & & & & \\
\hline \multicolumn{10}{|l|}{***} \\
\hline 1000 & 2510 & 1004.36 & 2508 & 1008.71 & 2506 & 1013.49 & 2504 & 1017.88 & 2502 \\
\hline 1022.1 & 2500 & 1026.32 & 2498 & 1030.54 & 2496 & 1035.03 & 2494 & 1039.91 & 2492 \\
\hline 1044.79 & 2490 & 1050 & 2488 & 1055.99 & 2486 & 1059.47 & 2484 & 1061.27 & 2482 \\
\hline 1063.14 & 2480 & 1065.01 & 2478 & 1070.57 & 2478 & 1077.32 & 2480 & 1091.78 & 2480 \\
\hline \multicolumn{2}{|l|}{11792479.307} & \multicolumn{2}{|l|}{12372478.845} & 1343.37 & 2478 & 1413 & 2477 & 1458.97 & 2478 \\
\hline 1466.58 & 2480 & 1473.76 & 2482 & 1479.34 & 2484 & 1484.85 & 2486 & 1490. 36 & 2488 \\
\hline 1495.87 & 2490 & 1508.14 & 2492 & 1538.64 & 2494 & 1545.6 & 2496 & 1553.41 & 2498 \\
\hline 1561.98 & 2500 & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Manning's n Values} & \multicolumn{3}{|l|}{num= 3} & & & \\
\hline Sta & n Val & Sta & n Val & Sta & n Val & & & \\
\hline \multicolumn{9}{|l|}{***} \\
\hline 1000 & . 066 & 1179 & . 045 & 1237 & \multicolumn{2}{|l|}{. 066} & & \\
\hline \multirow[t]{2}{*}{Bank Sta:} & Left & Right & \multirow[t]{2}{*}{Lengths:} & Left & Channel & Right & Coeff Contr. & Expan. \\
\hline & 1179 & 1237 & & 560 & 540 & 525 & . 1 & . 3 \\
\hline
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Frctn Loss (ft) & * & 10.59 & * & Cum & Volume (acre-ft) & & & 16.72 & * & 8.74 & * & 38.02 & \\
\hline & C \& E Loss (ft) & * & 0.03 & * & Cum & SA (acres) & & * & 8.75 & * & 3.44 & * & 19.73 & \\
\hline
\end{tabular}

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections

CROSS SECTION

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Manning's n Values} & \multicolumn{3}{|l|}{num= 3} & & & \\
\hline Sta & n Val & Sta & n Val & Sta & n Val & & & \\
\hline \multicolumn{9}{|l|}{***} \\
\hline 1000 & . 066 & 1325 & . 045 & 1377 & \multicolumn{2}{|l|}{. 066} & & \\
\hline \multirow[t]{2}{*}{Bank Sta:} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Left } \\
& 1325
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
\text { Right } \\
1377
\end{array}
\]} & \multirow[t]{2}{*}{Lengths:} & Left & Channel & Right & Contr & Expan. \\
\hline & & & & 520 & 523 & 530 & . 1 & . 3 \\
\hline
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & 2470.91 & Element & Left OB & & Channel & & Right OB & \\
\hline * Vel Head (ft) & 0.49 & Wt. n-Val. & 0.066 & & 0.045 & & 0.066 & \\
\hline * W.S. Elev (ft) & * 2470.42 & * Reach Len. (ft) & 520.00 & & 523.00 & & 530.00 & \\
\hline * Crit W.S. (ft) & * 2470.12 & * Flow Area (sq ft) & 669.85 & & 102.41 & & 303.57 & \\
\hline * E.G. Slope (ft/ft) & *0.020335 & * Area (sq ft) & 669.85 & & 102.41 & & 303.57 & \\
\hline * Q Total (cfs) & 5589.00 & * Flow (cfs) & 3800.38 & & 757.61 & & 1031.01 & \\
\hline * Top Width (ft) & 616.02 & * Top Width (ft) & 285.02 & & 52.00 & & 279.00 & \\
\hline * Vel Total (ft/s) & 5.20 & * Avg. Vel. (ft/s) & 5.67 & & 7.40 & & 3.40 & \\
\hline * Max Chl Dpth (ft) & 3.42 & * Hydr. Depth (ft) & 2.35 & & 1.97 & & 1.09 & \\
\hline * Conv. Total (cfs) & 39193.4 & * Conv. (cfs) & 26650.6 & & 5312.8 & & 7230.1 & \\
\hline * Length Wtd. (ft) & 523.98 & * Wetted Per. (ft) & 285.14 & & 52.00 & & 279.01 & \\
\hline * Min Ch El (ft) & * 2468.32 & * Shear (lb/sq ft) & 2.98 & & 2.50 & & 1.38 & \\
\hline * Alpha & 1.16 & * Stream Power (lb/ft s) & 16.92 & & 18.50 & & 4.69 & \\
\hline * Frctn Loss (ft) & 10.45 & * Cum Volume (acre-ft) & 11.39 & & 7.43 & & 32.08 & \\
\hline * C \& E Loss (ft) & 0.00 & * Cum SA (acres) & 6.17 & & 2.76 & & 16.64 & * \\
\hline
\end{tabular}

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 4 RS: 0.322
INPUT

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Manning's n Values} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\begin{array}{cl}\text { num }= & 3 \\ \mathrm{n} \text { Val } & \text { Sta }\end{array}\)}} & \\
\hline Sta & n Val & Sta & & & n Val \\
\hline & & & **** & ** & *** \\
\hline 1000 & . 066 & 1333 & . 045 & 1370.12 & . 066 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bank Sta: & \[
\begin{aligned}
& \text { Left } \\
& 1333
\end{aligned}
\] & \[
\begin{array}{r}
\text { Right } \\
1370.12
\end{array}
\] & Lengths: & Left 547 & Channel 545 & Right
530 & Coeff Contr. . 1 & \[
\begin{gathered}
\text { Expan } \\
.3
\end{gathered}
\] \\
\hline Ineffectiv & ve Flow & & 1 & & & & & \\
\hline Sta L & Sta & R Ele & Permanen & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline E.G. Elev (ft) & 2460.46 & Element & & Left OB & & Channel & & Right OB \\
\hline Vel Head (ft) & 0.48 & Wt. n-Val. & & 0.066 & & 0.045 & & 0.066 \\
\hline W.S. Elev (ft) & 2459.98 & * Reach Len. (ft) & & 547.00 & & 545.00 & & 530.00 \\
\hline Crit W.S. (ft) & 2459.56 & * Flow Area (sq ft) & & 373.94 & & 92.00 & & 601.38 \\
\hline E.G. Slope (ft/ft) & *0.019551 & * Area (sq ft) & & 490.40 & & 92.00 & & 601.38 \\
\hline Q Total (cfs) & * 5589.00 & * Flow (cfs) & & 1855.23 & & 777.07 & & 2956.70 \\
\hline Top Width (ft) & 596.89 & * Top Width (ft) & & 251.89 & & 37.12 & & 307.88 \\
\hline Vel Total (ft/s) & 5.24 & * Avg. Vel. (ft/s) & & 4.96 & & 8.45 & & 4.92 \\
\hline Max Chl Dpth (ft) & 2.98 & * Hydr. Depth (ft) & & 1.98 & & 2.48 & & 1.95 \\
\hline Conv. Total (cfs) & * 39971.4 & * Conv. (cfs) & & 13268.2 & & 5557.4 & & 21145.7 \\
\hline Length Wtd. (ft) & 536.48 & * Wetted Per. (ft) & & 189.00 & & 37.18 & & 308.12 \\
\hline Min Ch El (ft) & * 2457.00 & * Shear (lb/sq ft) & & 2.41 & & 3.02 & & 2.38 \\
\hline Alpha & 1.13 & * Stream Power (lb/ft s) & & 11.98 & & 25.51 & & 11.71 \\
\hline Frctn Loss (ft) & 8.04 & * Cum Volume (acre-ft) & & 4.46 & & 6.27 & & 26.58 \\
\hline C \& E Loss (ft) & 0.00 & Cum SA (acres) & & 2.96 & & 2.23 & & 13.07 \\
\hline
\end{tabular}

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 4 RS: 0.219
INPUT
Description: 3
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Station & tion & Data & um= & 31 & & & & & \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline ******** & & & & & & & & & \\
\hline 1000 & 2470 & 1006.52 & 2468 & 1013.06 & 2466 & 1019.6 & 2464 & 1027.84 & 2462 \\
\hline 1038.1 & 2460 & 1045.47 & 2458 & 1055.11 & 2456 & 1065.5 & 2454 & 1075.89 & 2452 \\
\hline 1147.84 & 2450 & 1150 & 9.761 & 1165.95 & 2448 & 1167.06 & 2448 & 11902 & 8.762 \\
\hline 1227.24 & 2450 & 1268.54 & 2450 & 1271.49 & 2450 & 1289.02 & 2450 & 1319.77 & 2450 \\
\hline 1326.65 & 2450 & 1348.05 & 2448 & 1352.7 & 2448 & 1438.11 & 2450 & 1463.11 & 2450 \\
\hline 1544 & 2449 & 1563.6 & 2450 & 1576.39 & 2452 & 1589.14 & 2454 & 1598.65 & 2456 \\
\hline 1607.64 & 2456 & & & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{ccccrrrr}
Bank Sta: Left & Right & Lengths: Left & Channel & Right & Coeff Contr. \\
1147.84 & 1227.24 & & 578 & 569 & 461 & & .1
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & * 2452.42 & * Element & & Left OB & * & Channel & * & Right OB \\
\hline * Vel Head (ft) & 0.47 & * Wt. n-Val. & & 0.066 & * & 0.045 & * & 0.066 \\
\hline * W.S. Elev (ft) & * 2451.95 & * Reach Len. (ft) & & 578.00 & * & 569.00 & * & 461.00 \\
\hline * Crit W.S. (ft) & * 2451.34 & * Flow Area (sq ft) & & 64.37 & * & 235.57 & * & 835.34 \\
\hline * E.G. Slope (ft/ft) & *0.011853 & * Area (sq ft) & & 68.58 & * & 235.57 & * & 835.34 \\
\hline * Q Total (cfs) & * 5589.00 & * Flow (cfs) & & 179.94 & * & 1746.42 & * & 3662.64 \\
\hline * Top Width (ft) & 498.49 & * Top Width (ft) & & 70.25 & * & 79.40 & * & 348.85 \\
\hline * Vel Total (ft/s) & 4.92 & * Avg. Vel. (ft/s) & & 2.80 & * & 7.41 & * & 4.38 \\
\hline * Max Chl Dpth (ft) & 3.95 & * Hydr. Depth (ft) & & 1.22 & * & 2.97 & * & 2.39 \\
\hline * Conv. Total (cfs) & 51335.7 & * Conv. (cfs) & & 1652.7 & * & 16041.1 & * & 33641.9 \\
\hline * Length Wtd. (ft) & 493.78 & * Wetted Per. (ft) & & 52.86 & * & 79.54 & * & 349.15 \\
\hline * Min Ch El (ft) & 2448.00 & * Shear (lb/sq ft) & & 0.90 & * & 2.19 & * & 1.77 \\
\hline * Alpha & 1.24 & * Stream Power (lb/ft s) & & 2.52 & * & 16.25 & * & 7.76 \\
\hline * Frctn Loss (ft) & 8.94 & * Cum Volume (acre-ft) & & 0.95 & * & 4.22 & * & 17.84 \\
\hline * C \& E Loss (ft) & 0.05 & * Cum SA (acres) & & 0.94 & * & 1.50 & * & 9.08 \\
\hline
\end{tabular}

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Finger Rock Wash

\section*{INPUT}

Description: 2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Station & i & Data & m= & 20 & & & & & \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline & & & & & & & & & \\
\hline 1000 & 2452 & 1005.55 & 2450 & 1009.47 & 2448 & 1013.04 & 2446 & 1018 & 2444.1 \\
\hline 1018.26 & 2444 & 1025.99 & 2442 & 1033.74 & 2440 & 1054 & 2439 & 1072.93 & 2440 \\
\hline 1082 & 2440 & 1214.19 & 2440 & 1260 & 2439 & 1303.17 & 2440 & 1321.06 & 2442 \\
\hline 1355.55 & 2442 & 1459.43 & 2442 & 1470.4 & 2444 & 1485.06 & 2446 & 1497.17 & 2448 \\
\hline
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & 2443.43 & * Element & & Left OB & & Channel & & Right OB \\
\hline * Vel Head (ft) & 0.96 & Wt. n-Val & & 0.066 & & 0.045 & & 0.066 \\
\hline * W.S. Elev (ft) & 2442.47 & * Reach Len. (ft) & & 592.00 & & 587.00 & & 500.00 \\
\hline * Crit W.S. (ft) & 2441.95 & * Flow Area (sq ft) & & 11.78 & & 116.25 & & 703.68 \\
\hline * E.G. Slope (ft/ft) & *0.031031 & * Area (sq ft) & & 11.78 & & 116.25 & & 703.68 \\
\hline * Q Total (cfs) & 5589.00 & * Flow (cfs) & & 52.61 & * & 1394.77 & & 4141.61 \\
\hline * Top Width (ft) & 437.80 & * Top Width (ft) & & 9.55 & & 39.19 & & 389.06 \\
\hline * Vel Total (ft/s) & 6.72 & * Avg. Vel. (ft/s) & & 4.46 & & 12.00 & & 5.89 \\
\hline * Max Chl Dpth (ft) & 3.47 & * Hydr. Depth (ft) & & 1.23 & & 2.97 & & 1.81 \\
\hline * Conv. Total (cfs) & 31727.7 & * Conv. (cfs) & & 298.7 & & 7917.9 & & 23511.2 \\
\hline * Length Wtd. (ft) & * 522.14 & * Wetted Per. (ft) & & 9.87 & & 39.24 & & 389.23 \\
\hline * Min Ch El (ft) & 2439.00 & * Shear (lb/sq ft) & & 2.31 & & 5.74 & & 3.50 \\
\hline * Alpha & 1.37 & * Stream Power (lb/ft s) & & 10.33 & & 68.86 & & 20.61 \\
\hline * Frctn Loss (ft) & 10.90 & * Cum Volume (acre-ft) & & 0.42 & & 1.92 & & 9.69 \\
\hline * C \& E Loss (ft) & 0.17 & * Cum SA (acres) & & 0.41 & * & 0.72 & & 5.17 \\
\hline
\end{tabular}

Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Finger Rock Wash
REACH: Main Reach 4 RS: 0.000

\section*{INPUT}

Description: 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Station & evation & Data & m= & 36 & & & & & \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline 1000 & 2448 & 1017 & 2448 & 1031.96 & 2446 & 1043.64 & 2444 & 1054.64 & 2442 \\
\hline 1060.58 & 2440 & 1067.09 & 2438 & 1075.08 & 2436 & 1083.07 & 2434 & 1104.65 & 2432 \\
\hline 11302 & 2431.033 & 1157.07 & 2430 & 1200 & 2429 & 1225 & 2429.79 & 1231.64 & 2430 \\
\hline 1274.26 & 2430 & 1329.74 & 2430 & 1345.91 & 2430 & 1379.01 & 2430 & 1438.26 & 2430 \\
\hline 1449.36 & 2430 & 1544.02 & 2430 & 1724.79 & 2430 & 1737.41 & 2432 & 1750.16 & 2434 \\
\hline 1784.64 & 2436 & 1793.08 & 2436 & 1799.05 & 2434 & 1822.76 & 2434 & 1829.04 & 2436 \\
\hline 1835.32 & 2438 & 1838.75 & 2440 & 1841.57 & 2442 & 1845.37 & 2444 & 1854.52 & 2446 \\
\hline
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline E.G. Elev (ft) & 2432.35 & * Element & & Left OB & & Channel & & Right OB \\
\hline * Vel Head (ft) & 0.41 & * Wt. n-Val. & & 0.066 & & 0.045 & * & 0.066 \\
\hline * W.S. Elev (ft) & * 2431.95 & * Reach Len. (ft) & & & & & * & \\
\hline * Crit W.S. (ft) & 2431.50 & * Flow Area (sq ft) & & 49.64 & & 168.80 & * & 985.38 \\
\hline * E.G. Slope (ft/ft) & *0.014999 & * Area (sq ft) & & 49.64 & & 168.80 & & 985.38 \\
\hline * Q Total (cfs) & * 5589.00 & * Flow (cfs) & & 134.33 & & 1252.07 & & 4202.59 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline * Top Width (ft) & & 631.01 & & Top Width (ft) & * & 51.01 & * & 67.93 & * & 512.07 \\
\hline * Vel Total (ft/s) & & 4.64 & & Avg. Vel. (ft/s) & * & 2.71 & * & 7.42 & * & 4.26 \\
\hline * Max Chl Dpth (ft) & & 2.95 & * & Hydr. Depth (ft) & * & 0.97 & * & 2.48 & * & 1.92 \\
\hline * Conv. Total (cfs) & & 45635.4 & * & Conv. (cfs) & * & 1096.9 & * & 10223.4 & * & 34315.1 \\
\hline * Length Wtd. (ft) & & & & Wetted Per. (ft) & * & 51.05 & * & 67.95 & * & 512.23 \\
\hline * Min Ch El (ft) & & 2429.00 & & Shear (lb/sq ft) & * & 0.91 & * & 2.33 & * & 1.80 \\
\hline * Alpha & & 1.21 & & Stream Power (lb/ft s) & * & 2.46 & * & 17.25 & * & 7.68 \\
\hline * Frctn Loss (ft) & & & & Cum Volume (acre-ft) & & & * & & * & \\
\hline * C \& E Loss (ft) & & & & Cum SA (acres) & * & & * & & * & \\
\hline
\end{tabular}

CROSS SECTION

RIVER: Pontatoc Cnyn
REACH: Pontatoc Cnyn RS: 0.154
INPUT
Description: Upstream section in study reach
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Station El & evation & Data & num= & 28 & & & & & \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline 1000 & 3092 & 1003 & 3090 & 1005.8 & 3088 & 1009.2 & 3086 & 1012.6 & 3084 \\
\hline 1016.2 & 3082 & 1019.6 & 3080 & 1023.2 & 3078 & 1042 & 3076.2 & 1044 & 3076.2 \\
\hline 1051.6 & 3078 & 1056.1 & 3080 & 1058.8 & 3082 & 1060.9 & 3084 & 1062.9 & 3086 \\
\hline 1064.7 & 3088 & 1066.8 & 3090 & 1068.8 & 3092 & 1070.8 & 3094 & 1073.3 & 3096 \\
\hline 1082.5 & 3100 & 1091.1 & 3102 & 1094.3 & 3104 & 1097.4 & 3106 & 1099.2 & 3108 \\
\hline 1100.2 & 3110 & 1103.6 & 3110 & 1106 & 3112 & & & & \\
\hline Manning's Sta & \begin{tabular}{l}
n Value \\
n Val
\end{tabular} & Sta & num= n Val & \[
\begin{aligned}
& 3 \\
& \text { Sta }
\end{aligned}
\] & n Val & & & & \\
\hline 1000 & . 086 & 1019.6 & . 066 & 1056.1 & . 086 & & & & \\
\hline Bank Sta: & \begin{tabular}{l}
Left \\
19.6
\end{tabular} & Right
\[
056.1
\] & Lengths & Left 39 & \[
\begin{array}{r}
\text { annel } \\
37
\end{array}
\] & \begin{tabular}{l}
Right \\
33
\end{tabular} & Coeff & Contr.
\[
.1
\] & Expan \\
\hline
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & 3085.25 & * Element & & Left OB & & Channel & & Right OB \\
\hline * Vel Head (ft) & 2.44 & * Wt. n-Val. & & 0.086 & & 0.066 & * & 0.086 \\
\hline * W.S. Elev (ft) & * 3082.80 & * Reach Len. (ft) & & 39.00 & & 37.00 & & 33.00 \\
\hline * Crit W.S. (ft) & 3082.79 & * Flow Area (sq ft) & & 6.71 & & 194.55 & & 5.20 \\
\hline * E.G. Slope (ft/ft) & *0.035414 & * Area (sq ft) & & 6.71 & & 194.55 & & 5.20 \\
\hline * Q Total (cfs) & 2503.00 & * Flow (cfs) & & 24.61 & & 2459.81 & & 18.58 \\
\hline * Top Width (ft) & 44.89 & * Top Width (ft) & & 4.84 & & 36.50 & & 3.54 \\
\hline * Vel Total (ft/s) & 12.12 & * Avg. Vel. (ft/s) & & 3.67 & & 12.64 & & 3.57 \\
\hline * Max Chl Dpth (ft) & 6.60 & * Hydr. Depth (ft) & & 1.38 & & 5.33 & & 1.47 \\
\hline * Conv. Total (cfs) & * 13300.7 & * Conv. (cfs) & & 130.8 & & 13071.2 & & 98.7 \\
\hline * Length Wtd. (ft) & * 36.99 & * Wetted Per. (ft) & & 5.60 & & 37.74 & & 4.52 \\
\hline * Min Ch El (ft) & * 3076.20 & * Shear (lb/sq ft) & & 2.65 & & 11.40 & & 2.54 \\
\hline * Alpha & 1.07 & * Stream Power (lb/ft s) & & 9.72 & & 144.10 & & 9.08 \\
\hline * Frctn Loss (ft) & 0.95 & * Cum Volume (acre-ft) & & 0.01 & & 2.31 & & 0.02 \\
\hline * C \& E Loss (ft) & 0.39 & * Cum SA (acres) & & 0.02 & & 1.11 & & 0.03 \\
\hline
\end{tabular}

Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Pontatoc Cnyn
REACH: Pontatoc Cnyn
RS: 0.147
INPUT
Description: 21
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Station & ation & Data & num= & 30 & & & & & \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline ******** & & & & & & & & & \\
\hline 1000 & 3096 & 1002.3 & 3094 & 1005.3 & 3092 & 1008.6 & 3090 & 1011.8 & 3088 \\
\hline 1014.6 & 3086 & 1018 & 3084 & 1021 & 3082 & 1024.6 & 3080 & 1033.2 & 3078 \\
\hline 1051 & 3076.2 & 1059 & 3076.2 & 1069.8 & 3078 & 1077.1 & 3080 & 1082.4 & 3082 \\
\hline 1088.4 & 3084 & 1091.7 & 3086 & 1095.5 & 3088 & 1100 & 3090 & 1101.7 & 3092 \\
\hline 1105.7 & 3094 & 1108 & 3096 & 1109.6 & 3098 & 1111 & 3100 & 1113 & 3102 \\
\hline 1116.5 & 3104 & 1119.4 & 3106 & 1121.5 & 3108 & 1123.4 & 3110 & 1124.67 & 311 \\
\hline
\end{tabular}

Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Pontatoc Cnyn
REACH: Pontatoc Cnyn RS: 0.138

\section*{INPUT}

Description: 20
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Station Elevation Data} & num= & \multicolumn{2}{|l|}{26} & \multirow[b]{2}{*}{Sta} & \multirow[b]{2}{*}{Elev} & \multirow[b]{2}{*}{Sta} & \multirow[b]{2}{*}{Elev} \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & & & & \\
\hline \multicolumn{10}{|l|}{} \\
\hline 1000 & 3089 & 1001.5 & 3088 & 1005.6 & 3086 & 1010 & 3084 & 1015 & 3082 \\
\hline 1020.9 & 3080 & 1027 & 3078 & 1032 & 3076 & 1037 & 3074 & 1040 & 3073 \\
\hline 1043 & 3073 & 1046 & 3074 & 1055.8 & 3076 & 1065.8 & 3078 & 1074 & 3080 \\
\hline 1076 & 3082 & 1079 & 3084 & 1082 & 3086 & 1084.5 & 3088 & 1088 & 3090 \\
\hline 1089.8 & 3092 & 1092.3 & 3094 & 1094.7 & 3096 & 1097.6 & 3098 & 1101 & 3100 \\
\hline 1103.25 & 310 & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Manning's n Values} & num= & 3 & \\
\hline Sta & \multicolumn{2}{|l|}{n Val Sta} & n Val & Sta & n Val \\
\hline & & & & & \\
\hline 1000 & . 086 & 1020.9 & . 066 & 1074 & . 086 \\
\hline
\end{tabular}
\begin{tabular}{rrrrrrr}
Bank Sta: Left & Right & Lengths: Left Channel & Right & Coeff Contr. & Expan. \\
1020.9 & 1074 & 46 & 51 & 53 & .1 & .3
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & 3082.51 & Element & & Left OB & & Channel & & Right OB \\
\hline * Vel Head (ft) & 2.05 & * Wt. n-Val. & & 0.086 & & 0.066 & * & 0.086 \\
\hline * W.S. Elev (ft) & 3080.46 & * Reach Len. (ft) & & 46.00 & & 51.00 & & 53.00 \\
\hline * Crit W.S. (ft) & 3080.46 & * Flow Area (sq ft) & & 0.32 & & 217.84 & & 0.11 \\
\hline * E.G. Slope (ft/ft) & *0.041702 & * Area (sq ft) & & 0.32 & & 217.84 & * & 0.11 \\
\hline * Q Total (cfs) & 2503.00 & * Flow (cfs) & & 0.40 & & 2502.48 & & 0.11 \\
\hline * Top Width (ft) & 54.93 & * Top Width (ft) & & 1.36 & & 53.10 & & 0.46 \\
\hline * Vel Total (ft/s) & 11.47 & * Avg. Vel. (ft/s) & & 1.28 & & 11.49 & & 1.05 \\
\hline * Max Chl Dpth (ft) & 7.46 & * Hydr. Depth (ft) & & 0.23 & & 4.10 & & 0.23 \\
\hline * Conv. Total (cfs) & 12257.0 & * Conv. (cfs) & & 2.0 & & 12254.5 & & 0.6 \\
\hline * Length Wtd. (ft) & 51.00 & * Wetted Per. (ft) & & 1.44 & & 55.15 & & 0.65 \\
\hline * Min Ch El (ft) & 3073.00 & * Shear (lb/sq ft) & & 0.57 & & 10.28 & & 0.43 \\
\hline * Alpha & 1.00 & * Stream Power (lb/ft s) & & 0.73 & & 118.12 & & 0.45 \\
\hline * Frctn Loss (ft) & 2.16 & * Cum Volume (acre-ft) & & 0.01 & & 1.83 & & 0.02 \\
\hline * C \& E Loss (ft) & 0.06 & * Cum SA (acres) & & 0.02 & & 1.00 & * & 0.03 \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Pontatoc Cnyn
REACH: Pontatoc Cnyn RS: 0.128
INPUT
Description: 19
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline ion & ion & Data & = & 37 & & & & & \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline 1000 & 3081 & 1003 & 3080 & 1005.7 & 3078 & 1008 & 3076 & 1011 & 3074 \\
\hline 1015 & 3072 & 1019.24 & 3070 & 1021.42 & 3068 & 1024.65 & 3066 & 1027.88 & 3064 \\
\hline 1033.39 & 3062 & 1037.66 & 3060 & 1040.88 & 3060 & 1048.41 & 3062 & 1051.38 & 3064 \\
\hline 1056.12 & 3066 & 1056.65 & 3068 & 1058.33 & 3070 & 1061.32 & 3072 & 1064.15 & 3074 \\
\hline 1067.74 & 3076 & 1072.35 & 3078 & 1075.33 & 3080 & 1078.22 & 3082 & 1082.35 & 3084 \\
\hline 1087.55 & 3086 & 1090. 01 & 3088 & 1094.28 & 3090 & 1096.31 & 3092 & 1097.31 & 3093 \\
\hline 1098.2 & 3094 & 1099.04 & 3095 & 1100.07 & 3096 & 1101.2 & 3097 & 1102.34 & 3098 \\
\hline 1103. 66 & 3099 & 1105.62 & & & & & & & \\
\hline
\end{tabular}
\(1103.66 \quad 30991105.62 \quad 3100\)

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & 3071.02 & * Element & & Left OB & & Channel & & Right OB & \\
\hline * Vel Head (ft) & 2.70 & * Wt. n-Val. & & 0.086 & & 0.066 & * & 0.086 & \\
\hline * W.S. Elev (ft) & 3068.32 & * Reach Len. (ft) & & 67.00 & & 61.00 & & 43.00 & \\
\hline * Crit W.S. (ft) & 3068.32 & * Flow Area (sq ft) & & 0.06 & & 189.85 & & 0.04 & \\
\hline * E.G. Slope (ft/ft) & *0.042960 & * Area (sq ft) & & 0.06 & & 189.85 & & 0.04 & \\
\hline * Q Total (cfs) & * 2503.00 & * Flow (cfs) & & 0.05 & & 2502.92 & & 0.04 & \\
\hline * Top Width (ft) & 35.86 & * Top Width (ft) & & 0.35 & & 35.23 & & 0.27 & \\
\hline * Vel Total (ft/s) & 13.18 & * Avg. Vel. (ft/s) & & 0.87 & & 13.18 & & 0.79 & \\
\hline * Max Chl Dpth (ft) & 8.32 & * Hydr. Depth (ft) & & 0.16 & & 5.39 & & 0.16 & \\
\hline * Conv. Total (cfs) & 12076.1 & * Conv. (cfs) & & 0.2 & & 12075.7 & & 0.2 & \\
\hline * Length Wtd. (ft) & * 61.00 & * Wetted Per. (ft) & & 0.48 & & 39.98 & & 0.42 & \\
\hline * Min Ch El (ft) & * 3060.00 & * Shear (lb/sq ft) & & 0.32 & & 12.74 & & 0.28 & \\
\hline * Alpha & 1.00 & * Stream Power (lb/ft s) & & 0.28 & & 167.90 & & 0.22 & \\
\hline * Frctn Loss (ft) & 2.51 & * Cum Volume (acre-ft) & & 0.01 & & 1.59 & & 0.02 & \\
\hline * C \& E Loss (ft) & 0.03 & * Cum SA (acres) & & 0.02 & & 0.95 & & 0.03 & \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Pontatoc Cnyn
REACH: Pontatoc Cnyn RS: 0.117
INPUT
Description: 18
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline tion & tion & Data & m= & 47 & & & & & \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline 1000 & 3080 & 1010 & 3078 & 1015 & 3076 & 1020 & 3074 & 1023.49 & 3072 \\
\hline 1025.38 & 3070 & 1027.31 & 3068 & 1028.51 & 3067 & 1029.7 & 3066 & 1030.57 & 3065 \\
\hline 1031.31 & 3064 & 1032.04 & 3063 & 1034.02 & 3062 & 1036.56 & 3061 & 1040.77 & 3060 \\
\hline 1048.73 & 3059 & 1054.03 & 3059 & 1058.76 & 3060 & 1064.92 & 3061 & 1066.07 & 3062 \\
\hline 1067.22 & 3063 & 1067.95 & 3064 & 1068.51 & 3065 & 1069.07 & 3066 & 1069.57 & 3067 \\
\hline 1070.07 & 3068 & 1071.44 & 3069 & 1072.54 & 3070 & 1073.18 & 3071 & 1073.83 & 3072 \\
\hline 1074.47 & 3073 & 1075.52 & 3074 & 1076.53 & 3075 & 1077.53 & 3076 & 1078.53 & 3077 \\
\hline 1080.08 & 3078 & 1080.98 & 3079 & 1082.11 & 3080 & 1083.23 & 3081 & 1083.73 & 3082 \\
\hline 1086.31 & 3083 & 1087.58 & 3084 & 1089.61 & 3085 & 1091.43 & 3086 & 1093.43 & 3087 \\
\hline
\end{tabular}

Manning's n Values num= 3
\begin{tabular}{|c|c|c|c|c|c|}
\hline Sta & n Val & Sta & n Val & Sta & n Val \\
\hline \multicolumn{6}{|l|}{**} \\
\hline 1000 & . 086 & 1031.31 & . 066 & 1067.95 & . 086 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Bank Sta: Left Right 1031.311067 .95 & Lengths: & \[
\begin{array}{r}
\text { Left } \\
51
\end{array}
\] & \[
\begin{array}{rr}
\text { t } & \text { Channel } \\
1 & 51
\end{array}
\] & Right 51 & Coeff & \[
\begin{gathered}
\text { f Contr. } \\
.1
\end{gathered}
\] & & \[
\begin{gathered}
\text { Expan. } \\
.3
\end{gathered}
\] & & \\
\hline \multicolumn{11}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
CROSS SECTION OUTPUT Profile \#100-yr \\
\(\star \star *\)
\end{tabular}}} \\
\hline & & & & & & & & & & \\
\hline * E.G. Elev (ft) & * 3068.20 & * E & Element & & L & Left OB & & Channel & & Right OB * \\
\hline * Vel Head (ft) & * 2.60 & * W & Wt. n -Val. & & * & 0.086 & * & 0.066 & & 0.086 \\
\hline * W.S. Elev (ft) & * 3065.59 & * R & Reach Len. & (ft) & * & 51.00 & * & 51.00 & & 51.00 \\
\hline * Crit W.S. (ft) & * 3065.59 & * F & Flow Area & (sq ft) & * & 0.96 & * & 192.93 & & 0.71 \\
\hline * E.G. Slope (ft/ft) & *0.039558 & * A & Area (sq f & & * & 0.96 & * & 192.93 & & 0.71 \\
\hline * Q Total (cfs) & * 2503.00 & * F & Flow (cfs) & & * & 2.01 & * & 2499.69 & & 1.30 \\
\hline * Top Width (ft) & * 38.79 & & Top Width & (ft) & * & 1.26 & * & 36.64 & & 0.89 \\
\hline * Vel Total (ft/s) & 12.86 & & Avg. Vel. & (ft/s) & * & 2.09 & * & 12.96 & & 1.83 \\
\hline * Max Chl Dpth (ft) & 6.59 & & Hydr. Dep & h (ft) & * & 0.77 & * & 5.27 & & 0.80 \\
\hline * Conv. Total (cfs) & * 12584.8 & & Conv. (cfs) & & * & 10.1 & * & 12568.1 & & 6.5 \\
\hline * Length Wtd. (ft) & * 51.00 & & Wetted Per & . (ft) & * & 2.03 & * & 39.20 & & 1.83 \\
\hline * Min Ch El (ft) & * 3059.00 & * S & Shear (lb/ & \(s q f t)\) & * & 1.17 & * & 12.16 & & 0.96 \\
\hline * Alpha & 1.01 & * S & Stream Pow & er (lb/ft s) & * & 2.44 & & 157.49 & & 1.76 \\
\hline * Frctn Loss (ft) & 1.20 & * C & Cum Volume & (acre-ft) & & 0.01 & & 1.32 & & 0.02 \\
\hline * C \& E Loss (ft) & 0.39 & & Cum SA (ac & res) & * & 0.02 & * & 0.90 & & 0.03 \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Pontatoc Cnyn
REACH: Pontatoc Cnyn RS: 0.107
INPUT
Description: 17
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Station Elevation Data num=} & \multicolumn{2}{|l|}{21} & \multirow[b]{2}{*}{Sta} & \multirow[b]{2}{*}{Elev} & \multirow[b]{2}{*}{Sta} & \multirow[b]{2}{*}{Elev} \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & & & & \\
\hline \multicolumn{10}{|l|}{**} \\
\hline 1000 & 3070 & 1003 & 3068 & 1006 & 3066 & 1009 & 3064 & 1011 & 3062 \\
\hline 1018 & 3060 & 1023 & 3058 & 1030.5 & 3056.5 & 1040.8 & 3056.5 & 1048.29 & 3058 \\
\hline 1050.56 & 3060 & 1053.9 & 3062 & 1058.6 & 3064 & 1062 & 3066 & 1066 & 3068 \\
\hline 1069 & 3070 & 1072 & 3072 & 1075 & 3074 & 1078 & 3076 & 1087.35 & 3078 \\
\hline 1092.3 & 3079 & & & & & & & & \\
\hline \multicolumn{3}{|l|}{Manning's n Values} & num= & \multicolumn{2}{|l|}{3} & & & & \\
\hline Sta & n Val & Sta & n Val & Sta & n Val & & & & \\
\hline \multicolumn{10}{|l|}{**} \\
\hline 1000 & . 086 & 1011 & . 066 & 1053.9 & . 086 & & & & \\
\hline \multirow[t]{2}{*}{Bank Sta:} & Left & Right & Lengths: & Left & Channel & Right & Coeff & Contr & Expan. \\
\hline & 10111 & 1053.9 & & 48 & 51 & 52 & & . 1 & . 3 \\
\hline
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr

RIVER: Pontatoc Cnyn
REACH: Pontatoc Cnyn RS: 0.097
INPUT
Description: 16
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Station & vation & Data & m= & 19 & & & & & \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline 1000 & 3070 & 1003.5 & 3068 & 1006.5 & 3066 & 1010 & 3064 & 1013 & 3062 \\
\hline 1018 & 3060 & 1020.38 & 3058 & 1044 & 3057 & 1050 & 3057 & 1054.31 & 3058 \\
\hline 1065 & 3060 & 1070 & 3062 & 1078 & 3064 & 1080 & 3066 & 1081 & 3068 \\
\hline 1082 & 3070 & 1084 & 3071 & 1084.01 & 3072 & 1085 & 3072 & & \\
\hline
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & 3065.04 & * Element & & Left OB & & Channel & & Right OB \\
\hline * Vel Head (ft) & 0.88 & * Wt. n-Val. & & 0.086 & & 0.066 & & 0.086 \\
\hline * W.S. Elev (ft) & 3064.16 & * Reach Len. (ft) & & 31.00 & & 29.00 & & 28.00 \\
\hline * Crit W.S. (ft) & * & * Flow Area (sq ft) & & 3.51 & & 328.08 & & 9.30 \\
\hline * E.G. Slope (ft/ft) & *0.011385 & * Area (sq ft) & & 3.51 & & 328.08 & & 9.30 \\
\hline * Q Total (cfs) & 2503.00 & * Flow (cfs) & & 5.99 & & 2478.76 & & 18.25 \\
\hline * Top Width (ft) & 68.44 & * Top Width (ft) & & 3.28 & * & 57.00 & & 8.16 \\
\hline * Vel Total (ft/s) & 7.34 & * Avg. Vel. (ft/s) & & 1.71 & & 7.56 & & 1.96 \\
\hline * Max Chl Dpth (ft) & 7.16 & * Hydr. Depth (ft) & & 1.07 & & 5.76 & & 1.14 \\
\hline * Conv. Total (cfs) & 23458.0 & * Conv. (cfs) & & 56.1 & * & 23230.9 & & 171.0 \\
\hline * Length Wtd. (ft) & 29.00 & * Wetted Per. (ft) & & 3.93 & & 58.82 & & 8.47 \\
\hline * Min Ch El (ft) & 3057.00 & * Shear (lb/sq ft) & & 0.63 & & 3.96 & & 0.78 \\
\hline * Alpha & 1.05 & * Stream Power (lb/ft s) & & 1.08 & & 29.95 & & 1.53 \\
\hline * Frctn Loss (ft) & 0.57 & * Cum Volume (acre-ft) & & 0.00 & & 0.70 & & 0.00 \\
\hline * C \& E Loss (ft) & 0.11 & * Cum SA (acres) & & 0.01 & * & 0.80 & * & 0.01 \\
\hline
\end{tabular}

Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Pontatoc Cnyn
REACH: Pontatoc Cnyn RS: 0.092
INPUT
Description: 15
Station Elevation Data num= 21
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline 1000 & 3069.5 & 1007 & 3068 & 1019 & 3066 & 1026 & 3064 & 1031 & 3062 \\
\hline 1038 & 3060 & 1041 & 3058 & 1051 & 3056.5 & 1061 & 3056.5 & 1073.32 & 3058 \\
\hline 1079.82 & 3060 & 1081.7 & 3061 & 1085.36 & 3062 & 1089.53 & 3063 & 1094.93 & 3064 \\
\hline 1095.5 & 3065 & 1096.07 & 3066 & 1096.67 & 3067 & 1097.28 & 3068 & 1097.4 & 3069 \\
\hline 1097.5 & 3070 & & & & & & & & \\
\hline
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & 3064.36 & * Element & & Left OB & & Channel & & Right OB \\
\hline * Vel Head (ft) & 2.02 & * Wt. n-Val. & & 0.086 & & 0.066 & & 0.086 \\
\hline * W.S. Elev (ft) & * 3062.34 & * Reach Len. (ft) & & 25.00 & & 22.00 & & 20.00 \\
\hline * Crit W.S. (ft) & * 3062.34 & * Flow Area (sq ft) & & 0.14 & & 219.56 & & 0.24 \\
\hline * E.G. Slope (ft/ft) & *0.041588 & * Area (sq ft) & & 0.14 & & 219.56 & & 0.24 \\
\hline * Q Total (cfs) & * 2503.00 & * Flow (cfs) & & 0.15 & & 2502.60 & & 0.25 \\
\hline * Top Width (ft) & * 56.62 & * Top Width (ft) & & 0.85 & & 54.36 & & 1.41 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline * Vel Total (ft/s) & & 11.38 & & Avg. Vel. (ft/s) & * & 1.03 & * & 11.40 & * & 1.06 \\
\hline * Max Chl Dpth (ft) & & 5.84 & & Hydr. Depth (ft) & * & 0.17 & * & 4.04 & * & 0.17 \\
\hline * Conv. Total (cfs) & & 12273.8 & & Conv. (cfs) & & 0.7 & * & 12271.8 & * & 1.2 \\
\hline * Length Wtd. (ft) & * & 22.00 & & Wetted Per. (ft) & * & 0.91 & * & 56.13 & * & 1.45 \\
\hline * Min Ch El (ft) & * & 3056.50 & & Shear (lb/sq ft) & * & 0.41 & * & 10.16 & * & 0.43 \\
\hline * Alpha & * & 1.00 & & Stream Power (lb/ft s) & * & 0.42 & * & 115.75 & * & 0.45 \\
\hline * Frctn Loss (ft) & * & 0.94 & & Cum Volume (acre-ft) & * & 0.00 & * & 0.52 & * & 0.00 \\
\hline * C \& E Loss (ft) & & 0.02 & & Cum SA (acres) & * & 0.01 & * & 0.76 & * & 0.01 \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Pontatoc Cnyn
REACH: Pontatoc Cnyn RS: 0.087

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Pontatoc Cnyn
REACH: Pontatoc Cnyn RS: 0.081
INPUT
Description: 13

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 10283058 & 1030 & 3056 & 1032 & 23054 & 1037 & & 049.5 & 1068 & & 3049.5 & & & \\
\hline 10743054 & 1078 & 3056 & 1081.9 & 93057 & 1082 & & 3068 & 1083 & & 3068 & & & \\
\hline 10943070 & 1102 & 3071.6 & & & & & & & & & & & \\
\hline Manning's \(n\) Values Sta n Val & Sta & num= n Val & \[
\begin{aligned}
& 3 \\
& \text { Sta }
\end{aligned}
\] & a n Val & & & & & & & & & \\
\hline 1000 . 086 & 1028 & . 066 & 1081.9 & 9 . 086 & & & & & & & & & \\
\hline \(\begin{array}{rrr}\text { Bank Sta: Left } & \text { Rig } \\ 1028 & 1081\end{array}\) & & Lengths: & Left 59 & Channel 59 & \[
\begin{array}{r}
\text { Right } \\
59
\end{array}
\] & & Coeff & \[
\begin{gathered}
\text { f Contr } . \\
.3
\end{gathered}
\] & & \[
\begin{gathered}
\text { Expan. } \\
.5
\end{gathered}
\] & & & \\
\hline Ineffective Flow & num= & 2 & & & & & & & & & & & \\
\hline Sta L Sta R & Elev & Permanent & & & & & & & & & & & \\
\hline 10001037.5 & 3060 & T & & & & & & & & & & & \\
\hline 1068.51102 & 3060 & T & & & & & & & & & & & \\
\hline CROSS SECTION OUTPUT & Pro & ile \#100 & -yr & & & & & & & & & & \\
\hline E.G. Elev (ft) & & 3059.10 & * El & lement & & & & Left OB & & Channel & & Right OB & \\
\hline * Vel Head (ft) & & 1.57 & * Wt & t. n -Val. & & & * & & * & 0.066 & & & \\
\hline * W.S. Elev (ft) & & * 3057.52 & * Re & each Len. & & & & 59.00 & * & 59.00 & & 59.00 & \\
\hline * Crit W.S. (ft) & & * 3055.36 & * Fl & low Area (& sq ft) & & * & & & 248.66 & & & \\
\hline * E.G. Slope (ft/ft) & & *0.012516 & * Ar & rea (sq ft & & & * & & * & 332.58 & & 0.00 & \\
\hline * Q Total (cfs) & & * 2503.00 & * Fl & low (cfs) & & & * & & * & 2503.00 & & & \\
\hline * Top Width (ft) & & * 53.43 & * Top & op Width (& & & * & & * & 53.42 & & & \\
\hline * Vel Total (ft/s) & & 10.07 & * Av & vg. Vel. (& ft/s) & & * & & * & 10.07 & & & * \\
\hline * Max Chl Dpth (ft) & & * 8.02 & * Hy & ydr. Depth & (ft) & & * & & * & 8.02 & & & * \\
\hline * Conv. Total (cfs) & & * 22373.3 & * Co & onv. (cfs) & & & * & & * & 22373.3 & & & \\
\hline * Length Wtd. (ft) & & * 59.00 & * We & etted Per. & (ft) & & * & & * & 31.13 & & & \\
\hline * Min Ch El (ft) & & * 3049.50 & * Sh & Shear (lb/s & (ft) & & * & & * & 6.24 & & & \\
\hline * Alpha & & * 1.00 & * St & tream Powe & (lb/ft & &) & & * & 62.84 & & & * \\
\hline * Frctn Loss (ft) & & & * Cu & um Volume & (acre-ft) & & * & & & 0.20 & & & \\
\hline * C \& E Loss (ft) & & * & * C & um SA (acr & es) & & * & 0.01 & * & 0.69 & & 0.01 & \\
\hline
\end{tabular}

CULVERT

RIVER: Pontatoc Cnyn
REACH: Pontatoc Cnyn
RS: 0.078
INPUT
Description: Playa de Coronado Crossing @ HEC-1 Sta. RES-91
Distance from Upstream XS = 13
\(\begin{array}{llr}\text { Deck/Roadway Width } & = & 30 \\ \text { Weir Coefficient } & = & 2.6\end{array}\)
Weir Coefficient \(\quad=\quad 2\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{\[
\text { num }=\quad 6
\]} \\
\hline Sta & Cord & \multicolumn{3}{|l|}{Sta Hi Cord Lo Cord Sta} & Hi Cord \\
\hline ********* & *** & *** & ** & ****** & ******** \\
\hline 995 & 3070 & 1030 & 3068 & 1055 & 3067.24 \\
\hline 1073 & 3068 & 1090 & 3069 & 1100.76 & 3070 \\
\hline
\end{tabular}

Upstream Bridge Cross Section Data
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{Station Elevation Data num= 17} \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline \multicolumn{10}{|r|}{} \\
\hline 1000 & 3068 & 1015 & 3066 & 1017 & 3064 & 1018.5 & 3062 & 1025 & 3060 \\
\hline 1028 & 3058 & 1030 & 3056 & 1032 & 3054 & 1037 & 3049.5 & 1068 & 3049.5 \\
\hline 1074 & 3054 & 1078 & 3056 & 1081.9 & 3057 & 1082 & 3068 & 1083 & 3068 \\
\hline 1094 & 3070 & 1102 & 971. 6 & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Bank Sta: & \[
\begin{aligned}
& \text { Left } \\
& 1028
\end{aligned}
\] & \[
\begin{array}{r}
\text { Right } \\
1081.9
\end{array}
\] & Coeff Contr. . 3 & Expan. \\
\hline \multicolumn{3}{|l|}{Ineffective Flow num=} & 2 & \\
\hline Sta L & Sta R & Elev & Permanent & \\
\hline 1000 & 1037.5 & 3060 & T & \\
\hline 1068.5 & 1102 & 3060 & T & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Downstream num= & \multicolumn{3}{|l|}{\({ }_{7}^{\text {Deck/Roadway }}\) Coordinates} & & \\
\hline Sta Hi & Cord Lo Cord & \multicolumn{3}{|l|}{Sta Hi Cord Lo Cord Sta} & Hi Cord \\
\hline 995 & 3070 & 1030 & 3068 & 1055 & 3067.24 \\
\hline 1073 & 3068 & 1090 & 3069 & 1096.93 & 3070 \\
\hline 1128.48 & 3071 & & & & \\
\hline
\end{tabular}

Number of Culverts \(=1\)

Warning: Since the culvert has supercritical flow, the program should be run in mixed flow in order to check if the cross section downstream of the culvert has supercritical flow.
Note: The flow in the culvert is entirely supercritical.
CROSS SECTION

RIVER: Pontatoc Cnyn
REACH: Pontatoc Cnyn RS: 0.07
INPUT
Description: 12
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline station & ation & Data & um= & 18 & & & & & \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline 1000 & 3058 & 1020 & 3056 & 1023 & 3054 & 1030.32 & 3052 & 1047.35 & 3050 \\
\hline 1052.25 & 3049 & 1060.98 & 3046.4 & 1088.42 & 3046.4 & 1090.74 & 3047 & 1094.65 & 3048 \\
\hline 1098.6 & 3049 & 1103.25 & 3050 & 1105.54 & 3051 & 1107.62 & 3052 & 1109.7 & 3053 \\
\hline 1112 & 3054 & 1112.01 & 3064 & 1113 & 3065 & & & & \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Pontatoc Cnyn
REACH: Pontatoc Cnyn RS: 0.059

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & 3047.50 & * Element & & Left OB & Channel & & Right OB \\
\hline * Vel Head (ft) & 1.74 & * Wt. n-Val. & & & 0.066 & & \\
\hline * W.S. Elev (ft) & * 3045.77 & * Reach Len. (ft) & & 51.00 & 51.00 & & 51.00 \\
\hline * Crit W.S. (ft) & * 3045.77 & * Flow Area (sq ft) & * & & 236.75 & & \\
\hline * E.G. Slope (ft/ft) & *0.042904 & * Area (sq ft) & & & 236.75 & & \\
\hline * Q Total (cfs) & 2503.00 & * Flow (cfs) & & & 2503.00 & & \\
\hline * Top Width (ft) & 68.12 & * Top Width (ft) & & & 68.12 & & \\
\hline * Vel Total (ft/s) & 10.57 & * Avg. Vel. (ft/s) & * & & 10.57 & & \\
\hline * Max Chl Dpth (ft) & 5.76 & * Hydr. Depth (ft) & & & 3.48 & & \\
\hline * Conv. Total (cfs) & * 12084.1 & * Conv. (cfs) & & & 12084.1 & & \\
\hline * Length Wtd. (ft) & * 51.00 & * Wetted Per. (ft) & * & & 69.35 & & \\
\hline * Min Ch El (ft) & * 3040.00 & * Shear (lb/sq ft) & & & 9.14 & & \\
\hline * Alpha & * 1.00 & * Stream Power (lb/ft s) & & & 96.67 & & \\
\hline * Frctn Loss (ft) & 2.23 & * Cum Volume (acre-ft) & & 0.06 & 2.70 & & 0.40 \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Pontatoc Cnyn
REACH: Pontatoc Cnyn RS: 0.049
INPUT
Description: 9
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Station E & ation & Data & num= & 15 & & & & & \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline ******** & **** & ***** & ****** & ****** & & ****** & **** & **** & **** \\
\hline 1000 & 3047 & 1002.27 & 3046 & 1009.29 & 3044 & 1015.56 & 3042 & 1021 & 3040 \\
\hline 1029 & 3038 & 1038 & 3036 & 1054 & 3036 & 1082 & 3038 & 1092 & 3040 \\
\hline 1094.46 & 3042 & 1101 & 3044 & 1114 & 3046 & 1115 & 3050 & 1124 & 3054 \\
\hline
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & * 3042.34 & & Element & * & Left OB & * & Channel & * & Right OB \\
\hline * Vel Head (ft) & 1.67 & * & Wt. n -Val. & * & & * & 0.066 & & \\
\hline * W.S. Elev (ft) & * 3040.67 & * & Reach Len. (ft) & * & 54.00 & * & 54.00 & * & 54.00 \\
\hline * Crit W.S. (ft) & * 3040.67 & * & Flow Area (sq ft) & * & & * & 241.47 & * & \\
\hline * E.G. Slope (ft/ft) & *0.044383 & * & Area (sq ft) & * & & * & 241.47 & * & \\
\hline * Q Total (cfs) & * 2503.00 & * & Flow (cfs) & * & & * & 2503.00 & * & \\
\hline * Top Width (ft) & 73.65 & * & Top Width (ft) & * & & * & 73.65 & * & \\
\hline * Vel Total (ft/s) & 10.37 & * & Avg. Vel. (ft/s) & * & & * & 10.37 & * & \\
\hline * Max Chl Dpth (ft) & 4.67 & * & Hydr. Depth (ft) & * & & * & 3.28 & * & \\
\hline * Conv. Total (cfs) & 11881.0 & * & Conv. (cfs) & * & & * & 11881.0 & * & \\
\hline * Length Wtd. (ft) & * 54.00 & * & Wetted Per. (ft) & * & & * & 74.74 & * & \\
\hline * Min Ch El (ft) & * 3036.00 & * & Shear (lb/sq ft) & * & & * & 8.95 & * & \\
\hline * Alpha & * 1.00 & * & Stream Power (lb/ft s) & * & & * & 92.79 & * & \\
\hline * Frctn Loss (ft) & 2.38 & * & Cum Volume (acre-ft) & * & 0.06 & * & 2.42 & * & 0.40 \\
\hline * C \& E Loss (ft) & 0.01 & & Cum SA (acres) & * & 0.01 & * & 0.42 & * & 0.01 \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Pontatoc Cnyn
REACH: Pontatoc Cnyn
RS: 0.039

\section*{INPUT}

Description: 8

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & & 3034.95 & * & Element & & Left OB & * & Channel & * & Right OB \\
\hline * Vel Head (ft) & & 1.74 & & Wt. n -Val. & * & & * & 0.066 & * & \\
\hline * W.S. Elev (ft) & * & 3033.20 & & Reach Len. (ft) & * & 48.00 & * & 50.00 & * & 52.00 \\
\hline * Crit W.S. (ft) & & 3033.20 & & Flow Area (sq ft) & * & & * & 236.18 & * & \\
\hline * E.G. Slope (ft/ft) & & 0.043701 & & Area (sq ft) & * & & * & 236.18 & * & \\
\hline * Q Total (cfs) & & 2503.00 & & Flow (cfs) & * & & * & 2503.00 & * & \\
\hline * Top Width (ft) & * & 68.71 & & Top Width (ft) & * & & * & 68.71 & * & \\
\hline * Vel Total (ft/s) & * & 10.60 & & Avg. Vel. (ft/s) & * & & * & 10.60 & * & \\
\hline * Max Chl Dpth (ft) & * & 5.20 & & Hydr. Depth (ft) & * & & * & 3.44 & * & \\
\hline * Conv. Total (cfs) & & 11973.4 & & Conv. (cfs) & * & & * & 11973.4 & * & \\
\hline * Length Wtd. (ft) & * & 50.00 & & Wetted Per. (ft) & * & & * & 69.90 & * & \\
\hline * Min Ch El (ft) & & 3028.00 & & Shear (lb/sq ft) & * & & * & 9.22 & * & \\
\hline * Alpha & & 1.00 & & Stream Power (lb/ft s) & & & * & 97.70 & * & \\
\hline * Frctn Loss (ft) & & 2.23 & & Cum Volume (acre-ft) & & 0.06 & * & 2.12 & * & 0.40 \\
\hline * C \& E Loss (ft) & * & 0.07 & & Cum SA (acres) & * & 0.01 & * & 0.33 & * & 0.01 \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Pontatoc Cnyn
REACH: Pontatoc Cnyn RS: 0.030

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & * 3027.54 & & Element & * & Left OB & * & Channel & & Right OB \\
\hline * Vel Head (ft) & 1.50 & & Wt. n-Val. & * & 0.000 & * & 0.066 & * & 0.000 \\
\hline * W.S. Elev (ft) & * 3026.04 & & Reach Len. (ft) & * & 45.00 & * & 55.00 & * & 55.00 \\
\hline * Crit W.S. (ft) & * 3026.04 & * & Flow Area (sq ft) & * & 0.00 & * & 254.55 & * & 0.00 \\
\hline * E.G. Slope (ft/ft) & *0.045349 & * & Area (sq ft) & * & 0.00 & * & 254.55 & * & 0.00 \\
\hline * Q Total (cfs) & * 2503.00 & * & Flow (cfs) & * & 0.00 & * & 2503. 00 & * & 0.00 \\
\hline * Top Width (ft) & 86.28 & & Top Width (ft) & * & 0.16 & * & 86.00 & * & 0.12 \\
\hline * Vel Total (ft/s) & 9.83 & * & Avg. Vel. (ft/s) & * & 0.27 & * & 9.83 & * & 0.27 \\
\hline * Max Chl Dpth (ft) & 4.54 & & Hydr. Depth (ft) & * & 0.02 & * & 2.96 & * & 0.02 \\
\hline * Conv. Total (cfs) & 11753.8 & & Conv. (cfs) & * & 0.0 & * & 11753.8 & * & 0.0 \\
\hline * Length Wtd. (ft) & 55.00 & & Wetted Per. (ft) & * & 0.16 & * & 86.66 & * & 0.13 \\
\hline * Min Ch El (ft) & 3021.50 & & Shear (lb/sq ft) & * & & * & 8.32 & * & \\
\hline * Alpha & 1.00 & & Stream Power (lb/ft s) & * & & * & 81.77 & * & \\
\hline * Frctn Loss (ft) & 2.44 & & Cum Volume (acre-ft) & * & 0.06 & * & 1.84 & * & 0.40 \\
\hline * C \& E Loss (ft) & 0.03 & & Cum SA (acres) & * & 0.01 & * & 0.25 & * & 0.01 \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Pontatoc Cnyn
REACH: Pontatoc Cnyn
RS: 0.019
INPUT
Description: 6

CROSS SECTION OUTPUT Profile \#100-yr

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Pontatoc Cnyn
REACH: Pontatoc Cnyn
RS: 0.013
INPUT
Description: 5
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Station & tion & Data & m= & 13 & & & & & \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline 1000 & 3022 & 1008 & 3020 & 1018 & 3018 & 1034 & 3016 & 1053 & 3016 \\
\hline 1064 & 3014 & 1070 & 3014 & 1088 & 3016 & 1097 & 3018 & 1105 & 3020 \\
\hline 1113 & 3022 & 1120.24 & 3023 & 1131 & 3025 & & & & \\
\hline
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Conv. Total (cfs) & 12111.8 & Conv. (cfs) & & 24.2 & & 12068.3 & * & 19.2 & \\
\hline * Length Wtd. (ft) & 36.99 & * Wetted Per. (ft) & & 4.91 & & 79.64 & * & 3.97 & \\
\hline * Min Ch El (ft) & 3014.00 & * Shear (lb/sq ft) & & 1.26 & * & 8.37 & * & 1.24 & \\
\hline * Alpha & 1.02 & * Stream Power (lb/ft s) & & 2.72 & & 83.50 & * & 2.67 & \\
\hline * Frctn Loss (ft) & 1.51 & * Cum Volume (acre-ft) & & 0.06 & & 1.36 & & 0.40 & \\
\hline * C \& E Loss (ft) & 0.05 & * Cum SA (acres) & & 0.01 & & 0.10 & * & 0.01 & \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Pontatoc Cnyn
REACH: Pontatoc Cnyn RS: 0.007

\section*{INPUT}

Description: 4
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Station E & levation & Data & num= & 14 & & & & & \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline ********* & ******* & ******* & ******* & ****** & ********* & ******* & **** & ***** & \\
\hline 1000 & 3019.8 & 1029 & 3018 & 1041 & 3016 & 1052 & 3014 & 1060 & 3012 \\
\hline 1067 & 3010 & 1073 & 3008 & 1077 & 3008 & 1087 & 3010 & 1095 & 3012 \\
\hline 1103 & 3014 & 1116 & 3016 & 1123 & 3018 & 1127 & 3019 & & \\
\hline Manning's & n Values & & num= & 3 & & & & & \\
\hline Sta & n Val & Sta & n Val & Sta & n Val & & & & \\
\hline ** & ******** & ******* & *** & * & ****** & & & & \\
\hline 1000 & . 086 & 1052 & . 066 & 1103 & . 086 & & & & \\
\hline Bank Sta: & Left & Right & Lengths: & Left C & Channel & Right & Coeff & Contr & Expan. \\
\hline & 1052 & 1103 & & 30 & 34 & 38 & & . 1 & . 3 \\
\hline
\end{tabular}

CROSS SECTION OUTPUT Profile \#100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline * E.G. Elev (ft) & 3017.05 & * Element & & Left OB & & Channel & & Right OB \\
\hline * Vel Head (ft) & 2.02 & * Wt. n-Val. & & 0.086 & & 0.066 & * & 0.086 \\
\hline * W.S. Elev (ft) & * 3015.03 & * Reach Len. (ft) & & 30.00 & & 34.00 & & 38.00 \\
\hline * Crit W.S. (ft) & * 3015.03 & * Flow Area (sq ft) & & 2.92 & & 217.54 & & 3.45 \\
\hline * E.G. Slope (ft/ft) & *0.038850 & * Area (sq ft) & & 2.92 & & 217.54 & & 3.45 \\
\hline * Q Total (cfs) & * 2503.00 & * Flow (cfs) & & 6.32 & * & 2489.19 & & 7.49 \\
\hline * Top Width (ft) & 63.36 & * Top Width (ft) & & 5.67 & & 51.00 & & 6.70 \\
\hline * Vel Total (ft/s) & 11.18 & * Avg. Vel. (ft/s) & & 2.16 & & 11.44 & & 2.17 \\
\hline * Max Chl Dpth (ft) & 7.03 & * Hydr. Depth (ft) & & 0.52 & & 4.27 & & 0.52 \\
\hline * Conv. Total (cfs) & * 12698.9 & * Conv. (cfs) & & 32.1 & * & 12628.8 & & 38.0 \\
\hline * Length Wtd. (ft) & 34.00 & * Wetted Per. (ft) & & 5.76 & & 52.54 & & 6.78 \\
\hline * Min Ch El (ft) & * 3008.00 & * Shear (lb/sq ft) & & 1.23 & & 10.04 & & 1.23 \\
\hline * Alpha & 1.04 & * Stream Power (lb/ft s) & & 2.66 & & 114.91 & & 2.68 \\
\hline * Frctn Loss (ft) & 1.38 & * Cum Volume (acre-ft) & & 0.06 & & 1.16 & & 0.40 \\
\hline * C \& E Loss (ft) & 0.04 & * Cum SA (acres) & & 0.00 & & 0.04 & & 0.00 \\
\hline
\end{tabular}

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Pontatoc Cnyn
REACH: Pontatoc Cnyn RS: 0.000
INPUT

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

SUMMARY OF MANNING'S N VALUES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|l|}{River:Coronado Split F} \\
\hline * & Reach & & * & River Sta. & * & 11 * & n2 & n3 & n4 & n5 & n6 \\
\hline \multicolumn{12}{|l|}{**} \\
\hline *Cor & Split & Reach & * & 0.854 & * & . 083* & .03* & .061* & . 083* & . 03* & . 083* \\
\hline *Cor & Split & Reach & * & 0.851 & *Lat & Struct* & * & * & * & * & * \\
\hline * Cor & Split & Reach & * & 0.847 & * & . 083* & . 03* & .083* & .061* & . 03* & . 083* \\
\hline * Cor & Split & Reach & * & 0.839 & *Lat & Struct* & * & * & * & * & * \\
\hline *Cor & Split & Reach & * & 0.830 & * & . 083* & .03* & . \(083 *\) & .061* & . 083 * & * \\
\hline *Cor & Split & Reach & * & 0.822 & *Lat & Struct* & * & * & * & * & * \\
\hline * Cor & Split & Reach & * & 0.813 & * & . 083* & .03* & .083* & . 061* & . 083* & * \\
\hline * Cor & Split & Reach & * & 0.804 & * Lat & Struct* & * & * & * & * & * \\
\hline *Cor & Split & Reach & * & 0.794 & * & . 083* & . 03* & .083* & . 061* & . 083* & * \\
\hline * Cor & Split & Reach & * & 0.784 & * Lat & Struct* & * & * & * & * & * \\
\hline *Cor & Split & Reach & * & 0.774 & * & . 083* & . 03* & . 083* & . 061* & . 083* & * \\
\hline * Cor & Split & Reach & * & 0.762 & *Lat & Struct* & * & * & * & * & * \\
\hline * Cor & Split & Reach & * & 0.749 & * & . 083* & . 03* & .083* & . 061* & . 083* & * \\
\hline * Cor & Split & Reach & * & 0.738 & * Lat & Struct* & * & * & * & * & * \\
\hline * Cor & Split & Reach & * & 0.727 & * & . 083* & . 03* & . 083* & . 061* & . 083* & * \\
\hline * Cor & Split & Reach & * & 0.718 & *Lat & Struct* & * & * & * & * & * \\
\hline * Cor & Split & Reach & * & 0.708 & * & . 083* & . 03* & . 083* & . 061* & . 083* & * \\
\hline * Cor & Split & Reach & * & 0.700 & *Lat & Struct* & * & * & * & * & * \\
\hline * Cor & Split & Reach & * & 0.691 & * & . 083* & . 03* & . \(083 *\) & . 061* & . 083* & * \\
\hline *Cor & Split & Reach & * & 0.684 & *Lat & Struct* & * & * & * & * & * \\
\hline *Cor & Split & Reach & * & 0.677 & * & . 083* & . 03* & . 083* & .061* & . 083* & * \\
\hline * Cor & Split & Reach & * & 0.670 & * Lat & Struct* & * & * & * & * & * \\
\hline *Cor & Split & Reach & * & 0.662 & * & . 083* & .03* & . \(083 *\) & .061* & . 083 * & * \\
\hline *Cor & Split & Reach & * & 0.652 & *Lat & Struct* & * & * & * & * & * \\
\hline *Cor & Split & Reach & * & 0.642 & * & . 083* & . 03* & .083* & .061* & . 083* & * \\
\hline * Cor & Split & Reach & * & 0.625 & * Lat & Struct* & * & * & * & * & * \\
\hline *Cor & Split & Reach & * & 0.608 & * & . 083* & . 03* & . 083* & . 061* & . 083* & * \\
\hline * Cor & Split & Reach & * & 0.595 & * Lat & Struct* & * & * & * & * & * \\
\hline * Cor & Split & Reach & * & 0.581 & * & .083* & .03* & . 083* & . 061* & . 083* & * \\
\hline * Cor & Split & Reach & * & 0.571 & * Lat & Struct* & * & * & * & * & * \\
\hline * Cor & Split & Reach & * & 0.561 & * & . 03* & . 083* & . 061* & . 083* & * & * \\
\hline *Cor & Split & Reach & * & 0.544 & *Lat & Struct* & * & * & * & * & * \\
\hline * Cor & Split & Reach & * & 0.527 & * & . 083* & .061* & . 083* & * & * & * \\
\hline * Cor & Split & Reach & * & 0.482 & * & . 083* & .07* & . 083* & * & * & * \\
\hline * Cor & Split & Reach & * & 0.448 & * & . 083* & .07* & . 083* & * & * & * \\
\hline *Cor & Split & Reach & * & 0.423 & * & . 083* & .07* & . 083* & * & * & * \\
\hline *Cor & Split & Reach & * & 0.399 & * & . 083* & . \(07 *\) & . 083* & * & * & * \\
\hline * Cor & Split & Reach & * & 0.382 & * & . 083* & . 06* & . 083* & * & * & * \\
\hline
\end{tabular}

River:Pontatoc Cnyn
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Reach & * & River S & * & * & * & * \\
\hline *Pontatoc Cnyn & * & 0.154 & * & . 086 * & .066* & .086* \\
\hline *Pontatoc Cnyn & * & 0.147 & * & . 086 * & .066* & .086* \\
\hline *Pontatoc Cnyn & * & 0.138 & * & .086* & .066* & .086* \\
\hline *Pontatoc Cnyn & * & 0.128 & * & .086* & .066* & .086* \\
\hline *Pontatoc Cnyn & * & 0.117 & * & . 086 * & . 066 * & . 086 * \\
\hline *Pontatoc Cnyn & * & 0.107 & * & .086* & .066* & .086* \\
\hline *Pontatoc Cnyn & * & 0.097 & & .086* & .066* & .086* \\
\hline *Pontatoc Cnyn & * & 0.092 & * & .086* & .066* & .086* \\
\hline *Pontatoc Cnyn & * & 0.087 & * & .086* & .066* & .086* \\
\hline *Pontatoc Cnyn & * & 0.081 & * & .086* & .066* & .086* \\
\hline *Pontatoc Cnyn & * & 0.078 & & rt & * & * \\
\hline *Pontatoc Cnyn & * & 0.07 & * & .086* & .066* & .086* \\
\hline *Pontatoc Cnyn & * & 0.059 & * & . 086 * & .066* & .086* \\
\hline *Pontatoc Cnyn & * & 0.049 & & .086* & .066* & .086* \\
\hline *Pontatoc Cnyn & * & 0.039 & & .086* & .066* & .086* \\
\hline *Pontatoc Cnyn & * & 0.030 & * & .086* & .066* & .086* \\
\hline *Pontatoc Cnyn & * & 0.019 & * & .086* & .066* & .086* \\
\hline *Pontatoc Cnyn & * & 0.013 & & .086* & .066* & .086* \\
\hline *Pontatoc Cnyn & * & 0.007 & * & .086* & .066* & .086* \\
\hline *Pontatoc Cnyn & * & 0.000 & * & .086* & .066* & .086* \\
\hline
\end{tabular}

SUMMARY OF REACH LENGTHS
River: Coronado Split F

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline * Cor & Split & Reach & * & 0.691 & * & 63* & 73* & 140* \\
\hline *Cor & Split & Reach & * & 0.684 & *Lat & Struct* & * & * \\
\hline *Cor & Split & Reach & * & 0.677 & * & 78* & 83* & 155* \\
\hline *Cor & Split & Reach & * & 0.670 & *Lat & Struct* & * & * \\
\hline *Cor & Split & Reach & * & 0.662 & * & 95* & 101* & 101* \\
\hline *Cor & Split & Reach & * & 0.652 & *Lat & Struct* & * & * \\
\hline *Cor & Split & Reach & * & 0.642 & * & 185* & 180* & 82* \\
\hline *Cor & Split & Reach & * & 0.625 & *Lat & Struct* & * & * \\
\hline *Cor & Split & Reach & * & 0.608 & * & 147* & 147* & 105* \\
\hline *Cor & Split & Reach & * & 0.595 & *Lat & Struct* & * & * \\
\hline * Cor & Split & Reach & * & 0.581 & * & 103* & 103* & 70* \\
\hline * Cor & Split & Reach & * & 0.571 & *Lat & Struct* & * & * \\
\hline * Cor & Split & Reach & * & 0.561 & * & 178* & 178* & 150* \\
\hline *Cor & Split & Reach & * & 0.544 & *Lat & Struct* & * & \\
\hline *Cor & Split & Reach & * & 0.527 & * & 240* & 238* & 165* \\
\hline *Cor & Split & Reach & * & 0.482 & * & 220* & 181* & 160* \\
\hline *Cor & Split & Reach & * & 0.448 & * & 160* & 130* & 120* \\
\hline *Cor & Split & Reach & * & 0.423 & * & 152* & 129* & 125* \\
\hline *Cor & Split & Reach & * & 0.399 & * & 119* & 86* & 82* \\
\hline *Cor & Split & Reach & * & 0.382 & * & 155* & 161* & 150* \\
\hline * Cor & Split & Reach & * & 0.352 & * & 157* & 177* & 184* \\
\hline * Cor & Split & Reach & * & 0.319 & * & 252* & 253* & 253* \\
\hline *Cor & Split & Reach & * & 0.271 & * & 155* & 262* & 299* \\
\hline *Cor & Split & Reach & * & 0.221 & * & 219* & 185* & 166* \\
\hline *Cor & Split & Reach & * & 0.186 & * & 383* & 383* & 200* \\
\hline * Cor & Split & Reach & * & 0.114 & * & 165* & 184* & 215* \\
\hline * Cor & Split & Reach & * & 0.079 & * & 415* & 415* & 250* \\
\hline * Cor & Split & Reach & * & 0 & * & 0* & 0* & 0* \\
\hline
\end{tabular}

River: Finger Rock Wash

* Reach * River Sta. * Left * Channel * Right
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline *Main & Reach 1 & * & 4.800 & * & 50* & 46* & 39* \\
\hline *Main & Reach 1 & * & 4.792 & * & 43* & 47* & 50* \\
\hline *Main & Reach 1 & * & 4.783 & * & 23* & 24* & 24* \\
\hline *Main & Reach 1 & * & 4.778 & * & 60* & 60* & 60* \\
\hline *Main & Reach 1 & * & 4.771 & & t * & * & * \\
\hline *Main & Reach 1 & * & 4.767 & * & 35* & 60* & 63* \\
\hline *Main & Reach 1 & * & 4.756 & * & 35* & 39* & 40* \\
\hline *Main & Reach 1 & * & 4.748 & * & 59* & 62* & 63* \\
\hline *Main & Reach 1 & * & 4.737 & * & 69* & 66* & 64* \\
\hline *Main & Reach 1 & * & 4.724 & * & 118* & 102* & 100* \\
\hline *Main & Reach 1 & * & 4.705 & * & 45* & 48* & 50* \\
\hline *Main & Reach 1 & * & 4.696 & * & 74* & 72* & 68* \\
\hline *Main & Reach 1 & * & 4.682 & * & 47* & 49* & 53* \\
\hline *Main & Reach 1 & * & 4.673 & * & 173* & 155* & 129* \\
\hline *Main & Reach 1 & * & 4.643 & * & 0* & 0* & 0* \\
\hline *Main & Reach 2 & * & 4.596 & * & 258* & 256* & 261* \\
\hline *Main & Reach 2 & * & 4.547 & * & 202* & 203* & 209* \\
\hline *Main & Reach 2 & * & 4.509 & * & 95* & 90* & 60* \\
\hline *Main & Reach 2 & * & 4.492 & * & 0* & 0* & 0* \\
\hline *Main & Reach 3 & * & 4.477 & * & 33* & 35* & 36* \\
\hline *Main & Reach 3 & * & 4.47 & * & 90* & 122* & 140* \\
\hline *Main & Reach 3 & * & 4.447 & * & 90* & 112* & 103* \\
\hline *Main & Reach 3 & * & 4.426 & * & 102* & 90* & 100* \\
\hline *Main & Reach 3 & * & 4.409 & * & 98* & 90* & 75* \\
\hline *Main & Reach 3 & * & 4.392 & * & 125* & 107* & 95* \\
\hline *Main & Reach 3 & * & 4.371 & * & 108* & 98* & 108* \\
\hline *Main & Reach 3 & * & 4.353 & * & 85* & 105* & 101* \\
\hline *Main & Reach 3 & * & 4.333 & * & 88* & 96* & 95* \\
\hline *Main & Reach 3 & * & 4.315 & * & 93* & 135* & 140* \\
\hline *Main & Reach 3 & * & 4.289 & * & 107* & 143* & 155* \\
\hline *Main & Reach 3 & * & 4.262 & * & 100* & 102* & 100* \\
\hline *Main & Reach 3 & * & 4.243 & * & 128* & 97* & 82* \\
\hline *Main & Reach 3 & * & 4.225 & * & 121* & 105* & 105* \\
\hline *Main & Reach 3 & * & 4.205 & * & 75* & 83* & 70* \\
\hline *Main & Reach 3 & * & 4.189 & * & 125* & 109* & 95* \\
\hline *Main & Reach 3 & * & 4.169 & * & 105* & 92* & 100* \\
\hline *Main & Reach 3 & * & 4.151 & * & 255* & 261* & 246* \\
\hline *Main & Reach 3 & * & 4.102 & * & 244* & 248* & 236* \\
\hline *Main & Reach 3 & * & 4.055 & * & 304* & 306* & 306* \\
\hline *Main & Reach 3 & * & 3.997 & * & 267* & 279* & 276* \\
\hline *Main & Reach 3 & * & 3.944 & * & 302* & 278* & 263* \\
\hline *Main & Reach 3 & * & 3.891 & * & 203* & 191* & 183* \\
\hline *Main & Reach 3 & * & 3.855 & * & 203* & 219* & 224* \\
\hline *Main & Reach 3 & * & 3.813 & * & 353* & 343* & 341* \\
\hline *Main & Reach 3 & * & 3.748 & * & 0* & 0* & -* \\
\hline *Main & Reach 4 & * & 3.656 & * & 461* & 482* & 488* \\
\hline *Main & Reach 4 & * & 3.565 & * & 218* & 230* & 238* \\
\hline *Main & Reach 4 & * & 3.521 & * & 133* & 144* & 158* \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline *Main & Reach 4 & * & 3.494 & * & 145* & 145* & 145* \\
\hline *Main & Reach 4 & * & 3.479 & & t * & * & * \\
\hline *Main & Reach 4 & * & 3.466 & * & 125* & 138* & 130* \\
\hline *Main & Reach 4 & * & 3.440 & * & 205* & 197* & 174* \\
\hline *Main & Reach 4 & * & 3.403 & * & 91* & 89* & 102* \\
\hline *Main & Reach 4 & * & 3.386 & * & 480* & 501* & 476* \\
\hline *Main & Reach 4 & * & 3.291 & * & 507* & 563* & 585* \\
\hline *Main & Reach 4 & * & 3.185 & * & 398* & 360* & 315* \\
\hline *Main & Reach 4 & * & 3.116 & * & 448* & 450* & 453* \\
\hline *Main & Reach 4 & * & 3.031 & * & 791* & 822* & 791* \\
\hline *Main & Reach 4 & * & 2.876 & * & 290* & 273* & 243* \\
\hline *Main & Reach 4 & * & 2.824 & * & 410* & 386* & 366* \\
\hline *Main & Reach 4 & * & 2.751 & * & 454* & 536* & 623* \\
\hline *Main & Reach 4 & * & 2.649 & * & 566* & 517* & 474* \\
\hline *Main & Reach 4 & * & 2.551 & * & 513* & 494* & 492* \\
\hline *Main & Reach 4 & * & 2.458 & * & 518* & 504* & 500* \\
\hline *Main & Reach 4 & * & 2.362 & * & 281* & 305* & 311* \\
\hline *Main & Reach 4 & * & 2.305 & * & 11* & 195* & 196* \\
\hline *Main & Reach 4 & * & 2.268 & * & 184* & 184* & 184* \\
\hline *Main & Reach 4 & * & 2.251 & & t & * & * \\
\hline *Main & Reach 4 & * & 2.233 & * & 420* & 364* & 182* \\
\hline *Main & Reach 4 & * & 2.164 & * & 207* & 208* & 209* \\
\hline *Main & Reach 4 & * & 2.125 & * & 409* & 412* & 415* \\
\hline *Main & Reach 4 & * & 2.047 & * & 139* & 145* & 146* \\
\hline *Main & Reach 4 & * & 2.019 & * & 116* & 116* & 116* \\
\hline *Main & Reach 4 & * & 2.008 & & t * & * & * \\
\hline *Main & Reach 4 & * & 1.997 & * & 293* & 308* & 327* \\
\hline *Main & Reach 4 & * & 1.939 & * & 269* & 291* & 287* \\
\hline *Main & Reach 4 & * & 1.884 & * & 563* & 578* & 547* \\
\hline *Main & Reach 4 & * & 1.774 & * & 492* & 501* & 513* \\
\hline *Main & Reach 4 & * & 1.679 & * & 519* & 500* & 467* \\
\hline *Main & Reach 4 & * & 1.585 & * & 524* & 527* & 479* \\
\hline *Main & Reach 4 & * & 1.485 & * & 572* & 599* & 632* \\
\hline *Main & Reach 4 & * & 1.371 & * & 530* & 508* & 480* \\
\hline *Main & Reach 4 & * & 1.275 & * & 430* & 526* & 581* \\
\hline *Main & Reach 4 & * & 1.176 & * & 460* & 441* & 395* \\
\hline *Main & Reach 4 & * & 1.092 & * & 452* & 519* & 530* \\
\hline *Main & Reach 4 & * & 0.994 & * & 496* & 507* & 511* \\
\hline *Main & Reach 4 & * & 0.898 & * & 423* & 476* & 497* \\
\hline *Main & Reach 4 & * & 0.808 & * & 481* & 516* & 560* \\
\hline *Main & Reach 4 & * & 0.710 & * & 600* & 497* & 415* \\
\hline *Main & Reach 4 & * & 0.616 & * & 490* & 487* & 525* \\
\hline *Main & Reach 4 & * & 0.523 & * & 560* & 540* & 525* \\
\hline *Main & Reach 4 & * & 0.421 & * & 520* & 523* & 530* \\
\hline *Main & Reach 4 & * & 0.322 & * & 547* & 545* & 530* \\
\hline *Main & Reach 4 & * & 0.219 & * & 578* & 569* & 461* \\
\hline *Main & Reach 4 & * & 0.111 & * & 592* & 587* & 500* \\
\hline *Main & Reach 4 & * & 0.000 & * & 0* & 0* & 0* \\
\hline
\end{tabular}

River: Pontatoc Cnyn

SUMMARY OF CONTRACTION AND EXPANSION COEFFICIENTS
River: Coronado Split F

River: Finger Rock Wash

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline *Main & Reach 3 & * & 4.315 & * & .1* & .3* \\
\hline *Main & Reach 3 & * & 4.289 & * & .1* & .3* \\
\hline *Main & Reach 3 & * & 4.262 & * & .1* & .3* \\
\hline *Main & Reach 3 & * & 4.243 & * & .1* & . 3 * \\
\hline *Main & Reach 3 & * & 4.225 & * . & .1* & . \({ }^{*}\) \\
\hline *Main & Reach 3 & * & 4.205 & * . & .1* & . \({ }^{*}\) \\
\hline *Main & Reach 3 & * & 4.189 & * & .1* & .3* \\
\hline *Main & Reach 3 & * & 4.169 & * & .1* & .3* \\
\hline *Main & Reach 3 & * & 4.151 & * & .1* & . 3 * \\
\hline *Main & Reach 3 & * & 4.102 & * & .1* & .3* \\
\hline *Main & Reach 3 & * & 4.055 & * & .1* & . 3 * \\
\hline *Main & Reach 3 & * & 3.997 & * & .1* & . 3 * \\
\hline *Main & Reach 3 & * & 3.944 & * . & .1* & . \({ }^{*}\) \\
\hline *Main & Reach 3 & * & 3.891 & * & .1* & . \({ }^{*}\) \\
\hline *Main & Reach 3 & * & 3.855 & * & .1* & . \({ }^{*}\) \\
\hline *Main & Reach 3 & * & 3.813 & * & .1* & . \({ }^{*}\) \\
\hline *Main & Reach 3 & * & 3.748 & * . & .1* & . \({ }^{*}\) \\
\hline *Main & Reach 4 & * & 3.656 & * & .1* & . 3 * \\
\hline *Main & Reach 4 & * & 3.565 & * & .1* & . 3 * \\
\hline *Main & Reach 4 & * & 3.521 & * & .3* & . 5 * \\
\hline *Main & Reach 4 & * & 3.494 & * & .3* & . \({ }^{*}\) \\
\hline *Main & Reach 4 & * & 3.479 & *Culvert & * & * \\
\hline *Main & Reach 4 & * & 3.466 & * & . \(3^{*}\) & . 5* \\
\hline *Main & Reach 4 & * & 3.440 & * & .1* & . \({ }^{*}\) \\
\hline *Main & Reach 4 & * & 3.403 & * . & .1* & .3* \\
\hline *Main & Reach 4 & * & 3.386 & * . & .1* & . \({ }^{*}\) \\
\hline *Main & Reach 4 & * & 3.291 & * . & .1* & . 3 * \\
\hline *Main & Reach 4 & * & 3.185 & * . & .1* & .3* \\
\hline *Main & Reach 4 & * & 3.116 & * . & .1* & . 3 * \\
\hline *Main & Reach 4 & * & 3.031 & * . & .1* & . \({ }^{*}\) \\
\hline *Main & Reach 4 & * & 2.876 & * . & .1* & . \({ }^{*}\) \\
\hline *Main & Reach 4 & * & 2.824 & * . & .1* & . 3 * \\
\hline *Main & Reach 4 & * & 2.751 & * & .1* & . 3 * \\
\hline *Main & Reach 4 & * & 2.649 & * . & .1* & . 3 * \\
\hline *Main & Reach 4 & * & 2.551 & * . & .1* & . 3 * \\
\hline *Main & Reach 4 & * & 2.458 & * & .1* & . \({ }^{*}\) \\
\hline *Main & Reach 4 & * & 2.362 & * & .1* & . 3 * \\
\hline *Main & Reach 4 & * & 2.305 & * . & .3* & . 5* \\
\hline *Main & Reach 4 & * & 2.268 & * & .3* & . 5 * \\
\hline *Main & Reach 4 & * & 2.251 & *Culvert & * & * \\
\hline *Main & Reach 4 & * & 2.233 & * & . \(3^{*}\) & . \({ }^{*}\) \\
\hline *Main & Reach 4 & * & 2.164 & * . & .1* & . 3 * \\
\hline *Main & Reach 4 & * & 2.125 & * . & .1* & . \({ }^{*}\) \\
\hline *Main & Reach 4 & * & 2.047 & * . & .3* & . \({ }^{*}\) \\
\hline *Main & Reach 4 & * & 2.019 & * & .3* & . \({ }^{*}\) \\
\hline *Main & Reach 4 & * & 2.008 & *Culvert & * & * \\
\hline *Main & Reach 4 & * & 1.997 & * & . \(3^{*}\) & . 5* \\
\hline *Main & Reach 4 & * & 1.939 & * . & .1* & . 3 * \\
\hline *Main & Reach 4 & * & 1.884 & * . & .1* & .3* \\
\hline *Main & Reach 4 & * & 1.774 & * & .1* & . 3 * \\
\hline *Main & Reach 4 & * & 1.679 & * & .1* & . 3 * \\
\hline *Main & Reach 4 & * & 1.585 & * & .1* & . 3 * \\
\hline *Main & Reach 4 & * & 1.485 & * . & .1* & . 3 * \\
\hline *Main & Reach 4 & * & 1.371 & * & .1* & . \({ }^{*}\) \\
\hline *Main & Reach 4 & * & 1.275 & * & .1* & .3* \\
\hline *Main & Reach 4 & * & 1.176 & * . & .1* & .3* \\
\hline *Main & Reach 4 & * & 1.092 & * . & .1* & . 3 * \\
\hline *Main & Reach 4 & * & 0.994 & * & .1* & .3* \\
\hline *Main & Reach 4 & * & 0.898 & * & .1* & . 3 * \\
\hline *Main & Reach 4 & * & 0.808 & * & .1* & . \({ }^{*}\) \\
\hline *Main & Reach 4 & * & 0.710 & * . & .1* & . \({ }^{*}\) \\
\hline *Main & Reach 4 & * & 0.616 & * & .1* & . \({ }^{*}\) \\
\hline *Main & Reach 4 & * & 0.523 & * & .1* & . \({ }^{*}\) \\
\hline *Main & Reach 4 & * & 0.421 & * & .1* & . \({ }^{*}\) \\
\hline *Main & Reach 4 & * & 0.322 & * & .1* & .3* \\
\hline *Main & Reach 4 & * & 0.219 & * & .1* & . 3 * \\
\hline *Main & Reach 4 & * & 0.111 & * & .1* & . 3 * \\
\hline *Main & Reach 4 & * & 0.000 & * & .1* & . 3 * \\
\hline
\end{tabular}

River: Pontatoc Cnyn

* Reach

*Pontatoc Cnyn *
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline *Pontatoc & Cnyn & * & 0.087 & * & .3* & . 5* \\
\hline *Pontatoc & Cnyn & * & 0.081 & * & .3* & . \({ }^{*}\) \\
\hline *Pontatoc & Cnyn & * & 0.078 & *Culvert & * & * \\
\hline *Pontatoc & Cnyn & * & 0.07 & * & .3* & . \({ }^{*}\) \\
\hline *Pontatoc & Cnyn & * & 0.059 & * & .1* & . 3 * \\
\hline *Pontatoc & Cnyn & * & 0.049 & * & .1* & .3* \\
\hline *Pontatoc & Cnyn & * & 0.039 & * & .1* & .3* \\
\hline *Pontatoc & Cnyn & * & 0.030 & * & .1* & . \(3^{*}\) \\
\hline *Pontatoc & Cnyn & * & 0.019 & * & .1* & . \({ }^{*}\) \\
\hline *Pontatoc & Cnyn & * & 0.013 & * & .1* & .3* \\
\hline *Pontatoc & Cnyn & * & 0.007 & * & .1* & .3* \\
\hline *Pontatoc & Cnyn & * & 0.000 & * & .1* & .3* \\
\hline
\end{tabular}

\section*{ERRORS WARNINGS AND NOTES}

Errors Warnings and Notes for Plan : FRW_NAVD88
River: Coronado Split F Reach: Cor Split Reach RS: 0.854 Profile: 100-yr
 for the water surface and continued on with the calculations.
Warning:The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.
Warning:The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Coronado Split F Reach: Cor Split Reach RS: 0.851 Profile: 100-yr

Warning:The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Coronado Split F Reach: Cor Split Reach RS: 0.847 Profile: 100-yr
 for the water surface and continued on with the calculations.
Warning: Divided flow computed for this cross-section.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
Note: Manning's \(n\) values were composited to a single value in the main channel.
River: Coronado Split F Reach: Cor Split Reach RS: 0.839 Profile: 100-yr

Warning:The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Coronado Split F Reach: Cor Split Reach RS: 0.830 Profile: 100-yr
 for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Coronado Split F Reach: Cor Split Reach RS: 0.822 Profile: 100-yr

Warning:The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Coronado Split F Reach: Cor Split Reach RS: 0.813 Profile: 100-yr
 for the water surface and continued on with the calculations.
Warning: Divided flow computed for this cross-section.
Warning:The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.
Warning:The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Coronado Split F Reach: Cor Split Reach RS: 0.804 Profile: 100-yr

Warning:The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Coronado Split F Reach: Cor Split Reach RS: 0.794 Profile: 100-yr
Warning:Divided flow computed for this cross-section.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Coronado Split F Reach: Cor Split Reach RS: 0.784 Profile: 100-yr

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning:Divided flow computed for this cross-section.
Warning:The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: The composite Mannings \(n\) value for the channel was larger than the largest entered \(n\) value or smaller than the smallest entered \(n\) value.
Note: Manning's \(n\) values were composited to a single value in the main channel.
River: Coronado Split F Reach: Cor Split Reach RS: 0.762 Profile: 100-yr
Warning:The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Coronado Split F Reach: Cor Split Reach RS: 0.749 Profile: 100-yr
Warning:Divided flow computed for this cross-section.
Warning:The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4 . This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Coronado Split F Reach: Cor Split Reach RS: 0.738 Profile: 100-yr
Warning:The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Coronado Split F Reach: Cor Split Reach RS: 0.727 Profile: 100-yr
Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning:Divided flow computed for this cross-section.
Warning:The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Coronado Split F Reach: Cor Split Reach RS: 0.718 Profile: 100-yr
Warning:The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Coronado Split F Reach: Cor Split Reach RS: 0.708 Profile: 100-yr
Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning:Divided flow computed for this cross-section.
Warning:The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Coronado Split F Reach: Cor Split Reach RS: 0.700 Profile: 100-yr
Warning:The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Coronado Split F Reach: Cor Split Reach RS: 0.691 Profile: 100-yr
Warning: Divided flow computed for this cross-section.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Coronado Split F Reach: Cor Split Reach RS: 0.684 Profile: 100-yr
Warning:The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Coronado Split F Reach: Cor Split Reach RS: 0.677 Profile: 100-yr
Warning: Divided flow computed for this cross-section.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Coronado Split F Reach: Cor Split Reach RS: 0.670 Profile: 100-yr
Warning:The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Coronado Split F Reach: Cor Split Reach RS: 0.662 Profile: 100-yr
Warning: Divided flow computed for this cross-section.
Warning:The cross-section end points had to be extended vertically for the computed water surface.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Coronado Split F Reach: Cor Split Reach RS: 0.652 Profile: 100-yr
Warning:The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Coronado Split F Reach: Cor Split Reach RS: 0.642 Profile: 100-yr
Warning:Divided flow computed for this cross-section.
Warning: The cross-section end points had to be extended vertically for the computed water surface.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate
the need for additional cross sections.
River: Coronado Split F Reach: Cor Split Reach RS: 0.625 Profile: 100-yr
Warning:The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Coronado Split F Reach: Cor Split Reach RS: 0.608 Profile: 100-yr
Warning: Divided flow computed for this cross-section.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Note: Manning's \(n\) values were composited to a single value in the main channel.
River: Coronado Split F Reach: Cor Split Reach RS: 0.595 Profile: 100-yr
Warning:The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning:The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Coronado Split F Reach: Cor Split Reach
RS: 0.581
Profile: 100-yr
Warning:Divided flow computed for this cross-section.
Warning:The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Coronado Split F Reach: Cor Split Reach RS: 0.571 Profile: 100-yr
Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Coronado Split F Reach: Cor Split Reach RS: 0.561 Profile: 100-yr
Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning:Divided flow computed for this cross-section.
Warning:The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Coronado Split F Reach: Cor Split Reach RS: 0.544 Profile: 100-yr
Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Coronado Split F Reach: Cor Split Reach RS: 0.527 Profile: 100-yr
Warning:Divided flow computed for this cross-section.
Warning:The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4 . This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Coronado Split F Reach: Cor Split Reach RS: 0.482 Profile: 100-yr
Warning:The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning:The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4 . This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Coronado Split F Reach: Cor Split Reach RS: 0.448 Profile: 100-yr
Warning:The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4 . This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Note: Manning's \(n\) values were composited to a single value in the main channel.
River: Coronado Split F Reach: Cor Split Reach RS: 0.423 Profile: 100-yr
Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning:The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
Note: Manning's \(n\) values were composited to a single value in the main channel.
River: Coronado Split F Reach: Cor Split Reach RS: 0.399 Profile: 100-yr
Warning:The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4 . This may indicate the need for additional cross sections.
River: Coronado Split F Reach: Cor Split Reach RS: 0.382 Profile: 100-yr
Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated
water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Coronado Split F Reach: Cor Split Reach RS: 0.352 Profile: 100-yr
 for the water surface and continued on with the calculations.
Warning:The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.
Warning:The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
Note: Manning's \(n\) values were composited to a single value in the main channel.
River: Coronado Split F Reach: Cor Split Reach RS: 0.319 Profile: 100-yr
Warning:The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.
Warning:The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Coronado Split F Reach: Cor Split Reach RS: 0.271 Profile: 100-yr
Warning:The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Note: Manning's n values were composited to a single value in the main channel.
River: Coronado Split F Reach: Cor Split Reach RS: 0.221 Profile: 100-yr
 for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Coronado Split F Reach: Cor Split Reach RS: 0.186 Profile: 100-yr
Warning: Divided flow computed for this cross-section.
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.
Warning:The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Coronado Split F Reach: Cor Split Reach RS: 0.114 Profile: 100-yr
 for the water surface and continued on with the calculations.
Warning:The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.
Warning:The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Coronado Split F Reach: Cor Split Reach RS: 0.079 Profile: 100-yr
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.
Warning:The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Coronado Split F Reach: Cor Split Reach RS: 0 Profile: 100-yr
 for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach \(1 \quad\) RS: 4.800 Profile: 100-yr
 for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 1 RS: 4.792 Profile: 100-yr

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Finger Rock Wash Reach: Main Reach 1 RS: 4.783 Profile: 100-yr
 for the water surface and continued on with the calculations.

Warning:The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 1 RS: 4.771 Profile: 100-yr Culv: PlCoronadoMC

Warning:Since the culvert has supercritical flow, the program should be run in mixed flow in order to check if the cross section downstream of the culvert has supercritical flow.
Note: The flow in the culvert is entirely supercritical.
River: Finger Rock Wash Reach: Main Reach \(1 \quad\) RS: 4.767 Profile: 100-yr
 for the water surface and continued on with the calculations.

Warning:The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 1 RS: 4.756 Profile: 100-yr
 for the water surface and continued on with the calculations.
Warning:The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 1 RS: 4.748 Profile: 100-yr
 for the water surface and continued on with the calculations.
Warning:The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 1 RS: 4.737 Profile: 100-yr
 for the water surface and continued on with the calculations.
Warning: Divided flow computed for this cross-section.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 1 RS: 4.724 Profile: 100-yr
 for the water surface and continued on with the calculations.
Warning:The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 1 RS: 4.705 Profile: 100-yr
 for the water surface and continued on with the calculations.
Warning:The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach \(1 \quad\) RS: 4.696 Profile: 100-yr
 for the water surface and continued on with the calculations.
Warning:The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 1 RS: 4.682 Profile: 100-yr
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Finger Rock Wash Reach: Main Reach \(1 \quad\) RS: 4.673 Profile: 100-yr
 for the water surface and continued on with the calculations.
Warning:The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 1 RS: 4.643 Profile: 100-yr
 for the water surface and continued on with the calculations.

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 2 RS: 4.547 Profile: 100-yr
Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning:The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 2 RS: 4.509 Profile: 100-yr
Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning:The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 2 RS: 4.492 Profile: 100-yr
Warning:The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning:A flow split was encountered. The program first calculated the momentum of both channels below the junction. An energy balance was performed across the junction from the stream with the highest momentum downstream to the section upstream.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 3 RS: 4.477 Profile: 100-yr
Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 3 RS: 4.47 Profile: 100-yr
Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning:Divided flow computed for this cross-section.
Warning:The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 3 RS: 4.447 Profile: 100-yr
Warning:The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: Divided flow computed for this cross-section.
Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 3 RS: 4.426 Profile: 100-yr
Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: Divided flow computed for this cross-section.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 3 RS: 4.409 Profile: 100-yr
Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning:The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated
water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 3 RS: 4.392 Profile: 100-yr
Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning:Divided flow computed for this cross-section.
Warning:The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 3 RS: 4.371 Profile: 100-yr
Warning:The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning:Divided flow computed for this cross-section.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 3 RS: 4.353 Profile: 100-yr
Warning:The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 3 RS: 4.333 Profile: 100-yr
Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 3 RS: 4.315 Profile: 100-yr
Warning:The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning:Divided flow computed for this cross-section.
Warning:The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning:The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 3 RS: 4.289 Profile: 100-yr
Warning:The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning:The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 3 RS: 4.262 Profile: 100-yr
Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 3 RS: 4.243 Profile: 100-yr
Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning:Divided flow computed for this cross-section.
Warning:The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 3 RS: 4.225 Profile: 100-yr
Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning:Divided flow computed for this cross-section.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The
program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 3 RS: 4.205 Profile: 100-yr
Warning:The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 3 RS: 4.189 Profile: 100-yr
Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning:The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 3 RS: 4.169 Profile: 100-yr
Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning:The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 3 RS: 4.151 Profile: 100-yr
Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: Divided flow computed for this cross-section.
Warning:The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 3 RS: 4.102 Profile: 100-yr
Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 3 RS: 4.055 Profile: 100-yr
Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Finger Rock Wash Reach: Main Reach 3 RS: 3.997 Profile: 100-yr
Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 3 RS: 3.944 Profile: 100-yr
Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 3 RS: 3.891 Profile: 100-yr
Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 3 RS: 3.855 Profile: 100-yr
Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 3 RS: 3.813 Profile: 100-yr
Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning:Divided flow computed for this cross-section.
Warning:The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 3 RS: 3.748 Profile: 100-yr
Warning:The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning:The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 4 RS: 3.656 Profile: 100-yr
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Finger Rock Wash Reach: Main Reach 4 RS: 3.565 Profile: 100-yr
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Finger Rock Wash Reach: Main Reach 4 RS: 3.521 Profile: 100-yr
Warning:The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4 . This may indicate the need for additional cross sections.
River: Finger Rock Wash Reach: Main Reach 4 RS: 3.479 Profile: 100-yr Culv: Skyline Dr
Note: The normal depth exceeds the height of the culvert. The program assumes that the normal depth is equal to the height of the culvert.
Note: Culvert critical depth exceeds the height of the culvert.
Note: During the supercritical calculations a hydraulic jump occurred inside of the culvert.
Note: The culvert inlet is submerged and the culvert flows full over part or all of its length. Therefore, the culvert inlet equations are not valid and the supercritical result has been discarded. The outlet answer will be used.
River: Finger Rock Wash Reach: Main Reach 4 RS: 3.466 Profile: 100-yr
Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning:The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4 . This may indicate the need for additional cross sections.
Warning:The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 4 RS: 3.440 Profile: 100-yr
Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning:The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 4 RS: 3.403 Profile: 100-yr
Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Finger Rock Wash Reach: Main Reach 4 RS: 3.386 Profile: 100-yr
Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 4 RS: 3.291 Profile: 100-yr
Warning:The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Finger Rock Wash Reach: Main Reach 4 RS: 3.185 Profile: 100-yr
Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Finger Rock Wash Reach: Main Reach 4 RS: 3.116 Profile: 100-yr
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Finger Rock Wash Reach: Main Reach 4 RS: 3.031 Profile: 100-yr
Warning:The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections. Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Finger Rock Wash Reach: Main Reach 4 RS: 2.876 Profile: 100-yr
Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning:The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections. Warning:The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 4 RS: 2.824 Profile: 100-yr
Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Finger Rock Wash Reach: Main Reach 4 RS: 2.751 Profile: 100-yr
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Finger Rock Wash Reach: Main Reach 4 RS: 2.649 Profile: 100-yr
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Finger Rock Wash Reach: Main Reach 4 RS: 2.551 Profile: 100-yr
Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning:The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 4 RS: 2.458 Profile: 100-yr
Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 4 RS: 2.362 Profile: 100-yr
Warning:The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4 . This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Finger Rock Wash Reach: Main Reach 4 RS: 2.305 Profile: 100-yr
Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
River: Finger Rock Wash Reach: Main Reach 4 RS: 2.251 Profile: 100-yr Culv: Sunrise Dr
Note: The flow in the culvert is entirely supercritical.
River: Finger Rock Wash Reach: Main Reach 4 RS: 2.233 Profile: 100-yr
Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning:Divided flow computed for this cross-section.
Warning:The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 4 RS: 2.164 Profile: 100-yr
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Finger Rock Wash Reach: Main Reach 4 RS: 2.125 Profile: 100-yr
Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning:The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning:The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4 . This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 4 RS: 2.047 Profile: 100-yr
Warning:The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.
River: Finger Rock Wash Reach: Main Reach 4 RS: 2.008 Profile: 100-yr Culv: Pontatoc Cyn
Note: During subcritical analysis, the culvert direct step method, the solution went to normal depth.
River: Finger Rock Wash Reach: Main Reach 4 RS: 1.997 Profile: 100-yr
Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning:The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning:The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4 . This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The
program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 4 RS: 1.939 Profile: 100-yr
Warning:The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 4 RS: 1.884 Profile: 100-yr
Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning:The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 4 RS: 1.774 Profile: 100-yr
Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 4 RS: 1.679 Profile: 100-yr
Warning:The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Finger Rock Wash Reach: Main Reach 4 RS: 1.585 Profile: 100-yr
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Finger Rock Wash Reach: Main Reach 4 RS: 1.485 Profile: 100-yr
Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning:The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Finger Rock Wash Reach: Main Reach 4 RS: 1.371 Profile: 100-yr
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Finger Rock Wash Reach: Main Reach 4 RS: 1.275 Profile: 100-yr
Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning:The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 4 RS: 1.176 Profile: 100-yr
Warning:Divided flow computed for this cross-section.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Finger Rock Wash Reach: Main Reach 4 RS: 1.092 Profile: 100-yr
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Finger Rock Wash Reach: Main Reach 4 RS: 0.994 Profile: 100-yr
Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning:The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections
Warning:The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.
Warning:The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 4 RS: 0.898 Profile: 100-yr
Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning:The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Finger Rock Wash Reach: Main Reach 4 RS: 0.808 Profile: 100-yr
Warning:The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Finger Rock Wash Reach: Main Reach 4 RS: 0.710 Profile: 100-yr
Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning:The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Finger Rock Wash Reach: Main Reach 4
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Finger Rock Wash Reach: Main Reach 4 RS: 0.523 Profile: 100-yr
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Finger Rock Wash Reach: Main Reach 4 RS: 0.421 Profile: 100-yr
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Finger Rock Wash Reach: Main Reach 4 RS: 0.322 Profile: 100-yr
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Finger Rock Wash Reach: Main Reach 4 RS: 0.219 Profile: 100-yr
Warning:The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Finger Rock Wash Reach: Main Reach 4 RS: 0.111 Profile: 100-yr
Warning:The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning:The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4 . This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Pontatoc Cnyn Reach: Pontatoc Cnyn RS: 0.154 Profile: 100-yr
Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Pontatoc Cnyn Reach: Pontatoc Cnyn RS: 0.147 Profile: 100-yr
Warning:The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.
Warning:The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4 . This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
River: Pontatoc Cnyn Reach: Pontatoc Cnyn RS: 0.138 Profile: 100-yr
Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning:The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Pontatoc Cnyn Reach: Pontatoc Cnyn RS: 0.128 Profile: 100-yr
Warning:The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Pontatoc Cnyn Reach: Pontatoc Cnyn RS: 0.117 Profile: 100-yr
Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning:The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning:The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Pontatoc Cnyn Reach: Pontatoc Cnyn RS: 0.097 Profile: 100-yr
Warning: The velocity head has changed by more than \(0.5 \mathrm{ft}(0.15 \mathrm{~m})\). This may indicate the need for additional cross sections.
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.
River: Pontatoc Cnyn Reach: Pontatoc Cnyn RS: 0.092 Profile: 100-yr
Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Pontatoc Cnyn Reach: Pontatoc Cnyn RS: 0.087 Profile: 100-yr
Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.
Warning:The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated
water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Pontatoc Cnyn Reach: Pontatoc Cnyn RS: 0.078 Profile: 100-yr Culv: PlCoronadoPC
Warning: Since the culvert has supercritical flow, the program should be run in mixed flow in order to check if the cross section downstream of the culvert has supercritical flow.
Note: The flow in the culvert is entirely supercritical.
River: Pontatoc Cnyn Reach: Pontatoc Cnyn RS: 0.07 Profile: 100-yr
 for the water surface and continued on with the calculations.

Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Pontatoc Cnyn Reach: Pontatoc Cnyn RS: 0.059 Profile: 100-yr
 for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Pontatoc Cnyn Reach: Pontatoc Cnyn RS: 0.049 Profile: 100-yr
 for the water surface and continued on with the calculations.
Warning:The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Pontatoc Cnyn Reach: Pontatoc Cnyn RS: 0.039 Profile: 100-yr
 for the water surface and continued on with the calculations.
Warning:The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Pontatoc Cnyn Reach: Pontatoc Cnyn RS: 0.030 Profile: 100-yr
 for the water surface and continued on with the calculations.
Warning:The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Pontatoc Cnyn Reach: Pontatoc Cnyn RS: 0.019 Profile: 100-yr
 for the water surface and continued on with the calculations.
Warning:The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Pontatoc Cnyn Reach: Pontatoc Cnyn RS: 0.013 Profile: 100-yr
 for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Pontatoc Cnyn Reach: Pontatoc Cnyn RS: 0.007 Profile: 100-yr
 for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.
River: Pontatoc Cnyn Reach: Pontatoc Cnyn RS: 0.000 Profile: 100-yr
 for the water surface and continued on with the calculations.
Warning: The energy loss was greater than \(1.0 \mathrm{ft}(0.3 \mathrm{~m})\). between the current and previous cross section. This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

\title{
FWrIN OUITUT THELE - STD TABLEI
}

10/14/10 RUN DATE
FILENAME: FRW88,pr'
HEC-RAS Plan: FRW_NAVD88 Profile: 100-yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline River & Reach & River Sta & Q Total & Min ChEl & W.S. Elev & Crit W.S. & E.G. Elev & E.G. Slope & Vel Chnl & Flow Area & Top Width & Froude \# Chl \\
\hline & & & (cfs) & (ft) & (ft) & (ft) & (ft) & (fuft) & (\(\mathrm{fl} / \mathrm{s}\)) & (sq ft) & (ft) & \\
\hline Pontatoc Cnyn & Pontatoc Cnyn & 0.154 & 2503.00 & 3076.20 & 3082.80 & 3082.79 & 3085.25 & 0.035414 & 12.64 & 206.46 & 44.89 & 0.97 \\
\hline Pontatoc Cnyn & Pontatoc Cnyn & 0.147 & 2503.00 & 3076.20 & 3082.75 & & 3083.91 & 0.019315 & 8.64 & 290.66 & 64.79 & 0.70 \\
\hline Pontatoc Cnyn & Pontatoc Cnyn & 0.138 & 2503.00 & 3073.00 & 3080.46 & 3080.46 & 3082.51 & 0.041702 & 11.49 & 218.26 & 54.93 & 1.00 \\
\hline Pontatoc Cnyn & Pontatoc Cnyn & 0.128 & 2503.00 & 3060.00 & 3068.32 & 3068.32 & 3071.02 & 0.042960 & 13.18 & 189.95 & 35.86 & 1.00 \\
\hline Pontatoc Cnyn & Pontatoc Cnyn & 0.117 & 2503.00 & 3059.00 & 3065.59 & 3065.59 & 3068.20 & 0.039558 & 12.96 & 194.60 & 38.79 & 1.00 \\
\hline Pontatoc Cnyn & Pontatoc Cnyn & 0.107 & 2503.00 & 3056.50 & 3064.54 & & 3065.84 & 0.015553 & 9.22 & 279.54 & 51.31 & 0.65 \\
\hline Pontatoc Cnyn & Pontatoc Cnyn & 0.097 & 2503.00 & 3057.00 & 3064.16 & & 3065.04 & 0.011385 & 7.56 & 340.89 & 68.44 & 0.55 \\
\hline Pontatoc Cnyn & Pontatoc Cnyn & 0.092 & 2503.00 & 3056.50 & 3062.34 & 3062.34 & 3064.36 & 0.041588 & 11.40 & 219.95 & 56.62 & 1.00 \\
\hline Pontatoc Cnyn & Pontatoc Cnyn & 0.087 & 2503.00 & 3052.80 & 3058.04 & 3058.04 & 3059.99 & 0.043645 & 11.21 & 223.37 & 58.06 & 1.01 \\
\hline Pontatoc Cnyn & Pontatoc Cnyn & 0.081 & 2503.00 & 3049.50 & 3057.52 & 3055.36 & 3059.10 & 0.012516 & 10.07 & 248.66 & 53.43 & 0.63 \\
\hline Pontatoc Cnyn & Pontatoc Cnyn & 0.078 & Culvert & & & & & & & & & \\
\hline Pontatoc Cnyn & Pontatoc Cnyn & 0.07 & 2503.00 & 3046.40 & 3052.28 & 3052.28 & 3055.24 & 0.035801 & 13.80 & 181.44 & 78.91 & 1.00 \\
\hline Pontatoc Cnyn & Pontatoc Cnyn & 0.059 & 2503.00 & 3040.00 & 3045.77 & 3045.77 & 3047.50 & 0.042904 & 10.57 & 236.75 & 68.12 & 1.00 \\
\hline Pontatoc Cnyn & Pontatoc Cnyn & 0.049 & 2503.00 & 3036.00 & 3040.67 & 3040.67 & 3042.34 & 0.044383 & 10.37 & 241.47 & 73.65 & 1.01 \\
\hline Pontatoc Cnyn & Pontatoc Cnyn & 0.039 & 2503.00 & 3028.00 & 3033.20 & 3033.20 & 3034.95 & 0.043701 & 10.60 & 236.18 & 68.71 & 1.01 \\
\hline Pontatoc Cnyn & Pontatoc Cnyn & 0.030 & 2503.00 & 3021.50 & 3026.04 & 3026.04 & 3027.54 & 0.045349 & 9.83 & 254.55 & 86.28 & 1.01 \\
\hline Pontatoc Cnyn & Pontatoc Cnyn & 0.019 & 2503.00 & 3015.00 & 3021.38 & 3021.38 & 3023.14 & 0.043250 & 10.65 & 234.96 & 67.09 & 1.00 \\
\hline Pontatoc Cnyn & Pontatoc Cnyn & 0.013 & 2503.00 & 3014.00 & 3018.96 & 3018.96 & 3020.50 & 0.042708 & 9.98 & 254.18 & 87.66 & 0.99 \\
\hline Pontatoc Cnyn & Pontatoc Cnyn & 0.007 & 2503.00 & 3008.00 & 3015.03 & 3015.03 & 3017.05 & 0.038850 & 11.44 & 223.91 & 63.36 & 0.98 \\
\hline Pontatoc Cnyn & Pontatoc Cnyn & 0.000 & 2503.00 & 3005.00 & 3011.15 & 3011.15 & 3013.03 & 0.042455 & 10.99 & 227.77 & 60.77 & 1.00 \\
\hline Finger Rock Wash & Main Reach 1 & 4.800 & 2324.00 & 3074.00 & 3079.01 & 3079.01 & 3080.88 , & 0.043326 & 10.98 & 211.62 & 57.11 & 1.01 \\
\hline Finger Rock Wash & Main Reach 1 & 4.792 & 2324.00 & 3069.00 & 3076.55 & 3076.16 & 3078.41 & 0.032590 & 10.96 & 212.55 & 46.80 & 0.89 \\
\hline Finger Rock Wash & Main Reach 1 & 4.783 & 2324.00 & 3067.00 & 3074.17 & 3074.17 & 3076.62 & 0.042258 & 12.54 & 185.34 & 38.43 & 1.00 \\
\hline Finger Rock Wash & Main Reach 1 & 4.778 & 2324.00 & 3065.20 & 3073.37 & 3071.19 & 3074.98 & 0.012505 & 10.19 & 228.08 & 36.76 & 0.63 \\
\hline Finger Rock Wash & Main Reach 1 & 4.771 & Culvert & & & & & & & & & \\
\hline Finger Rock Wash & Main Reach 1 & 4.767 & 2324.00 & 3062.20 & 3068.17 & 3068.17 & 3071.17 & 0.035317 & 13.92 & 167.01 & 57.69 & 1.00 \\
\hline Finger Rock Wash & Main Reach 1 & 4.756 & 2324.00 & 3059.00 & 3064.42 & 3064.42 & 3065.98 & 0.043914 & 10.03 & 232.14 & 75.90 & 1.00 \\
\hline Finger Rock Wash & Main Reach 1 & 4.748 & 2324.00 & 3056.00 & 3061.42 & 3061.42 & 3062.63 & 0.048301 & 8.84 & 263.33 & 110.78 & 1.00 \\
\hline Finger Rock Wash & Main Reach 1 & 4.737 & 2324.00 & 3050.00 & 3055.75 & 3055.75 & 3057.09 & 0.040601 & 9.85 & 283.54 & 134.39 & 0.96 \\
\hline Finger Rock Wash & Main Reach 1 & 4.724 & 2324.00 & 3045.00 & 3048.23 & 3048.23 & 3049.20 & 0.051673 & 7.90 & 294.00 & 152.07 & 1.00 \\
\hline Finger Rock Wash & Main Reach 1 & 4.705 & 2324.00 & 3037.00 & 3041.20 & 3041.20 & 3042.51 & 0.047923 & 9.19 & 252.94 & 98.34 & 1.01 \\
\hline Finger Rock Wash & Main Reach 1 & 4.696 & 2324.00 & 3031.00 & 3037.39 & 3037.39 & 3039.02 & 0.044804 & 10.25 & 226.64 & 70.42 & 1.01 \\
\hline Finger Rock Wash & Main Reach 1 & 4.682 & 2324.00 & 3023.00 & 3030.22 & 3029.95 & 3031.88 & 0.035091 & 10.33 & 225.11 & 56.64 & 0.91 \\
\hline Finger Rock Wash & Main Reach 1 & 4.673 & 2324.00 & 3023.00 & 3028.05 & 3028.05 & 3029.95 & 0.042979 & 11.08 & 209.66 & 55.47 & 1.00 \\
\hline Finger Rock Wash & Main Reach 1 & 4.643 & 2324.00 & 3011.00 & 3016.08 & 3016.08 & 3017.64 & 0.045460 & 10.02 & 231.87 & 76.52 & 1.01 \\
\hline Finger Rock Wash & Main Reach 2 & 4.596 & 5284.00 & 2991.00 & 3000.49 & 3000.49 & 3002.81 & 0.022146 & 13.78 & 523.32 & 112.00 & 0.88 \\
\hline IFinger Rock Wash & Main Reach 2 & 4.547 & 5284.00 & 2983.00 & 2990.78 & 2990.78 & 2993.88 & 0.027749 & 15.19 & 420.49 & 75.44 & 0.99 \\
\hline IFinger Rock Wash & Main Reach 2 & 4.509 & 5284.00 & 2971.00 & 2982.03 & 2982.03 & 2984.83 & 0.019448 & 14.02 & 462.67 & 94.52 & 0.82 \\
\hline Finger Rock Wash & Main Reach 2 & 4.492 & 5284.00 & 2970.00 & 2977.18 & 2977.18 & 2979.46 & 0.021636 & 12.14 & 440.15 & 102.74 & 0.99 \\
\hline 1 Finger Rock Wash & Main Reach 3 & 4.477 & 3361.56 & 2967.80 & 2974.74 & 2974.74 & 2976.49 & 0.021572 & 11.88 & 339.50 & 153.64 & 0.85 \\
\hline Finger Rock Wash & Main Reach 3 & 4.47 & 3523.65 & 2966.20 & 2972.88 & 2972.88 & 2974.58 & 0.025122 & 10.90 & 353.13 & 169.41 & 0.87 \\
\hline ifinger Rock Wash & Main Reach 3 & 4.447 & 3523.65 & 2954.50 & 2963.63 & 2963.63 & 2966.53 & 0.028049 & 14.05 & 290.40 & 107.13 & 0.95 \\
\hline Finger Rock Wash & Main Reach 3 & 4.426 & 4089.64 & 2952.00 & 2959.41 & 2959.41 & 2961.33 & 0.023024 & 11.73 & 428.80 & 151.31 & 0.86 \\
\hline Finger Rock Wash & Main Reach 3 & 4.409 & 4089.64 & 2947.50 & 2953.59 & 2953.59 & 2955.05 & 0.024250 & 11.03 & 526.87 & 186.04 & 0.87 \\
\hline Finger Rock Wash & Main Reach 3 & 4.392 & 4640.72 & 2940.00 & 2948.05 & 2948.05 & 2950.22 & 0.025287 & 13.12 & 477.04 & 149.59 & 0.91 \\
\hline Finger Rock Wash & Main Reach 3 & 4.371 & 4640.72 & 2936.00 & 2943.66 & 2943.66 & 2945.25 & 0.021639 & 11.77 & 601.27 & 225.12 & 0.84 \\
\hline Finger Rock Wash & Main Reach 3 & 4.353 & 4992.19 & 2930.00 & 2937.02 & 2937.02 & 2939.03 & 0.030789 & 12.19 & 508.13 & 160.98 & 0.97 \\
\hline Finger Rock Wash & Main Reach 3 & 4.333 & 5073.97 & 2925.50 & 2931.34 & 2931.34 & 2933.04 & 0.049643 & 12.28 & 513.66 & 165.14 & 1.16 \\
\hline Finger Rock Wash & Main Reach 3 & 4.315 & 5073.97 & 2919.50 & 2924.84 & 2924.84 & 2926.85 & 0.032374 & 12.37 & 545.20 & 213.65 & 1.00 \\
\hline Finger Rock Wash & Main Reach 3 & 4.289 & 5118.95 & 2912.50 & 2919.18 & 2919.18 & 2920.50 & 0.024305 & 11.63 & 714.89 & 248.13 & 0.88 \\
\hline Finger Rock Wash & Main Reach 3 & 4.262 & 5118.95 & 2905.50 & 2912.57 & 2912.57 & 2914.00 & 0.018257 & 10.22 & 668.54 & 259.72 & 0.77 \\
\hline Finger Rock Wash & Main Reach 3 & 4.243 & 5118.95 & 2899.50 & 2906.58 & 2906.58 & 2908.81 & 0.028024 & 12.08 & 448.01 & 119.09 & 0.93 \\
\hline Finger Rock Wash & Main Reach 3 & 4.225 & 5118.95 & 2897.00 & 2902.61 & 2902.61 & 2904.29 & 0.034643 & 10.41 & 497.98 & 164.49 & 0.98 \\
\hline Finger Rock Wash & Main Reach 3 & 4.205 & 5163.18 & 2889.00 & 2897.10 & 2897.10 & 2898.86 & 0.030665 & 10.70 & 511.58 & 183.81 & 0.94 \\
\hline Finger Rock Wash & Main Reach 3 & 4.189 & 5163.18 & 2883.50 & 2892.27 & 2892.27 & 2894.35 & 0.021558 & 11.92 & 516.14 & 160.52 & 0.84 \\
\hline Finger Rock Wash & Main Reach 3 & 4.169 & 5163.18 & 2877.60 & 2885.81 & 2885.81 & 2888.16 & 0.034041 & 12.29 & 420.21 & 90.53 & 1.01 \\
\hline Finger Rock Wash & Main Reach 3 & 4.151 & 5163.18 & 2875.00 & 2881.99 & 2881.99 & 2884.04 & 0.031515 & 11.51 & 453.45 & 129.85 & 0.97 \\
\hline Finger Rock Wash & Main Reach 3 & 4.102 & 5163.18 & 2867.50 & 2872.27 & 2872.27 & 2873.26 & 0.027984 & 11.28 & 830.35 & 358.03 & 0.93 \\
\hline Finger Rock Wash & Main Reach 3 & 4.055 & 5163.18 & 2858.00 & 2860.67 & & 2861.30 & 0.036373 & 7.93 & 827.31 & 365.82 & 0.94 \\
\hline Finger Rock Wash & Main Reach 3 & 3.997 & 5163.18 & 2845.00 & 2848.16 & 2848.16 & 2849.35 & 0.041822 & 9.66 & 633.66 & 269.54 & 1.04 \\
\hline Finger Rock Wash & Main Reach 3 & 3.944 & 5163.18 & 2830.50 & 2836.27 & 2836.27 & 2837.53 & 0.027214 & 10.67 & 696.12 & 275.84 & 0.90 \\
\hline Finger Rock Wash & Main Reach 3 & 3.891 & 5163.18 & 2821.00 & 2827.24 & 2827.24 & 2828.25 & 0.019109 & 8.48 & 793.96 & 660.08 & 0.75 \\
\hline Finger Rock Wash & Main Reach 3 & 3.855 & 5163.18 & 2816.30 & 2821.67 & 2821.67 & 2822.75 & 0.028468 & 11.40 & 776.97 & 508.46 & 0.93 \\
\hline Finger Rock Wash & Main Reach 3 & 3.813 & 5163.18 & 2810.00 & 2813.82 & 2813.82 & 2814.91 & 0.037057 & 9.65 & 704.76 & 416.10 & 0.99 \\
\hline Finger Rock Wash & Main Reach 3 & 3.748 & 5163.18 & 2796.00 & 2803.28 & 2803.28 & 2804.30 & 0.014433 & 9.34 & 921.28 & 438.40 & 0.69 \\
\hline Finger Rock Wash & Main Reach 4 & 3.656 & 6162.00 & 2785.00 & 2792.41 & & 2792.86 & 0.008957 & 8.09 & 1366.96 & 370.11 & 0.56 \\
\hline Finger Rock Wash & Main Reach 4 & 3.565 & 6162.00 & 2773.00 & 2789.10 & & 2789.40 & 0.005878 & 5.53 & 1451.65 & 330.70 & 0.43 \\
\hline Finger Rock Wash & Main Reach 4 & 3.521 & 6162.00 & 2772.13 & 2787.47 & & 2787.74 & 0.009535 & 5.46 & 1526.56 & 452.99 & 0.52 \\
\hline Finger Rock Wash & Main Reach 4 & 3.494 & 6162.00 & 2767.30 & 2787.48 & 2777.52 & 2787.61 & 0.000133 & 3.25 & 2321.79 & 472.47 & 0.21 \\
\hline Fincer Rock Wash & Main Reach 4 & 3.479 & Culvert & & & & & & & & & \\
\hline Finger Rock Wash & Main Reach 4 & 3.466 & 6162.00 & 2760.40 & 2767.22 & 2767.22 & 2768.83 & 0.004054 & 10.17 & 606.05 & 190.11 & 1.00 \\
\hline
\end{tabular}
HEC-RAS Plan: FRW_NAVD88 Profile: 100-yr (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline River & Reach & River Sta & Q Total & Min ChEl & W.S. Elev & Crit W.S. & E.G. Elev & E.G. Slope & Vel Chnl & Flow Area & Top Width & Froude \# Chl \\
\hline & & & (cfs) & (ft) & (ft) & (ft) & (ft) & (tt/t) & (fl/s) & (sq ft) & (ft) & \\
\hline Finger Rock Wash & Main Reach 4 & 3.440 & 6162.00 & 2757.00 & 2762.90 & 2762.90 & 2764.78 & 0.024952 & 14.14 & 670.37 & 201.93 & 1.09 \\
\hline Finger Rock Wash & Main Reach 4 & 3.403 & 6060.00 & 2751.50 & 2757.16 & 2757.16 & 2758.57 & 0.024196 & 13.01 & 769.73 & 252.33 & 1.05 \\
\hline Finger Rock Wash & Main Reach 4 & 3.386 & 6060.00 & 2748.00 & 2754.90 & 2754.90 & 2756.30. & 0.022646 & 13.54 & 801.11 & 250.28 & 1.03 \\
\hline Finger Rock Wash & Main Reach 4 & 3.291 & 6060.00 & 2738.00 & 2743.45 & 2743.08 & 2744.56 & 0.021815 & 11.66 & 801.51 & 226.65 & 0.97 \\
\hline Finger Rock Wash & Main Reach 4 & 3.185 & 6060.00 & 2725.11 & 2731.59 & 2731.42 & 2733.57 & 0.019059 & 13.30 & 644.81 & 154.02 & 0.97 \\
\hline Finger Rock Wash & Main Reach 4 & 3.116 & 6060.00 & 2718.00 & 2725.63 & & 2727.00 & 0.017342 & 12.25 & 737.79 & 166.98 & 0.90 \\
\hline Finger Rock Wash & Main Reach 4 & 3.031 & 6060.00 & 2710.00 & 2715.92 & 2715.84 & 2717.38 & 0.026725 & 13.09 & 720.97 & 212.85 & 1.08 \\
\hline Finger Rock Wash & Main Reach 4 & 2.876 & 6368.00 & 2692.00 & 2699.28 & 2699.28 & 2701.29 & 0.015483 & 12.96 & 713.72 & 183.46 & 0.89 \\
\hline Finger Rock Wash & Main Reach 4 & 2.824 & 6368.00 & 2688.00 & 2694.01 & & 2695.34 & 0.019195 & 12.11 & 777.53 & 187.75 & 0.94 \\
\hline 5inger Rock Wash & Main Reach 4 & 2.751 & 6368.00 & 2678.00 & 2686.77 & & 2688.75 & 0.015564 & 14.49 & 751.74 & 175.37 & 0.91 \\
\hline Finger Rock Wash & Main Reach 4 & 2.649 & 6368.00 & 2670.00 & 2677.35 & 2676.51 & 2679.25 & 0.020015 & 15.89 & 651.03 & 114.41 & 1.03 \\
\hline Finger Rock Wash & Main Reach 4 & 2.551 & 6368.00 & 2658.00 & 2666.84 & 2666.84 & 2669.10 & 0.018223 & 15.25 & 661.88 & 136.82 & 0.98 \\
\hline Finger Rock Wash & Main Reach 4 & 2.458 & 6368.00 & 26488.00 & 2656.58 & 2656.58 & 2657.89 & 0.013792 & 11.16 & 973.39 & 498.94 & 0.82 \\
\hline Finger Rock Wash & Main Reach 4 & 2.362 & 6368.00 & 2641.00 & 2646.91 & & 2647.53 & 0.011327 & 9.47 & 1254.34 & 493.59 & 0.73 \\
\hline Finger Rock Wash & Main Reach 4 & 2.305 & 6368.00 & 2637.00 & 2644.91 & & 2645.34 & 0.005206 & 7.45 & 1370.45 & 349.79 & 0.51 \\
\hline Finger Rock Wash & Main Reach 4 & 2.268 & 6368.00 & 2635.60 & 2643.76 & 2640.80 & 2644.74 & 0.003675 & 8.11 & 801.10 & 151.89 & 0.50 \\
\hline Finger Rock Wash & Main Reach 4 & 2.251 & Culvert & & & & & & & & & \\
\hline Finger Rock Wash & Main Reach 4 & 2.233 & 6368.00 & 2632.00 & 2636.86 & 2636.86 & 2639.23 & 0.018075 & 12.34 & 515.91 & 284.47 & 1.00 \\
\hline Finger Rock Wash & Main Reach 4 & 2.164 & 6368.00 & 2623.00 & 2626.95 ! & 2626.76 & 2628.09 & 0.022166 & 10.51 & 814.75 & 456.40 & 1.05 \\
\hline Finger Rock Wash & Main Reach 4 & 2.125 & 6114.00 & 2618.00 & 2622.59 & 2622.59 & 2623.75 & 0.019644 & 12.28 & 867.74 & 446.80 & 1.04 \\
\hline Finger Rock Wash & Main Reach 4 & 2.047 & 6114.00 & 2614.00 & 2620.62 & & 2620.82 & 0.001109 , & 3.77 & 1865.94 & 405.49 & 0.26 \\
\hline Finger Rock Wash & Main Reach 4 & 2.019 & 6114.00 & 2611.00 & 2620.56 & 2615.79 & 2620.75 & 0.000244 & 4.11 & 2060.28 & 446.32 & 0.24 \\
\hline Finger Rock Wash & Main Reach 4 & 2.008 & Culvert & & & & & & & & & \\
\hline Finger Rock Wash & Main Reach 4 & 1.997 & 6114.00 & 2609.00 & 2612.89 & 2612.89 & 2613.95 & 0.005355 & 8.75 & 780.55 & 368.43 & 0.91 \\
\hline Finger Pock Wash & Main Reach 4 & 1.939 & 6114.00 & 2601.00 & 2608.77 & 2608.77 & 2610.57 & 0.016326 & 13.37 & 699.29 & 344.52 & 0.99 \\
\hline Finger Rock Wash & Main Reach 4 & 1.884 & 5756.00 & 2597.00 & 2602.85 & 2602.85 & 2604.20 & 0.017729 & 12.62 & 781.95 & 274.29 & 1.01 \\
\hline Finger Rock Wash & Main Reach 4 & 1.774 & 5756.00 & 2587.00 & 2593.37 & 2593.37 & 2594.16 & 0.010678 & 10.05 & 1232.96 & 644.28 & 0.78 \\
\hline Finger Rock Wash & Main Reach 4 & 1.679 & 5756.00 & 2580.50 & 2584.06 & & 2584.49 & 0.015976 & 8.09 & 1176.24 & 570.71 & 0.87 \\
\hline Finger Rock Wash & Main Reach 4 & 1.585 & 5756.00 & 2570.00 & 2574.28 & 2573.91 & 2575.12 & 0.021886 & 9.96 & 835.52 & 316.86 & 1.03 \\
\hline Finger Rock Wash & Main Reach 4 & 1.485 & 5756.00 & 2562.00 & 2564.81 & & 2565.47 & 0.015781 & 7.75 & 892.76 & 275.48 & 0.85 \\
\hline Fiinger Rock Wash & Main Reach 4 & 1.371 & 5756.00 & 2548.00 & 2556.31 & & 2557.56 & 0.011317 & 11.79 & 948.96 & 398.27 & 0.83 \\
\hline Finger Rock Wash & Main Reach 4 & 1.275 & 5756.00 & 2541.50 & 2549.60 & 2549.60 & 2550.91 & 0.015499 & 12.64 & 809.22 & 269.32 & 0.95 \\
\hline Firiger Rock Wash & Main Reach 4 & 1.176 & 5756.00 & 2533.00 & 2540.57 & 2540.52 & 2541.55 & 0.018154 & 11.46 & 874.05 & 340.08 & 0.98 \\
\hline Finger Rock Wash & Main Reach 4 & 1.092 & 5756.00 & 2525.50 & 2532.56 & 2532.31 & 2534.04 & 0.016461 & 12.20 & 676.50 & 237.52 & 0.97 \\
\hline Finger Rock Wash & Main Reach 4 & 0.994 & 5756.00 & 2517.50 & 2522.58 & 2522.58 & 2523.73 & 0.023847 & 12.51 & 786.36 & 305.56 & 1.12 \\
\hline Finger Rock Wash & Main Reach 4 & 0.898 & 5653.00 & 2511.00 & 2515.25 & & 2515.70 & 0.008874 & 7.57 & 1154.30 & 377.54 & 0.68 \\
\hline Finger Rock Wash & Main Reach 4 & 0.808 & 5653.00 & 2503.00 & 2507.69 & 2507.68 & 2508.92 & 0.027136 & 13.94 & 722.22 & 264.04 & 1.21 \\
\hline Finger Rock Wash & Main Reach 4 & 0.710 & 5653.00 & 2491.50 & 2498.81 & 2498.81 & 2499.97 & 0.012457 & 11.98 & 899.48 & 398.77 & 0.87 \\
\hline Finger Rock Wash & Main Reach 4 & 0.616 & 5653.00 & 2485.50 & 2489.50 & & 2490.15 & 0.015205 & 9.62 & 986.03 & 417.24 & 0.89 \\
\hline Finger Rock Wash & Main Reach 4 & 0.523 & 5653.00 & 2478.85 & 2480.94 & & 2481.53 & 0.018873 & 6.87 & 949.18 & 407.69 & 0.89 \\
\hline Finger Rock Wash & Main Reach 4 & 0.421 & 5589.00 & 2468.32 & 2470.42 & 2470.12 & 2470.91 & 0.020335 & 7.40 & 1075.83 & 616.02 & 0.93 \\
\hline Finger Rock Wash & Main Reach 4 & 0.322 & 5589.00 & 2457.00 & 2459.98 & 2459.56 & 2460.46 & 0.019551 & 8.45 & 1067.33 & 596.89 & 0.95 \\
\hline Finger Rock Wash & Main Reach 4 & 0.219 & 5589.00 & 2448.00 & 2451.95 & 2451.34 & 2452.42 & 0.011853 & 7.41 & 1135.27 & 498.49 & 0.76 \\
\hline Finger Rock Wash & Main Reach 4 & 0.111 & 5589.00 & 2439.00 & 2442.47 & 2441.95 & 2443.43 & 0.031031 & 12.00 & 831.72 & 437.80 & 1.23 \\
\hline Finger Rock Wash & Main Reach 4 & 0.000 & 5589.00 & 2429.00 & 2431.95 & 2431.50 & 2432.35 & 0.014999 & 7.42 & 1203.82 & 631.01 & 0.83 \\
\hline Coronado Split F & Cor Split Reach & 0.854 & 1922.44 & 2970.10 & 2974.65 & 2974.65 & 2976.49 & 0.008195 & 11.11 & 197.80 & 152.01 & 0.99 \\
\hline Coronado Split F & Cor Split Reach & 0.851 & Lat Struct & & & & & & & & & \\
\hline Coronado Split F & Cor Split Reach & 0.847 & 1760.35 & 2968.70 & 2972.70 & 2972.70 & 2974.08 & 0.032563 & 9.45 & 186.31 & 165.63 & 1.01 \\
\hline Coronado Split F & Cor Split Reach & 0.839 & Lat Struct & & & & & & & & & \\
\hline Coronado Split F & Cor Split Reach & 0.830 & 1476.49 & 2963.50 & 2966.41 & 2966.41 & 2967.69 & 0.013518 & 9.09 & 167.41 & 255.17 & 0.99 \\
\hline Coronado Split F & Cor Split Reach & 0.822 & Lat Struct & & & & & & & & & \\
\hline Coronado Split F & Cor Split Reach & 0.813 & 1194.36 & 2959.00 & 2961.67 & 2961.67 & 2962.49 & 0.015444 & 7.28 & 164.06 & 257.84 & 1.01 \\
\hline Coronado Split F & Cor Split Reach & 0.804 & Lat Struct & & & & & & & & & \\
\hline Coronado Split F & Cor Split Reach & 0.794 & 711.84 & 2954.00 & 2956.03 & 2956.03 & 2956.57 & 0.056782 & 5.86 & 121.67 & 335.44 & 0.99 \\
\hline Coronado Split F & Cor Split Reach & 0.784 & Lat Struct & & & & & & & & & \\
\hline Coronado Split F & Cor Split Reach & 0.774 & 643.28 & 2947.70 & 2950.78 & 2950.31 & 2951.36 & 0.043251 & 6.08 & 105.73 & 301.21 & 0.74 \\
\hline Coronado Split F & Cor Split Reach & 0.762 & Lat Struct & & & & & & & & & \\
\hline Coronado Split F & Cor Split Reach & 0.749 & 291.81 & 2943.00 & 2946.03 & & 2946.24 & 0.026866 & 3.66 & 79.67 & 335.80 & 0.53 \\
\hline Coronado Split F & Cor Split Reach & 0.738 & Lat Struct & & & & & & & & & \\
\hline Coronado Split F & Cor Split Reach & 0.727 & 229.97 & 2940.00 & 2941.29 & 2941.29 & 2941.63 & 0.079162 & 4.71 & 48.85 & 411.16 & 1.02 \\
\hline Coronado Split F & Cor Split Reach & 0.718 & Lat Struct & & & & & & & & & \\
\hline Coronado Split F & Cor Split Reach & 0.708 & 210.03 & 2935.50 & 2936.43 & 2936.43 & 2936.80 & 0.014068 & 4.87 & 43.11 & 367.72 & 1.01 \\
\hline Coronado Split F & Cor Split Reach & 0.700 & Lat Struct & & & & & & & & & \\
\hline Coronado Split F & Cor Split Reach & 0.691 & 165.05 & 2931.00 & 2932.21 & 2932.15 & 2932.34 & 0.049540 & 2.92 & 56.65 & 449.24 & 0.80 \\
\hline Coronado Split F & Cor Split Reach & 0.684 & Lat Struct & & & & & & & & & \\
\hline Coronado Split F & Cor Split Reach & 0.677 & 165.05 & 2925.00 & 2926.99 & 2926.92 & 2927.53 & 0.090198 & 5.87 & 28.09 & 334.91 & 0.94 \\
\hline Coronado Split F & Cor Split Reach & 0.670 & Lat Struct & & & & & & & & & \\
\hline Coronado Split F & Cor Split Reach & 0.662 & 165.05 & 2919.50 & 2921.27 & 2921.05 & 2921.56 & 0.057517 & 4.30 & 38.42 & 395.94 & 0.75 \\
\hline Coronado Split F & Cor Split Reach & 0.652 & Lat Struct & & & & & & & & & \\
\hline Coronado Split F & Cor Split Reach & 0.642 & 165.05 & 2915.00 & 2916.67 & 2916.35 & 2916.84 & 0.038158 & 3.33 & 49.51 & 461.42 & 0.61 \\
\hline Coronado Split F & Cor Split Reach & 0.625 & Lat Struct & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{HEC-RAS Plan: FRW_NAVD88 Profile: 100-yr (Continued)} \\
\hline River & Reach & River Sta & Q Total & Min ChEl & W.S. Elev & Crit W.S. & E.G. Elev & E.G. Slope & Vel Chnl & Flow Area & Top Width & Froude \# Chl \\
\hline & & & (cfs) & (ft) & (ft) & (ft) & (ft) & (fuft) & (ft/s) & (sq ft) & (ft) & \\
\hline Coronado Split F & Cor Split Reach & 0.608 & 165.05 & 2908.00 & 2908.95 & 2908.84 & 2909.07 & 0.048982 & 2.85 & 57.83 & 504.22 & 0.75 \\
\hline Coronado Split F & Cor Split Reach & 0.595 & Lat Struct & & & & & & & & & \\
\hline Coronado Split F & Cor Split Reach & 0.581 & 120.82 & 2902.00 & 2902.38 & 2902.37 & 2902.53 & 0.039222 & 3.11 & 38.88 & 533.12 & 0.97 \\
\hline Coronado Split F & Cor Split Reach & 0.571 & Lat Struct & & & & & & & & & \\
\hline Coronado Split F & Cor Split Reach & 0.561 & 120.82 & 2895.00 & 2895.54 & 2895.54 & 2895.78 & 0.130710 & 3.92 & 30.79 & 348.59 & 1.01 \\
\hline Coronado Split F & Cor Split Reach & 0.544 & Lat Struct & & & & & & & & & \\
\hline Coronado Split F & Cor Split Reach & 0.527 & 120.82 & 2886.50 & 2887.79 & 2887.46 & 2887.93 & 0.019044 & 3.00 & 40.24 & 204.25 & 0.58 \\
\hline ICoronado Split F & Cor Split Reach & 0.482 & 120.82 & 2878.00 & 2879.37 & 2879.37 & 2879.82 & 0.076830 & 5.36 & 22.54 & 25.68 & 1.01 \\
\hline Coronado Split F & Cor Split Reach & 0.448 & 120.82 & 2868.00 & 2869.59 & & 2869.65 & 0.006864 & 1.86 & 65.08 & 52.70 & 0.29 \\
\hline Coronado Split F & Cor Split Reach & 0.423 & 120.82 & 2866.00 & 2867.07 & 2867.07 & 2867.48 & 0.078212 & 5.16 & 23.42 & 28.73 & 1.01 \\
\hline Coronado Split F & Cor Split Reach & 0.399 & 120.82 & 2856.50 & 2858.51 & & 2858.51 & 0.000333 & 0.48 & 251.83 & 186.21 & 0.07 \\
\hline Coronado Split F & Cor Split Reach & 0.382 & 120.82 & 2856.00 & 2857.80 & 2857.80 & 2858.36 & 0.053593 & 5.99 & 20.18 & 18.47 & 1.01 \\
\hline Coronado Split F & Cor Split Reach & 0.352 & 120.82 & 2847.50 & 2848.18 & 2848.18 & 2848.41 & 0.068970 & 3.82 & 31.65 & 70.33 & 1.00 \\
\hline Coronado Split F & Cor Split Reach & 0.319 & 120.82 & 2842.00 & 2843.38 & & 2843.46 & 0.011933 & 2.28 & 52.98 & 60.62 & 0.43 \\
\hline Coronado Split F & Cor Split Reach & 0.271 & 120.82 & 2838.00 & 2839.03 & & 2839.15 & 0.026097 & 2.78 & 43.42 & 59.32 & 0.57 \\
\hline Coronado Split F & Cor Split Reach & 0.221 & 120.82 & 2832.50 & 2833.69 & 2833.69 & 2834.07 & 0.014854 & 4.93 & 24.50 & 33.04 & 1.01 \\
\hline Coronado Split F & Cor Split Reach & 0.186 & 120.82 & 2826.00 & 2826.92 & & 2827.00 & 0.014669 & 2.34 & 52.68 & 528.54 & 0.49 \\
\hline Coronado Split F & Cor Split Reach & 0.114 & 120.82 & 2815.40 & 2816.07 & 2816.07 & 2816.28 & 0.074787 & 3.65 & 33.09 & 81.55 & 1.01 \\
\hline Coronado Split F & Cor Split Reach & 0.079 & 120.82 & 2808.40 & 2809.91 & & 2810.05 & 0.017603 & 2.98 & 40.59 & 45.75 & 0.56 \\
\hline Coronado Split F & Cor Split Reach & 0 & 120.82 & 2796.00 & 2797.26 & 2797.26 & 2797.63 & 0.061351 & 4.93 & 24.50 & 33.01 & 1.01 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline rRotill ou 10/14/co & \(\sim \triangle A T E\) & & - & & & & & & & & & & 1061 \\
\hline FILENARE & FRW83. & & & & & & & & & & & & \\
\hline HEC-RAS Plan: FR & NAVD88 Profile & 00-yr & & & & & & & & & & & \\
\hline River & Reach & & River Sta & E.G. US. & W.s. Us. & E.G. IC & E.g. \(\cap\) C & Min El Weir Flow & Q Culv Group & Q Weir & Deltal WS & Culv Vel US & Culv Vel DS \\
\hline & & & & (f) & (ft) & (ft) & (ft) & (ft) & (cfs) & (cfs) & (it) & (ft/s) & (ft/s) \\
\hline Pontatoc Cnyn & Pontatoc Cnyn & 0.078 & PICoronadoPC & 3059.11 & 3057.52 & 3058.89 & 3059.11 & 3067.25 & 2503.00 & & 5.24 & 14.41 & 19.82 \\
\hline Finger Rock Wash & Main Reach 1 & 4.771 & PICoronadoMC & 3074.99 & 3073.37 & 3074.97 & 3074.99 & 3080.33 & 2324.00 & & 5.20 & 14.80 & 18.78 \\
\hline Finger Rock Wash & Main Reach 4 & 3.479 & Skyline Dr & 2787.61 & 2787.48 & 2787.61 & 2787.61 & 2783.93 & 231.61 & 5930.39 & 20.26 & 18.43 & 18.43 \\
\hline Finger Rock Wash & Main Reach 4 & 2.251 & Sunrise Dr & 2644.74 & 2643.76 & 2644.11 & 2644.74 & 2653.87 & 6368.00 & & 6.90 & 13.16 & 20.59 \\
\hline Finger Rock Wash & Main Reach 4 & 2.008 & Pontatoc Cyn & 2620.75 & 2620.56 & 2620.75 & 2620.61 & 2617.45 & 2831.00 & 3283.00 & 7.67 & 12.81 & 12.94 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Coronado Split F & cors \\
\hline Coronado Split F & Cor Split \\
\hline Coronado Split F & Cor Spilit Reach \\
\hline Coronado Split F & Cors \\
\hline Coronado Split F & Cor Split Reach \\
\hline Coronado Split F & Cor Split Re \\
\hline Coronado Split F & Cor Spit Reach \\
\hline Coronado Split F & Cor Split R \\
\hline Coronado Split F & Cor Spit Reach \\
\hline Coronado Split F & Cor Split Reach \\
\hline Coronado Split F & Cor Split Reach \\
\hline Coronado Split F & Cor Split Reach \\
\hline Coronado Split F & Cor Spili Reach \\
\hline Onado Split F & Cor Spil Reach \\
\hline Coronado Split F & Cor Split Reach \\
\hline Coronado Spli & \\
\hline
\end{tabular}

\section*{E. 5 - HEC-RAS MODEL (WITHOUT SKYLINE DRIVE CULVERT) OUTPUT SUMMARY TABLES}

Filename: fRWse-NoSkylineCu/w.prs
prgfile output table - std table I
RUN DATE: \(10 / 14 / 10\)

HEC-RAS Plan: NoSkylineDr River: Finger Rock Wash Reach: Main Reach 4 Profile: 100 yr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Reach & River Sta & Q Total & Min Ch El & W.S. Elev & Crit W.S. & E.G. Elev & E.G. Slope & Vel Chnl & Flow Area & Top Width & Froude \# Chl \\
\hline & & (cfs) & (ft) & (ft) & (ft) & (ft) & (ft/f) & (ft/s) & (sq ft) & (ft) & \\
\hline Main Reach 4 & 3.656 & 6162.00 & 2785.00 & 2789.97 & 2789.97 & 2792.94 & 0.089624 & 18.82 & 554.14 & 247.88 & 1.63 \\
\hline Main Reach 4 & 3.565 & 6162.00 & 2773.00 & 2780.60 & 2778.75 & 2781.33 & 0.010226 & 9.21 & 1058.12 & 226.97 & 0.60 \\
\hline Main Reach 4 & 3.521 & 6162.00 & 2772.13 & 2775.39 & 2775.39 & 2776.74 & 0.057329 & 12.28 & 698.62 & 263.38 & 1.24 \\
\hline Main Reach 4 & 3.494 & 6162.00 & 2767.30 & 2773.26 & 2773.26 & 2774.49 & 0.003318 & 9.41 & 736.18 & 304.05 & 0.92 \\
\hline Main Reach 4 & 3.440 & 6162.00 & 2757.00 & 2762.90 & -2762.90 & 2764.78 & 0.024952 & 14.14 & 670.37 & 201.93 & 1.09 \\
\hline Main Reach 4 & 3.403 & 6060.00 & 2751.50 & 2757.16 & 2757.16 & 2758.57 & 0.024196 & 13.01 & 769.73 & 252.33 & 1.05 \\
\hline Main Reach 4 & 3.386 & 6060.00 & 2748.00 & 2754.90 & 2754.90 & 2756.30 & 0.022646 & 13.54 & 801.11 & 250.28 & 1.03 \\
\hline Main Reach 4 & 3.291 & 6060.00 & 2738.00 & 2743.45 & 2743.08 & 2744.56 & 0.021815 & 11.66 & 801.51 & 226.65 & 0.97 \\
\hline Maiñ Reach 4 & 3.185 & 6060.00 & 2725.11 & 2731.59 & 2731.42 & 2733.57 & 0.019059 & 13.30 & 644.81 & 154.02 & 0.97 \\
\hline Adain Reach 4 & 3.116 & 6060.00 & 2718.00 & 2725.63 & & 2727.00 & 0.017342 & 12.25 & 737.79 & 166.98 & 0.90 \\
\hline Main Reach 4 & 3.031 & 6060.00 & 2710.00 & 2715.92 & 2715.84 & 2717.38 & 0.026725 & 13.09 & 720.97 & 212.85 & 1.08 \\
\hline Main Reach 4 & 2.876 & 6368.00 & 2692.00 & 2699.28 & 2699.28 & 2701.29 & 0.015483 & 12.96 & 713.72 & 183.46 & 0.89 \\
\hline Maiñ Reach 4 & 2.824 & 6368.00 & 2688.00 & 2694.01 & & 2695.34 & 0.019195 & 12.11 & 777.53 & 187.75 & 0.94 \\
\hline Main Reach 4 & 2.751 & 6368.00 & 2678.00 & 2686.77 & & 2688.75 & 0.015564 & 14.49 & 751.74 & 175.37 & 0.91 \\
\hline Main Reach 4 & 2.649 & 6368.00 & 2670.00 & 2677.35 & 2676.51 & 2679.25 & 0.020015 & 15.89 & 651.03 & 114.41 & 1.03 \\
\hline Main Reach 4 & 2.551 & 6368.00 & 2658.00 & 2666.84 & 2666.84 & 2669.10 & 0.018223 & 15.25 & 661.88 & 136.82 & 0.98 \\
\hline Main Reach 4 & 2.458 & 6368.00 & 2648.00 & 2656.58 & 2656.58 & 2657.89 & 0.013792 & 11.16 & 973.39 & 498.94 & 0.82 \\
\hline Main Reach 4 & 2.362 & 6368.00 & 2641.00 & 2646.91 & & 2647.53 & 0.011327 & 9.47 & 1254.34 & 493.59 & 0.73 \\
\hline Main Reach 4 & 2.305 & 6368.00 & 2637.00 & 2644.91 & & 2645.34 & 0.005206 & 7.45 & 1370.45 & 349.79 & 0.51 \\
\hline Main Reach 4 & 2.268 & 6368.00 & 2635.60 & 2643.76 & 2640.80 & 2644.74 & 0.003675 & 8.11 & 801.10 & 151.89 & 0.50 \\
\hline Avain Reach 4 & 2.251 & Culvert & & & & & & & & & \\
\hline Maiñ Reach 4 & 2.233 & 6368.00 & 2632.00 & 2636.86 & 2636.86 & 2639.23 & 0.018075 & 12.34 & 515.91 & 284.47 & 1.00 \\
\hline Main Reach 4 & 2.164 & 6368.00 & 2623.00 & 2626.95 & 2626.76 & 2628.09 & 0.022166 & 10.51 & 814.75 & 456.40 & 1.05 \\
\hline Main Reach 4 & 2.125 & 6114.00 & 2618.00 & 2622.59 & 2622.59 & 2623.75 & 0.019644 & 12.28 & 867.74 & 446.80 & 1.04 \\
\hline Main Reach 4 & 2.047 & 6114.00 & 2614.00 & 2620.62 & & 2620.82 & 0.001109 & 3.77 & 1865.94 & 405.49 & 0.26 \\
\hline Main Reach 4 & 2.019 & 6114.00 & 2611.00 & 2620.56 & 2615.79 & 2620.75 & 0.000244 & 4.11 & 2060.28 & 446.32 & 0.24 \\
\hline Main Reach 4 & 2.008 & Culvert & & & & & & & & & \\
\hline Main Reach 4 & 1.997 & 6114.00 & 2609.00 & 2612.89 & 2612.89 & 2613.95 & 0.005355 & 8.75 & 780.55 & 368.43 & 0.91 \\
\hline Main Reach 4 & 1.939 & 6114.00 & 2601.00 & 2608.77 & 2608.77 & 2610.57 & 0.016326 & 13.37 & 699.29 & 344.52 & 0.99 \\
\hline Main Reach 4 & 1.884 & 5756.00 & 2597.00 & 2602.85 & 2602.85 & 2604.20 & 0.017729 & 12.62 & 781.95 & 274.29 & 1.01 \\
\hline Main Reach 4 & 1.774 & 5756.00 & 2587.00 & 2593.37 & 2593.37 & 2594.16 & 0.010678 & 10.05 & 1232.96 & 644.28 & 0.78 \\
\hline Main Reach 4 & 1.679 & 5756.00 & 2580.50 & 2584.06 & & 2584.49 & 0.015976 & 8.09 & 1176.24 & 570.71 & 0.87 \\
\hline Main Reach 4 & 1.585 & 5756.00 & 2570.00 & 2574.28 & 2573.91 & 2575.12 & 0.021886 & 9.96 & 835.52 & 316.86 & 1.03 \\
\hline Main Reach 4 & 1.485 & 5756.00 & 2562.00 & 2564.81 & & 2565.47 & 0.015781 & 7.75 & 892.76 & 275.48 & 0.85 \\
\hline Main Reach 4 & 1.371 & 5756.00 & 2548.00 & 2556.31 & & 2557.56 & 0.011317 & 11.79 & 948.96 & 398.27 & 0.83 \\
\hline Main Reach 4 & 1.275 & 5756.00 & 2541.50 & 2549.60 & 2549.60 & 2550.91 & 0.015499 & 12.64 & 809.22 & 269.32 & 0.95 \\
\hline AMain Reach 4 & 1.176 & 5756.00 & 2533.00 & 2540.57 & 2540.52 & 2541.55 & 0.018154 & 11.46 & 874.05 & 340.08 & 0.98 \\
\hline Main Reach 4 & 1.092 & 5756.00 & 2525.50 & 2532.56 & 2532.31 & 2534.04 & 0.016461 & 12.20 & 676.50 & 237.52 & 0.97 \\
\hline Main Reach 4 & 0.994 & 5756.00 & 2517.50 & 2522.58 & 2522.58 & 2523.73 & 0.023847 & 12.51 & 786.36 & 305.56 & 1.12 \\
\hline Main Reach 4 & 0.898 & 5653.00 & 2511.00 & 2515.25 & & 2515.70 & 0.008874 & 7.57 & 1154.30 & 377.54 & 0.68 \\
\hline Main Reach 4 & 0.808 & 5653.00 & 2503.00 & 2507.69 & 2507.68 & 2508.92 & 0.027136 & 13.94 & 722.22 & 264.04 & 1.21 \\
\hline Main Reach 4 & 0.710 & 5653.00 & 2491.50 & 2498.81 & 2498.81 & 2499.97 & 0.012457 & 11.98 & 899.48 & 398.77 & 0.87 \\
\hline Main Reach 4 & 0.616 & 5653.00 & 2485.50 & 2489.50 & & 2490.15 & 0.015205 & 9.62 & 986.03 & 417.24 & 0.89 \\
\hline Main Reach 4 & 0.523 & 5653.00 & 2478.85 & 2480.94 & & 2481.53 & 0.018873 & 6.87 & 949.18 & 407.69 & 0.89 \\
\hline Main Peach 4 & 0.421 & 5589.00 & 2468.32 & 2470.42 & 2470.12 & 2470.91 & 0.020335 & 7.40 & 1075.83 & 616.02 & 0.93 \\
\hline Main Reach 4 & 0.322 & 5589.00 & 2457.00 & 2459.98 & 2459.56 & 2460.46 & 0.019551 & 8.45 & 1067.33 & 596.89 & 0.95 \\
\hline inain Reach 4 & 0.219 & 5589.00 & 2448.00 & 2451.95 & 2451.34 & 2452.42 & 0.011853 & 7.41 & 1135.27 & 498.49 & 0.76 \\
\hline Main Reach 4 & 0.111 & 5589.00 & 2439.00 & 2442.47 & 2441.95 & 2443.43 & 0.031031 & 12.00 & 831.72 & 437.80 & 1.23 \\
\hline Main Reach 4 & 0.000 & 5589.00 & 2429.00 & 2431.95 & 2431.50 & 2432.35 & 0.014999 & 7.42 & 1203.82 & 631.01 & 0.83 \\
\hline
\end{tabular}

\section*{APPENDIX F}

\section*{EXHIBIT MAPS}

Figure F-1 - Location Map
Figure F-2 - Watershed Map
Figure F-3 - Hydrologic Soils Group Map
Figure F-4 - Hydraulic Work Maps (Sheets 1-6)
Figure F-5 - Annotated FIRMs (Sheets 1-6) Prelimimary Flood Profiles from RAS-PLOT

\section*{APPENDIX G}

\section*{ELECTRONIC FILES ON DVD}

HEC-1 Model -
Filename: 27028-FR100yrHEC-1_2008.02.18.dat
HEC-RAS Model (with Skyline Dr culvert) -
Filenames: FRW88.F01
FRW88.G01
FRW88.001
FRW88.P01
FRW88.prj
HEC-RAS Model (without Skyline Dr culvert) -
Filenames: FRW88_NoSkylineCulv.F01
FRW88_NoSkylineCulv.G01
FRW88_NoSkylineCulv. 001
FRW88_NoSkylineCulv.P01
FRW88_NoSkylineCulv.prj
TDN Report text plus Appendices A - E (pdf format)
Appendix F Exhibit Maps (pdf format)
Figure 1 - Location Map
Figure 2 - Watershed Map
Figure 3 - Hydrologic Soils Group Map
Figure 4 - Hydraulic Work Maps
Figure 5 - Annotated Flood Insurance Rate Maps (FIRMs)
Preliminary Flood Profiles from RAS-PLOT (on NGVD29 datum) Shapefiles of Proposed Floodplain Mapping Revisions (ArcView shapefile format)```

[^0]: The lower bound of the confidence interval at 90% confidence level is the value which 5% of the simulated quartile values for a given frequency are less than.

[^1]: Hydrometeorological Design Studies Center
 DOC/NOAA/National Weather Service
 DOC/NOAA/National We
 1325 East-West Highway
 Silver Spring, MD 20910
 (301) 713-1669

 Questions?: HDSCOuestions@moax.gov
 Disclaimer

[^2]: The lower bound of the confidence interval at 90% confidence level is the value which 5% of the simulated quantile values for a given frequency are less than.

[^3]: Hydrometeorological Design Studies Center
 DOC/NOAA/National Weather Service
 1325 East-West Highway
 Silver Spring, MD 20910
 (301) 713-1669

 Questions?: HDSC.Ouestions@noaa.goy

[^4]: The lower bound of the confidence interval at 90% confidence level is the value which 5% of the simulated quantile values for a given frequency are less than.

[^5]: The lower bound of the confidence interval at 90% confidence level is the value which 5% of the simulated quantile values for a given frequency are less than.
 ** These precipitation frequency estimates are based on a partial duration maxima series. ARI is the Average Recurrence Interval.

[^6]: "The lower bound of the confidence interval at 90% confidence level is the value which 5% of the simulated quantile values for a given frequency are less than.

[^7]: Hydrometeorological Design Studies Center
 Hydrometeorological Design Studies Ce
 1325 East-West Highway
 Silver Spring, MD 20910
 (301) 713-1669

 Questions?: HDSC.Ouestions@n@aa.sov

 ## Disclaimer

[^8]: The lower bound of the confidence interval at 90% confidence level is the value which 5% of the simulated quantile values for a given frequency are less than.

[^9]: Hydrometeorological Design Studies Center
 DOC/NOAA/National Weather Service
 DOC/NOAA/National Weather Service
 1325 East-West Highway
 Silver Spring, MD 20910
 (301) 713-1669

 Questions?: HDSCOuestions@moat.gov

