

BEAVER DAM WASH FLOOD HAZARD ASSESSMENT Agreement Number 06024

FLOOD HAZARD ASSESSMENT REPORT

Prepared For:

Mohave County Flood Control District

3675 E. Andy Devine, Ste. C P.O. Box 7000 Kingman, AZ 86401

Prepared By:

Arid Hydrology & Hydraulics, LLC

HC 4 Box 34-Q Payson, AZ 85541 (602) 320-2762

September 2007 Revised: December 6, 2007

TABLE OF CONTENTS

			ARD ASSESSMENT REPORT	
	BEA\	/ER DAI	M WASH FLOOD HAZARD ASSESSMENT	3
			Number 06024	
			ARD ASSESSMENT REPORT	
			ONTENTS	
			BLES	
			SURES	
1			TION	
ı				
	1.1	•	t Objective	
	1.2		ary of Findings	
	1.3	•	t Approach	
			General	
		1.3.2	Hydrology	7
		1.3.3	Hydraulics	
		1.3.4	January 2005 Flood Assessment	8
		1.3.5	Flood Hazard Assessment	8
2	Data	Collect	ion	11
	2.1	Data C	Collection List	11
		2.1.1	Arizona Department of Transportation	11
		2.1.2	FLO-2D Software, Inc.	
		2.1.3	HDR	11
		2.1.4	KVL Consulting	11
		2.1.5	Mohave County	
		2.1.6	National Oceanic and Atmospheric Administration (NOAA)	
		2.1.7	PBS&J	
		2.1.8	URS Corporation	
			US Bureau of Reclamation	
			US Geological Survey	
			Virgin Valley Water Users Association	
	2.2		Data Re-projection	
3		•	Data Re-projection	
3	3.1		al	
			HEC-1 Model	
	3.2			
	3.3		ments Made to Base Model	
		3.3.1	Watershed	
		3.3.2	Precipitation	21
		3.3.3	Rainfall Losses	22
		3.3.4		22
		3.3.5	Routing	24
	3.4		Model Results	26
	3.5		Vildfire Hydrology Description and Results	30
4	•		Vildfire Hydrology Description and Results	37
	4.1			37
	4.2		of Study	38
	4.3		Floodway Analysis	38
	4.4	1-Dime	ensional Modelingsignatus	39

		4.4.1	Base HEC-RAS Model	39
		4.4.2	Adjustments Made to the Base Model	
		4.4.3	Results	39
	4.5	2-Dime	ensional Modeling	43
		4.5.1	Base FLO-2D Model	
		4.5.2	Results	
	4.6	Compa	rison of 1D and 2D Results	59
5			5 Flood Assessment	
6	Flood		d Assessment	
	6.1		o Peak and Recurrence Interval at Finish Floor Elevations	
			te of Hydrologic Lead Time	
			te of Storm Frequency Blocking Access to Residences	
			al Safety Hazard Factor at Each Residence	
7			onclusions, and Recommendations	
	pendi		Field Survey Supplemental Topographic Data	
	pendi		NOAA Atlas 14 Precipitation Information	
Ap	pendi		HEC-1 Hydrologic Modeling Results	
			EC-1 Model – All Sub-Basins (pre-fire)	
			rshed HEC-1 Model –Sub-Basins 6-10 (pre-fire)	
			rshed HEC-1 Model —Sub-Basins 1, 2, 4 & 5 (pre-fire)	
۸ ۵			Vatershed HEC-1 Model –Sub-Basins 1 - 7 (pre-fire)	
	pendi		HEC-RAS Hydraulic Modeling Results	
	pendi: pendi:		Digital Data on DVD Proposed Flood Warning System Instrumentation Location Map	
Та	ble 3	.2	NOAA Atlas 14 24-hour precipitation in inches for each sub-basin Summary of HEC-1 sub-basin parameters	24
та	ble 3	.3	Comparison of 100-year HEC-1 routing reach parameters and re	
Tэ	ble 3	1	HEC-1 model results at the County Highway 91 bridge	
	ble 3		Comparison of estimated flood frequency peak discharges at the	
ıa	DIC 3	.0	County Highway 91 bridge	
Tم	ble 3	6	100-year peak discharges from previous studies	
	ble 3		Pre- and Post-Fire Clark unit hydrograph parameters	
	ble 3			
			Comparison of post-burn versus pre-burn hydrology results	
	ble 3		Excerpt from PBS&J (2007) Table 5	
	ble 4		Summary of HEC-RAS results	
	ble 4		Base Manning's n-values related to physical features	
	ble 5		January 2005 flood surveyed high water marks	
	ble 6		Analysis results of threshold flooding at finished floor elevations.	
Га	ble 6	.2	Comparison of FLO-2D water surface elevations with finished flo	
_				
	ble 6		Estimate of storm frequency blocking access to residences	
Ta	ble 6	.4	Personal safety hazard adjacent to each structure	77

ii December 2007

LIST OF FIGURES

Figure 1.1	Location Map	3
Figure 1.2	Vicinity Map	
Figure 3.1	Beaver Dam Wash at County Highway 91 Watershed Map - DEMs	s . 19
Figure 3.2	Beaver Dam Wash at County Highway 91 Watershed Map - Quad	ls 20
Figure 3.3	100-year 24-hour rainfall distributions for the lower watershed	23
Figure 3.4	100-year 24-hour rainfall distributions for the upper watershed	23
Figure 3.5	Peak discharge versus recurrence interval for Beaver Dam Wash	at
_	the County Highway 91 bridge	29
Figure 3.6	Adjusted 100-year hydrograph at County Highway 91 bridge	
Figure 3.7	Watershed average 24-hour precipitation versus peak discharge.	31
Figure 3.8	Sub-basin 10 rainfall distribution and 100-year hydrograph at Cou	unty
_	Highway 91 bridge	_
Figure 3.9	Fire History 2005-2006 (Source: PBS&J, 2007, Figure 2)	
Figure 3.10	2005 and 2006 fire burn areas for Beaver Dam Wash	33
Figure 4.1	FEMA preliminary work study map	38
Figure 4.2	URS HEC-RAS cross section locations	40
Figure 4.3	Comparison of pre-and post-flood vegetation conditions	45
Figure 4.4	Base Manning's roughness coefficients for 2D modeling	46
Figure 4.5	Final Manning's roughness coefficients used in the 2D models	47
Figure 4.6	Structure flow blockages for 2D modeling	49
Figure 4.7	Areas of blocked grid elements	50
Figure 4.8	Grid elements used for inflow hydrograph	52
Figure 4.9	FEMA 100-year 24-hour FLO-2D peak discharge results	53
Figure 4.10	FEMA 100-year 24-hour FLO-2D flow depth results	54
Figure 4.11	FEMA 100-year 24-hour FLO-2D flow velocity results	55
Figure 4.12	Detailed Study Area FLO-2D cross sections	56
Figure 4.13	FEMA 100-year 24-hour FLO-2D depth-duration results	57
Figure 4.14	FLO-2D 100-, 200-, and 500-year floodplain delineations	58
Figure 4.15	FEMA and FLO-2D floodplain delineations comparison	60
Figure 4.16	Grid element flow directions at FLO-2D cross section 5	61
Figure 5.1	Unofficial USGS Gage Hydrograph at Old Highway 91 Bridge	
Figure 5.2	January 2005 post-flood photo (MCFCD)	63
Figure 5.3	Structure ID's 7, 9 and 11 (MCFCD)	64
Figure 5.4	Structure washed way (MCFCD)	
Figure 6.1	Pre-burn versus post-burn 100-year 24-hour hydrographs	73
Figure 6.2	Location of first point of flooding (CS4)	75
Figure 6.3	Depth-velocity flood danger level relationship for adults (USBR, 1	988)
Figure 6.4	Personal flood hazard ratings for the Detailed Study Area	
Figure 6.5	Personal flood hazard ratings in the North study area	82

December 2007 iii

iv December 2007

1 INTRODUCTION

1.1 Project Objective

The project site is located in the extreme northwest corner of Mohave County as shown on Figure 1.1. The project General Study Area, as shown on Figure 1.2, is located in the W1/2 of Section 4 and the E1/2 of Section 5, T40N, R15W, GSRM, Mohave County, Arizona, at the community of Beaver Dam, Arizona. In January 2005, residences of Beaver Dam, AZ were impacted by a large multi-day flood in Beaver Dam Wash. Many homes were flooded and filled with several feet of flood water. Some were washed away or severely damaged by high velocity flows and erosion that affected the structures foundation. The area of highest concern identified by Mohave County staff is the Detailed Study Area (DSA) shown on Figure 2. The January 2005 flood was a major event and, by inspection, greater in magnitude than the 100-year flood estimate used for regulation of new construction in the area prior to 2005. Mohave County recognized that the January 2005 flood indicated that the flood hazards in the area could be much greater than previously thought, and undertook this study to proactively plan for addressing flood hazard related public safety issues. Please refer to Section 2 for a list of references cited in this report.

The history of Mohave County floodplain regulation for Beaver Dam Estates is as follows:

TIMELINE

1986 - 2004 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2005					2006	Present 2007								
Management of " Beaver Dam Wash as				ormatic		icai				1111	Ulliali	OH		
		"Best Available Technical			, , , , , , , , , , , , , , , , , , ,								iiiioai	
Floodpla	ain	floo	dolain	in Management as Beaver Dam Wash as "Best Available Technica				nnical						
			(1986) Floodplain Study for					Use of URS (July 2005) for Floodplain Management of						ement of
Used A/E Intra	a (1986)	Continued use of A/E Intra												

1986 - January 2005 Regulated using FEMA Zone A and floodplain delineation by A/E

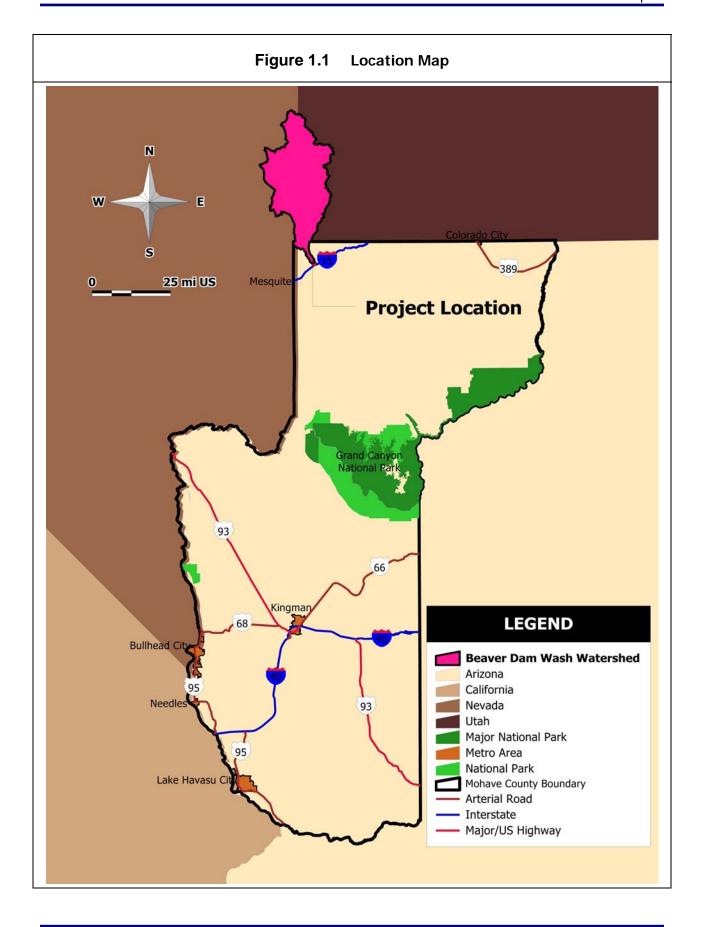
Intra Group, Inc. (A/E Intra, 1986), which estimated $Q_{100} = 12,300$

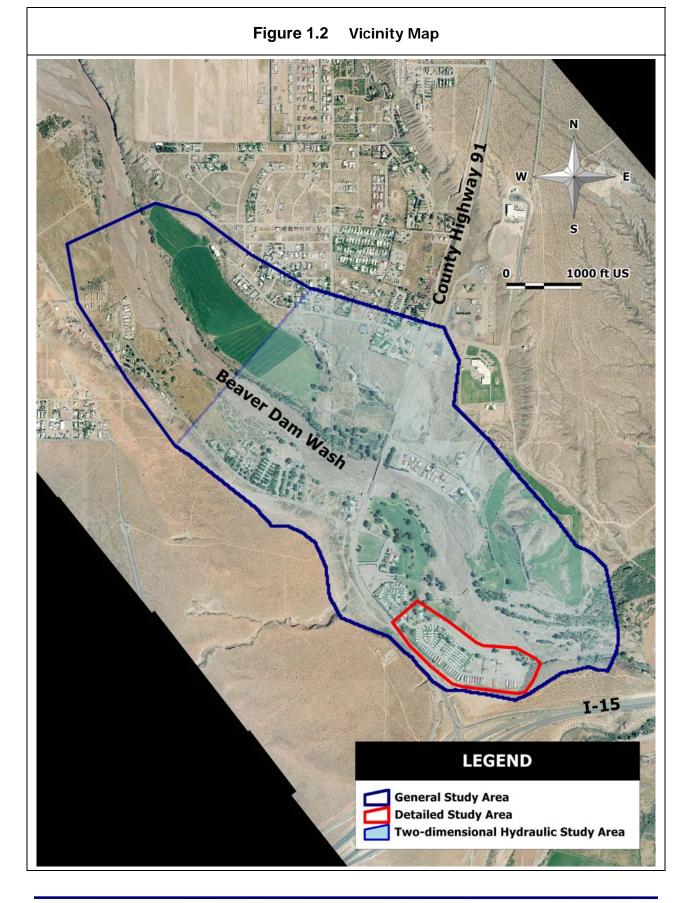
cfs.

January 2005- July 2005 Continued use of A/E Intra (1986) as best available technical data,

but hired URS to prepare interim, conservative, floodplain

information as a part of the Old Highway 91 Bridge replacement project.


July 2005 – Present


Regulated using the URS report *Beaver Dam Wash Bridge*, *Hydraulic Report for Existing Bridge* (URS, July 2005), which estimated Q_{100} = 30,400 cfs, as best available technical data. FEMA is currently preparing a new floodplain delineation study for the area using Q_{100} = 21,000 cfs. After acceptance, the new FEMA floodplain delineation study should be used for floodplain management of Beaver Dam Wash.

A new FEMA study is in progress and it is now apparent, after the January 2005 flood, that the 100-year peak discharge used for floodplain management of Beaver Dam Wash fro 1986 through June 2007 is too low. The new base flood elevations in the study area will be higher than determined by A/E Intra (1986). There is concern by Mohave County that new homes constructed in the first 6 months of 2005, as well as many existing homes constructed prior to 2005, lie within a significant hazard area that must be addressed because of concerns for public safety. The area of highest concern identified by Mohave County staff is the DSA.

The project objective is to evaluate the flood risks and corresponding hazards to existing homes in the DSA. The DSA is located along the southwest side of Beaver Dam Wash downstream of the County Highway 91 bridge, north of I-15 and about 1,600 feet upstream of the confluence of the Beaver Dam Wash with the Virgin River. The General Study Area, also shown on Figure 1.2, defines the limits of area that are used for hydraulic analyses necessary to define the flood hazards within the DSA. The evaluation is to:

- 1. estimate the risk of flooding from the 500-year, 100-year and more frequent storms at each home in the study area, where relative risk is defined by a ranking of the hazard factor assigned to each residence,
- 2. assess the hazard to the residents and their property,
- 3. compare the 100-year storm results with the flooding that occurred in the study area in January 2005, and use the available data to attempt to determine if the January 2005 flood was an extreme event, or one that can be expected to occur frequently, and
- 4. develop recommendations to address the hazards identified.

December 2007

1.2 Summary of Findings

The results of this study identify fifteen (15) residential structures that are in a very high hazard zone, forty two(42) that are in a high hazard zone, and many others in moderate and low flood hazard zones. The hazard is based on depth-velocity criteria for adults from the U.S. Bureau of Reclamation (USBR, 1988). The existence of these hazards could result in a life threatening situation, based on the information in USBR (1988), if the area is not evacuated in a timely manner during significant flood events. The January 2005 flood was estimated to be in the range of 17,000 to 25,000 cfs. The most likely estimate of the peak discharge is 21,000 cfs, within the limits of the assumptions used as a basis for the evaluation. The maximum available lead time, assuming adequate flood warning facilities and a flood warning plan are in place, is about 6-hours assuming pre-2005 vegetation conditions in the watershed. The current available warning time is significantly shorter than 6 hours due to forest fires that have burned over 40 percent of the watershed since 2005. The current available warning time could be as short as 4 hours, and post-burn peak discharges can be expected to be significantly greater for all storm frequencies than for normal vegetation conditions. Considering these factors, and the number of residents in the area, the conclusion is that flood warning for the Beaver Dam Wash area be given a high priority by the Mohave County Flood Control District. The risk to many homes in the area is high as many of the structure finished floor elevations are below the draft FEMA regulatory water surface elevation and subject to flooding from more frequent storms.

Recommendations for addressing the concerns identified as a result of this study include the following components:

- Interim regulation of the Beaver Dam Wash floodplain using the technical data from URS (July 2005) as "best available technical data" per FEMA requirements.
- 2. New flood warning instrumentation in the Beaver Dam Wash watershed.
- 3. Preparation of a Flood Warning Plan for the residents of Beaver Dam.
- 4. Investigation into floodproofing, relocation or buyout options that may be available under existing federal programs.
- 5. Adoption of the new FEMA floodplain delineation study for Beaver Dam Wash as soon as it is approved by FEMA. Regulation of the Beaver Dam Wash floodplain using the technical data from the FEMA study.

December 2007 5

1.3 Project Approach

1.3.1 General

A meeting was held with Mohave County staff to discuss the approach to the project. A site visit was also conducted to observe the still-remaining evidence of damage from the January 2005 flood. Data collection became the first order of priority. As a result of the field trip, Arid H&H asked that Mohave County survey: 1) the building locations and finished floor elevations of the residences within the DSA, 2) the location and elevation of high water marks still visible on several of the existing residences, 3) the location and elevation of debris deposited against trees in the area, and 4) as-built the existing bridges including the golf cart bridge, the Highway 91 Bridge, and the I-15 Bridge over the Virgin River. Available hydrologic and hydraulic studies for Beaver Dam Wash, historical topographic mapping and aerial photography in hard copy and/or digital format, and digital hydrologic and hydraulic models of record were obtained. A detailed list of data collected is contained in Section 2. Refer to Section 2 for all references sited in this report.

It was decided at the project coordination meeting that the existing data and computer models of record should be used where possible. The flood risk and hazard evaluation requires a valid design runoff hydrograph in order to evaluate flood warning time at critical locations and flood stages. Also required is a valid hydraulic model of the General Study area. A study by URS for design of the County Highway 91 bridge replacement project was selected as the source for the primary base computer models, topographic mapping, and post-2005 flood aerial photographs. A detailed HEC-1 model of the Beaver Dam Wash watershed was prepared as a part of the URS study and was adapted for use on the project. The URS study also included a HEC-RAS hydraulic model of the Beaver Dam Wash within the General Study Area. URS had the study area flown and prepared post-flood topography of the General Study area, which is available in digital format. This information was used in the flood risk and hazard assessment performed for this project.

This study is intended to assess flood risk, and identify flood hazards based on those risks, for the Beaver Dam area from the Beaver Dam Wash. The hydrologic and hydraulic results are intended for risk assessment and emergency management purposes only. The results of this study should not be considered as "best available technical information" for floodplain management purposes." Certain limiting assumptions used in the development of the technical

basis for this study, including friction loss parameters and model control options designed to produce the upper limit of peak flood stages for a 100-year event, are intentionally very conservative, not reflective of existing conditions, and are therefore not appropriate for regulatory floodplain management uses.

1.3.2 Hydrology

This hydrologic assessment is primarily based on watershed conditions prior to the 2005 and 2006 wildfires that burned over 40 percent of the watershed. The effects of wildfires are relatively short-lived (2- to 10-years), so this information will be valid as a benchmark for estimating the effects of the burned areas on flood hydrology and can also be used after the watershed recovers. Possible effects of the wildfires on flood hydrology and flood hazard are estimated by modifications to the base hydrology models, and then discussed. The approach for the hydrology base model portion of this project was to evaluate the URS HEC-1 model, make adjustments where necessary, and then run the model for multiple frequencies. This information was used to develop a discharge-frequency curve, using values for the 2-, 5-, 10-, 25-, 50-, 100-, and 500-year storms. FEMA has released a preliminary hydrology report for the new flood insurance study of the Beaver Dam Wash (HDR, 2006). The FEMA study accepts a 100-year peak discharge for the Beaver Dam Wash of 21,000 cfs, based on a statistical analysis of similar watersheds. The relationship between the various storm frequencies from the HEC-1 models was used in conjunction with the FEMA Q₁₀₀ to prepare a revised discharge-frequency curve with Q₁₀₀ equal to 21,000 cfs. The HEC-1 generated hydrograph ordinates for each frequency were then factored to match peak discharges from the new discharge-frequency curve. The adjusted flood hydrographs were then used as input to the hydraulic models. The design storm precipitation distribution was used in conjunction with the runoff hydrograph at the location in question to estimate the hydrologic lead time for emergency response and to relate response time to precipitation on the watershed.

1.3.3 Hydraulics

The approach for hydraulics consisted of preparing hydraulic models that cover the DSA, interpolation of the results to obtain flow depths and velocities at each residence, and use of the model results to estimate at what flow rate and time the critical access routes may be impacted. A review of the URS HEC-RAS model results and the URS topographic mapping show that Beaver Dam Wash in the vicinity of the DSA exhibits two-dimensional (2D) flow

characteristics. Flow begins to breakout downstream of the County Highway 91 Bridge and drain into the DSA with the potential for different water surface elevations in the overbank areas than occur in the main wash. Therefore, a 2D model is a more appropriate choice to perform the hydraulics analyses for the purposes of this study.

The FLO-2D computer model was selected for use on this project. FLO-2D is an unsteady, finite difference model with a uniform square grid that works well for situations of this type. The URS topographic mapping includes a digital terrain model (DTM) that was used to generate the Digital Elevation Map (DEM) that FLO-2D requires for input. The FLO-2D model was used to estimate flow depths, velocities, water surface elevations, time of peak, and peak discharges for the 2D study area shown on Figure 1.2. Hydrographs can be computed for every grid element of concern, so the time where each point of interest begins to see flow is automatically generated. The model is accurate to the resolution of the 2D grid and the vertical accuracy of the DTM. The grid size selected for this study was fifteen (15) feet. Very little interpolation was necessary as the required hydraulic parameters are calculated for every 15 foot square grid element. The effects of hydraulic obstructions, such as the structures themselves, were easily included and accounted for in the model.

1.3.4 January 2005 Flood Assessment

The scope of work includes estimation of the peak flow that occurred during the January 2005 flood. The approach is to use the hydraulic models prepared as a part of this study in combination with observed post-flood high marks to estimate a peak discharge. Refer to Section 5.

1.3.5 Flood Hazard Assessment

The flood hazard assessment was accomplished using the results from the hydrology and hydraulics analysis. The following were parameters used to assess the hazard potential at each residence:

- 6. the storm frequency where flood stage begins to exceed the finished floor elevation,
- 7. the amount of time between the time of most intense rainfall and the time where flow begins to enter the residence,
- 8. the depth and velocity of flow at the structure at peak stage, and

9. the depth and velocity of flow near the structure at peak stage that controls emergency access to and from the residence.

These parameters were used in conjunction with evaluation criteria to determine a hazard rating that defines the relative risk between residences. The final products of this report are the hydrologic and hydraulics modeling results, the hazard rating and risk ranking of each residence within the DSA, and GIS coverages that may be used in the second phase of this project. The second phase is the development of methods for addressing and mitigating the identified risks. This will be done in a separate report, if authorized.

2 Data Collection

2.1 Data Collection List

The following sections contain reference listings for the information gathered, organized by source. Refer to this section for citations made in this document. Not all the items listed are directly cited. Those not cited were used to obtain an understanding of changes in the study area over time.

2.1.1 Arizona Department of Transportation

1. Arizona Department of Transportation (ADOT), 1993; *Highway Drainage Design Manual, Hydrology*, Report Number FHWA-AZ93-281.

2.1.2 FLO-2D Software, Inc.

- FLO-2D Software, Inc (FLO-2D), 2006a; FLO-2D Data Input Manual, Version 2006.01; www.flo-2d.com.
- 2. FLO-2D, 2006b; FLO-2D Users Manual, Version 2006.01; www.flo-2d.com.
- 3. FLO-2D, 2006c; FLO-2D Two-Dimensional Flood Routing Model; www.flo-2d.com.
- 4. FLO-2D, 2006d; FLO-2D GDS Manual; www.flo-2d.com.

2.1.3 HDR

- 1. HDR, January 2006; *Draft Technical Memorandum: Hydrologic Analyses, Portions of the Virgin River and Beaver Dam Wash in the Littlefield Area, Mohave County, Arizona.*
- 2. HDR, December 2006; *Preliminary Hydraulic Work Maps for the Virgin River and Beaver Dam Wash FIS* (7 sheets); Mohave County, AZ. Prepared for FEMA.

2.1.4 KVL Consulting

 KVL Consulting, 2007; Drainage Design Management System for Windows (DDMSW) Computer Program, version 3.3.2.

2.1.5 Mohave County

- 1. A/E Intra Group, Inc., August 7, 1986; Beaver Dam Wash Resort and R.V. Park Drainage Report.
- 2. L.R. Pope Engineering, November 26, 1997; *Flood Study for Beaver Dam Wash in Littlefield*, Arizona.
- 3. Leslie & Associates, July 1991; *Detailed Drainage Report for Beaver Dam Estates*.
- 4. Mohave County, fall 2000; 2-foot pixel color aerial ortho-photograph of a portion of the General Study Area; Mohave County records (BMP format, State Plane Ground Coordinates NAD 83 horizontal datum, NV East, US Survey feet).
- Mohave County, fall 2004; 1-foot pixel color aerial ortho-photograph of a portion of the General Study Area; Mohave County records (MRSid format, State Plane Ground Coordinates NAD 83 horizontal datum, NV East, US Survey feet).
- Mohave County, spring 2005; 1-foot pixel color aerial ortho-photograph of a portion of the General Study Area; Mohave County records (MRSid format, State Plane Ground Coordinates NAD 83 horizontal datum, NV East, US Survey feet).
- 7. Owens Surveying Outfit, Inc., April 18, 2007; *Beaver Dam Wash Flood Control Survey*. Field survey data of DSA including building locations, finished floor elevations, high water marks, as-built information at the County Highway 91 Bridge, the Golf Course Bridge, and the I-15 bridge over the Virgin River.
- 8. U.S. Geological Survey (USGS), 2005; USGS DOQQs, 1-foot pixel color aerial orthophotograph of the General Study Area; Mohave County records (MRSid format, UTM NAD 83 horizontal datum, Zone 12, meters).
- R.W. Holmquist & Associates and Kenney Aerial Mapping Inc., January 9, 1997; Virgin River/Beaver Dam Topographic Mapping, 2-foot contour interval, TIFF images scanned from hard copy.
- Mohave County, September 19, 2006; Mohave County Assessors Parcel Coverage of Book
 404; Mohave County GIS in ESRI Shape file format, State Plane Coordinate System, NAD
 83 horizontal datum, AZ West, US Survey feet.

2.1.6 National Oceanic and Atmospheric Administration (NOAA)

- 1. National Geodetic Survey (NGS), October 8, 2006; NGS Data Sheets for BEAVER, K 55, LITTLEFIELD and ML 9.
- 2. Bonnin, G.M. et al, National Oceanic and Atmospheric Administration; 2004; NOAA Atlas 14, Precipitation-Frequency Atlas of the United States, Volume 1: Semiarid Southwest (Arizona, Southeast California, Nevada, New Mexico, Utah), including Appendix A1.

 Source: http://hdsc.nws.noaa.gov/hdsc/pfds/pfds_docs.html. Digital Adobe PDF file.

2.1.7 PBS&J

 PBS&J, for Bureau of Land Management, Ely Field Office; September 2007; Post-Fire Flood Hazard Assessment, Meadow Valley Wash and Beaver Dam Wash. Source: Mohave County.

2.1.8 URS Corporation

- 1. URS, July 2005a; *Beaver Dam Wash Bridge Hydrology Report*. This report includes the HEC-1 model used as a base model for the flood hazard assessment.
- 2. URS, July 2005b; *Beaver Dam Wash Bridge Hydraulic Report for Existing Bridge.* This report includes the HEC-RAS model used as a base model for the one-dimensional (1D) flood hazard assessment.
- 3. URS, July 2005c; *Beaver Dam Wash Bridge Alternative Analysis Report.* This report includes final HEC-RAS models with the new proposed bridge in place.
- 4. URS, 2005a; *Aerial mapping major control points in both ground and grid coordinates.* Received September 9, 2006.
- URS, 2005b; HEC-RAS cross section alignments, 100-year existing condition floodplain limits, and the HEC-RAS thalweg location. The data was provided in State Plane Ground Coordinates NAD 83 horizontal datum, AZ West, International feet, NAD88 vertical datum, and in ESRI Shape file and AutoCAD DWG format
- 6. AMEC Earth & Environmental. Inc. (AMEC), April 21, 2005; *Geotechnical Investigation, Beaver Dam Wash Bridge, Distress Evaluation, Beaver Dam.*

- 7. AMEC, June 17, 2005; Geotechnical Investigation Report, Beaver Dam Wash Bridge, Mohave County Highway 91, Mohave County, Arizona.
- 8. Cooper Aerial Surveys (Cooper), July 2005; *Topographic mapping of the study area*. The aerial flight date was April 22, 2005. The mapping was provided in State Plane Ground Coordinates NAD 83 horizontal datum, AZ West, International feet, NAD88 vertical datum, and in ESRI Shape file and AutoCAD DWG format, including:
 - A. Digital Terrain Model including grid, break line, and spot elevation data.
 - B. 100-scale 2-foot contour mapping of the General Study Area.
 - C. 40-scale 1-foot contour mapping of the area immediately upstream and downstream of the County Highway 91 bridge over Beaver Dam Wash.
 - D. Topography of the study area including wash thalwegs, tree locations, structure outlines, concrete and road outlines, and many other visible features.
 - E. 1-foot pixel color aerial photographs of the General Study Area in TIFF format.

2.1.9 US Bureau of Reclamation

 USBR, Downstream Hazard Classification Guidelines, ACER Technical Memorandum No. 11, 1988.

2.1.10 US Geological Survey

- 1. USGS Quad Maps, various dates; *USGS 7.5 M 1:24,000 Quadrangle Maps Covering the Beaver Dam Watershed*; in GeoTIFF format, UTM NAD83, Zones 11 and 12, meters.
- 2. USGS DEM's, various dates; *USGS 10-meter Digital Elevation Maps Covering the Beaver Dam Watershed*; in DEM format, UTM NAD83, Zones 11 and 12, meters.
- 3. USGS Gage Record, February 6, 1993 September 30, 2006; USGS Surface-Water Daily Maximum Flow Rate for Gage 09414900 Beaver Dam Wash at Beaver Dam, AZ; http://.waterdat.usgs.gov.

2.1.11 Virgin Valley Water Users Association

1. Horizon's, Inc., undated; *LIDAR Acquisition/Processing/Quality Control Report, Virgin River.*

- 2. Horizon's, Inc., July 7, 2005; *Analytical Aerial Triangulation Summary, BOR-Lower Colorado Region: Virgin River, NV.*
- 3. Horizon's, Inc., June 7-9, 2005; LIDAR raw and post-processed digital elevation spot height data in UTM Zone 11, NAD83, NAVD88, meters.
- 4. Horizon's, Inc., June 7-9, 2005; 0.6 meter pixel color digital aerial photographs of a portion of the General Study Area.
- 5. U.S. Bureau of Reclamation (USBR), February 8, 2005; Aerial flight video of the aftereffects of the January 2005 flood on the Virgin River and Beaver Dam Wash taken during a helicopter flight.

2.2 Digital Data Re-projection

Mohave County uses a standard GIS data coordinate system and geographic projection. This is:

State Plane Coordinate System (grid coordinates), NAD 83, AZ West, US Survey feet, X and Y scale factor: 0.99993333, false easting: 699998.60, false northing: 0.00.

Most of the data obtained was in a differing projection and coordinate system. In particular, the URS data was in ground coordinates, not grid coordinates. In order to use this data effectively with the other data collected, all of the URS GIS data was converted to the standard Mohave County projection and coordinate system. This was accomplished using the aerial mapping major control point information (URS, 2005a). The URS data was shifted and transformed using an affine transformation in GIS.

The MRSid and TIFF format aerial photographs were converted to ECW format and re-projected to the Mohave County standard. The USGS quadrangle maps and DEMs were left in the provided format. Data generated using this information was re-projected to the Mohave County standard.

3 Hydrology

3.1 General

The hydrology portion of this study was done with two objectives in mind. The first was to obtain a relationship between precipitation falling on the watershed (and the time that precipitation occurs) and the corresponding runoff versus time at the DSA. This information is needed for estimating available emergency response times for different precipitation scenarios. Second, the frequency of runoff affecting the DSA is needed in order to estimate the severity of the hazard in relation to the largest flood of record that occurred in January 2005. To accomplish the first objective, a rainfall-runoff model of the watershed was needed. The information of record was researched, and it was determined that the existing HEC-1 models prepared by URS (URS, 2005a) could be used for this purpose.

The second objective was met by information provided by FEMA. FEMA has a flood insurance study in progress for the Beaver Dam Wash and the hydrology for that study has been published as a draft technical memorandum (HDR, 2006). Estimates of peak discharge for the 2-, 5-, 10-, 25-, 50-, 100-, and 500-year storms are provided.

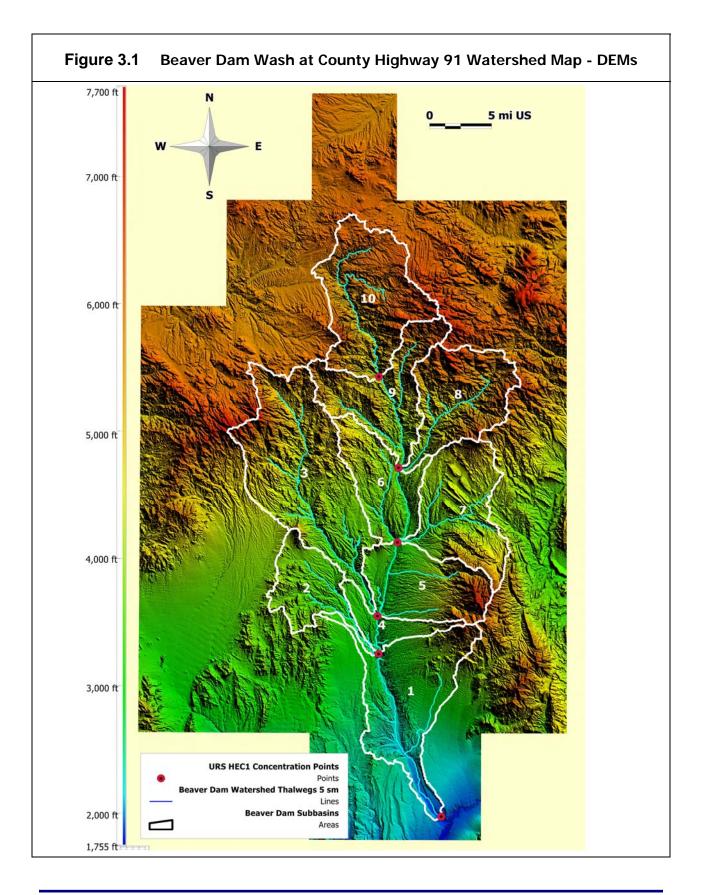
Finally, the results of the HEC-1 modeling were checked against the flood-frequency data provided by FEMA. There needed to be reasonable correlation between the HEC-1 peak discharges and those accepted by FEMA. If a reasonable correlation was found, then the hydrographs from the HEC-1 models could be adjusted to match the FEMA peak discharges estimated for storm frequencies of interest.

3.2 Base HEC-1 Model

An HEC-1 model of the Beaver Dam Wash watershed is needed for the flood hazard analysis for two reasons. First, hydrographs are needed for input to the two-dimensional flow model. Second, the relationship between the time of peak rainfall intensity and the time of various points along the rising limb of the runoff hydrograph is needed for estimating flood warning and emergency response time. Rather than create a new HEC-1 model of the watershed, an existing model of record was evaluated for use in this study.

URS prepared a series of HEC-1 models of the Beaver Dam Wash watershed (URS, 2005a). The lowest concentration point is the County Highway 91 bridge. Models were developed for the 2-,

5-, 10-, 25-, 50-, 100-, and 500-year storms. The models were prepared using the ADOT Hydrology Manual standard methodology. The models were based on the following parameters and accepted for use for this project, with modifications as described in the following section.


Rainfall: NOAA Atlas 2 for Arizona.

Losses: Green and Ampt rainfall loss method. Routing: Normal depth-Modified Puls method. T_c : ADOT time of concentration method.

3.3 Adjustments Made to Base Model

3.3.1 Watershed

The USGS DEMs covering the Beaver Dam Wash watershed were downloaded and used to redelineate the watershed. The same sub-basin concentration points established by URS were used. The results were then checked against the URS delineation. There were measurable differences, but none large enough to warrant re-computing the various watershed parameters. The URS sub-basin delineation was accepted for use on this study. The Beaver Dam Wash watershed, using the delineation done as a part of this study, is shown on Figure 3.1 and Figure 3.2.

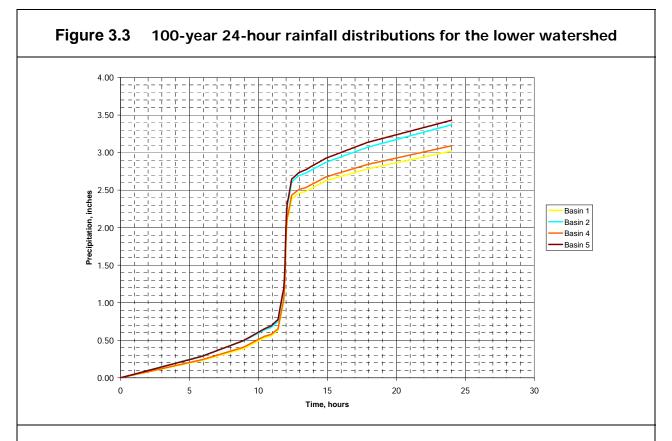
20 December 2007

3.3.2 Precipitation

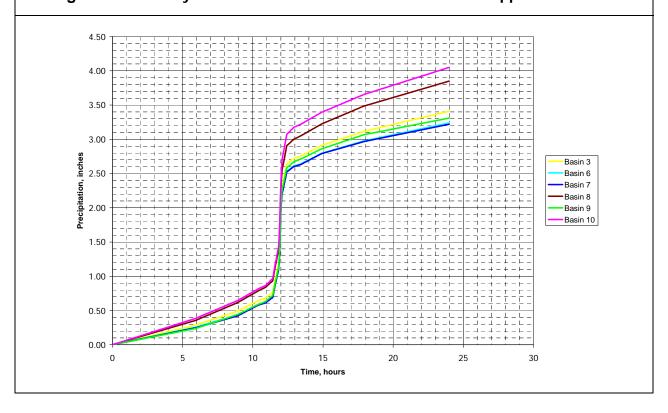
Precipitation Atlas. It is anticipated that Mohave County will soon be adopting NOAA Atlas 14 for use county-wide. NOAA Atlas 14 is the most current precipitation-frequency atlas produced by NOAA for Arizona, Utah and Nevada. After consultation with Mohave County staff, it was decided to use NOAA Atlas 14 (Bonnin et al, 2004) for this study instead of NOAA Atlas 2. It was also decided to use the 24-hour duration storm for modeling estimates of peak discharge from the Beaver Dam Wash watershed. Average point precipitation values for each sub-basin were obtained from the NOAA Atlas 14 web site. This was done using latitude and longitude coordinates for the centroid of each sub-basin, obtained using GIS to compute the centroid from the sub-basin polygons generated from the work described in Section 3.3.1. Refer to Appendix B for isohyetal maps of the Beaver Dam Wash watershed for each sub-basin, used in the HEC-1 models of the watershed, are shown in Table 3.1.

Tab	Table 3.1 NOAA Atlas 14 24-hour precipitation in inches for each sub-												
	basin												
	Area,			Recurre	ence inte	rval in y	ears						
Sub-basin	sm	2	5	10	25	50	100	200	500				
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)				
1	76.0	1.36	1.73	2.01	2.40	2.70	3.00	3.31	3.73				
2	33.4	1.51	1.94	2.26	2.71	3.05	3.40	3.75	4.23				
3	111.0	1.56	1.97	2.30	2.75	3.10	3.45	3.82	4.31				
4	16.5	1.40	1.78	2.07	2.47	2.78	3.09	3.41	3.84				
5	51.5	1.56	1.98	2.31	2.75	3.10	3.46	3.82	4.31				
6	41.5	1.49	1.88	2.18	2.60	2.93	3.26	3.60	4.06				
7	60.3	1.49	1.87	2.17	2.59	2.91	3.24	3.58	4.04				
8	55.7	1.78	2.25	2.62	3.13	3.53	3.94	4.36	4.93				
9	54.3	1.57	1.98	2.30	2.75	3.10	3.45	3.81	4.30				
10	76.6	1.81	2.30	2.68	3.21	3.63	4.05	4.49	5.08				
Total:	576.8												
Watershed	Average:	1.57	1.99	2.31	2.76	3.12	3.47	3.84	4.33				

December 2007 21


Precipitation Distribution. The hypothetical rainfall distribution was used for the HEC-1 modeling (ADOT, 1993). Input was done using the HEC-1 PH record. The NOAA Atlas 14 point rainfall data was used to prepare new HEC-1 PH records for each sub-basin for each frequency. The 50 percent average confidence interval precipitation frequency data for each sub-basin is contained in Appendix B in Table B.1. The 50 percent average precipitation frequency tables were used to prepare the HEC-1 PH records. Refer to the HEC-1 output files in Appendix C for the individual sub-basin PH records. Plots of the hypothetical rainfall distribution for each sub-basin for the 100-year 24-hour storm are shown on Figure 3.3 and Figure 3.4. The rainfall distributions for the lower watershed (sub-basins 1, 2, 4, and 5) are of similar intensity at the center of the storm to the upper watershed (sub-basins 3 and 6-10). The higher elevation sub-basins (sub-basins 8 and 10) have higher precipitation totals leading up to the most intense portion of the storm, and higher total precipitation.

3.3.3 Rainfall Losses


Rainfall losses were estimated by URS in the base models using the Green and Ampt method, as described in ADOT (1993). URS used available soils information from the NRCS to estimate Green and Ampt parameters for each sub-basin (URS, July 2005a). The values selected by URS are listed in columns 3-7 of <u>Table 3.2</u>. The URS XKSAT values were checked for reasonableness and accepted for use in this study. The initial abstraction, IA, was selected by URS assuming all watersheds have a desert/hillslope terrain class.

3.3.4 Time of Concentration

URS estimated time of concentration (T_c) using the desert/mountain equation from ADOT (1993). The values were checked for reasonableness and accepted for use in this study. Refer to <u>Table 3.2</u> for a listing of the URS T_c estimates and the accompanying storage coefficient, R.

December 2007 23

Table 3.2 **Summary of HEC-1 sub-basin parameters** (URS, July 2005a) **Adjusted** IA **XKSAT PSIF** Area T_{c} R Subbasin (inches) (sm) (inches) (Inches) DTHETA RTIMP (hrs) (hrs) (1) **(2)** (3) **(4)** (5) (6) **(7)** (8) (9) 1 76.0 0.33 4.5 0.35 2.73 2.00 0.15 4.8 2 2.06 33.4 0.15 0.34 4.4 0.35 0.00 3.97 3 111.0 0.15 0.17 6.5 0.38 0.00 6.97 3.13 4 0.15 4.5 0.35 1.01 2.38 1.18 16.5 0.32 5 51.5 0.15 0.37 4.3 0.35 0.00 3.81 1.57 0.38 2.55 3.99 6 41.5 0.15 0.23 5.5 1.83 7 0.28 4.9 14.70 1.48 60.3 0.15 0.35 3.89 8 55.7 0.15 0.48 4.0 0.35 0.00 4.43 1.79 9 54.3 0.24 5.7 0.39 0.00 0.15 3.80 1.62 10 11.40 2.79 76.6 0.15 0.29 5.1 0.36 6.07

3.3.5 Routing

The URS base HEC-1 models use the normal depth Modified Puls method to route sub-basin hydrographs through downstream channel reaches. The 8-point cross sections, slopes, and roughness coefficients were examined for reasonableness and accepted for use in this study. The other key parameter, NSTEPS, required adjustment. NSTEPS is the HEC-1 variable name for the number of sub-sections the routing reach is divided into for performing the Modified Puls reservoir route operation. The value of NSTEPS for each reach was found to be unreasonable, and the NSTEPS value needed to be optimized (refer to ADOT, 1993, Chapter 8). The value of NSTEPS used for the hydrograph routing operation is very important for the purposes of this study as it affects travel time through the watershed, which directly affects the estimated flood warning response time. NSTEPS also affects the peak discharge downstream.

Optimization of NSTEPS can be accomplished by making an initial estimate of NSTEPS for the reach, then running the HEC-1 model. The resulting travel time through the reach computed by HEC-1 is then used to make a new estimate of NSTEPS using the following equation:

$$NSTEPS = \frac{(TT)(60)}{NMIN}$$
(3.1)

where:

TT = Reach travel time computed by HEC-1, in hours

NMIN = HEC-1 model main time increment, in minutes

The new estimate of NSTEPS is then entered into the HEC-1 input file, and a new run made. The process is repeated until the NSTEPS value corresponding to the HEC-1 computed travel time matches the previous estimate, plus or minus one time step. This process can be automated using the DDMSW computer program (KVL Consulting, 2007). DDMSW was used to optimize the routing steps for each reach for all seven HEC-1 models. A comparison of results from the URS HEC-1 100-year storm model with that used for this study is shown in Table 3.3. Note that many of the frontal wave celerities from the URS model in column 10 are unreasonable. The optimized results in column 11 are much more reasonable. Also note that the differences in times to peak in columns 6 and 7. They vary by as much as 0.75 hours at reach 4UP, and 0.42 hours at the County Highway 91 Bridge (bottom of reach 1LOW).

	Table 3.3 Comparison of 100-year HEC-1 routing reach parameters and												
	results												
			NST	ΓEPS	T _p , he	ours	Routed	d Q, cfs	Celerity, fps				
Reach	Length, ft	Slope, ft/ft	URS	Arid H&H	URS	Arid H&H	URS	Arid H&H	URS	Arid H&H			
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)			
9UP	41,282	0.0140	2	8	17.50	17.50	6,530	6,701	69	17			
9LOW	11,913	0.0104	2	5	18.00	17.92	6,480	6,687	20	8			
6UP	14,202	0.0113	2	7	16.20	16.33	12,702	11,586	24	7			
6LOW	21,503	0.0102	3	8	16.90	17.00	12,435	11,518	24	9			
5UP	18,610	0.0111	2	7	16.60	17.17	20,913	17,192	31	9			
5MID	8,769	0.0116	2	2	16.80	17.33	20,842	17,097	15	15			
5LOW	8,049	0.0102	2	3	17.00	17.58	20,791	17,059	13	9			
4UP	9,425	0.0095	2	4	17.00	17.75	30,783	25,014	16	8			

December 2007 25

Table 3.3 Comparison of 100-year HEC-1 routing reach parameters and results Celerity, **NSTEPS** T_p, hours Routed Q, cfs fps Length, Slope, Arid Arid Arid Arid Reach ft/ft **URS** H&H **URS** H&H **URS** H&H **URS** H&H ft (2) (1) (3) **(4)** (5) (6) **(7)** (8) (9) (10)(11)4MID 0.0109 1 17.10 17.83 30,767 24,997 12 3,665 1 12 4LOW 4,442 0.0101 1 1 17.20 17.92 30,742 24,973 15 15 1UP 49,818 0.0099 3 19 18.80 19.33 30,126 25,669 55 9 1LOW 29,796 0.0079 3 20.00 20.42 29,135 25,473 33 13 8

3.4 Base Model Results

The results of the modified HEC-1 model for each storm frequency at the County Highway 91 Bridge crossing of Beaver Dam Wash are shown in Table 3.4. Column 2 contains the watershed average precipitation value corresponding with the storm frequency in column 1. Column 3 contains the watershed rainfall excess value corresponding with the runoff volume shown in column 6. The time to peak is listed in column 4 and the corresponding peak discharge in column 5. Note that the time to peak varies from 25.75 hours for the frequent 2-year storm, to 20.33 hours for the infrequent 100-year storm. Also note that the estimated peak discharge of 26,100 cfs corresponding with the 100-year precipitation input is about 24 percent greater than the 100-year peak discharge estimate of 21,000 cfs adopted by FEMA based on a stream gage statistical frequency analysis (refer to HDR, 2006). Refer to Appendix C for HEC-1 input and output files from the various models.

Та	Table 3.4 HEC-1 model results at the County Highway 91 bridge											
NOAA /	NOAA Atlas 14 HEC-1 Model Results											
Recurrence Precipitation, Excess, Peak, Peak Volume Interval, yrs inches inches hours Discharge, cfs ft												
(1)	(2)	(3)	(4)	(5)	(6)							
2	1.57	0.063	25.75	1,580	1,930							

Та	Table 3.4 HEC-1 model results at the County Highway 91 bridge											
NOAA	AA Atlas 14 HEC-1 Model Results											
Recurrence Interval, yrs	Precipitation, inches	Rainfall Excess, inches	Time to Peak, hours	Peak Discharge, cfs	Runoff Volume, ac- ft							
(1)	(2)	(3)	(4)	(5)	(6)							
5	1.99	0.127	24.00	3,809	3,895							
10	2.31	0.192	21.67	6,374	5,913							
25	2.76	0.328	21.25	11,464	9,781							
50	3.12	0.449	20.67	17,606	13,810							
100	3.47	0.623	20.33	26,134	19,172							
200	3.84	0.841	19.67	38,380	25,869							
500	4.33	1.186	18.83	59,380	36,495							

A discharge versus frequency curve is needed for the flood hazard analysis for the purposes of estimating the frequency at which the structures in question and their access routes may be flooded. The results of the HEC-1 models for each frequency are compared with the FEMA estimates in Table 3.5, and are compared graphically in Figure 3.5. As can be seen from Figure 3.5, both sets of frequency results plot in a straight line and compare favorably between the 10-and 100-year frequencies. Outside that range, they begin to diverge. Since the area of interest is predominately between the 25-year and 100-year frequencies, the two sets of results are in close agreement. The FEMA discharge frequency curve will be used for this study, and hydrographs needed are taken from the HEC-1 model results and scaled to match the corresponding FEMA peak discharge. The HEC-1 100-year storm hydrograph, scaled to match the FEMA 100-year peak discharge of 21,000 cfs, is shown on Figure 3.6. Similar hydrographs were prepared for the other storm frequencies.

Estimates of the 100-year peak discharge for Beaver Dam Wash from previous studies of record are listed in <u>Table 3.5</u> for_comparison with the draft FEMA value of 21,000 cfs. Note that previous estimates were significantly lower than the FEMA estimate, except for URS (2006). The FEMA estimate appears more reasonable than the previous studies, especially in light of the January 2005 flood.

December 2007 27

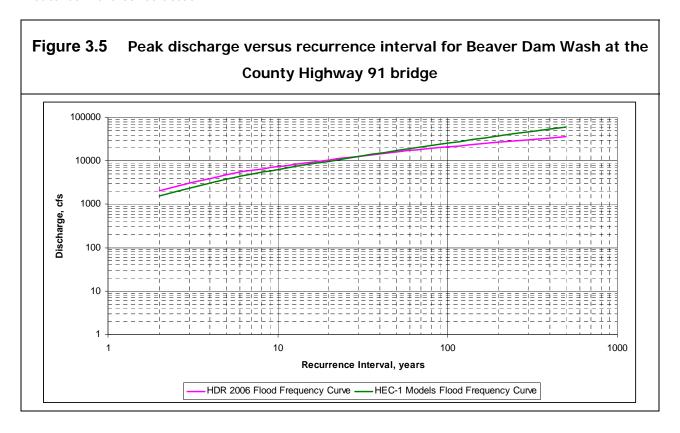
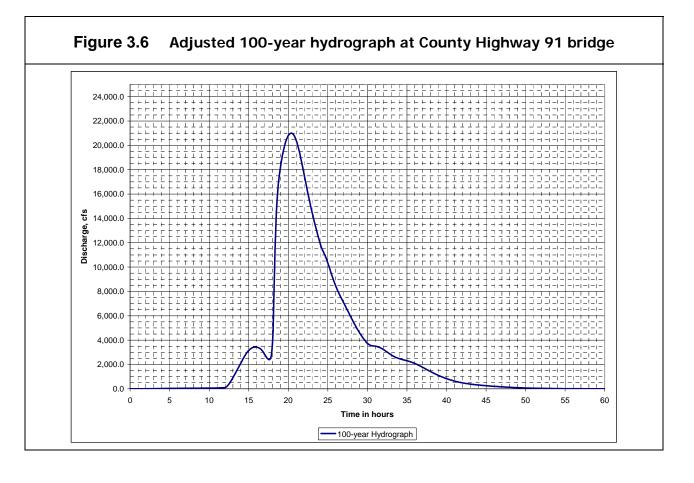

Table 3.5 Comparison of estimated flood frequency peak discharges at the County Highway 91 bridge **FEMA Flood Frequency Peak HEC-1 Peak** Discharge, cfs (HDR,2006) **Recurrence Interval** Discharge, cfs (1) (2) (5) 2 1,580 2,040 5 3,809 4,860 6,374 10 7,500 25 11,464 11,990 50 17,606 16,040 100 26,134 21,000 200 38,380 500 59,380 36,480

Table 3.6 100-year peak discharges from previous studies									
Study	100-year Peak Discharge, cfs	Watershed Area, sm							
(1)	(2)	(3)							
FEMA (2007)	21,000	575							
URS (2006)	30,400	577							
L.R. Pope Engineering (1997)	Accepted A/E Intra Group Discharge	586							
Leslie & Associates (1991)	12,300	574							
U.S. Army Corps of Engineers (1988) ¹	21,000	575							
A/E Intra Group, Inv (1986)	12,300	586							
FEMA (1982)	Zone A, Q not available								

The A/E Intra Group stated in their 1986 report that "The Beaver Dam Wash Resort and R.V. Park drainage study produced a defined flood plain through the development area. That flood plain (both improved and unimproved) is shown on Figures IV-I and IV-2. Without some


¹ As referenced in FEMA (2007)

channel improvements, the flood plain encroaches on the proposed development in various areas as shown. To modify this circumstance, an embankment along the development's easterly edge is proposed". It is apparent from this statement that the DSA was understood to be subject to flooding from peak flow rates as low as 12,300 cfs unless comprehensive structural features were constructed.

Another key hydrologic parameter needed for the flood hazard assessment is the relationship between precipitation occurring over the watershed and resulting peak discharges in the Beaver Dam Wash in the DSA. A plot of watershed-averaged 24-hour storm precipitation and resulting peak discharge at the County Highway 91 Bridge is shown on Figure 3.7. This figure can be used for estimating the peak discharge in the DSA from forecast or real-time precipitation, in conjunction with forecast or measured precipitation intensity. Keep in mind that this figure is based on the HEC-1 model results, not the FEMA flood-frequency estimates.

The relationship between rainfall, time and runoff is extremely important for flood warning purposes. A response of the Beaver Dam Wash watershed to precipitation is shown on <u>Figure 3.8</u>. This is a plot of 100-year 24-hour cumulative rainfall in inches for sub-basin 10 with the 100-year 24 hour storm runoff hydrograph at County Highway 91.

Using this figure, the difference between the time of most intense precipitation and the time various flow rates on the rising limb of the hydrograph can be measured. This graph will be used in conjunction with the hydraulic calculations for estimating hydrologic response time for flood warning purposes.

3.5 Post-Wildfire Hydrology Description and Results

The base HEC-1 models were adjusted to reflect post-fire conditions from the wildfires that occurred on the Beaver Dam Wash watershed in 2005 and 2006. A qualitative analysis of the post-burn conditions was found in PBS&J (2007). Refer to Figure 3.9 for the burn limits for the wildfires occurring in 2005-2006. According to this reference, hydrophobic soils were typically not found, except immediately under the canopy of Pinyon-Juniper vegetation. Primarily, virtually all vegetation canopy cover was removed within the burn areas. The PBS&J investigators found that where the vegetation cover was removed, the watershed has responded with increased sedimentation and the formation of new rills, gullies, and channels. They also noted that surface roughness was dramatically decreased.

Figure 3.7 Watershed average 24-hour precipitation versus peak discharge (at County Highway 91 bridge, using the HEC-1 hypothetical rainfall distribution)

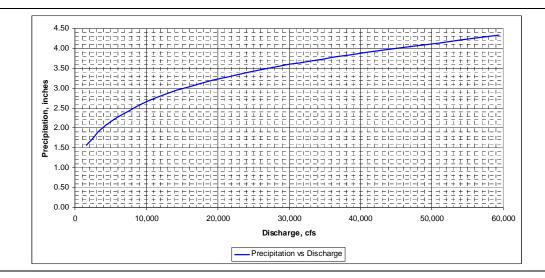
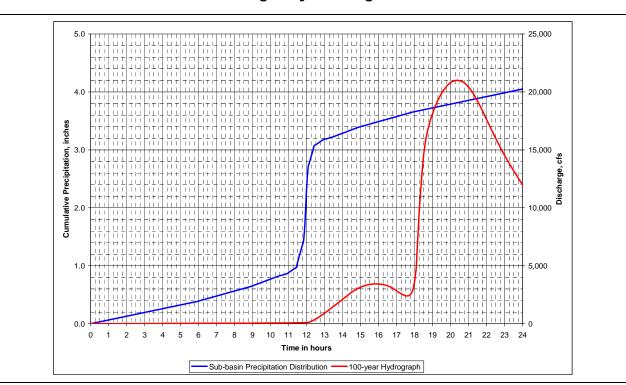



Figure 3.8 Sub-basin 10 rainfall distribution and 100-year hydrograph at County
Highway 91 bridge

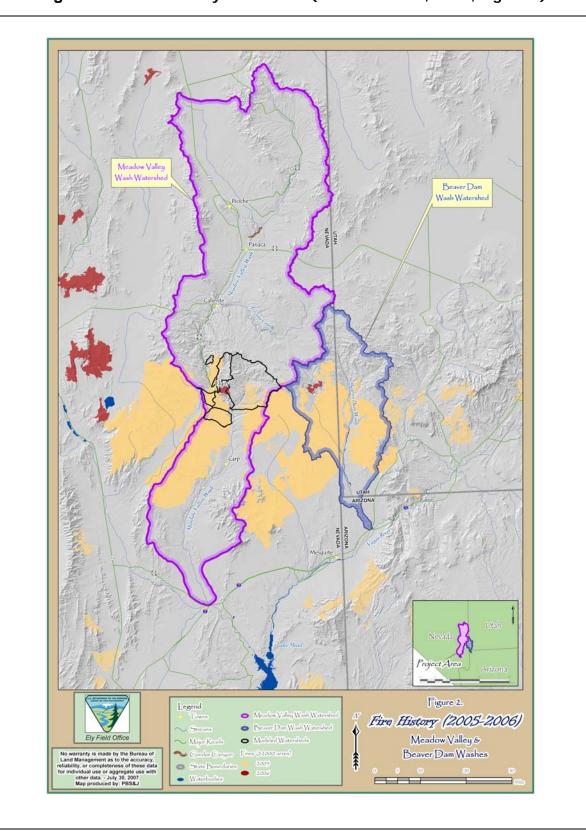
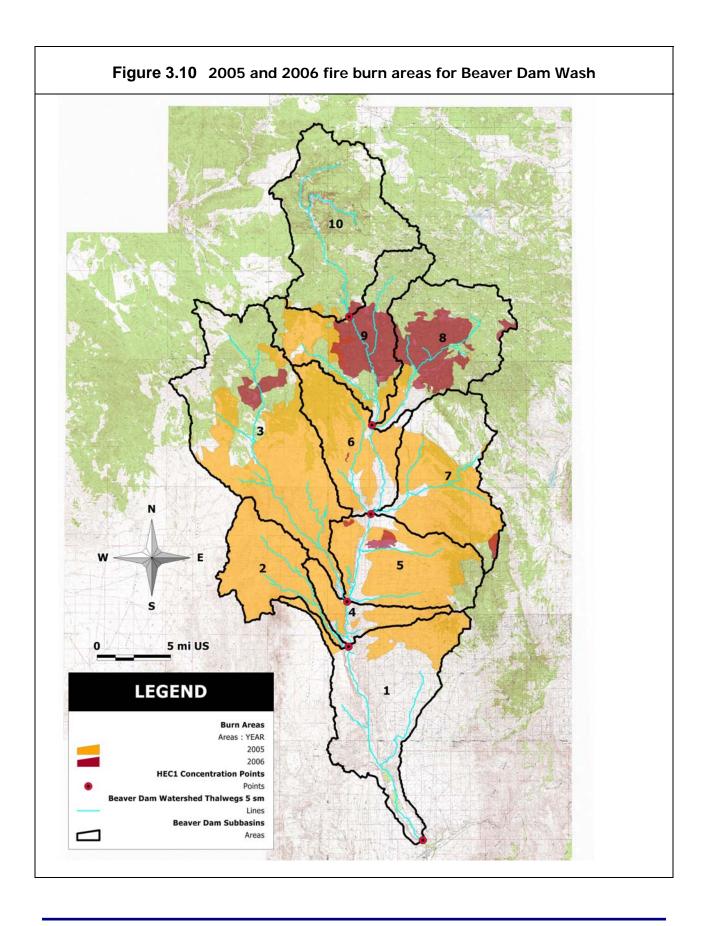



Figure 3.9 Fire History 2005-2006 (Source: PBS&J, 2007, Figure 2)

The combination of removal of the canopy cover and increased hydraulic efficiency results in lower rainfall losses and higher velocities and peak discharges. To simulate the changes in infiltration, the effects of vegetation canopy on XKSAT in the base models should be removed from the affected HEC-1 model sub-basins. There is no documentation of actual vegetation cover densities used in URS (July 2005a). It appears that no vegetation cover correction to bare ground XKSAT was applied. Therefore, this adjustment was not made. To simulate the increased hydraulic efficiency, the ADOT (1993) urban T_c equation for the Clark unit hydrograph was used, assuming natural RTIMP plus a 5 percent increase to account for small areas of hydrophobic soils. An independent review of the possible natural impervious area for each sub-basin was made. This review yielded higher possible RTIMP values for each sub-basin than URS (July 2005a). New Clark unit hydrograph parameters for the post-fire condition were computed and the results are summarized in Table 3.7.

Table 3.7			Pre- and Post-Fire Clark unit hydrograph parameters								
Sub-			L _{ca} , mi	S,	RTIMP,	Pre-Fire		Post-Fire			
basin	sm			ft/mi	%	T _c , hrs	R, hrs	T _c , hrs	R, hrs		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)		
1	76.00	20.433	10.86	234	17.3	4.80	2.00	4.80	2.00		
2	33.35	15.338	7.87	185	11.6	3.97	2.06	2.25	1.10		
3	111.28	28.031	14.74	132	10.8	6.52	2.91	3.72	1.56		
4	16.50	9.396	4.54	463	15.4	2.38	1.18	1.29	0.59		
5	51.47	15.798	7.57	280	14.3	3.81	1.57	2.05	0.79		
6	41.51	15.336	6.15	149	14.6	3.99	1.83	2.05	0.87		
7	60.33	15.879	6.95	247	23.6	3.89	1.48	1.73	0.60		
8	55.69	15.919	8.94	172	5.2	4.43	1.79	3.34	1.31		
10	54.26	17.093	5.85	234	8.8	3.80	1.62	2.40	0.97		

The modified base HEC-1 models were rerun and the results at the County Highway 91 Bridge are shown in <u>Table 3.8</u>, compared with the base model results. The modified HEC-1 model input and output files are contained in the DVD in <u>Appendix E</u>.

Table 3.8 Comparison of post-burn versus pre-burn hydrology results								
Average Watershed-	Time to	-	Change in Hydrologic	Peak Di				
Wide 24-hour Precipitation, inches	Pre	Post	Lead Time, hrs	Pre	Post	% Change in Peak Discharge		
(1)	(2)	(3)	(4)	(5)	(6)	(7)		
1.6	25.8	19.3	-6.5	1,600	6,900	4.3		
2.0	24.0	18.7	-5.3	3,800	11,500	3.0		
2.3	21.7	18.2	-3.5	6,400	16,300	2.5		
2.7	21.3	17.8	-3.5	11,500	25,200	2.2		
3.1	20.7	17.6	-3.1	17,600	34,700	2.0		
3.4	20.3	17.2	-3.1	26,100	47,800	1.8		
3.8	19.7	16.7	-3.0	38,400	65,800	1.7		
4.3	18.8	16.3	-2.5	59,400	94,300	1.6		

These results are not used in the flood hazard assessment hydraulic analyses, but are discussed in the estimation of hydrologic lead times in Section <u>6.2</u>, and in the Flood Response Plan. The actual effects of the 2005 and 2006 fires on flood response in the Beaver Dam Wash watershed are unknown. The scenario shown is just one possibility. The actual conditions could be much worse, or not as severe. Only a study of the after effects of a large extent severe storm over the watershed will provide the needed data. However, it should be anticipated that there will be increased erosion and debris, and significantly less flood warning time due to watershed response to the burned areas. Recovery time could be quite long as discussed in PBS&J (2007). Refer to Table 3.9 for an excerpt.

Table 3.9 Excerpt from PBS&J (2007) Table 5								
Observation	Conclusion							
8. Flood damage from the January 2005 storm event was concentrated in the valley bottom of the mainstem creeks over which it occurred.	Long-recurrence-interval floods like that which occurred in January of 2005 do not result from fire impacts but may be substantially exacerbated by those impacts. Due to the lack of available data on hydrologic impacts from fire in the Mojave Desert and the Great Basin, there is no existing model or base of knowledge with which to accurately quantify the proportion of any given flood which is due to fire related changes in a watershed.							
9. Red brome is likely to preclude recovery to pre-fire vegetative communities.	Without recovery back to pre-fire vegetation, there can be no recovery back to pre-fire hydrology. Without recovery to pre-fire hydrology the following are likely impacts which will continue to manifest themselves for some extended period of time: • Increase in drainage density leading to higher peak flows. • More frequent and larger floods. • Headward expansion of channel network due to headcut migration. • Lowered base level on trunk streams hit with large storms.							

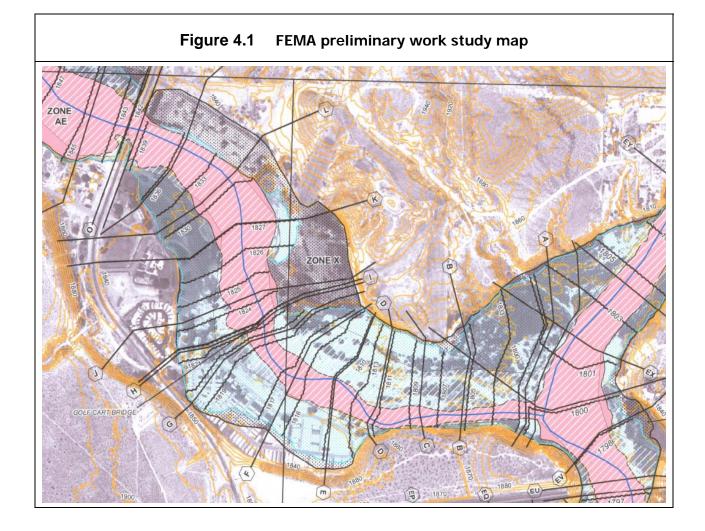
4 Hydraulics

4.1 General

This study is intended to assess flood risks, and identify flood hazards based on those risks, for the Beaver Dam area from the Beaver Dam Wash. The hydrologic and hydraulic results are intended for risk assessment and emergency management purposes only. The results of this study should not be considered as "best available technical information" for floodplain management purposes." Certain limiting assumptions used in the development of the technical basis for this study, including friction loss parameters and model control options designed to produce the upper limit of peak flood stages for a 100-year event, are intentionally very conservative, not reflective of existing conditions, and are therefore not appropriate for regulatory floodplain management uses.

Hydraulic modeling was done as part of this study for the following purposes:

- Estimate the time and peak discharge where flood waters began to enter the area of concern within the DSA.
- 2. Estimate the time and peak discharge where flood waters reach the stage of the finished floor elevation of each structure within the DSA. Estimate the recurrence interval of that flow rate.
- 3. Estimate the time and depth of flooding within each structure in the DSA for the 100-year 24-hour storm, and the depth and velocity of flow near the structure affecting the escape route from the area.
- 4. Make an estimate of the peak discharge from the January 2005 flood using surveyed high water marks still visible on structures in the area, and estimated high water stages from debris run-ups still present against trees near and inside the DSA.


Examination of the available topography indicates that the Beaver Dam Wash downstream of County Highway 91 exhibits two-dimensional characteristics, particularly within the overbank areas where the structures in question are located. Certainly, the existing structures cause sufficient disruption to flow to result in higher local water surface elevations than present in the adjacent main channel. For these reasons, both one- and two-dimensional hydraulic modeling was done to obtain the information listed above.

4.2 Limits of Study

The limits of the one-dimensional hydraulic analyses are the General Study Limits as shown on <u>Figure 1.2</u>. The limits of the two-dimensional hydraulic analysis are shown on <u>Figure 1.2</u> in light blue shading.

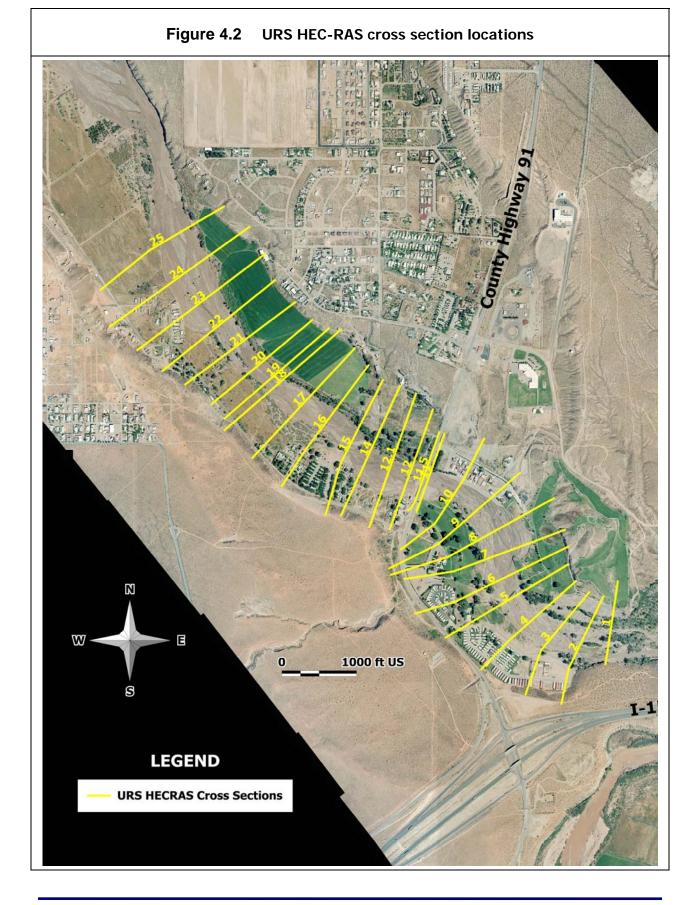
4.3 FEMA Floodway Analysis

FEMA has a flood insurance study in progress for the Beaver Dam Wash (HDR, 2006). Preliminary work study maps have been released to Mohave County for review. An excerpt from those maps covering the study area is shown on Figure 4.1. Note that none of the structures in the DSA are included in the draft FEMA floodway.

4.4 1-Dimensional Modeling

4.4.1 Base HEC-RAS Model

An HEC-RAS hydraulic model of the Beaver Dam Wash watershed is needed for the flood hazard analysis. HEC-RAS is being used by FEMA to delineate the floodplain and establish a floodway for Beaver Dam Wash. Therefore, it is appropriate to check the results of the two-dimensional hydraulic model against the one-dimensional HEC-RAS model and use the most conservative results for the flood hazard assessment and risk ranking. Where differences between the models are noted, it is also important for Mohave County staff to understand the reasons for those differences to aide in applying proper floodplain management procedures. Rather than create a new HEC-RAS model of the watershed, an existing model of record was evaluated for use in this study.


URS prepared an HEC-RAS model of the future condition Beaver Dam Wash with the new County Highway 91 bridge in place for the January 2005 post-flood conditions (URS, 2005b). The model was based on the 100-year peak discharge from the URS hydrology study (URS, 2005a), which was estimated at 30,400 cfs. This model was accepted as a base model for use in this study.

4.4.2 Adjustments Made to the Base Model

The peak discharge for profile 1 was changed from 30,400 cfs to the FEMA-accepted estimate for the 100-year flood of 21,000 cfs, and the peak discharge for profile 2 was changed to 11,990 cfs for the 25-year flood. The Manning's roughness coefficients and channel bank stations were accepted without modification. The HEC-RAS cross section locations are shown on Figure 4.2.

4.4.3 Results

The results of the modified HEC-RAS 100-year model are shown in <u>Table 4.1</u>. HEC-RAS 3.1.3 was used for this study. Refer to <u>Appendix D</u> for a report containing the input data, results, and summary tables.

Table 4.1 Summary of HEC-RAS results										
		Discha Left	Discharge Left Chan Right		WS Elev	Crit. WS	Velocity Left Chan		Right	
		(cfs)	(cfs)	(cfs)	(cfs)	(ft)	(ft)	(ft/s)	(ft/s)	(ft/s)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
25	100 yr	21,000		21,000		1875.49	1875.01		9.4	
25	25 yr	11,990		11,990		1874.38	1873.90		7.4	
24	100 vr	21,000		21,000		1871.70	1871.70		9.9	
24 24	100 yr 25 yr	11,990		11,990		1870.85	1870.73		7.9	
27	23 yi	11,770		11,770		1070.03	1070.73		7.7	
23	100 yr	21,000	2	20,998		1868.36		0.47	8.5	
23	25 yr	11,990		11,990		1866.84	1866.71		8.0	
22	100 yr	21,000	0	21,000		1866.96		0.23	8.3	
22	25 yr	11,990		11,990		1865.21			6.8	
21	100 yr	21,000		21,000		1863.90	1863.86		12.1	
21	25 yr	11,990		11,990		1862.46	1862.39		10.0	
	,	,		,						
20	100 yr	21,000		21,000		1862.04			10.5	
20	25 yr	11,990		11,990		1860.19			8.9	
19.5	100 yr	21,000		20,968	32	1859.59	1859.59		13.1	1.69
19.5	25 yr	11,990		11,990		1857.83	1857.83		11.0	
19	100 yr	21,000		20,994	6	1858.45	1858.45		12.6	0.97
19	25 yr	11,990		11,990		1856.83	1856.83		10.6	
18	100 yr	21,000		21,000	0	1854.12	1853.97		10.7	0.4
18	25 yr	11,990		11,990		1852.90	1852.68		8.7	
17	100 yr	21,000		21,000		1850.89	1850.75		11.1	
17	25 yr	11,990		11,990		1849.31	1849.27		9.8	
.,	20 j.	11,770		11/770		1017.01	1017.27		7.0	
16	100 yr	21,000		21,000		1847.15	1847.15		11.8	
16	25 yr	11,990		11,990		1845.98	1845.74		9.2	
15	100 yr	21,000	1	21,000		1844.90	1844.90		11.4	
15	25 yr	11,990		11,990		1843.57	1843.53		9.6	
14	100 yr	21,000		21,000		1842.45	1842.11		9.2	
14	25 yr	11,990	1	11,990		1841.36	1841.08		7.6	
	_~ J'	, , , , ,		,,,,			.5		7.0	
13	100 yr	21,000	18	20,982		1841.12	1840.23	1.41	8.8	

Table 4.1 Summary of HEC-RAS results										
Cross		Discharge					WS Crit. Velocity			
Section	Profile	Total	Left	Chan	Right	Elev	ws	Left	Chan	Right
		(cfs)	(cfs)	(cfs)	(cfs)	(ft)	(ft)	(ft/s)	(ft/s)	(ft/s)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
13	25 yr	11,990		11,990		1839.35	1839.02		8.1	
12	100 vm	21.000		21 000		1040 40	1838.75		0.0	
12 12	100 yr 25 yr	21,000 11,990		21,000 11,990		1840.40 1838.64	1837.33		8.9 7.1	
12	23 yi	11,990		11,990		1030.04	1037.33		7.1	
11.5		Bridge								
11	100 yr	21,000		21,000		1837.57	1837.39		11.6	
11	25 yr	11,990		11,990		1836.45	1835.97		8.7	
10	100 yr	21,000		15,639	5361	1834.38	1834.38		11.8	8.07
10	25 yr	11,990		9,059	2931	1833.08	1833.08		10.0	6.92
9	100 yr	21,000		19,892	1108	1830.56	1830.56		10.7	4.33
9	25 yr	11,990		11,744	246	1829.38	1829.30		8.9	2.81
8	100 yr	21,000		19,833	1167	1827.10	1827.10		9.3	3.61
8	25 yr	11,990		11,779	211	1826.00	1826.00		8.5	3.74
7	100 yr	21,000		19,889	1111	1824.97	1824.15		7.3	2.64
7	25 yr	11,990		11,897	93	1823.57	1823.11		6.7	1.46
6	100 yr	21,000		19,169	1831	1822.77	1822.59		10.1	3.65
6	25 yr	11,990		11,499	491	1821.87			7.6	2.17
	100 vr	21 000	3,347	12 002	3850	1021 40	1021 40	1 4E	10.7	2 50
5 5	100 yr 25 yr	21,000 11,990	1,562	13,803 9,672	756	1821.40 1820.20	1821.40 1820.20	4.65 3.93	10.7 9.4	3.59 2.08
5	25 yi	11,990	1,302	9,072	750	1820.20	1620.20	3.73	7.4	2.00
4	100 yr	21,000	4,958	15,121	921	1815.70	1815.70	4.52	10.5	3.9
4	25 yr	11,990	1,574	10,053	363	1814.62	1814.62	2.96	9.0	3.31
3	100 yr	21,000	2,722	17,147	1131	1813.33		2.83	8.2	2.66
3	25 yr	11,990	613	11,215	161	1811.62		1.82	7.0	1.38
2	100 yr	21,000	2,975	16,703	1322	1811.65	1811.65	3.01	11.2	3.67
2	25 yr	11,990	14	11,966	10	1808.35	1808.35	1.09	12.9	0.93
	,	,			-					
1	100 yr	21,000	117	20,883		1805.99	1805.99	4.05	14.2	
1	25 yr	11,990	1	11,989	<u> </u>	1803.86	1803.86	0.82	12.0	

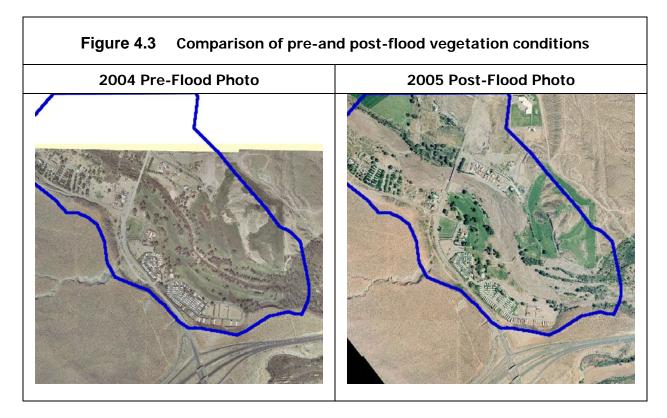
4.5 2-Dimensional Modeling

4.5.1 Base FLO-2D Model

The FLO-2D 2D computer model was selected for use in this study as described in Section 1.3.3. The 2006.01 version with FLO.EXE executable dated 11/06/2006 was used. Refer to Section 2.1.2. A base FLO-2D dataset was prepared and then different hydrologic conditions imposed to suit the needs of the study. The base model uses the following FLO-2D options and each is discussed in the following paragraphs.

- Overland Floodplain-Only Grid.
- Assignment of Roughness Coefficients to each Grid Element.
- Area and Width Reduction (ARF).
- Limiting Froude Number.
- Assignment of Inflow Hydrographs.
- Overland Floodplain-Only Grid. There are two methods available to simulate the ground surface of the 2D model area. The first is a 1D channel superimposed upon a 2D floodplain grid for modeling the overbank areas. The second is to use an overland floodplain-only grid, which simulates the hydrology and hydraulic conditions for the entire 2D model surface by computing flow parameters between each individual grid element in eight directions. Refer to FLO-2D (2006b), section 4.2. The first method could have been used, but was not selected because the study area is small enough to use a highresolution floodplain-only grid. The 2D area was divided into 74,714 uniform 15-foot square grids comprising a total study area of about 386 acres. The topography used to simulate the ground surface was the DTM from Cooper (2005). The 40-scale and 100scale DTM data sets were combined. All of the breakline, grid and spot elevations were used in computing an average ground elevation for each grid element. There are a total of 464,594 DTM data points within the 2D study area, which computes to an average of about 6 spot elevations per grid element. This is a reasonable number of data points to compute an average elevation for the selected grid size. The GDS module of the FLO-2d computer program (FLO-2D, 2006b and FLO-2D, 2006d) was used to compute the average grid element elevations. A second check on grid size is the average fall across each grid.

The average slope of Beaver Dam Wash from the Highway 91 Bridge to the edge of the Virgin River is about 0.84 percent. The average fall across each grid element is therefore


about 0.13 feet. The spot height accuracy for the topographic mapping is +/- 0.5 feet and 0.25 feet for the 100-scale and 40-scale mapping, respectively. A larger grid size could certainly be used, but the 15 foot grid size was selected to provide better resolution in and around the structures being analyzed. A smaller grid size could also be used, but model run times would be unreasonably long.

2. Assignment of Roughness Coefficients to Each Grid Element. The topographic mapping and color aerial photographs by Cooper (2005) were used as the basis for assigning a Manning's n-value to each grid element. These photographs were taken after the January 2005 flood, so they reflect existing conditions in the wash at that time. Prior to the flood, vegetation was very dense in certain portions of the Beaver Dam Wash, particularly upstream of the Highway 91 Bridge and at the confluence with the Virgin River. Refer to Figure 4.3 for comparison of pre- and post-flood photographs. Due to the high level of stream power, it is highly probable that the dense vegetation areas were removed prior to the peak discharge. However, an estimated non-maintained vegetation condition in combination with the FLO-2D n-value optimization procedure forcing subcritical flow was used for estimating n-values within the main wash area.

Polygons defining the various physical features depicted in Figure 4.4 were imported from the ESRI topographic mapping shape files provided by Cooper. Manning's n-values were then assigned to each physical topographic feature as shown in Table 4.2 The assignment of overland flow roughness must account for vegetation, surface irregularity, non-uniform and unsteady flow. Overland roughness can be significantly greater than for conventional prismatic channel steady flow (refer to FLO-2D (2006b), section 4.2). It is also a function of flow depth. The n-value coverage shown on Figure 4.4 was used to assign a base n-value to each grid element, and the values entered into the FPLAIN.DAT FLO-2D input data file. The base n-values were then optimized using the limiting Froude number FLO-2D control setting, which is discussed in more detail in item 3 below.

Successive FLO-2D runs were made using the limiting Froude number setting. For situations where the limiting Froude number is exceeded, FLO-2D dynamically adjusts the Manning's n-values until the target Froude number is reached. After each run, the resulting adjusted n-values were reviewed and accepted adjustments written to the FPLAIN.DAT file. This process has the added benefit of decreasing the n-values in

FPLAIN.DAT decreases the FLO-2D model run time, and increasing numerical stability of the hydraulic computations. Finally, n-values were adjusted manually near the Virgin River where heavy vegetation growth can be expected. The final n-values are shown graphically on <u>Figure 4.5</u>. Refer to the FPLAIN.DAT FLO-2D input data files on DVD-ROM in <u>Appendix</u> <u>E</u> for final model n-values.

Table 4.2 Base Manning's n-values related to physical features						
Physical Feature	Manning's n-value					
(1)	(2)					
Brush	0.060					
Cultivated Fields	0.070					
Grass	0.040					
Open Space	0.050					
Paved Roads	0.025					
Trees	0.100					
Washes	0.045					

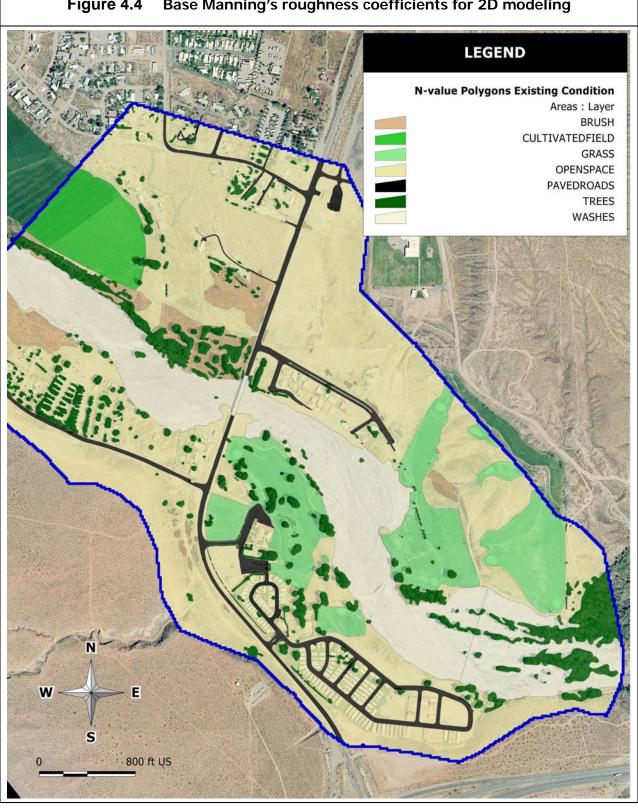


Figure 4.4 Base Manning's roughness coefficients for 2D modeling

LEGEND Study Area Areas : Area Detailed Study Area General Study Area FLO2D 100yr Floodplain 042907 Areas Final n-value Theme Areas: n 0.000 0.040 0.060 0.080 0.085 0.100 0.150 0.200 500 ft US

Figure 4.5 Final Manning's roughness coefficients used in the 2D models

- 3. **Limiting Froude Number.** The flood hazard assessment is based on the water surface elevations at the structures in question. Examination of the HECRAS model results show that flow in the Beaver Dam Wash is often supercritical in the main wash and likely subcritical in the overbanks. The 2D model analyses were done assuming subcritical flow in order to maximize the water surface elevations. To accomplish this, a maximum Froude number of 0.95 was set. When the specified limiting Froude number is exceeded, the floodplain n-value is increased by 0.001 for that grid element for the next time step. This iterative procedure is used to force subcritical flow.
- 4. Area and Width Reduction (ARF). The existing structures, accessory structures, and masonry walls within the Beaver Dam Wash floodplain are obstructions to flow. The effects of these obstructions were modeled using the FLO-2D Area Reduction Factor (ARF) option. The polygons defining the structures present at the time of the 2005 aerial photographs by Cooper, included in the Cooper topography, were used as the basis for assigning ARF factors. Structures constructed since the date of the 2005 aerial photographs were field surveyed (Owens, 2007). The structures used to define ARF factors are shown on Figure 4.6. The grid elements that intersect the building polygons were assigned ARF values in the ARF.DAT FLO-2D input data file. This has the effect of completely blocking that grid element to flow conveyance and storage. The blocked grids are shown on Figure 4.7. Many of the structures have block walls along the rear property line. These have the effect of blocking/redirecting flow that is able to drain between structures. For this reason, many areas between buildings are allowed to be completely blocked for modeling purposes.

The effects of the golf cart bridge, shown in green on Figure 4.6, were modeled by partially obstructing the grid elements that include the bridge. This bridge was not washed out during the January 2005 flood. It is also not expected to be overtopped during the 100-year storm, based on the Owens (2007) as-built survey data. Therefore, the hydraulic capacity of each grid element was reduced by 10 percent to account for hydraulic losses due to contraction and expansion of flow and for blockage by debris. The blockage was accomplished using the FLO-2D Width Reduction Factor option.

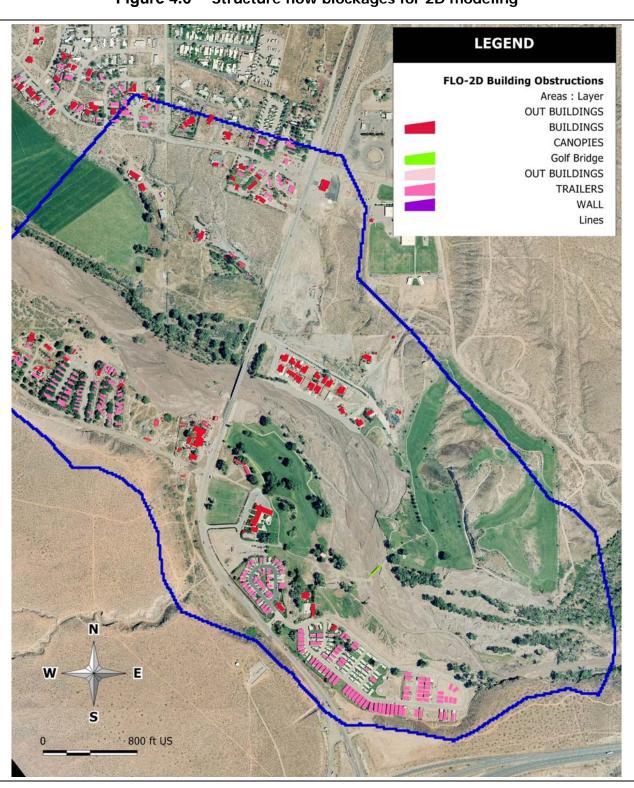
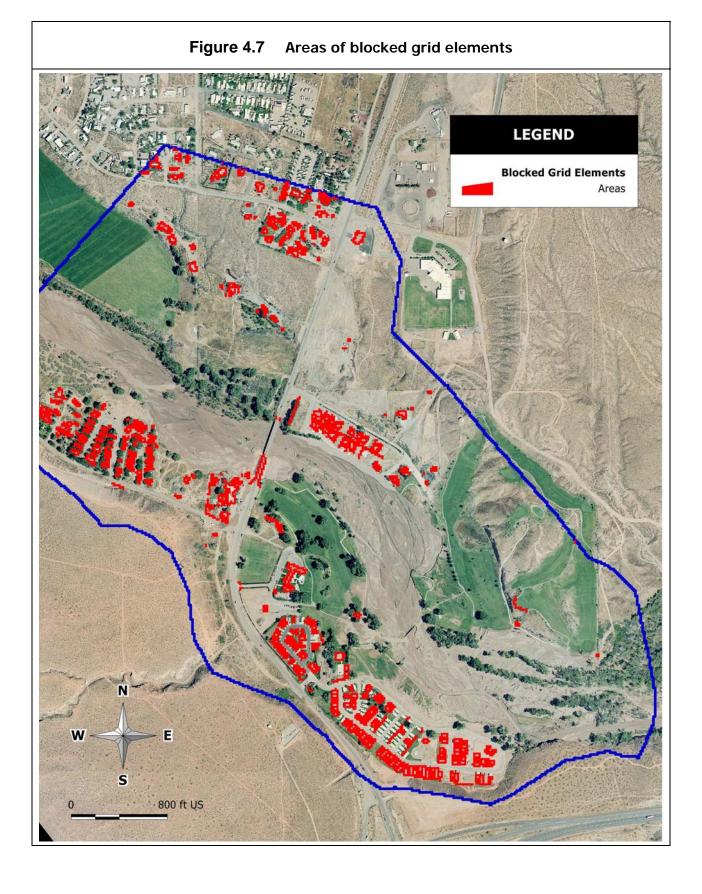
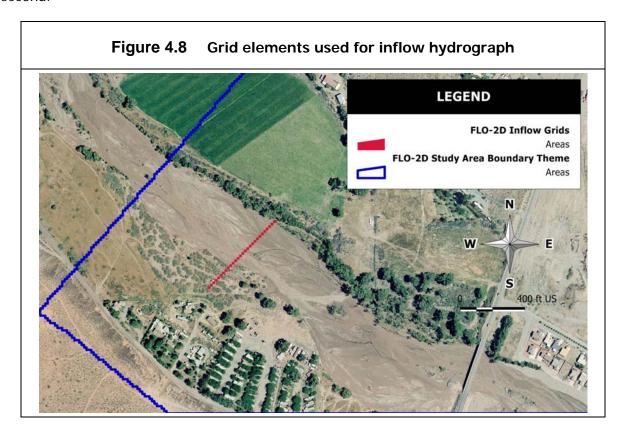



Figure 4.6 Structure flow blockages for 2D modeling

50 December 2007

- 5. Assignment of Inflow Hydrographs. The adjusted 100-year hydrograph shown on Figure 3.6, which is based on the accepted FEMA peak discharge of 21,000 cfs, was used as the basis for inflow to the FLO-2D models. Twenty eight (28) grid elements, shown on Figure 4.8, were used as inflow grid elements. Each hydrograph ordinate was divided by 28 and the resulting ordinates entered into the FLO-2D INFLOW.DAT input data file for every one of the 28 grid elements shown on Figure 4.8. Two other FLO-2D models were run for this study:
 - 1. A peak discharge of 26,100 cfs, which is approximately a 230-year frequency, and
 - 2. The FEMA 500-year storm peak discharge of 36,500 cfs.


The same procedure was used to create FLO-2D inflow hydrographs for these two peak discharges as was used for the 100-year flood.

4.5.2 Results

Due to the large number of grid elements (74,714), it is not practical to present the results in a tabular format. Instead, the FLO-2D input and output files are included on DVD in Appendix E. An ESRI GIS polygon shape file is also provided for each FLO-2D model. The table contains the results for every grid element. The FLO-2D peak discharge, depth and velocity results for the 100-year 24-hour flood are shown graphically on Figure 4.9, Figure 4.10, and Figure 4.11. The maximum peak discharge in cubic feet per second crossing each grid element is shown on Figure 4.9. The results are color coded to show a range of discharge values. The maximum average depth of flow in feet at each grid element is shown on Figure 4.10. The maximum average velocity of flow in feet per second at each grid element is shown on Figure 4.11. Note the areas adjacent to and surrounding the structures in question where the flow colors are yellow, light green, and dark green on all three figures. These are the areas of highest hazard at the structures.

Also note that there is significant flow in these areas that is divided from the main flow of Beaver Dam Wash. Flow escapes from the main channel downstream of the County Highway 91 Bridge and drains south and southeast through the DSA. Flow first begins entering the DSA at the most easterly tip of the DSA where it begins backing up from the main wash. Refer to Figure 4.12. Flow first starts draining into the DSA from the Beaver Dam Wash main channel at Cross Section 4 (CS4). The 100-year 24-hour peak discharge in the street at that location is

440 cfs and peaks at 20.44 hours. Overbank flow from the breakout downstream of the County Highway 91 Bridge begins entering the DSA at Cross Section 5 (CS5). The 100-year 24-hour peak flow at that location is 2,730 cfs, peaking at 20.54 hours. Flow peaks a little later at CS5 than at CS4 due to more flow resistance in the long length of overbank. A total runoff volume of 847 acre-feet passes that location. The 100-year 24-hour peak discharge at Cross Section 3 (CS3) is 2,570 cfs, peaking at 20.55 hours. The total runoff volume crossing that location is 878 acre-feet. The flow rates and total runoff volume passing through the DSA are very high with flow depths ranging from 1 to over 6 feet, and velocities ranging from 1 to over 8 feet per second.

The duration of flooding in hours that can be expected during a 100-year 24-hour event is shown on Figure 4.13. The times shown on Figure 4.13 are the duration of flooding where the flow depth exceeds 6-inches. Durations in the DSA meeting this criteria range from 1 to over 7 hours. The 100-, 230-, and 500-year floodplain limits developed using the FLO-2D model results are shown on Figure 4.14. The 100-year floodplain is shown shaded in blue, and the approximate 200-year and the 500-year boundaries are shown as orange and red lines, respectively. The buildings and walls modeled as obstructions to flow are shown in solid red.

LEGEND Study Area Areas : Area Detailed Study Area General Study Area **Blocked Grid Elements** Areas 100yr Discharge Areas : RDischarge <0 0...25 25...50 50...100 100...250 250...500 500...1000 1000...2000 2000...2842 >2842 500 ft US

Figure 4.9 FEMA 100-year 24-hour FLO-2D peak discharge results

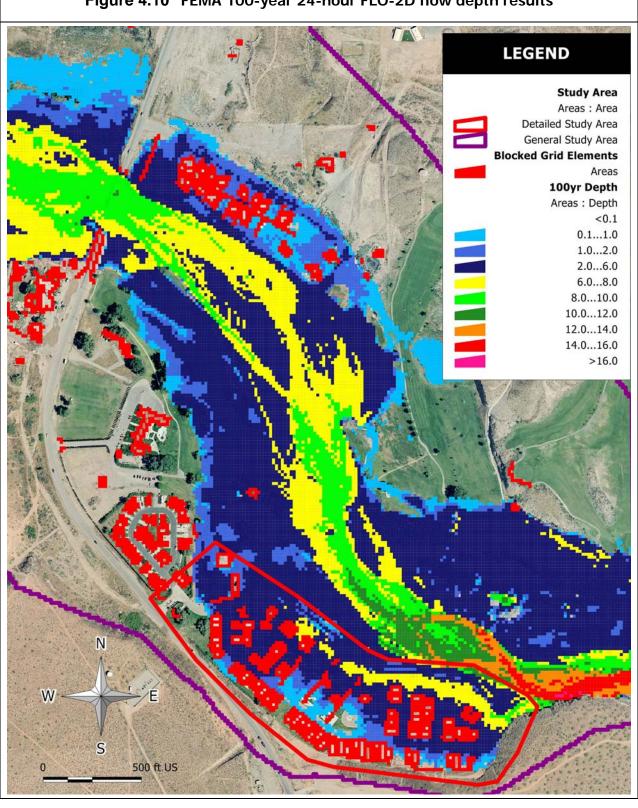


Figure 4.10 FEMA 100-year 24-hour FLO-2D flow depth results

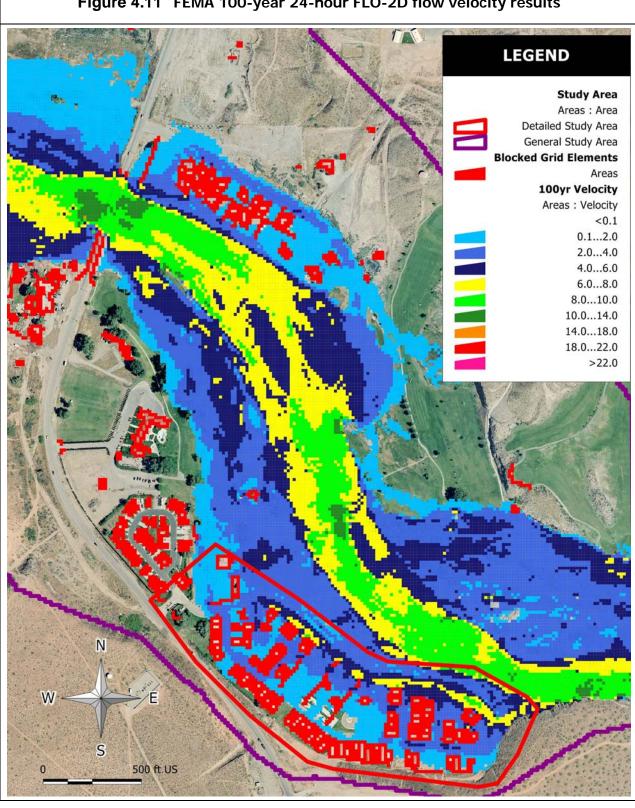


Figure 4.11 FEMA 100-year 24-hour FLO-2D flow velocity results

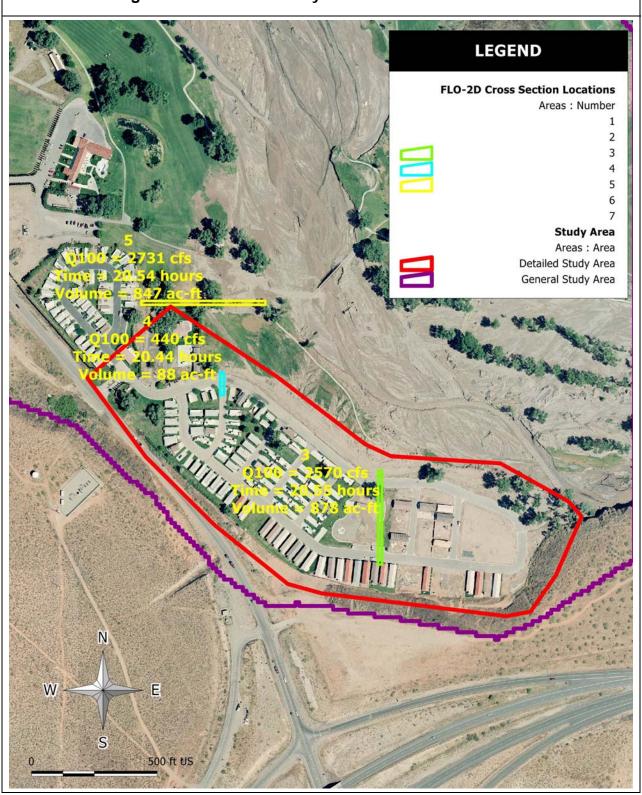


Figure 4.12 Detailed Study Area FLO-2D cross sections

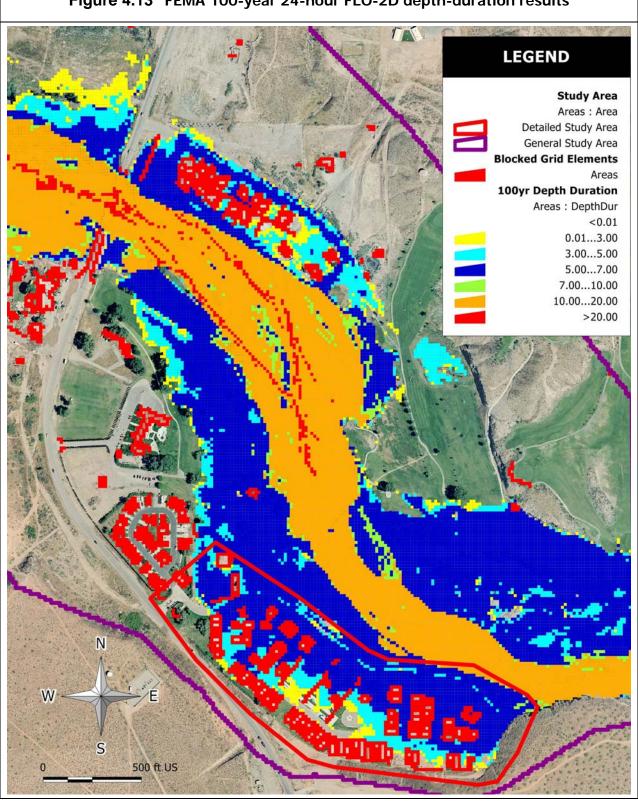


Figure 4.13 FEMA 100-year 24-hour FLO-2D depth-duration results

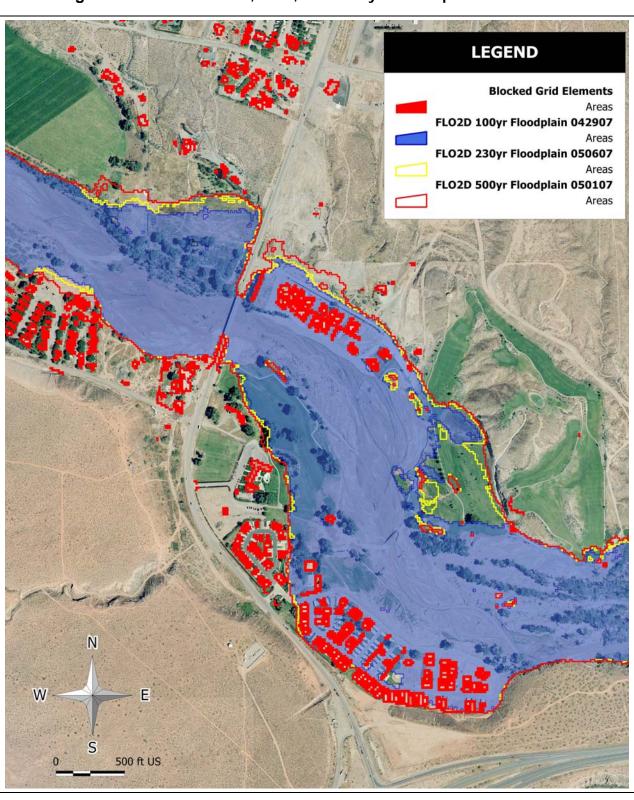



Figure 4.14 FLO-2D 100-, 200-, and 500-year floodplain delineations

4.6 Comparison of 1D and 2D Results

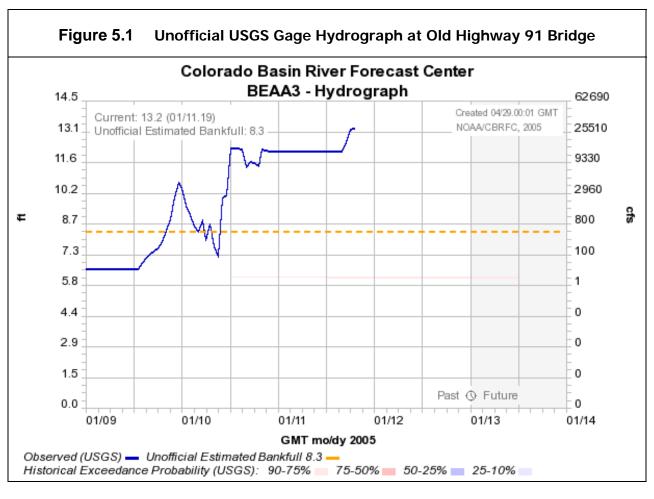
An excerpt from the preliminary 1D floodplain delineation prepared by FEMA (HDR, December 2006) was used as the basis for Figure 4.15. The FLO-2D 100-year and 500-year floodplain delineations are shown overlaid on that base. Note that the FLO-2D 100-year and 500-year floodplain limits are very close to the FEMA limits in most areas. They differ significantly along the north and northeast side of Beaver Dam Wash immediately upstream and downstream of the County Highway 91 Bridge. The FLO-2D water surface elevations vary from 0 to over 2 feet higher than the HECRAS generated elevations, particularly in the backwater area upstream of the County Highway 91 bridge, and downstream of the bridge along the outside of the bend to the south. The 1D model is based on the assumption of a uniform level water surface elevation across the floodplain perpendicular to flow. The FLO-2D model results represent the more realistic condition of a non-uniform water surface elevation across the wash. Also, breakouts into the overbank floodplain occur between FEMA cross sections in both areas. The FLO-2D model picks up these breakouts and routes flow through the overbank system. This affects the existing subdivision immediately downstream of the bridge.

Moving down to the DSA, examine the area around FLO-2D cross section 5 (CS5). CS5 is aligned perpendicular to flow as shown by the FLO-2D grid element flow direction arrows on Figure 4.16. CS5 lays at an angle between FEMA cross sections I and J. The FLO-2D 100-year water surface elevation at CS5 varies from 1823.9 to 1824.2. The FEMA 1D water surface elevations vary from 1823 to 1824 between cross sections I and J. The modified URS HECRAS model (refer to Section 4.4) cross sections 5 and 6 cover this same area. The 100-year water surface elevation between these cross sections varies from 1821.4 to 1822.8. The FLO-2D 100year water surface elevations in the main channel along FEMA cross section H and modified URS HECRAS cross section 5 vary from 1822.7 to 1823.3. The FEMA water surface elevation at this location is about 1823 and the modified URS water surface elevation at cross section 5 is 1821.4. The FEMA HECRAS model produces water surface elevation results in good agreement with the FLO-2D model within the limiting assumptions of a 1D model. The modified URS model results do not check close enough to either the FEMA HECRAS results or the FLO-2D model results, and are not recommended for use in the flood hazard assessment. The FLO-2D model does a superior job in providing detailed flow rates, depths and velocities at the level of detail needed to perform the flood hazard analysis in the DSA.

60 December 2007

LEGEND FLO-2D Cross Section Locations FLO2D 100yr Floodplain 042907 Areas FLO2D 500yr Floodplain 050107 Areas

Figure 4.16 Grid element flow directions at FLO-2D cross section 5


5 January 2005 Flood Assessment

The flood of January 2005 commenced on 9 January and extended through 14 January. Mohave County Flood Control District provided the following chronology of events:

- 1-9 National Weather Service warning: local fire department and sheriff's office contacted.
- 1-10 (01:30 AM) High flows, door to door evacuations begin.
- 1-10 (06:00 AM) Traffic control and emergency management staff arrive.
- **1-10 (Noon)** Heavy equipment arrives from Kingman, south bridge approach protected, flood waters begin to recede.
- **1-10 (Evening)** Assistant Public Works Director, public works personnel and 2 ADEM personnel arrive.
- 1-10 (Evening) Sheriff's sergeant assumes incident command with other divisions acting as staff.
- 1-11 (07:00 AM) EOC manned, regional emergency communications van arrives on scene.
- **1-11 (Mid-morning)** Utah warns of increased flows, water starts to rise and attack erosion protection, upstream and downstream banks begin to erode.
- **1-11 (Mid-afternoon)** Water channels through the south approach, Park Place Road begins to erode, Beaver Dam Resort begins to flood.
- 1-13 and 1-14 Flood waters recede / incident commander terminates incident management.

Unfortunately, the USGS stream gage at the Old County Highway 91 Bridge failed near the peak stage. The unofficial gage record obtained from the MCFCD is show in Figure 5.1. As can be seen on Figure 5.1, the flow rate did drop on 10 January, and then increased significantly. Towards the end of 10 January, the gage height began showing a level stage and the gage ultimately failed. The flow readings on 11 January are therefore highly suspect. The chronology states that flow did not begin to flood the Beaver Dam Resort in the DSA until midafternoon on 11 January. Assuming the gage readings on 10 January are valid, the flow rate would have to be greater than 10,000 cfs, and possibly greater than 15,000 cfs, to begin flooding the DSA.

Post-flood photographs are shown in <u>Figure 5.2</u>, <u>Figure 5.3</u> and <u>Figure 5.4</u>. Note the evidence of significant erosion in <u>Figure 5.2</u>. The photograph shown on <u>Figure 5.3</u> provides evidence of the high water stage reached near or at the peak flow rate. From the photographs, it is estimated that the depth of flooding in the structures is in the range of 4 to 6-feet.

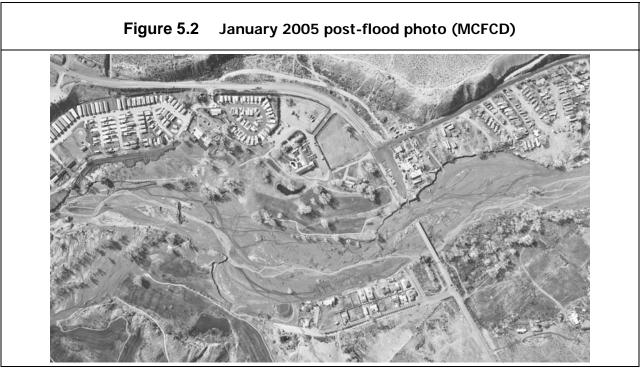


Figure 5.3 Structure ID's 7, 9 and 11 (MCFCD)

Figure 5.4 Structure washed way (MCFCD)

Estimation of the peak discharge from the January 2005 flood is problematic due to the many variables for which there is no data. Factors that are unknown and affect the uncertainty of an estimate include:

- 1. The true ground geometry at the time of peak is unknown due to scour and deposition during the flood event.
- 2. The effects of vegetation at the time of peak are unknown because there is no data available to determine at what point during the flood vegetation was removed. Vegetation may have been removed prior to the peak but its effects during the rising limb of the hydrograph could actually result in higher water surface elevations than would result during the peak flow without the vegetation.
- 3. The surveyed elevations on high water indicators such as debris piles in trees are very subjective. Run-up will typically stack the debris higher than the water surface and there is no way to determine how much higher the debris stacks would have been. Also, debris is deposited throughout the flood, so as flood waters recede, debris is deposited at elevations below the peak water surface elevation. It is anticipated that many of the debris shots fall in this category. Therefore, the debris piles deposited at peak are probably higher than the actual water surface elevation at peak, and many others are

below. The best indicators are the high water marks evident on structures and slack water marks along the banks.

The key assumptions made in preparing the hydraulic models used for estimating the peak discharge are:

- 1. The ground surface at the time of peak was the same as that after the flood event.
- 2. Most vegetation was not removed prior to the peak.
- 3. The peak discharge from the January 2005 flood was probably close to the FEMA 100-year discharge. Therefore, the checks were done using a rating curve based on the 100-, 230-, and 500-year FLO-2D hydraulic models. The curve was projected for water surface elevations below the 100-year stage.

The approach for estimating the peak discharge associated with each surveyed high water indicator is as follows:

- All surveyed elevations were used as is. No attempt was made to infer run-up heights with the debris pile elevations.
- 2. A nonlinear regression analysis was performed on the water surface elevations for each of the three hydraulic models at the location of every high water mark. The equation form was: Q = b*m^{Elev}, which was created using the LOGEST function in MS Excel. The equation was used to estimate the peak discharge at the elevation of the measured high water mark.
- 3. The results were tabulated, examined, and conclusions drawn.

The results from this analysis are shown in <u>Table 5.2</u>. Column 1 contains the FLO-2D grid element number of the grid containing the surveyed elevation. Also listed in column 1 are the Mohave County Assessor's parcel numbers for the two high water shots taken on the side of existing structures. Column 2 is the description of where the surveyed high water indicator elevation was taken. Columns 3 through 5 are the water surface elevation associated with the 100-, 230-, and 500-year peak discharges. Column 6 is the surveyed high water mark elevation. Column 7 contains the estimated peak discharge associated with the elevation in column 6.

Та	Table 5.2 January 2005 flood surveyed high water marks										
			Water Su	rface Elev	ation						
	Shot				01/2005						
GRIDCODE/APN	Description	100-yr	230-yr	500-yr	High Water	Q, cfs					
(1)	(2)	(3)	(4)	(5)	(6)	(7)					
APN 402-87-058	High Water	1815.80	1816.70	1817.30	1815.55	18,600					
APN 402-87-055	High Water	1816.20	1817.10	1817.60	1816.55	23,200					
71375	Debris	1809.32	1810.18	1811.39	1814.36	80,500					
63871	Debris	1815.71	1816.57	1817.16	1817.50	39,700					
64829	Debris	1815.15	1815.99	1816.64	1816.55	34,100					
70793	Debris	1810.11	1811.00	1812.06	1811.72	32,800					
63682	Debris	1815.54	1816.56	1817.28	1817.04	32,500					
71376	Debris	1809.29	1810.15	1811.34	1810.55	29,400					
71594	Debris	1809.19	1810.05	1811.23	1809.95	25,700					
71488	Debris	1809.18	1810.01	1811.19	1809.83	25,000					
71150	Debris	1809.48	1810.41	1811.53	1810.17	25,000					
71702	Debris	1809.13	1809.91	1811.16	1809.68	24,500					
71619	Debris	1809.67	1810.59	1811.39	1810.18	24,100					
65011	Debris	1815.09	1815.97	1816.63	1815.54	24,000					
71491	Debris	1806.69	1810.06	1811.12	1808.14	23,900					
72113	High Water	1808.60	1809.30	1810.50	1808.68	21,600					
70434	Debris	1810.42	1811.39	1812.41	1810.22	19,500					
70813	High Water	1810.28	1811.27	1812.16	1810.09	19,400					
66777	Debris	1813.93	1814.86	1815.51	1813.66	18,600					
70186	Debris	1810.76	1811.72	1812.70	1810.28	17,983					
70435	Debris	1810.45	1811.41	1812.41	1809.94	17,900					
71267	Debris	1809.23	1810.18	1811.31	1808.43	16,800					
70799	Debris	1810.00	1810.94	1812.01	1809.00	15,700					
69929	Debris	1811.02	1811.99	1812.96	1810.04	15,600					
66095	Debris	1814.32	1815.24	1815.96	1813.42	15,200					
71618	Debris	1809.62	1810.54	1811.36	1808.63	15,000					

Ta	able 5.2 Ja	nuary 200)5 flood su	urveyed hi	gh water mark	s
			Water Su	rface Elev	ation	
GRIDCODE/APN	Shot Description	100-yr	230-yr	500-yr	01/2005 High Water	Q, cfs
(1)	(2)	(3)	(4)	(5)	(6)	(7)
64823	Debris	1815.30	1816.13	1816.79	1814.38	14,600
70800	Debris	1810.04	1810.94	1811.97	1808.80	14,500
70560	Debris	1810.41	1811.33	1812.33	1809.15	14,400
66776	Debris	1813.95	1814.88	1815.59	1812.84	14,100
70918	Debris	1809.85	1810.74	1811.86	1808.02	12,600
67273	Debris	1813.42	1814.49	1815.10	1811.62	11,600
67786	Debris	1813.09	1814.13	1814.88	1811.14	11,300
71720	High Water	1809.02	1809.80	1810.89	1806.89	11,100
69920	Debris	1811.06	1811.95	1812.92	1808.71	10,300
69548	Debris	1811.99	1813.00	1813.78	1809.41	9,300
69409	Debris	1812.04	1813.04	1813.82	1809.29	8,800
69410	Debris	1812.05	1813.05	1813.83	1809.30	8,800
69680	Debris	1811.91	1812.89	1813.67	1808.99	8,300
69412	Debris	1812.09	1813.10	1813.89	1808.84	7,600
69681	Debris	1811.93	1812.92	1813.70	1808.66	7,500
66438	Debris	1814.16	1815.05	1815.82	1810.98	7,170
69683	Debris	1811.94	1812.93	1813.71	1808.22	6,500
67110	Debris	1813.64	1814.24	1815.15	1808.85	3,600

The average of all the shots taken yielded a peak discharge of 19,100 cfs. Assuming that all locations with a peak discharge of greater than 26,000 cfs are strongly influenced by run-up debris pile height, and that all locations with a peak discharge less than 15,000 cfs occurred before the time to peak, the average is 20,300. Several shots were labeled by the surveyor as "High Water" marks. Only one, at GRIDCODE 72113, is a bank slack water shot. Using the slack water shot and the two shots on structure high water marks, the average discharge is 21,200 cfs. The assumptions used to perform these estimates (ie. higher roughness) should

provide estimates on the low end of the possible range. Using this approach, the estimated January 2005 flow rate is at least 21,000 cfs, and the range of possible values, assuming a variation of +/- 20 percent, is from 17,000 to 25,000 cfs. Therefore, the January 2005 flood at peak stage was probably close, in terms of peak discharge, to the FEMA 100-year peak discharge. However, it is important to keep in mind that the peak discharge could have been much greater if the vegetation was removed early in the rising limb of the hydrograph and/or scour was much greater than the post-flood topography would indicate. A flood of the magnitude of the January 2005 flood event can be expected to occur infrequently, but the DSA can expect flooding from much smaller storm events.

6 Flood Hazard Assessment

The flood hazard assessment of the DSA was done using the 100-year 24-hour FLO-2D model results in combination with the HEC-1 model results described in Section <u>3.4</u>. The assessment is based on several factors:

- Timing, flow rate and flooding frequency at critical locations affecting the ability of residents to be evacuated from the area of hazard.
- Timing, flow rate and flooding frequency where flow would begin to enter individual structures (where the finished floor elevations are known).
- Personal safety hazard factors for adults in and around each residence based on 100-year 24-hour flow depth and velocity.

This information is used as the basis for assessing the flood risk and assigning hazard classifications for the structures in the DSA. Conclusions and recommendations for addressing and mitigating the flood hazards are then defined.

6.1 Time to Peak and Recurrence Interval at Finish Floor Elevations

The time where flow first reaches the finished floor elevation of each residence where the finished floor elevation is known is used to estimate the peak flow in Beaver Dam Wash at that stage. The corresponding flooding frequency of that peak discharge is then determined. The results are shown in Table 6.1, sorted in order of decreasing frequency. The ID in column 1 relates to the ID number shown on Figure 6.4 later in this section. The recurrence interval for the structures most susceptible to flooding varies from 35 to 70 years, with an average of about 50 years. This is a 2 percent chance in any given year of flood elevations reaching the threshold of structures in the area. The average expected depth of flooding within these

structures during a 100-year 24-hour event is about 2.7 feet. This is sufficient depth to result in severe damage to the structure and contents. The 100-year water surface elevations are based on the FLO-2D model results.

Table 6.1 Analysis results of threshold flooding at finished floor elevations Parameter Values at Flood Stage Equal to **Finished Floor Elevation Finished** Time to Peak, **Floor** Discharge, Recurrence ID APN Elevation hours cfs Interval, years (4) (1) (2) (3) (5) (6) 7 35 402-87-016 1812.05 20.3 13,700 9 402-87-013 1813.14 20.9 14,600 42 42 11 402-87-017 1812.64 20.6 14,600 42 4 402-87-007 1813.84 20.6 14,600 1 402-87-034 20.3 42 1812.27 14,600 10 402-87-012 1813.57 20.9 14,600 42 3 402-87-033 1812.37 20.7 14,600 42 45 17 402-87-006 1813.96 20.5 15,200 24 402-87-018 1814.02 20.8 15,900 49 49 16 402-87-025 1813.74 20.4 15,900 49 20.2 34 402-87-011 1814.98 15,900 19 402-87-019 1814.59 21.2 15,900 49 20 49 20 402-87-020 1814.62 15,900 29 49 402-87-026 1814.33 20.4 15,900 36 402-87-028 20.4 16,400 49 1814.48 402-87-004 20.4 50 18 1815.59 16,100 28 402-87-009 20.8 50 1815.41 16,100 1815.63 20.1 50 21 402-87-010 16,100

December 2007 69

20

20.7

21.1

16,100

16,300

16,500

50

53

55

40

46

59

402-87-030

402-87-029

402-87-021

1814.1

1814.26

1814.79

71

402-87-046

1817.92

Table 6.1 Analysis results of threshold flooding at finished floor elevations Parameter Values at Flood Stage Equal to **Finished Floor Elevation Finished Floor** Time to Peak, Discharge, Recurrence ID APN Elevation hours Interval, years cfs (1) (2) (3) **(4)** (5) (6) 33 402-87-027 1814.83 21.2 16,500 55 21.2 53 402-87-008 1816.02 16,500 55 25 402-87-003 1816.16 20.3 16,900 58 20.4 69 60 402-87-002 1816.57 17,900 30 402-87-055 1815.68 20.6 19,000 80 402-87-056 1815.51 20.7 19,600 51 86 27 402-87-058 1815.43 20.1 20,100 91 56 402-87-050 1817.39 20.5 24,500 190 57 402-87-049 1817.72 20.5 24,500 190

The known residence finished floor elevations are listed in <u>Table 6.2</u> for comparison with the results from the FLO-2D model. The results are listed in order by structure ID from Figure 6.4.

20.5

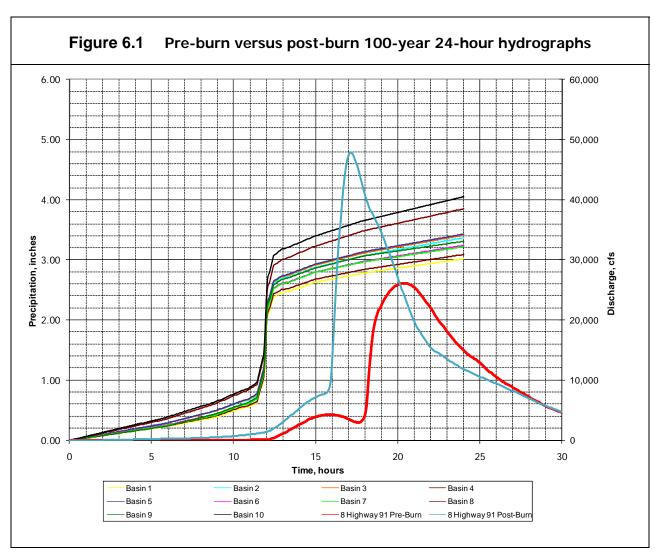
25,100

205

Table 6.2 Comparison of FLO-2D water surface elevations with finished floors						
			FLO-2D 100-year	Results		
ID	APN	Finished Floor Elevation	Water Surface Elevation	Flooding Depth Above FF		
(1)	(2)	(3)	(4)	(5)		
1	402-87-034	1812.27	1816.2	3.9		
3	402-87-033	1812.37	1815.8	3.4		
4	402-87-007	1813.84	1818.0	4.2		
7	402-87-016	1812.05	1817.1	5.0		

Table 6.2 Comparison of FLO-2D water surface elevations with finished floors

			FLO-2D 100-year	Results
ID	APN	Finished Floor Elevation	Water Surface Elevation	Flooding Depth Above FF
(1)	(2)	(3)	(4)	(5)
9	402-87-013	1813.14	1817.4	4.3
10	402-87-012	1813.57	1817.4	3.8
11	402-87-017	1812.64	1816.9	4.3
16	402-87-025	1813.74	1816.4	2.7
17	402-87-006	1813.96	1818.0	4.0
18	402-87-004	1815.59	1818.0	2.4
19	402-87-019	1814.59	1816.9	2.3
20	402-87-020	1814.62	1816.9	2.3
21	402-87-010	1815.63	1817.4	1.8
24	402-87-018	1814.02	1816.9	2.9
25	402-87-003	1816.16	1818.0	1.8
27	402-87-058	1815.43	1815.8	0.4
28	402-87-009	1815.41	1817.4	2.0
29	402-87-026	1814.33	1816.3	2.0
30	402-87-055	1815.68	1816.2	0.5
33	402-87-027	1814.83	1816.3	1.5
34	402-87-011	1814.98	1817.4	2.4
36	402-87-028	1814.48	1816.2	1.7
40	402-87-030	1814.10	1815.8	1.7
46	402-87-029	1814.26	1816.1	1.8
51	402-87-056	1815.51	1816.0	0.5
53	402-87-008	1816.02	1817.3	1.3
56	402-87-050	1817.39	1816.9	-0.5
57	402-87-049	1817.72	1817.2	-0.5
59	402-87-021	1814.79	1816.9	2.1


	Table 6.2	Comparison of FLC	0-2D water surface elevation floors	ns with finished		
			FLO-2D 100-year Results			
ID	APN	Finished Floor Elevation	Water Surface Elevation	Flooding Depth Above FF		
(1)	(2)	(3)	(4)	(5)		
60	402-87-002	1816.57	1817.9	1.3		
71	402-87-046	1817.92	1817.3	-0.6		

6.2 Estimate of Hydrologic Lead Time

An analysis was done to determine if the lower portion of the Beaver Dam Wash watershed can produce a high enough peak discharge to flood the area of concern. A HEC-1 model containing only basins 1-7 (refer to Figure 3.2) was run to determine if sufficient peak discharge can be generated to cut-off access to the DSA and/or to flood the structures. That portion of the watershed can produce over 20,000 cfs from a 100-year point precipitation; therefore, runoff from that area can block the access route and flood structures. The time to peak from the lower watershed is about 19.4 hours, 1-hour less than the complete watershed. The estimate of hydrologic lead time is therefore based on the lower watershed response to precipitation. The time of most intense precipitation for the lower watershed is at 12.0 hours. The flow rate that first begins flooding the access road in the DSA is about 10,900 cfs at 18.3 hours. The estimated hydrologic lead time is therefore 18.3-12.0, or approximately 6.3 hours. The time to 1-foot of flow depth is estimated to be about 18.4 hours, and the time to 2-feet of depth about 18.5 hours. Therefore, once flood water begins enter the DSA, access could be quickly cut-off. The above results are assuming the hydrologic conditions that existed prior to the 2005 and 2006 wildfires discussed in Section 3.5.

The wildfires that occurred on the Beaver Dam Wash watershed could have significant detrimental effects on hydrologic lead time. There is little available data for use in estimating the effects of the burned areas on hydrologic response. The general characterizations described in PBS&J (2007) were used as the basis for assumptions used in modifying the base HEC-1 models to simulate possible effects of the fires. Refer to Section 3.5. The results of that effort lead to the conclusion that hydrologic lead time could be significantly reduced until the

watershed can recover. Also, smaller precipitation amounts could result in higher peak discharges. Per PBS&J (2207), the watershed may never fully recover to pre-burn conditions, and continue to exhibit quicker hydrologic response to flood events. The post-fire HEC-1 models were only developed for the general storm over the entire watershed condition. The time of most intense precipitation for the entire watershed is at about 12.0 hours. The flow rate that first begins flooding the access road in the DSA is about 10,900 cfs at 15.9 hours. The estimated hydrologic lead time is therefore 15.3-12.0, or approximately 3.3 hours. The time to 1-foot of flow depth is estimated to be about 16.0 hours, and the time to 2-feet of depth about 16.1 hours. The estimated hydrologic lead time for the post-burn condition could therefore be about 3-hours less than for the pre-burn, or normal watershed condition.

6.3 Estimate of Storm Frequency Blocking Access to Residences

The estimates of storm frequency at CS4 that block access to the residences in the DSR, for pre-fire conditions, are listed in <u>Table 6.3</u>. Refer to <u>Figure 6.2</u> for the location of CS4.

Table 6.3	Estimate of storm free	uency blocking ac	cess to residences
Flow Depth, feet	Discharge, cfs	Time. hours	Frequency, year
(1)	(2)	(3)	(4)
0	10,900	18.3	20 (5 percent)
1	12,800	18.4	30 (3.33 percent)
2	14,600	18.5	40 (2.5 percent
5.1	21,000	20.44	100 (1 percent)

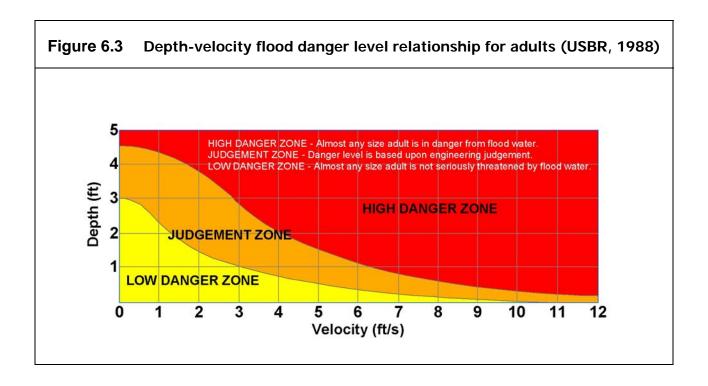

LEGEND Study Area Areas : Area Detailed Study Area General Study Area **FLO-2D Cross Section Locations** 5

Figure 6.2 Location of first point of flooding (CS4)

6.4 Personal Safety Hazard Factor at Each Residence

The FLO-2D model results for the 100-year 24-hour storm were used to define personal safety hazard factors for adults in the vicinity of each residence in the study area. The criteria for defining the hazards were derived using Figure 6.3 in combination with the FLO-2D model depth and velocities. The results of the analysis are listed in Table 6.3. Column 8 of the table lists the product of depth x velocity. The table is sorted in decreasing order of hazard. The hazard classification is listed in column 9. If the hazard falls in the "Judgment Zone" from Figure 6.3, a classification of medium hazard was assigned. Locations with a D*V greater than 20 were assigned a very high hazard classification. Refer to Figure 6.4 and Figure 6.5 for maps relating the location of each residential structure to the assigned flood hazard. The ID in column 1 is used to label each structure on the figures.

Note there are 15 structures classified as having a very high hazard for adults. All but one of these is a mobile/manufactured home. All of these locations also meet the high hazard classification for mobile homes (USBR, 1988).

	Table 6.4 Personal safety hazard adjacent to each structure								
ID	APN	Туре	FF	Time, hours	Depth, ft	Velocity, ft/sec	D*V, ft²/S	Adult Hazard	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	
1	402-87-034	TRAILERS	Υ	20.3	7.5	8.9	66.8	Very High	
2	402-83-045	TRAILERS	N	20.5	6.4	8.2	52.5	Very High	
3	402-87-033	TRAILERS	Υ	20.7	7.3	7.1	51.8	Very High	
4	402-87-007	TRAILERS	Υ	20.6	7.2	6.7	48.2	Very High	
5	402-83-037	TRAILERS	N	20.5	6.5	6.2	40.3	Very High	
6	402-83-038	TRAILERS	N	20.6	5.6	6.4	35.8	Very High	
7	402-87-016	TRAILERS	Υ	20.3	6.3	5.2	32.8	Very High	
8	402-81-041	BUILDINGS	N	20.6	5.3	5.1	27.0	Very High	
9	402-87-013	TRAILERS	Υ	20.9	5.6	4.3	24.1	Very High	
10	402-87-012	TRAILERS	Υ	20.9	5.6	4.3	24.1	Very High	
11	402-87-017	TRAILERS	Υ	20.6	4.9	4.7	23.0	Very High	
12	402-83-021	TRAILERS	N	20.3	4.1	5.0	20.5	Very High	
13	402-83-020	TRAILERS	N	20.8	4.3	4.7	20.2	Very High	
14	402-83-025	TRAILERS	N	20.8	4.3	4.7	20.2	Very High	
15	402-83-036	TRAILERS	N	21.1	6.1	3.2	19.5	Very High	
16	402-87-025	TRAILERS	Υ	20.4	4.8	4.0	19.2	High	
17	402-87-006	TRAILERS	Υ	20.5	5.4	3.5	18.9	High	
18	402-87-004	TRAILERS	Υ	20.4	5.1	3.7	18.9	High	
19	402-87-019	TRAILERS	Υ	21.2	4.6	4.0	18.4	High	
20	402-87-020	TRAILERS	Υ	20.0	4.6	3.9	17.9	High	
21	402-87-010	TRAILERS	Υ	20.1	4.2	3.8	16.0	High	
22	402-83-044	TRAILERS	N	21.1	5.4	2.9	15.7	High	
23	402-83-035	TRAILERS	N	20.5	4.6	3.4	15.6	High	
24	402-87-018	TRAILERS	Υ	20.8	4.9	3.1	15.2	High	
25	402-87-003	TRAILERS	Υ	20.3	4.1	3.7	15.2	High	
26	402-83-001	TRAILERS	N	20.5	3.8	3.9	14.8	High	
27	402-87-058	TRAILERS	Υ	20.1	4.0	3.7	14.8	High	

	Table 6.4 Personal safety hazard adjacent to each structure									
ID	APN	Туре	FF	Time, hours	Depth, ft	Velocity, ft/sec	D*V, ft²/S	Adult Hazard		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)		
28	402-87-009	TRAILERS	Υ	20.8	3.7	4.0	14.8	High		
29	402-87-026	TRAILERS	Υ	20.4	4.2	3.5	14.7	High		
30	402-87-055	TRAILERS	Υ	20.6	3.1	4.6	14.3	High		
31	402-83-033	TRAILERS	N	20.4	4.1	3.4	13.9	High		
32	402-85-003	TRAILERS	N	20.4	4.1	3.4	13.9	High		
33	402-87-027	TRAILERS	Υ	21.2	3.3	4.2	13.9	High		
34	402-87-011	TRAILERS	Υ	20.2	5.1	2.7	13.8	High		
35	402-83-034	TRAILERS	N	20.8	4.4	3.1	13.6	High		
36	402-87-028	TRAILERS	Υ	20.4	3.1	4.2	13.0	High		
37	402-83-009	TRAILERS	N	20.5	3.8	3.3	12.5	High		
38	402-83-010	TRAILERS	N	20.5	3.8	3.3	12.5	High		
39	402-83-030	TRAILERS	N	20.5	3.8	3.3	12.5	High		
40	402-87-030	TRAILERS	Υ	20.0	3.8	3.2	12.2	High		
41	402-83-019	TRAILERS	N	21.1	4.1	2.9	11.9	High		
42	402-83-023	TRAILERS	N	21.1	4.2	2.8	11.8	High		
43	402-85-021	TRAILERS	N	20.3	4.2	2.8	11.8	High		
44	402-83-011	TRAILERS	N	20.4	3.3	3.4	11.2	High		
45	402-83-031	TRAILERS	N	20.0	2.8	3.8	10.6	High		
46	402-87-029	TRAILERS	Υ	20.7	3.5	3.0	10.5	High		
47	402-83-032	TRAILERS	N	20.4	3.3	3.1	10.2	High		
48	402-85-002	TRAILERS	N	20.4	3.3	3.1	10.2	High		
49	402-86-005	BUILDINGS	N	20.5	2.8	3.6	10.1	High		
51	402-87-056	TRAILERS	Υ	20.7	3.3	3.0	9.9	High		
52	402-83-012	TRAILERS	N	20.6	3.4	2.9	9.9	High		
53	402-87-008	TRAILERS	Υ	21.2	3.0	3.1	9.3	High		
54	402-83-002	TRAILERS	N	20.3	3.0	3.0	9.0	High		
55	402-83-015	TRAILERS	N	20.3	3.0	3.0	9.0	High		

	Table 6.4 Personal safety hazard adjacent to each structure									
ID	APN	Туре	FF	Time, hours	Depth, ft	Velocity, ft/sec	D*V, ft²/S	Adult Hazard		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)		
56	402-87-050	TRAILERS	Υ	20.5	2.5	3.6	9.0	High		
57	402-87-049	TRAILERS	Υ	20.5	2.5	3.6	9.0	High		
58	402-83-003	TRAILERS	N	20.9	2.9	3.0	8.7	High		
59	402-87-021	TRAILERS	Υ	21.1	3.1	2.6	8.1	Moderate		
60	402-87-002	TRAILERS	Υ	20.4	3.1	2.4	7.4	Moderate		
61	402-83-017	TRAILERS	N	20.8	2.6	2.6	6.8	Moderate		
62	402-83-004	TRAILERS	N	20.7	2.6	2.5	6.5	Moderate		
63	402-83-005	TRAILERS	N	20.7	2.7	2.4	6.5	Moderate		
64	402-83-006	TRAILERS	N	20.7	2.7	2.4	6.5	Moderate		
65	402-87-045	TRAILERS	N	20.5	1.9	3.4	6.5	Moderate		
66	402-34-113	BUILDINGS	N	20.6	2.1	2.8	5.8	Moderate		
67	402-34-113	BUILDINGS	N	20.5	2.1	2.8	5.8	Moderate		
68	402-86-004	BUILDINGS	N	20.5	1.7	3.2	5.5	Moderate		
69	402-81-041	BUILDINGS	N	20.4	1.8	2.9	5.2	Moderate		
70	402-81-040	BUILDINGS	N	20.5	1.5	3.2	4.7	Moderate		
71	402-87-046	TRAILERS	Υ	20.5	1.7	2.6	4.4	Moderate		
72	402-83-013	TRAILERS	N	20.5	1.7	2.3	3.9	Moderate		
73	402-83-014	TRAILERS	N	20.6	1.9	1.9	3.6	Moderate		
74	402-81-031	BUILDINGS	N	20.4	1.3	2.7	3.5	Moderate		
75	402-81-045	BUILDINGS	N	20.3	1.4	2.5	3.4	Moderate		
76	402-81-039	BUILDINGS	N	20.5	1.3	2.6	3.4	Moderate		
77	402-81-032	BUILDINGS	N	20.5	1.4	2.3	3.2	Moderate		
78	402-81-043	BUILDINGS	N	20.4	1.4	2.1	3.1	Moderate		
79	402-81-047	BUILDINGS	N	20.2	1.3	2.1	2.6	Moderate		
80	402-86-003	BUILDINGS	N	20.4	1.0	2.5	2.6	Low		
81	402-87-044	TRAILERS	N	20.6	1.6	1.4	2.2	Low		
82	402-81-044	BUILDINGS	N	20.5	1.3	1.6	2.0	Low		

	Table 6.4 Personal safety hazard adjacent to each structure									
ID	APN	Туре	FF	Time, hours	Depth, ft	Velocity, ft/sec	D*V, ft²/S	Adult Hazard		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)		
83	402-81-038	BUILDINGS	N	20.5	1.1	1.9	2.0	Low		
84	402-85-029	TRAILERS	N	20.8	2.4	0.8	1.9	Low		
85	402-81-021	BUILDINGS	N	0.0	0.8	2.3	1.9	Low		
86	402-85-033	TRAILERS	N	20.6	1.1	1.5	1.7	Low		
87	402-85-034	TRAILERS	Ν	20.6	1.1	1.5	1.7	Low		
88	402-81-023	BUILDINGS	N	20.4	0.9	1.4	1.3	Low		
89	402-81-027	BUILDINGS	N	20.3	0.8	1.4	1.1	Low		

LEGEND Study Area Areas : Area Detailed Study Area General Study Area FLO2D 100yr Floodplain 042907 FLO-2D Building Obstructions Theme Very High High Moderate Low Minimal Flood Hazard

Figure 6.4 Personal flood hazard ratings for the Detailed Study Area

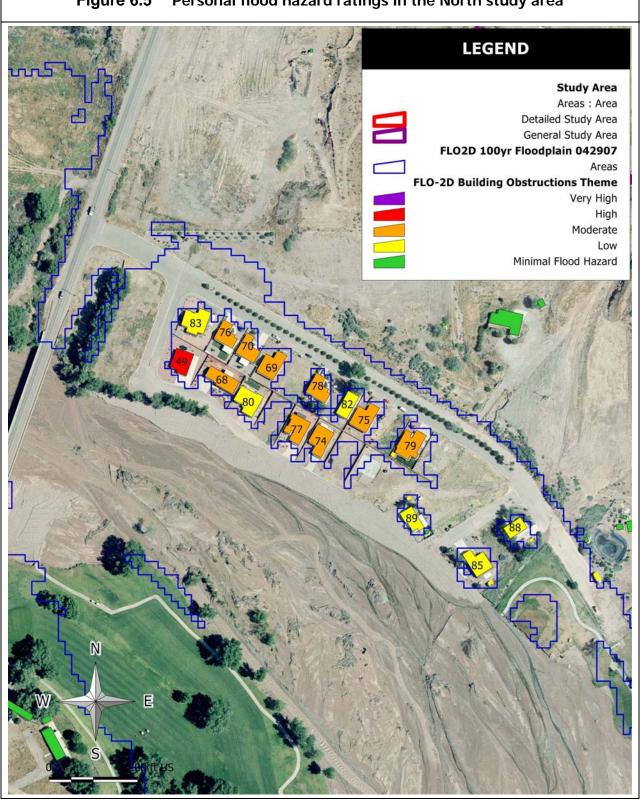


Figure 6.5 Personal flood hazard ratings in the North study area

7 Summary, Conclusions, and Recommendations

This study is intended to assess flood risk and identify flood hazards based on those risks, for the Beaver Dam area from the Beaver Dam Wash. The hydrologic and hydraulic results are intended for risk assessment and emergency management purposes only. The results of this study should not be considered as "best available technical information" for floodplain management purposes." Certain limiting assumptions used in the development of the technical basis for this study, including friction loss parameters and model control options designed to produce the upper limit of peak flood stages for a 100-year event, are intentionally very conservative, not reflective of existing conditions, and are therefore not appropriate for regulatory floodplain management uses.

For pre-fire watershed conditions, the access for evacuation begins being compromised by a storm with a 5 percent chance of occurring in a given year. Structures begin to be flooded by a storm with a 30 percent chance of occurring within any given year. The risk of flooding for the DSA is considered moderate, assuming:

- 1. flooding from a 10% chance or more frequent flood is high,
- 2. a flood with a probability between 3% and 10% is moderate, and
- 3. a flood with a less than 3% probability is low.

The maximum available lead time for a storm over the entire watershed, assuming adequate flood warning facilities and a flood warning plan are in place, is about 6-hours for normal, prefire conditions, and about 3-hours for post-fire conditions. Based on the assumptions and technical analyses presented in this study, fifteen of the residential structures in the Beaver Dam area are in a very high hazard zone and forty two are in a high hazard zone. These hazard ratings correspond to a possible life threatening situation, based on criteria from USBR (1988), if the area is not evacuated in a timely manner.

The primary structural alternative for mitigating the flood hazard is an extensive levee system. A levee system is not recommended because of prohibitive cost and because the flood risk will increase due to the threat of failure of the structure. Considering all these factors combined, and the small number of residents in the hazard area, the conclusion is that flood warning and

other non-structural alternatives for the Beaver Dam Wash area be given a high priority by the Mohave County Flood Control District.

Recommendations for addressing the concerns identified as a result of this study are as follows:

- 4. **Flood Warning Instrumentation**: Install new flood warning instrumentation in the Beaver Dam Wash watershed as soon as is practical. At a minimum, add two new combination precipitation and stream flow gages and one new precipitation gage. As future funding permits, add three more precipitation gages. All the gages should be automatic and be connected to the Mohave County and Arizona flood warning systems with real-time telemetry. It is also recommended that real-time cameras be installed at each gage site for the purpose of verifying that precipitation is actually falling and that the gage is not malfunctioning. This could save a verification field trip, which is a full-day round trip from Kingman. Preliminary proposed gage locations are shown on the exhibit map in Appendix F.
- 5. **Flood Warning Plan**. Prepare a flood warning plan for the area. The plan should research, evaluate and recommend physical components and emergency management procedures for:
 - A. Identifying imminent flood hazards.
 - B. Establishing operational levels for apprising emergency action personnel and residents regarding the level of threat.
 - C. Identifying and recommending physical flood warning components for local implementation that could include a local siren, a reverse 911 system, weather radios, and/or a paging system.
 - D. Preparing handouts for residents that identify the recommended flood warning and evacuation procedures.
 - E. Conducting a public information and education program to apprise the residents and property owners of the identified hazards and to educate them regarding their responsibilities under the flood warning plan
- 6. **Floodproofing, Relocation or Buyout.** Investigate possible federal funding from FEMA and the U.S. Army Corps of Engineers for voluntary participation programs for homes with repetitive flood losses. Under such programs, property owners can undertake options

- such as flood proofing, relocation of their home, or buyout and demolition of the existing high-hazard repetitive loss structure.
- 7. **Regulation.** Continue regulating development within the 100-year floodplain using the data from URS (July, 2005) as best available technical data until FEMA publishes, and Mohave County adopts, a new flood insurance study for the area. Then the adopted FEMA technical data should be used.

Appendix A Field Survey Supplemental Topographic Data

December 2007 A-1

A-2 December 2007

The Owens Surveying Outfit, Inc.

James J. Owens Registered Land Surveyor United States Mineral Surveyor Established since 1965 P.O. Box 1330 ~ Mesquite, NV. 89024 Phone: (702) 346-2930 ~ Fax: (702) 346-2940 Administrative email: toso1@mesquiteweb.com Technical email: toso@mesquiteweb.com

April 18, 2007

Philip G. Wisely Mohave County Public Works 3675 E. Andy Devine, Suite C Kingman, Arizona 86402

Re: Beaver Dam Wash Flood Control Survey

Dear Mr. Wisely:

This correspondence serves to advise you that the above referenced survey was conducted under my direct supervision in accordance with our firms proposal dated August 18, 2006 and amended on September 19, 2006 under Mohave County Procurement Dept. Purchase Order No. 20070210-00 and 20070210-01, respectively.

NAD 83 Horizontal Control and NAVD 88 Vertical Control (Arizona West Zone) was furnished to me by the URS Corp. Survey Department, which was used for all observed points within the scope of the flood study. Refer to attached pages 1 thru 12 for detailed observed data, which agrees with the previously submitted email data.

Please distribute this information to those concerned parties. If I may be of further assistance, please do not hesitate to contact me.

Very Truly Yours,

The Owens Surveying Outfit, Inc.

- Encl: (1) August 18, 2006 Proposal
 - (2) P.O. No. 20070210-00
 - (3) September 19, 2006 Proposal
 - (4) P.O. No. 20070210-01
 - (5) NGS Data Sheet USGS Beaver
 - (6) URS Data Sheet
 - (7) Owens Data Sheets 1 12, incl.

The NGS Data Sheet

```
See file dsdata.txt for more information about the datasheet.
DATABASE = Sybase , PROGRAM = datasheet, VERSION = 7.31
        National Geodetic Survey, Retrieval Date = MARCH 13, 2006
GQ0167 DESIGNATION - BEAVER
             - GO0167
 GQ0167 PID
 GQ0167 STATE/COUNTY- AZ/MOHAVE
 GQ0167 USGS QUAD - LITTLEFIELD (1985)
 GQ0167
                               *CURRENT SURVEY CONTROL
 GQ0167
 GQ0167
 GQ0167* NAD 83(1992) - 36 54 53.54082(N)
                                                                 ADJUSTED
                                           113 53 00.01000(W)
                           589.057 (meters) 1932.60 (feet) POSTED
 GQ0167* NAVD 88 -
 GQ0167
                              13.77 (seconds)
                                                                 DEFLEC99
 GQ0167 LAPLACE CORR-
                                                                 GEOID03
                              -25.55 (meters)
 GQ0167 GEOID HEIGHT-
                              588.470 (meters) 1930.67 (feet) COMP
 GO0167 DYNAMIC HT -
                                                                 NAVD 88
 GO0167 MODELED GRAV- 979,621.3
                                      (mgal)
 G00167
 GQ0167 HORZ ORDER - SECOND
 GQ0167 VERT ORDER - * POSTED, Code B , SEE BELOW
 GQ0167
 GQ0167. The horizontal coordinates were established by classical geodetic methods
 GQ0167.and adjusted by the National Geodetic Survey in August 1993..
 GQ0167
 GQ0167. The orthometric height was determined by differential leveling
 GQ0167.and adjusted by the National Geodetic Survey in 1992..
 GQ0167.* This is a POSTED BENCH MARK height. Code B indicates a distribution
 GQ0167.rate of 1.1 thru 2.0 mm/km.
 GQ0167
 GQ0167. The Laplace correction was computed from DEFLEC99 derived deflections.
 GQ0167
 GQ0167. The geoid height was determined by GEOID03.
 GQ0167. The dynamic height is computed by dividing the NAVD 88
 GQ0167.qeopotential number by the normal gravity value computed on the
 GQ0167.Geodetic Reference System of 1980 (GRS 80) ellipsoid at 45
 GO0167.degrees latitude (q = 980.6199 \text{ gals.}).
 G00167
 GQ0167. The modeled gravity was interpolated from observed gravity values.
 GQ0167
 GO0167;
                           North
                                        East
                                                 Units Scale Factor Converg.
 GQ0167;SPC AZ W - 656,054.028
GQ0167;SPC AZ W - 2,152,408.23
GQ0167;SPC UT S - 3,030,253.505
                                     201,479.101 MT 0.99993507 -0 04 48.3
                                                  iFT 0.99993507 -0 04 48.3
                                     661,020.67
                                     287,628.098 MT 1.00006544 -1 27 36.9
                   - 4,089,312.809
                                     243,135.915 MT 1.00041290 -1 43 57.9
 GQ0167;UTM 12
 GQ0167
                    - Elev Factor x Scale Factor =
                                                       Combined Factor
 GQ0167!
                                      0.99993507 =
                      0.99991157 x
                                                     0.99984665
 GQ0167!SPC AZ W
                       0.99991157 \times 1.00006544 = 0.99997701
 GQ0167!SPC UT S
                       0.99991157 \times 1.00041290 = 1.00032444
 GQ0167!UTM 12
 GQ0167
                                                               Grid Az
                       Primary Azimuth Mark
 GQ0167:
                                                               005 05 31.4
 GQ0167:SPC AZ W
                    - NEHI
```

URS Corp. Survey Department

File Name: BEAVER-NGS.XLS

File Date: 02-28-09

Field Team: B. Todorovic / D. Knezevic and D Walkowiak / P. Roth

Operator: D. Knezevic
Client: In House

Reference: Filed Books # 1934 and 1935

Description: NGS Points
Units: International Feet

MEASURED VALUES

	IEVOCITED AVERE	,			
	Point Id	Northing	Easting	Elevation AUT O	存
2	LITTLEFIELD	2156033.079	648931.890	2060.01 — 10	
	LITTLEFIELD RM 2	2156016.506	648954.873	2059.59 —	
41	LITTLEFIELD RM 1	2156054.186	648947.858	2059.78~	
	6 K55	2151889.819	648523.339	2020.01 — 9	
(∠ ML9	2139698.629	643076.935	1959.62	
	BEAVER	2152741.830	661123.347	1932.66 🗕 🕻 🛴	
	7 BEAVER RM 2	2152745.852	661085.522	1931.13 —	

Δ-1,2152741.830,661123.347,1932.660,BEAVER Δ Δ-8,2148176.490,648295.063,1948.094,CP-8 100,2146341.048,647591.063,1823.766,spot 101,2146327.487,647577.809,1823.093,top bank 102,2146327.204,647577.472,1821.191,step in bank 103,2146326.100,647575.712,1818.176,toe 104,2146309.918,647561.661,1817.868,gb 105,2146278.269,647531.127,1814.811,gb 106,2146265.032,647517.397,1814.358,gb 107,2146250.170,647502.306,1815.050,gb 108,2146234.093,647486.579,1814.355,gb 109,2146224.506,647476.747,1813.162,edge of water 110,2146223.034,647474.040,1812.567,fl 111,2146215.798,647468.701,1813.322,edge of water 112,2146208.645,647460.883,1814.158,gb 113,2146186.563,647440.468,1813.510,gb 114,2146175.657,647428.959,1814.209,gb 115,2146170.875,647423.975,1813.569,gb 116,2146159.512,647414.399,1814.837,gb 117,2146146.382,647401.060,1815.810,gb 118,2146129.433,647385.060,1815.332,gb 119,2146094.743,647350.564,1814.452,gb 120,2146081.762,647338.576,1817.352,gb 121,2146071.751,647328.353,1817.710,gb 122,2146063.135,647320.089,1815.936,gb 123,2146056.837,647314.294,1815.494,toe 124,2146052.318,647310.356,1817.795,top bank 125,2146045.650,647302.985,1818.245,spot 126,2145921.288,647338.090,1819.621,spot 127,2145927.599,647345.037,1819.909,top bank 128,2145928.489,647345.887,1816.071,gb bank 129,2145938.207,647353.241,1814.292,toe 130,2145966.010,647379.580,1814.212,gb 131,2146001.657,647414.969,1814.636,gb 132,2146018.845,647431.082,1813.742,gb 133,2146025.553,647437.325,1812.726,gb 134,2146041.961,647453.512,1813.421,gb 135,2146045.038,647457.194,1811.296,gb 136,2146055.936,647468.610,1810.803,edge of water 137,2146065.192,647477.512,1810.499,fl 138,2146078.683,647488.352,1810.901,edge of water 139,2146079.642,647489.439,1813.439,top 140,2146088.712,647498.514,1813.041,gb 141,2146103.362,647512.586,1814.910,gb 142,2146108.995,647518.728,1817.521,gb 143,2146127.745,647536.830,1820.955,gb 144,2146130.977,647539.723,1819.364,gb 145,2146134.195,647542.591,1820.982,gb 146,2146144.052,647552.261,1817.683,gb 147,2146163.477,647570.475,1816.148,gb 148,2146183.869,647590.721,1815.509,gb 149,2146208.400,647614.627,1817.488,toe 150,2146209.779,647616.663,1820.129,top bank 151,2146212.756,647619.872,1820.158,spot 152,2146200.665,647526.685,1822.407,begin bridge 153,2146194.101,647533.830,1822.147,begin bridge 154,2146179.336,647520.421,1824.516,bridge poc 9.1ft to grd 155,2146185.863,647513.365,1824.689,bridge poc 7.15ft to grd 156,2146166.421,647508.517,1826.078,bridge poc 9.6ft to grd 157,2146172.944,647501.441,1826.224,bridge poc 9.6ft to grd 157,2146172.944,647501.341,1826.224,bridge poc 9.6ft to grd 156,647401.341,1826.224,bridge poc 9.6ft to grd

158,2146155.465,647485.274,1827.286,bridge poc 13.6ft to grd 159,2146149.021,647492.259,1827.023,bridge poc 11.2ft to grd 160,2146131.624,647476.096,1826.996,bridge poc 14.7ft to grd

Page 1

```
new sp
 161,2146138.063,647468.901,1827.108,bridge poc 14.2ft to grd 162,2146118.535,647463.912,1826.056,bridge poc 13.3ft to grd 163,2146124.911,647456.804,1826.150,bridge poc 12.8ft to grd
 164,2146107.803,647440.731,1823.957,bridge poc 6.9ft to grd 165,2146101.334,647447.779,1823.902,bridge poc 8.4ft to grd
 166,2146091.009,647438.158,1822.122,end bridge
 167,2146097.633,647431.153,1822.180,end bridge
168,2146103.471,647436.592,1823.308,5.35ft to top of rail all along bridge
169,2146096.479,647416.846,1816.387,toe
170,2146090.191,647420.730,1818.978,top
 171,2146079.546,647427.347,1818.732,top
 172,2146060.499,647428.765,1813.586,toe
 173,2146055.206,647406.682,1813.772,toe
 174,2146066.661,647404.324,1816.704,top
175,2146080.310,647400.388,1816.410,top
176,2146088.415,647399.271,1814.377,toe
 177,2146089.047,647370.545,1814.633,toe
 178,2146081.135,647370.374,1816.611,top
 179,2146068.297,647370.571,1816.791,top
180,2146059.727,647369.635,1814.551, toe
181,2146061.277,647333.579,1815.426, toe
182,2146070.465,647333.598,1817.342, top
183,2146082.836,647333.055,1817.742, top
 184,2146090.991,647333.504,1815.352, toe
 185,2146096.492,647287.319,1816.418,toe
 186,2146090.270,647286.368,1817.949,top
187,2146075.721,647283.915,1818.047,top

188,2146072.026,647283.380,1817.189,toe

189,2146219.365,647530.017,1816.395,toe

190,2146212.626,647538.584,1821.279,top

191,2146204.328,647547.866,1820.881,top
 192,2146196.389,647555.453,1816.538,toe
193,2146225.272,647575.610,1816.410, toe
194,2146228.798,647571.223,1819.944,top
195,2146239.271,647562.549,1820.203,top
196,2146248.789,647555.123,1817.089,toe
197,2146276.080,647581.402,1818.548,toe
198,2146263.528,647590.163,1820.982,top
199,2146255.687,647594.063,1820.960,top
200,2146236.016,647602.583,1817.859,toe
201,2145150.190,650383.188,1790.510,cp 201
202,2145177.528,650207.244,1785.927,cp 202
203,2144842.3190,650709.3660,1789.0240,TOP
204,2144848.1830,650691.9880,1780.2480,TOE-EW
205,2144844.5100,650693.3840,1780.0780.70E-EW
206,2144849.6100,650682.3800,1779.5820,FL
207,2144844.1450,650670.8680,1781.0480,GB
208,2144840.4180,650655.9830,1781.8690,GB
209,2144839.5820,650652.0570,1781.2240,EW
210,2144835.1740,650644.5180,1780.8650,FL
211,2144835.3550,650628.7250,1780.9990,GB
212,2144835.5550,650607.4840,1780.6940,FL
213,2144835.7230,650609.5150,1781.3110,GB
214,2144826.1370,650581.4130,1779.7850,EW
215,2144826.1640,650560.8070,1778.6720,FL
216,2144826.8190,650533.3340,1780.2940,EW
217,2144826.6550,650516.3090,1782.3960,GB
218,2144820.4980,650465.8590,1784.5700,GB
219,2144820.8210,650416.6120,1783.9570,GB
220,2144815.9540,650395.3430,1782.5550,GB
221,2144815.3910,650373.5670,1789.7400,GB
222,2144730.7480,650242.6810,1800.0190,NW PILLAR 223,2144731.7520,650247.9550,1796.8560,NE PILLAR
```



```
new sp
224,2144712.6490,650250.5750,1795.6730,SE PILLAR 225,2144771.7360,650295.7250,1792.7580,HI-WTR 226,2144755.1410,650421.2960,1786.9590,NW PILLAR
 227,2144756.1330,650426.0450,1783.2960,NE PILLAR
 228,2144735.4310,650429.0500,1787.1290,SE PILLAR
 229,2144754.7790,650421.2280,1791.2190,HI-WTR
 230,2144681.0980,650447.7930,1790.0050,TOP
 231,2144686.7160,650466.0940,1782.8420,TOE
 232,2144689.3510,650483.4930,1782.3230,GB
233,2144688.6790,650513.8160,1783.4330,GB
 234,2144698.6030,650551.4010,1784.6010,GB
 235,2144698.8210,650583.7160,1783.9170,TOP
 236,2144702.5970,650622.0890,1779.8600,EW
 237,2144713.9710,650641.0230,1778.7070,FL
238,2144712.7340,650668.6460,1779.8950,EW
239,2144762.3520,650638.1550,1779.8170,SW PILLAR
240,2144783.8040,650640.3410,1790.3610,NE PILLAR
 241,2144783.0170,650635.4640,1792.8570,NW PILLAR
 242,2144783.0170,650635.4640,1792.8570,NW PILLAR HW
 243,2144711.3790,650708.8440,1781.7640,GB
244,2144719.5630,650733.7490,1779.6970,EW
245,2144726.1790,650743.7330,1778.3010,FL
246,2144727.7530,650753.4270,1780.4060,EW
247,2144734.8290,650759.7730,1787.5340,TOP
248,2144854.571,650725.441,1791.485,gb
249,2144862.253,650762.005,1789.136,gb
250,2144862.631,650797.965,1789.960,gb
251,2144862.373,650808.421,1784.064,toe
252,2144710.305,650678.485,1781.406,gb
253,2144669.116,650400.126,1784.884,gb
254,2144669.821,650343.044,1790.845,gb
255,2144660.334,650276.995,1791.021,gb
256,2144806.170,650322.261,1786.416,gb
257,2144800.556,650295.500,1791.987,gb
258,2144799.736,650282.791,1792.088,gb
259,2144796.183,650268.204,1794.979,gb
260,2144794.575,650252.874,1794.576,gb
261,2144786.952,650224.042,1803.324,spot
262,2144655.246,650202.178,1814.791,spot
263,2144728.230,650682.971,1782.064,cp-263
264,2144853.662,650646.915,1782.406,cp-264
265,2144874.758,650920.218,1855.047,spot
266,2144750.239,650911.699,1851.449,spot
267,2144731.175,650837.992,1813.461,spot
268,2145631.895,649009.413,1806.451,cp-268
269,2145392.463,649009.870,1803.734,cp-269
270,2145971.765,648993.113,1814.398,top
271,2145938.125,648996.535,1807.537,gb
272,2145934.917,648997.054,1805.306,gb
273,2145906.446,648999.505,1806.381,gb
274,2145834.790,649006.676,1803.700,gb
275,2145735.584,649019.645,1800.518,gb
276,2145702.502,649017.393,1801.603,new banking toe
277,2145686.453,649018.480,1806.502,new banking top
278,2145674.834,649020.100,1801.476,new banking toe
279,2145652.815,649019.938,1801.900,gb
280,2145643.787,649021.934,1806.020,gb
281,2145598.009,649027.817,1802.065,gb
282,2145572.810,649033.473,1801.912,gb
283,2145448.175,649039.739,1799.420,gb
284,2145366.163,649036.312,1799.556,gb
285,2145364.717,649035.799,1793.561,edge of water
286,2145342.592,649041.438,1792.684,edge of water
```


Page 3

new sp 287,2145294.042,649052.085,1795.045, new banking toe 288,2145280.360,649054.873,1801.607, new banking top 289,2145262.595,649064.700,1803.767, new banking top 290,2145249.347,649071.630,1799.787, toe 291,2145237.993,649059.647,1808.682,possible mud level 292,2146201.308,647709.456,1825.005,cp-292 293,2146049.604,648114.172,1813.697,cp-293 294,2145841.381,648270.621,1812.917,cp-294 295,2145742.864,648670.603,1808.735,cp-295 296,2145847.531,648863.092,1806.664,cp-295 500,2146095.930,647939.1461.594,1ft dia tree #46 501,2146037.192,647892.441,1815.323,2ft dia tree #47 502,2146046.236,647912.817,1814.880,2ft dia tree #48 503,2146042.431,647929.412,1814.628,2ft dia tree #49 504,2146038.885,647927.447,1814.799,2ft dia tree #50 505,2146036.275,647961.637,1814.574,2ft dia tree #51 506,2146090.709,647986.896,1814.081,3ft dia tree #52 507,2146080.667,647986.328,1814.235,1ft dia tree #53 508,2146087.401.647080.064.1814.518.1ft dia tree #53 508,2146087.491,647989.964,1814.518,1ft dia tree #54 509,2146099.745,647990.977,1814.043,3ft dia tree #55 510,2146043.180,647983.384,1814.380,2ft dia tree #56 511,2146028.385,647993.124,1814.428,2ft dia tree #57 512,2146020.400,648006.261,1814.537,2ft dia tree #58 513,2146012.127,648024.418,1814.319,2ft dia tree #59 514,2146051.325,648029.167,1814.544,1ft dia tree #60 515.2146057.261,648031.029,1815.737,1ft dia tree #60 515,2146057.261,648031.029,1815.737,1ft dia tree #61 516,2145925.540,647925.444,1816.173,1ft dia tree #62 510,2145925.540,647923.444,1616.175,17t dia tree #62 517,2145921.255,647923.830,1816.270,1ft dia tree #63 518,2145926.483,647932.546,1815.884,3ft dia tree #64 519,2145915.416,647950.163,1815.778,2ft dia tree #65 520,2145878.787,647997.239,1814.951,1ft dia tree #66 521,2145882.719,648011.329,1814.702,3ft dia tree #67 522,2145869.976,648014.466,1815.116,2ft dia tree #68 523,2145866.232,648018.462,1814.585,2ft dia tree #69 524,2145871.661,648034.292,1814.223,2ft dia tree #70 525,2145852.021,648052.096,1814.686,2ft dia tree #71 526,2145840.544,648062.684,1814.601,3ft dia tree #72 527,2145826.906,648095.467,1813.762,1ft dia tree #73 528,2145825.178,648093.339,1813.850,1ft dia tree #74 529,2145954.135,648123.097,1813.506,2ft dia tree #75 530,2145834.217,648142.866,1813.902,1ft dia tree #76 531,2145834.217,648142.806,1813.902,17t dia tree #76
531,2145821.562,648145.810,1813.842,2ft dia tree #77
532,2145814.238,648174.468,1814.394,2ft dia tree #78
533,2145799.905,648214.107,1813.431,1ft dia tree #79
534,2145795.150,648217.848,1813.622,1ft dia tree #80
535,2145810.906,648235.565,1812.877,1ft dia tree #81
536,2145808.732,648243.576,1813.193,1ft dia tree #82
537,2145801.690.648264.158,1813.610.1ft dia tree #82 537,2145801.690,648264.158,1812.610,1ft dia tree #82 537,2145801.690,648264.158,1812.610,1ft dia tree #83 538,2145796.177,648271.366,1812.172,1ft dia tree #84 539,2145791.128,648265.859,1812.922,1ft dia tree #85 540,2145783.228,648266.745,1813.223,1ft dia tree #86 541,2145778.650,648288.620,1811.514,1ft dia tree #87 542,2145789.524,648298.193,1812.519,1ft dia tree #88 543,2145773.417,648296.595,1811.892,1ft dia tree #89 544,2145769.791,648302.298,1811.807,1ft dia tree #90 545,2145772.796,648316.738,1811.607,11t did tree #90 545,2145772.796,648316.738,1811.633,1ft dia tree #91 546,2145958.468,648244.496,1812.268,1ft dia tree #92 547,2145956.077,648256.638,1812.118,1 ft dia tree #93 548,2145957.311,648260.833,1811.824,1 ft dia tree #94 549,2145937.893,648285.916,1811.892,1 ft dia tree #95 550,2145927.269,648307.100,1812.091,1 ft dia tree #96 551,2145932.902,648331.036,1811.595,1 ft dia tree #97 552,2145954.351,648339.389,1811.059,1 ft dia tree #98

new sp 553,2145942.640,648346.516,1811.429,1 ft dia tree #99 554,2145959.711,648346.834,1810.705,1 ft dia tree #100 555,2145927.330,648419.012,1810.906,1 ft dia tree #101 556,2145929.173,648421.706,1810.903,2ft dia tree #102 557,2145911.632,648433.572,1811.491,1ft dia tree #103 558,2145910.636,648444.888,1810.328,1ft dia tree #104 559,2145895.939,648450.497,1810.085,1ft dia tree #105 560,2145890.976,648465.138,1810.495,1ft dia tree #106 561,2145881.650,648469.744,1810.417,1ft dia tree #107 562,2145893.543.648471.108,1800.902,1ft dia tree #107 562,2145883.543,648471.108,1809.992,1ft dia tree #108 563,2145894.713,648476.638,1810.201,1ft dia tree #109 564,2145874.058,648484.874,1809.572,1ft dia tree #110 564,2145874.058,648484.874,1809.572,1ft dia tree #110 565,2145864.978,648480.758,1809.980,1ft dia tree #111 566,2145863.458,648487.727,1810.667,1ft dia tree #112 567,2145862.426,648498.329,1810.223,1ft dia tree #113 568,2145860.524,648502.188,1809.804,1ft dia tree #114 569,2145895.640,648518.968,1809.502,1ft dia tree #115 570,2145882,396,648521,597,1809.500,1ft dia tree #115 570,2145893.040,648518.968,1809.502,17t dia tree #115 570,2145882.396,648521.597,1809.500,1ft dia tree #116 571,2145861.317,648515.014,1810.459,1ft dia tree #117 572,2145854.269,648514.926,1810.636,1ft dia tree #118 573,2145846.452,648519.370,1810.731,1 ft dia tree #119 574,2145854.294,648526.089,1810.245,1 ft dia tree #120 575,2145845.542,648528.682,1810.429,1 ft dia tree #121 576,2145866.446,648540.238,1810.242,1 ft dia tree #122 577,2145860.058,648553.532,1809.678,1 ft dia tree #123 578,2145865.032,648562.407,1809.842,1 ft dia tree #123 578,2145865.032,648562.407,1809.842,1 ft dia tree #124 579,2145849.761,648561.497,1809.518,1 ft dia tree #125 580,2145768.398,648359.643,1813.250,1 ft dia tree #126 581,2145773.094,648367.785,1811.444,1 ft dia tree #127 582,2145762.618,648369.910,1814.066,1 ft dia tree #128 582,2145764.619,648369.910,1814.066,1 ft dia tree #128 583,2145764.619,648369.910,1814.066,1 ft dia tree #128 583,2145764.619,048369.910,1814.066,1 ft dia tree #128 583,2145764.619,048369.910,1814.066,1 ft dia tree #128 583,2145764.019,048369.910,048369.910,048369.910,048369.910,048369.910,048369.910,048369.910,048369.910,048369.910,048369.910,048369.910,048369.910,048369.910,048369.910,048369 583,2145764.619,648374.551,1812.716,1 ft dia tree #129 584,2145762.189,648417.793,1811.440,1 ft dia tree #130 585,2145755.750,648424.373,1811.440,1 ft dia tree #130 585,2145755.750,648424.373,1811.713,1 ft dia tree #131 586,2145743.808,648428.333,1811.679,1 ft dia tree #132 587,2145614.819,648201.285,1814.259,1 ft dia tree #133 588,2145608.847,648203.715,1814.393,1 ft dia tree #134 589,2145595.234,648295.808,1813.653,2 ft dia tree #135 590,2145576.815,648310.805,1813.445,2 ft dia tree #136 591,2145584.526,648320.982,1813.390,1 ft dia tree #137 591,2145764.320,040320.362,1613.330,1 it uia tree #138 592,2145735.292,648448.257,1811.516,1ft dia tree #138 593,2145734.181,648457.959,1810.609,1ft dia tree #149 594,2145736.644,648486.860,1810.466,1ft dia tree #140 595,2145734.879,648491.847,1810.621,1ft dia tree #141 596,2145746.756,648492.907,1810.157,1ft dia tree #142 597,2145745.262,648522.955,1810.128,1ft dia tree #142 597,2145745.262,648522.955,1810.128,1ft dia tree #143 598,2145736.465,648530.342,1810.080,1ft dia tree #145 699,2145739.656,648550.550,1810.038,1ft dia tree #145 600,2145736.427,648552.752,1810.014,1ft dia tree #146 601,2145719.257,648551.699,1810.290,1ft dia tree #147 602,2145714.557,648549.811,1811.136,debris 603,2145721,421,648561,932,1809,895,1ft dia tree #148 603,2145721.421,648561.932,1809.895,1ft dia tree #148 604,2145707.311,648580.917,1810.178,1ft dia tree #149 605,2145705.966,648609.410,1810.225,1ft dia tree #150 606,2145722.769,648624.387,1809.781,1ft dia tree #151 607,2145713.693,648648.616,1809.686,1ft dia tree #152 608,2145842.431,648557.213,1810.489,1ft dia tree #153 609,2145874.401,648576.133,1809.279,1ft dia tree #154 610,2145848.361,648568.514,1809.991,1ft dia tree #155 611,2145833.991,648565.452,1810.223,1ft dia tree #156 612,2145829.810,648567.395,1810.117,1ft dia tree #157 613,2145818.729,648573.004,1809.883,1ft dia tree #158 614,2145815.968,648569.705,1810.060,1ft dia tree #159 615,2145869.341,648591.840,1810.171,1ft dia tree #160

new sp 616,2145864.878,648602.435,1809.700,1ft dia tree #161 617,2145863.148,648608.579,1809.494,1ft dia tree #162 618,2145847.185,648608.534,1809.923,1ft dia tree #163 619,2145837.953,648593.674,1809.683,1ft dia tree #164 620,2145830.599,648607.502,1809.337,1ft dia tree #165 621,2145805.103,648585.435,1809.839,1ft dia tree #165 621,2145805.103,648585.435,1809.839,1ft dia tree #166 622,2145800.594,648597.470,1809.600,2ft dia tree #167 623,2145803.162,648602.823,1809.820,1ft dia tree #168 624,2145811.306,648629.417,1809.363,1ft dia tree #169 625,2145846.576,648638.462,1809.202,1ft dia tree #170 626,2145852.998,648635.182,1809.646,1ft dia tree #171 627,2145842.887,648669.961,1809.053,1ft dia tree #171 627,2145842.887,648669.961,1809.053,1ft dia tree #172 628,2145785.261,648684.114,1809.039,1ft dia tree #173 628,2145837.232,648705.687,1808.868,1ft dia tree #174 630,2145829.609,648706.469,1809.049,1ft dia tree #175 631,2145824.935,648707.269,1809.334,1ft dia tree #176 632,2145837.053,648711.839,1808.243,1ft dia tree #177 633,2145827.964,648716.232,1808.962,1ft dia tree #178 634,2145827.964,648716.232,1808.962,1ft dia tree #178 634,2145827.964,648716.232,1808.962,18482.96482. 634,2145827.870,648732.571,1808.556,1ft dia tree #178
634,2145827.870,648732.571,1808.556,1ft dia tree #179
635,2145837.910,648743.246,1808.522,1ft dia tree #180
636,2145826.530,648741.775,1808.031,1ft dia tree #181
637,2145825.452,648748.324,1807.514,1ft dia tree #182
638,2145811.399,648745.395,1807.196,1ft dia tree #183
639,2145813.833,648743.174,1808.217,debris
640,2145804.016,648728.800,1809.413,debris
641,2145807.817.648725.034,1808.843,debris 641,2145807.817,648725.934,1808.843,debris 642,2145802.268,648731.652,1808.314,1ft dia tree #184 643,2145806.597,648729.837,1808.716,1ft dia tree #184 643,2145806.597,648729.837,1808.716,1ft dia tree #185 644,2145776.377,648714.760,1808.105,1ft dia tree #186 645,2145773.914,648714.054,1809.297,debris 646,2145755.834,648721.067,1809.293,debris 647,2145755.699,648723.222,1808.357,1ft dia tree #187 648,2145755.978,648737.446,1808.534,1ft dia tree #188 649,2145780.178,648742.491,1807.646,1ft dia tree #189 650,2145791.373,648744.718,1807.328,1ft dia tree #190 651,2145791.373,648744.718,1807.328,1ft dia tree #190 651,2145732.067,648744.718,1807.328,1ft dia tree #190 651,2145732.067,648745. 651,2145773.067,648755.458,1808.134,1ft dia tree #191 652,2145779.566,648744.276,1808.660,debris 653,2145789.237,648744.797,1808.444,debris 654,2145771.993,648754.545,1808.990,debris 655,2145711.625,648687.300,1809.205,2ft dia tree #192 656,2145706.827,648732.072,1808.880,2ft dia tree #193 657,2145713.367,648759.651,1808.025,2ft dia tree #194 658,2145660.493,648752.842,1809.285,cp-658 659,2146100.748,647922.505,1814.487,3ft dia tree #45 660,2146085.008,647914.206,1814.925,2ft dia tree #44 661,2146079.497,647912.278,1815.065,2ft dia tree #43 662,2146011.056,647803.502,1816.628,2ft dia tree #42 663,2146045.222,647809.544,1816.111,2ft dia tree #41 664,2146048.534,647806.013,1815.943,1ft dia tree #40 665,2146102.049,647878.046,1815.137,2ft dia tree #39 666,2146092.617,647857.958,1815.360,1ft dia tree #38 667,2146096.178,647841.150,1815.615,1ft dia tree #37 668,2146085.206,647850.159,1815.195,2ft dia tree #37 668,2146085.206,24186085.20 669,2146078.439,647850.634,1815.642,1ft dia tree #35 670,2146069.848,647845.839,1815.675,1ft dia tree #34 671,2146077.779,647834.012,1815.915,1ft dia tree #34 671,2146077.779,647834.012,1815.915,1ft dia tree #33 672,2146086.370,647826.012,1816.068,1ft dia tree #32 673,2146087.444,647828.617,1815.398,1ft dia tree #31 674,2146091.051,647831.183,1815.659,1ft dia tree #30 675,2146093.663,647827.239,1815.670,1ft dia tree #29 676.3146093.663,647810.030,1815.670,1ft dia tree #29 676,2146090.663,647810.039,1816.605,1ft dia tree #28 677,2146097.859,647804.126,1816.343,1ft dia tree #27 678,2146081.072,647783.895,1816.628,2ft dia tree #26

new sp 679,2146065.152,647776.244,1816.900,2ft dia tree #25 680,2146067.175,647774.822,1816.908,1ft dia tree #24 681,2146068.233,647774.135,1816.870,1ft dia tree #23 682,2146020.975,647744.422,1817.043,2ft dia tree #22 683,2146030.057,647741.423,1817.122,2ft dia tree #21 684,2146085.285,647709.069,1818.599,3ft dia tree #20 685,2146113.493,647742.737,1817.416,2ft dia tree #20 685,2146113.493,647742.737,1817.416,2ft dia tree #19 686,2146108.611,647749.447,1817.386,2ft dia tree #18 687,2146096.637,647754.850,1817.539,1ft dia tree #17 688,2146100.913,647757.784,1816.763,1ft dia tree #16 689,2146102.775,647767.997,1817.047,2ft dia tree #15 690,2146119.785,647784.551,1816.150,3ft dia tree #14 601,214612,703,647816.518,1816.065,1ft dia tree #14 691,2146152.793,647816.518,1816.965,1ft dia tree #13 692,2146169.984,647754.006,1818.279,1ft dia tree #12 693,2146169.108,647752.490,1818.057,1ft dia tree #11 694,2146136.872,647709.567,1817.817,3ft dia tree #10 695,2146106.720,647694.628,1818.231,2ft dia tree #9 696,2146157.363,647688.900,1817.186,2ft dia tree #8 697,2146145.909,647667.456,1817.658,2ft dia tree #7 698,2146211.712,647674.496,1822.884,1ft dia tree #6 699,2146212.540,647668.093,1821.948,1ft dia tree #5
700,2146231.999,647629.534,1820.670,1ft dia tree #4
701,2146235.237,647627.489,1820.798,2ft dia tree #3
702,2146236.263,647657.606,1821.549,3ft dia tree #2
703,2146248.584,647652.557,1821.622,3ft dia tree #1
704,2145712.166,648769.642,1808.094,1ft dia tree #195 705,2145738.948,648808.530,1808.362,1ft dia tree #196 705,2145738.948,648808.530,1808.362,1Tt dia tree #196 706,2145755.509,648793.956,1808.634,1ft dia tree #197 707,2145759.686,648798.869,1808.089,1ft dia tree #198 708,2145781.572,648772.654,1807.456,1ft dia tree #199 709,2145785.715,648758.133,1807.825,1ft dia tree #200 710,2145797.677,648763.179,1807.862,1ft dia tree #201 711,2145791.114,648774.265,1807.629,1ft dia tree #202 712,2145784 943 648792 233 1808 315 1ft dia tree #202 712,2145784.943,648792.233,1808.315,1ft dia tree #203 713,2145782.286,648797.280,1808.687,1ft dia tree #204 713,2145762.200,040/97.200,1600.087,1Tt did tree #204
714,2145757.715,648817.951,1808.005,1ft dia tree #205
715,2145755.496,648826.916,1808.487,1ft dia tree #206
718,2145762.512,648875.895,1807.595,2ft dia tree #208
719,2145730.500,648856.657,1807.405,2ft dia tree #207
720,2145769.803,648863.546,1807.967,1ft dia tree #209
721,2145774.522,648851.735,1808.273,1ft dia tree #210
722,2145787,299,648848,925,1808,016,1ft dia tree #210 722,2145787.299,648848.925,1808.016,1ft dia tree #211 723,2145787.299,048848.923,1808.010,111 uia tree #212
723,2145795.708,648837.169,1808.296,1ft dia tree #212
724,2145788.480,648824.694,1808.196,1ft dia tree #213
725,2145794.749,648817.632,1808.229,1ft dia tree #214
726,2145806.425,648803.977,1807.372,1ft dia tree #215
727,2145819.333,648798.959,1807.954,1ft dia tree #216
728,2145824.082,648848.077,1807.009,1ft dia tree #217 729,2145810.138,648844.526,1806.749,1ft dia tree #218 730,2145799.283,648853.488,1806.886,1ft dia tree #219 731,2145790.785,648865.804,1807.689,1ft dia tree #220 732,2145796.211,648867.333,1807.572,1ft dia tree #221 733,2145793.680,648883.070,1807.682,1ft dia tree #222 734,2145806.590,648885.977,1807.492,1ft dia tree #222 734,2145806.590,648885.977,1807.492,1ft dia tree #224 734,2145806.590,648885.977,1807.492,1ft dia tree #224 734,2145806.590,648885.977,1807.492,1ft dia tree #224 734,2145806.590,648885.977,1807.492,1ft dia tree #224 734,2145806.590,64885.977,1807.492,1ft dia tree #224 734,2145806.590,64885.977,1807.492,1807 735,2145795.661,648896.851,1807.293,1ft dia tree #224 736,2145807.317,648902.159,1807.236,1ft dia tree #225 736,2145807.317,648902.159,1807.236,1ft dia tree #225 737,2145744.104,648886.182,1810.085,mud lvl 738,2145746.559,648887.146,1807.483,2ft dia tree #226 739,2145731.786,648899.257,1806.136,1ft dia tree #227 740,2145703.152,648882.805,1809.109,1ft dia tree #228 741,2145774.068,648914.977,1807.943,1ft dia tree #229 742,2145771.743,648919.447,1807.494,1ft dia tree #230 743,2145814.416,648937.292,1804.578,1ft dia tree #231

744,2145901.846,648979.076,1805.809,1ft dia tree #232 745,2145875.913,648981.694,1804.880,1ft dia tree #233 746,2145878.889,648982.818,1810.177,debris 747,2145858.631,648995.600,1808.626,debris 748,2145859.179,648994.451,1804.526,2ft dia tree #234 749,2145790.804,649009.841,1802.805,2ft dia tree #235
750,2145783.972,649015.637,1802.424,2ft dia tree #235
751,2145767.950,649017.944,1801.615,1ft dia tree #237
752,2145758.088,648997.346,1804.824,1ft dia tree #238
753,2145790.680,648992.115,1802.673,1ft dia tree #238 754,2145780.128,648984.664,1801.639,1ft dia tree #240 755,2145783.858,648975.853,1802.173,1ft dia tree #241 756,2145774.652,648967.379,1801.267,1ft dia tree #242
757,2145771.517,648950.361,1806.185,1ft dia tree #243
758,2145750.476,648997.865,1806.890,mud level on cabin
759,2145657.946,648573.255,1810.421,1ft dia tree #244
760,2145476.310,648492.597,1810.885,2ft dia tree #244 761,2145478.808,648533.971,1810.521,2ft dia tree #247 762,2145469.346,648538.948,1810.541,2ft dia tree #248 762,2145469.346,648563.946,1610.341,21t dia tree #246
763,2145480.452,648563.777,1811.042,2ft dia tree #249
764,2145463.156,648631.681,1809.800,2ft dia tree #250
765,2145463.809,648637.462,1809.763,2ft dia tree #251
766,2145543.150,648706.915,1809.381,2ft dia tree #252
767,2145541.296,648716.876,1808.625,2ft dia tree #253
768,2145555.008,648712.457,1809.555,2ft dia tree #254 769,2145551.582,648731.411,1809.001,2ft dia tree #256 770,2145537.026,648743.192,1808.805,2ft dia tree #257
771,2145532.158,648781.767,1808.796,2ft dia tree #258
772,2145568.546,648778.587,1806.796,2ft dia tree #259
773,2145569.358,648801.551,1807.207,2ft dia tree #260
774,2145563.509,648778.586,1810.042,debri 775,2145565.455,648801.966,1810.284,debri 775,2145505.455,048801.900,1810.264,debri
776,2145534.336,648783.034,1808.749,2ft dia tree #261
777,2145542.956,648816.799,1809.763,2ft dia tree #262
778,2145562.235,648826.637,1809.221,2ft dia tree #263
779,2145557.175,648849.972,1807.126,2ft dia tree #264
780,2145535.985,648843.922,1807.605,2ft dia tree #265
781,2145523.746,648844.678,1810.224,debri 782,2145533.183,648843.113,1809.936,debri 783,2145558.898,648850.810,1809.146,debri 784,2145549.996,648886.042,1808.800,debri 785,2145537.220,648887.814,1809.001,debri 786,2145524.657,648896.610,1808.019,debri 787,2145524.948,648895.930,1804.307,2ft dia tree #267 788,2145536.134,648887.102,1807.210,2ft dia tree #268 789,2145547.637,648884.811,1806.639,2ft dia tree #269 790,2145588.653,648870.254,1808.592,2ft dia tree #270 791,2145595.001,648864.853,1808.474,2ft dia tree #271 792,2145602.344,648852.606,1808.154,2ft dia tree #272
793,2145607.768,648855.123,1807.201,2ft dia tree #273
794,2145610.552,648855.493,1807.956,2ft dia tree #274
795,2145609.554,648851.261,1806.375,2ft dia tree #275 796,2145606.687,648916.412,1808.487,cp 796 797,2145443.315,648886.689,1803.233,2ft dia tree #276 798,2145438.518,648886.234,1811.717,debri 799,2145424.811,648780.056,1808.709,debri 800,2145419.229,648784.009,1801.759,3ft dia tree #277 801,2145365.355,648850.324,1801.305,3ft dia tree #278 802,2145580.168,648912.486,1808.311,2ft dia tree #279 803,2145576.552,648917.233,1808.283,2ft dia tree #280 804,2145550.716,648906.806,1808.100,2ft dia tree #281 805,2145526.093,648932.639,1804.802,2ft dia tree #282 806,2145487.232,649002.052,1803.671,2ft dia tree #283

new sp

```
new sp
807,2145498.863,648989.732,1805.578,2ft dia tree #284 808,2145523.942,648975.699,1805.290,2ft dia tree #285 809,2145520.129,648963.243,1804.827,2ft dia tree #286 810,2145539.892,648960.221,1806.722,2ft dia tree #287 810,2145539.457,648967.323,1804.857,3ft dia tree #287 810,2145539.457,648975.323,1804.857,3ft dia tree #287 810,2145539.457,648975.324,1804.857,3ft dia tree #287 810,2145539.457,648975.324,1804.857,3ft dia tree #287 810,2145539.457,648975.324,1804.857,3ft dia tree #287 810,2145539.457,648975.324,1804.857,3ft dia tree #287 810,2145539.457,3ft dia tree #287 810,214559.457,3ft dia tree #287 810,214559.457,3ft dia tree #287 810,214559.457,3ft
811,2145550.457,648975.272,1804.855,2ft dia tree #288
812,2145585.219,648993.672,1805.866,2ft dia tree #289
813,2145574.003,648944.173,1805.319,2ft dia tree #290
814,2145686.233,648891.677,1805.463,1ft dia tree #291
815,2145728.629,649007.988,1802.246,1ft dia tree #292
816,2145695.104,648970.808,1806.327,1ft dia tree #293
817,2145571.836,648942.153,1808.434,debris
818,2145591.282,648977.167,1808.141,debris
819,2145546.969,648978.766,1809.832,debris
820,2145537.281,648956.979,1810.553,debris
821,2145517.767,648959.240,1814.364,debris
822,2145525.258,648934.198,1810.172,debris
823,2145495.785,648983.098,1809.946,debris
 824,2145483.623,648998.926,1809.685,debris
 825,2145190.776,648270.286,1813.032,cp-825
 826,2145084.491,648170.790,1812.567,cp-826
827,2145148.662,647993.601,1811.606,cp-827
828,2145005.266,648057.209,1812.934,cp-828
829,2144962.459,648186.284,1812.050,cp-829
830,2144820.835,647550.602,1876.044,cp-830
 831,2145031.343,647832.086,1814.770,cp-831
 832,2145331.990,647912.073,1810.216,cp-832
833,2145211.052,647827.192,1812.365,cp-833

834,2145204.137,648512.727,1804.436,2ft dia tree #294

835,2145219.051,648492.763,1805.171,2ft dia tree #295

836,2145194.637,648459.158,1806.369,2ft dia tree #296

837,2145181.155,648460.968,1805.112,2ft dia tree #297
 838,2145187.883,648430.347,1806.647,2ft dia tree #298
839,2145246.526,648429.509,1807.625,2ft dia tree #299
840,2145230.018,648402.737,1808.453,2ft dia tree #300
841,2145211.004,648372.114,1810.217,2ft dia tree #301
842,2145165.344,648381.325,1806.216,2ft dia tree #302
843,2145176.843,648315.735,1809.446,2ft dia tree #303
844,2145179.127,648309.842,1812.072,2ft dia tree #304
 845,2145183.568,648311.162,1812.056,2ft dia tree #305
 846,2145168.773,648294.716,1812.829,2ft dia tree #306
 847,2145259.809,648304.508,1811.564,3ft dia tree #307
848,2145309.729,648264.724,1809.459,3ft dia tree #308
849,2145319.110,648215.851,1810.538,3ft dia tree #309
850,2145312.227,648168.622,1811.409,3ft dia tree #310
851,2145235.958,648222.649,1813.268,3ft dia tree #311
  852,2145237.660,648220.600,1817.495,debris
  853,2145316.910,648213.608,1817.038,debris
  854,2145259.340,648300.738,1816.549,debris
 855,2145183.900,648313.230,1815.542,debris
856,2145166.527,648294.744,1814.383,debris
857,2145228.617,648405.758,1813.425,debris
858,2145189.192,648432.399,1810.979,debris
  859,2145194.917,648461.233,1813.662,debris
  860,2145184.311,648460.946,1812.841,debris
 861,2145217.213,648495.403,1808.845,debris
862,2145204.083,648514.821,1811.620,debris
863,2145142.251,648192.428,1810.288,?bld box cor
864,2145163.679,648176.011,1810.234,?bld box cor
865,2145151.648,648178.867,1812.369,?ff
 866,2145168.380,648179.274,1809.653,?low grade
867,2145182.218,648144.961,1810.564,?bld box cor
868,2145194.087,648123.279,1810.205,?low grade
869,2144866.661,648128.088,1817.332,3 off bld cor
```



```
871,2144864.036,648151.254,1816.927,3 off bld cor
872,2144871.147,648081.538,1815.390,3 off bld cor
873,2144873.406,648058.555,1815.523,3 off bld cor
874,2144879.573,648047.334,1815.795,3 off bld cor
875,2144884.739,648024.269,1815.621,bld box_cor
876,2144892.315,647872.666,1817.441,3 off bld cor
877,2144894.681,647849.492,1817.059,3 off bld cor
878,2144901.013,647838.539,1817.516,3 off bld cor
879,2144903.135,647815.194,1817.537,3 off bld cor
880,2144906.175,647733.471,1817.881,3 off bld cor
881,2144908.477,647710.205,1817.972,3 off bld cor
882,2145053.407,647712.482,1816.291,3 off bld cor
883,2145084.385,647715.655,1816.263,3 off bld cor
884,2145098.912,647717.037,1816.041,3 off bld cor
885,2145124.167,647719.487,1815.807,3 off bld cor
886,2145138.356,647720.967,1815.678,3 off bld cor
887,2145167.516,647723.896,1815.320,3 off bld cor
888,2145225.342,647729.874,1814.427,3 off bld cor
889,2145253.646,647732.786,1813.660,3 off bld cor
890,2145265.369,647733.531,1813.693,3 off bld cor
891,2145290.581,647735.988,1813.989,3 off bld cor
892,2145067.767,648174.614,1813.301,3 off bld cor
893,2145070.250,648149.319,1813.656,3 off bld cor
894,2145076.265,648140.359,1813.687,3 off bld cor
895,2145078.877,648115.193,1813.906,3 off bld cor
896,2145080.117,648102.756,1813.772,3 off bld cor
897,2145082.873,648075.345,1814.029,3 off bld cor
898,2145093.815,648064.739,1813.407,3 off bld cor
899,2145119.054,648067.243,1813.068,3 off bld cor
900,2145138.660,648103.279,1811.666,3 off bld cor
901,2145130.081,648124.838,1812.011,3 off bld cor
902,2145132.473,648135.406,1811.813,3 off bld cor
903,2145110.887,648152.091,1812.227,3 off bld cor
905,2145186.446,647949.070,1812.640,ff
906,2145199.059,647956.291,1811.716,low grade 907,2145207.805,647951.995,1811.839,3 off bld cor 908,2145234.236,647954.463,1811.668,low grade
909,2145233.124,647952.003,1811.776,bld box cor
910,2145172.648,647951.578,1812.250,bld box cor
911,2145197.524,647954.141,1812.095,bld box cor
912,2145162.997,647947.660,1813.197,2 in bld box cor
913,2145165.112,647958.496,1811.978,low grade
914,2145149.793,647945.512,1814.020,ff
915,2145138.043,647946.948,1813.417,bld box cor
916,2145127.878,647946.680,1813.863,bld box cor
917,2145129.023,647949.108,1813.308,low grade
918,2145103.003,647943.773,1814.143,bld box cor
 919,2145116.472,647941.691,1814.592,ff
920,2145092.327,647939.868,1813.794,bld box cor
921,2145093.298,647942.414,1813.645,low grade
 922,2145086.035,647933.744,1814.621,ff
 923,2145069.122,647942.822,1813.901,5 off bld cor
 924,2145058.079,647942.068,1813.961,3 off bld box cor
925,2145033.414,647939.374,1813.984,3 off bld box cor
926,2145059.449,647942.799,1813.865,low grade
927,2145046.078,647935.185,1814.787,ff
928,2145030.252,648001.550,1814.207,4 off bld cor
930,2145054.501,648008.132,1814.199,bld box cor
 931,2145055.972,648007.498,1814.023,low grade
932,2145044.065,648009.126,1814.832,ff
933,2145089.811,648007.286,1813.726,3 off bld box cor
934,2145076.744,648010.488,1814.327,ff
935,2145064.717,648007.676,1813.948,bld box cor
```



```
new sp
936,2145096.852,648011.158,1813.165,low grade 937,2145099.321,648012.260,1813.412,bld box cor
938,2145112.911,648018.010,1813.742,ff
939,2145124.135,648014.899,1813.272,bld box cor
940,2145125.581,648015.630,1813.109,low grade
941,2145218.525,647948.614,1812.049,ff
942,2145190.909,648123.478,1810.582,bld box cor
943,2145181.870,648124.762,1812.274,ff
944,2145083.794,648063.305,1813.205,3 off bld cor
945,2145059.233,648060.669,1813.872,3 off bld cor
946,2145049.512,648059.985,1814.004,3 off bld cor
947,2145024.459,648057.512,1814.066,3 off bld cor
948,2145030.797,648070.079,1814.217,bld box cor
949,2145028.188,648097.021,1814.122,bld box cor
950,2145032.954,648085.162,1814.478,ff
951,2145025.491,648098.490,1813.761,low grade
952,2145025.024,648109.552,1813.927,3 off bld box cor
953,2145023.734,648108.164,1813.759,low grade
954,2145028.637,648121.796,1814.263,ff
955,2145023.485,648134.497,1814.026,2 off bld cor
956,2145020.610,648144.354,1813.466,2 off bld box cor
957,2145020.694,648142.836,1813.238,low grade
958,2145023.356,648156.986,1814.103,ff
959,2145016.893,648169.130,1813.618,3 off bld cor
960,2144935.733,648158.257,1814.109,bld box cor
961,2144938.220,648135.473,1814.089,bld box cor
962,2144927.083,648140.456,1815.434,ff
963,2144938.948,648135.795,1813.947,low grade
965,2144942.921,648088.503,1814.103,bld box cor
966,2144945.541,648066.196,1814.061,bld box cor
967,2144947.678,648066.540,1813.970,low grade
968,2144934.712,648071.859,1815.513,ff
969,2144948.819,648031.425,1814.623,bld box cor
970,2144953.731,648030.274,1814.378,low grade
971,2144937.623,648032.342,1815.677,ff
973,2144964.166,647879.688,1816.032,bld box cor
974,2144966.218,647856.782,1815.151,bld box cor
975,2144971.955,647857.269,1815.900,low grade 976,2144970.703,647845.021,1816.302,3 off bld box cor
977,2144972.992,647822.534,1816.353,3 off bld box cor 978,2144977.463,647821.619,1816.030,low grade 979,2144981.139,647740.825,1816.604,3 off bld box cor 980,2144983.570,647718.246,1816.873,3 off bld box cor
981,2144991.134,647718.665,1816.416,low grade
982,2144946.237,648053.799,1814.466,bld box cor
 983,2144954.830,647861.902,1817.388,ff
984,2144958.939,647827.280,1817.719,ff

985,2144979.201,647731.386,1817.923,ff

986,2145047.329,647771.108,1816.107,2 off bld cor

987,2145062.413,647767.194,1816.569,ff

988,2145078.066,647775.174,1815.669,3 off bld box cor
 989,2145081.872,647772.121,1815.360,low grade
 990,2145093.823,647767.522,1815.493,bld box cor
991,214518.602,647770.322,1815.324,bld box cor

991,2145118.602,647771.089,1815.324,bld box cor

992,2145120.880,647771.089,1815.048,low grade

993,2145133.293,647772.589,1815.039,bld box cor

994,2145161.863,647777.234,1814.754,2 off bld box cor

995,2145166.159,647775.809,1814.468,low grade

996,2145220.111,647783.359,1813.405,bld box cor

997,2145234,779,647776,268,1813,958,ff
997,2145234.779,647776.268,1813.958,ff
998,2145247.846,647786.088,1813.561,bld box cor
999,2145250.045,647789.731,1813.199,low grade
1000,2145259.866,647787.221,1813.171,bld box cor
```



```
new sp
1001,2145284.824,647789.546,1813.167,bld box cor 1002,2145286.143,647795.944,1812.680,low grade 1003,2145243.207,647851.269,1812.853,3 off bld cor
1004,2145218.267,647848.742,1812.677,3 off bld box cor
1005,2145208.409,647847.670,1813.119,3 off bld box cor
1006,2145183.652,647846.082,1813.357,bld box_cor
1007,2145173.664,647845.095,1814.511,3 off bld cor
1008,2145148.714,647843.597,1814.466,2 off bld box cor
1009,2145138.805,647839.949,1814.775,3 off bld box cor
1010,2145126.244,647843.452,1815.626,ff
1011,2145113.710,647840.807,1814.931,bld box cor
1012,2145112.230,647838.506,1814.690,low grade
1013,2145103.469,647839.887,1814.865,bld box cor 1014,2145091.561,647840.694,1815.410,ff 1015,2145078.456,647839.900,1814.858,bld box cor 1016,2145076.441,647835.361,1814.318,low grade 1017,2145068.481,647836.305,1815.448,bld box cor 1018,2145068.481,647836.305,1815.448,bld box cor 1018,2145068.481,647836.481,647836.481,647836.481,647836.481,647836.481,647836.481,647836.481,647836.481,647836.481,647836.481,647836.481,647836.481,647836.481,647836.481,647836.481,647836.481,64
 1018,2145056.444,647837.190,1816.022,ff
 1019,2145043.426,647836.501,1815.418,bld box cor
1019,2145043.426,647830.501,1615.416,01d box cor

1020,2145042.140,647832.430,1814.923,low grade

1021,2145038.869,647885.083,1815.569,5 off bld cor/top wall

1022,2145063.835,647887.717,1815.590,5 off bld cor

1023,2145073.473,647888.756,1814.675,5 off bld cor

1024,2145098.552,647891.068,1814.661,5 off bld cor

1025,2145108.547,647892.106,1814.644,5 off bld cor
 1026,2144944.270,648038.395,1816.545, water mark on house
1027,2144932.556,648142.774,1816.546,water mark on house 1028,2145237.740,647905.057,1812.706,5 off bld cor 1029,2145212.533,647902.671,1812.760,5 off bld cor 1030,2145202.934,647901.807,1813.450,5 off bld cor 1031,2145177.784,647899.197,1813.575,5 off bld cor
 1032,2145168.305,647898.230,1813.841,5 off bld cor
1033,2145143.136,647895.690,1814.127,5 off bld cor
 1034,2145133.339,647894.609,1814.510,5 off bld cor
1035,2145107.397,647765.443,1816.156,ff
1036,2145148.432,647771.423,1815.588,ff
1037,2145144.942,647837.414,1813.789,low grade
1038,2145164.377,647846.958,1814.978,ff
 1039,2145179.120,647842.793,1813.148,low grade
 1040,2145194.185,647851.739,1813.565,ff
 1041,2145216.192,647847.451,1812.564,low grade 1042,2145228.883,647855.222,1813.142,ff
 1043,2145278,424,647782,424,1813,838,ff
```


Appendix B NOAA Atlas 14 Precipitation Information

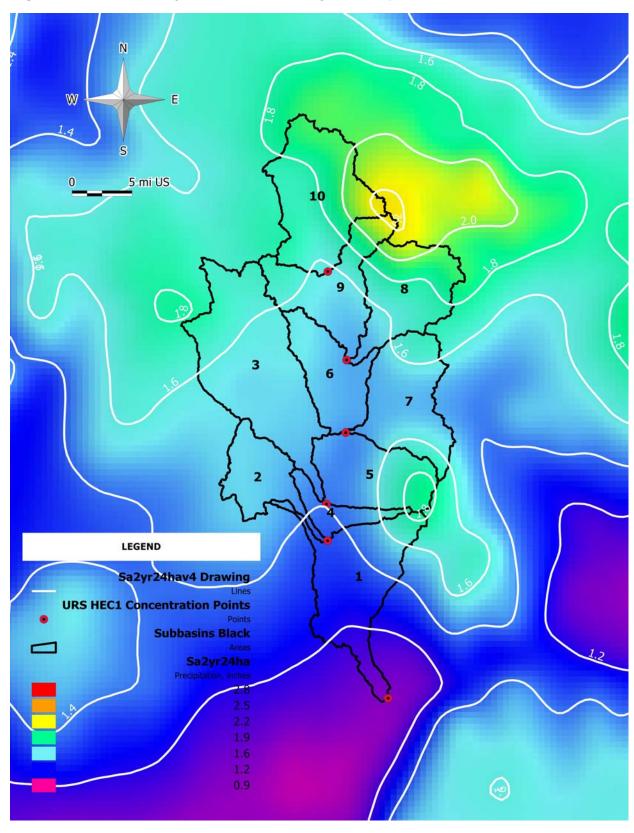


Figure B.1 NOAA 2-year 24-hour Isohyetal Map

B-2 December 2007

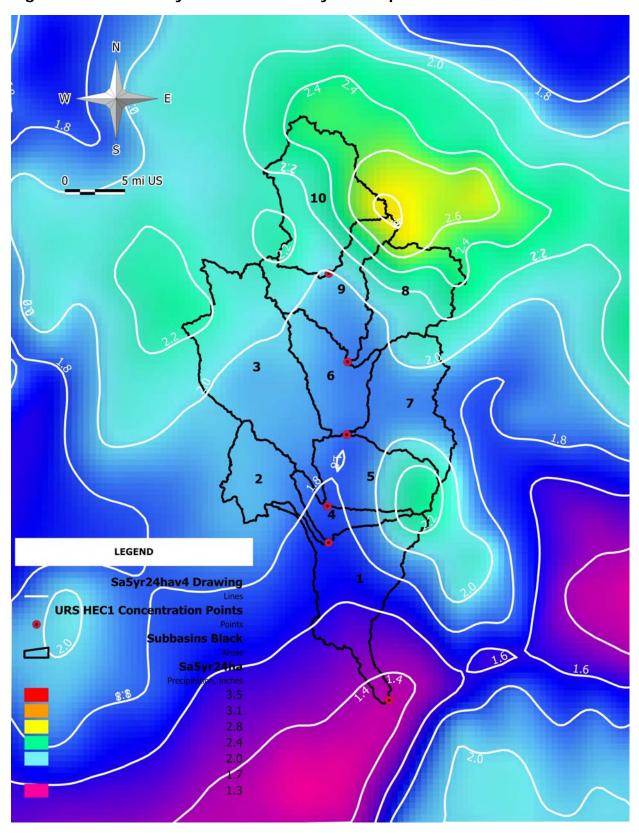


Figure B.2 NOAA 5-year 24-hour Isohyetal Map

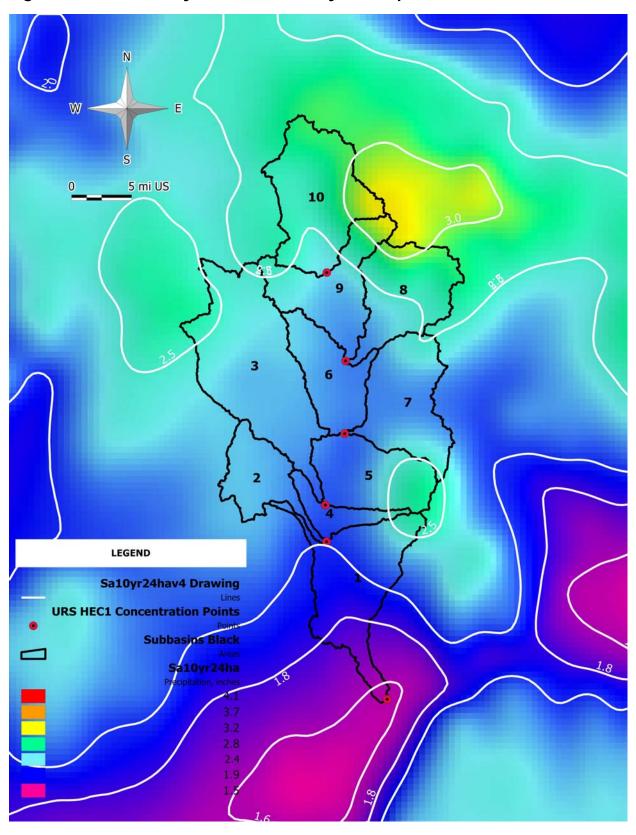


Figure B.3 NOAA 10-year 24-hour Isohyetal Map

B-4 December 2007

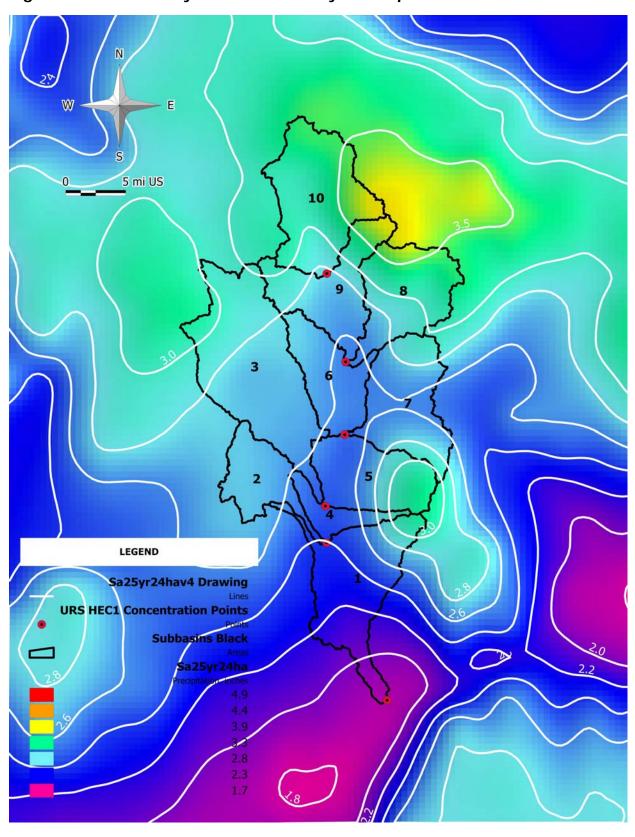


Figure B.4 NOAA 25-year 24-hour Isohyetal Map

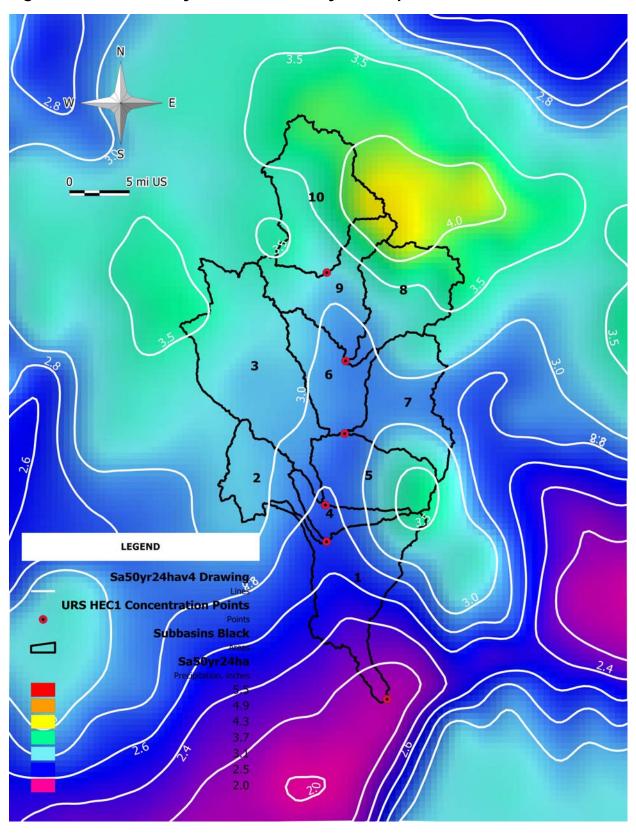


Figure B.5 NOAA 50-year 24-hour Isohyetal Map

B-6 December 2007

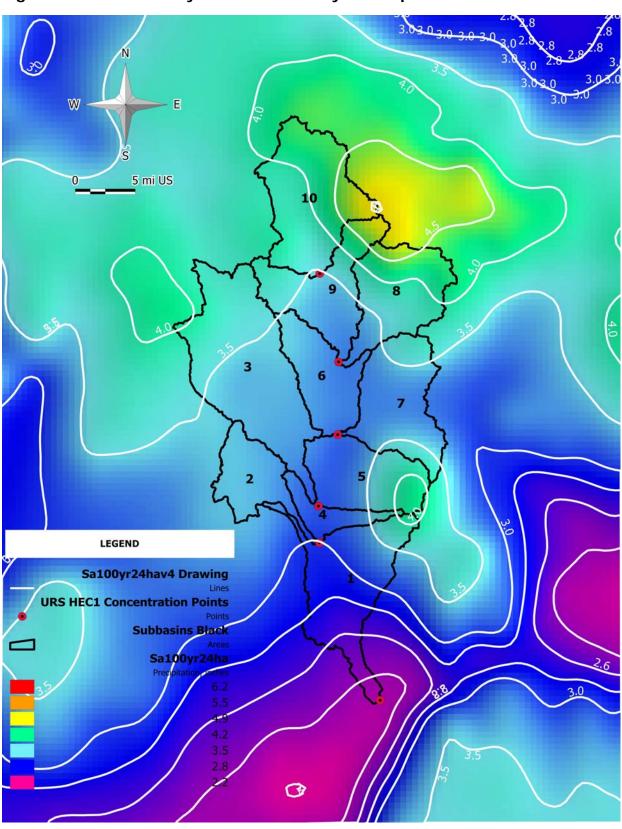


Figure B.6 NOAA 100-year 24-hour Isohyetal Map

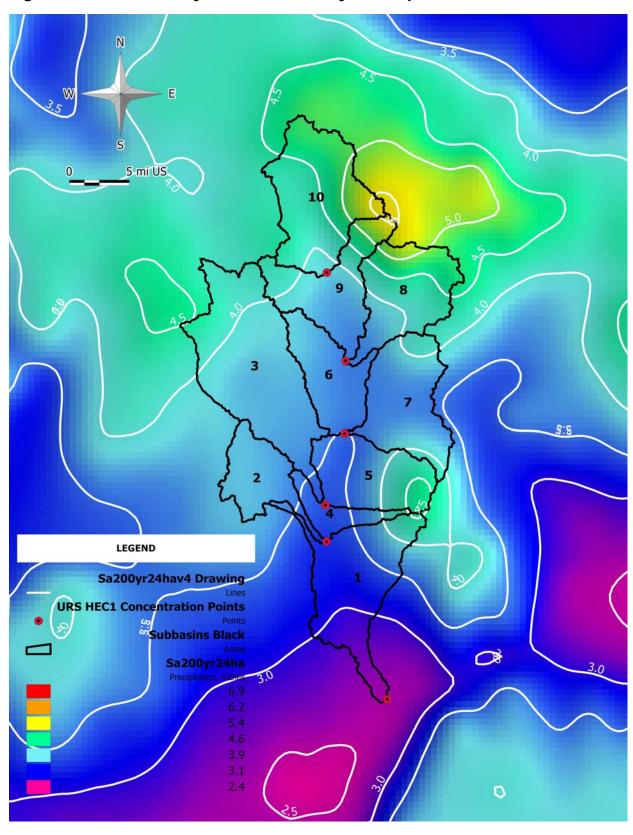


Figure B.7 NOAA 200-year 24-hour Isohyetal Map

B-8 December 2007

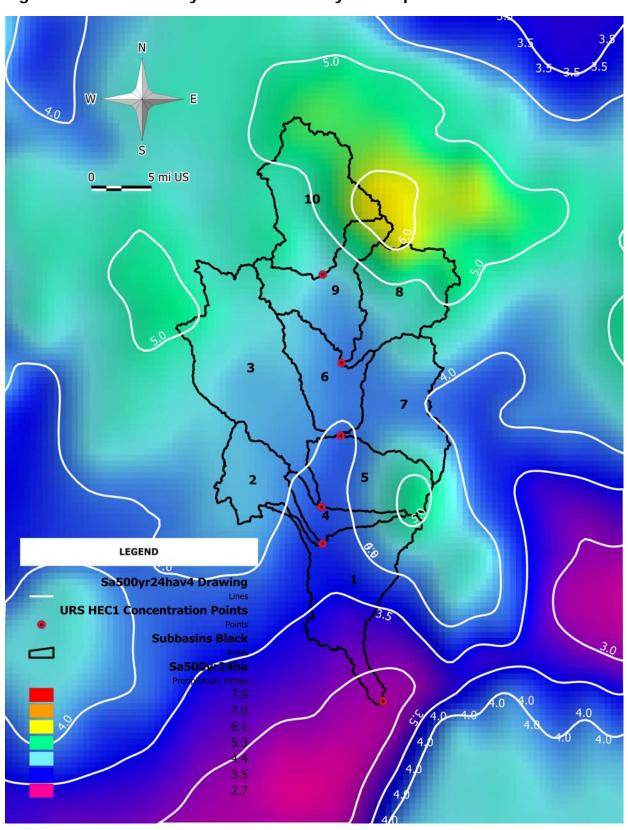


Figure B.8 NOAA 500-year 24-hour Isohyetal Map

Table B.1 NOAA Atlas 14 precipitation-frequency data for Beaver Dam Wash

Sub-basin 1 Utah 37.0492 N 113.9782 W 2890 feet

							Precipit	ation Fre	quency E	stimates	(inches)							
ARI*	5	10	15	30	60	120	3	6	12	24	48	4	7	10	20	30	45	60
(year s)	min	min	min	min	min	min	hr	hr	hr	hr	hr	day	day	day	day	day	day	day
1	0.14	0.21	0.26	0.35	0.43	0.52	0.58	0.72	0.88	1.08	1.19	1.39	1.63	1.82	2.31	2.77	3.28	3.77
2	0.18	0.27	0.34	0.45	0.56	0.66	0.73	0.91	1.11	1.36	1.50	1.76	2.07	2.31	2.93	3.52	4.18	4.82
5	0.24	0.37	0.46	0.62	0.77	0.88	0.96	1.18	1.43	1.73	1.92	2.25	2.64	2.94	3.71	4.48	5.36	6.19
10	0.30	0.46	0.57	0.77	0.95	1.07	1.15	1.39	1.67	2.01	2.24	2.63	3.09	3.43	4.28	5.19	6.24	7.19
25	0.39	0.59	0.74	0.99	1.23	1.36	1.43	1.70	2.01	2.40	2.68	3.15	3.69	4.07	4.99	6.10	7.38	8.48
50	0.47	0.71	0.88	1.18	1.46	1.60	1.67	1.96	2.27	2.70	3.03	3.56	4.15	4.56	5.51	6.78	8.23	9.44
100	0.55	0.84	1.04	1.40	1.73	1.88	1.93	2.22	2.53	3.00	3.38	3.98	4.62	5.06	6.03	7.45	9.09	10.39
200	0.65	0.98	1.22	1.65	2.04	2.18	2.23	2.53	2.81	3.31	3.75	4.41	5.11	5.56	6.52	8.10	9.95	11.34
500	0.80	1.21	1.50	2.02	2.50	2.65	2.68	3.00	3.20	3.73	4.25	5.00	5.76	6.23	7.16	8.95	11.08	12.58
1000	0.93	1.41	1.75	2.36	2.92	3.06	3.08	3.39	3.57	4.05	4.64	5.46	6.26	6.74	7.62	9.58	11.95	13.52

Sub-basin 2 Nevada 37.1694 N 114.1315 W 3704 feet

							Precipit	ation Fre	quency E	stimates	(inches)							
ARI*	5	10	15	30	60	120	3	6	12	24	48	4	7	10	20	30	45	60
(year s)	min	min	min	min	min	min	hr	hr	hr	hr	hr	day	day	day	day	day	day	day
1	0.15	0.23	0.29	0.39	0.48	0.58	0.65	0.79	0.98	1.20	1.34	1.60	1.89	2.12	2.69	3.25	3.86	4.46
2	0.20	0.30	0.37	0.50	0.62	0.73	0.82	1.00	1.24	1.51	1.71	2.03	2.40	2.70	3.43	4.14	4.93	5.71
5	0.27	0.41	0.52	0.69	0.86	0.97	1.07	1.29	1.58	1.94	2.20	2.61	3.10	3.46	4.36	5.30	6.34	7.36
10	0.34	0.51	0.63	0.85	1.06	1.18	1.28	1.52	1.86	2.26	2.58	3.06	3.63	4.06	5.04	6.16	7.39	8.56
25	0.43	0.65	0.81	1.09	1.35	1.49	1.58	1.86	2.23	2.71	3.12	3.69	4.37	4.84	5.91	7.28	8.78	10.13
50	0.51	0.78	0.96	1.29	1.60	1.75	1.83	2.13	2.52	3.05	3.54	4.19	4.94	5.45	6.55	8.11	9.83	11.30
100	0.60	0.91	1.13	1.52	1.89	2.05	2.12	2.41	2.81	3.40	3.97	4.70	5.54	6.07	7.18	8.94	10.90	12.48
200	0.70	1.07	1.32	1.78	2.21	2.38	2.43	2.73	3.11	3.75	4.41	5.23	6.15	6.70	7.80	9.76	11.98	13.67
500	0.86	1.31	1.62	2.18	2.70	2.88	2.92	3.22	3.55	4.23	5.03	5.96	6.99	7.56	8.62	10.84	13.43	15.25
1000	1.00	1.52	1.89	2.54	3.14	3.31	3.35	3.64	3.94	4.60	5.51	6.54	7.65	8.22	9.22	11.66	14.57	16.46

B-10 December 2007

Sub-basin 3 Nevada 37.3046 N 114.135 W 4340 feet

	Precipitation Frequency Estimates (inches)																	
ARI*	5	10	15	30	60	120	3	6	12	24	48	4	7	10	20	30	45	60
(year s)	min	min	min	min	min	min	hr	hr	hr	hr	hr	day	day	day	day	day	day	day
1	0.15	0.23	0.29	0.39	0.48	0.58	0.65	0.81	1.00	1.24	1.40	1.68	2.00	2.24	2.86	3.46	4.13	4.78
2	0.20	0.30	0.38	0.51	0.63	0.74	0.83	1.03	1.27	1.56	1.77	2.12	2.52	2.83	3.61	4.37	5.22	6.05
5	0.27	0.42	0.52	0.70	0.86	0.98	1.08	1.31	1.62	1.97	2.25	2.69	3.20	3.59	4.51	5.49	6.56	7.60
10	0.34	0.52	0.64	0.86	1.06	1.19	1.29	1.55	1.90	2.30	2.64	3.16	3.74	4.18	5.19	6.33	7.57	8.74
25	0.43	0.66	0.82	1.10	1.36	1.51	1.59	1.89	2.27	2.75	3.18	3.79	4.49	4.99	6.06	7.42	8.88	10.21
50	0.52	0.79	0.97	1.31	1.62	1.78	1.85	2.17	2.57	3.10	3.60	4.30	5.07	5.61	6.71	8.23	9.87	11.30
100	0.61	0.93	1.15	1.54	1.91	2.08	2.15	2.46	2.87	3.45	4.04	4.83	5.68	6.25	7.35	9.05	10.86	12.38
200	0.71	1.09	1.35	1.81	2.24	2.42	2.48	2.80	3.19	3.82	4.50	5.38	6.30	6.90	7.97	9.85	11.84	13.44
500	0.88	1.33	1.66	2.23	2.76	2.94	2.99	3.31	3.66	4.31	5.14	6.14	7.16	7.78	8.79	10.89	13.12	14.82
1000	1.02	1.56	1.93	2.60	3.22	3.40	3.44	3.76	4.08	4.70	5.64	6.74	7.84	8.46	9.39	11.68	14.11	15.86

Sub-basin 4 Utah 37.1264 N 114.0209 W 2998 feet

	Precipitation Frequency Estimates (inches)																	
ARI*	5	10	15	30	60	120	3	6	12	24	48	4	7	10	20	30	45	60
(year s)	min	min	min	min	min	min	hr	hr	hr	hr	hr	day	day	day	day	day	day	day
1	0.14	0.22	0.27	0.36	0.45	0.54	0.60	0.75	0.91	1.11	1.24	1.45	1.70	1.89	2.39	2.87	3.40	3.89
2	0.18	0.28	0.35	0.47	0.58	0.69	0.76	0.94	1.15	1.40	1.56	1.83	2.15	2.40	3.04	3.64	4.32	4.96
5	0.25	0.39	0.48	0.65	0.80	0.91	1.00	1.21	1.47	1.78	1.99	2.33	2.74	3.05	3.83	4.63	5.52	6.35
10	0.31	0.48	0.59	0.80	0.99	1.11	1.19	1.44	1.72	2.07	2.32	2.73	3.20	3.56	4.42	5.35	6.41	7.36
25	0.40	0.61	0.76	1.02	1.27	1.40	1.47	1.75	2.06	2.47	2.78	3.27	3.83	4.22	5.15	6.29	7.57	8.66
50	0.48	0.73	0.90	1.22	1.50	1.64	1.71	2.00	2.33	2.78	3.15	3.69	4.31	4.73	5.69	6.98	8.43	9.63
100	0.57	0.86	1.07	1.44	1.78	1.93	1.98	2.27	2.60	3.09	3.52	4.13	4.80	5.25	6.22	7.67	9.30	10.59
200	0.66	1.01	1.25	1.69	2.09	2.24	2.28	2.58	2.88	3.41	3.90	4.58	5.31	5.77	6.73	8.34	10.17	11.54
500	0.82	1.24	1.54	2.07	2.56	2.71	2.74	3.05	3.29	3.84	4.42	5.19	5.99	6.47	7.39	9.21	11.31	12.78
1000	0.95	1.44	1.79	2.41	2.98	3.12	3.15	3.45	3.66	4.17	4.83	5.67	6.52	7.01	7.86	9.86	12.18	13.71

Sub-basin 5 Utah 37.1728 N 113.9621 W 3864 feet

	Precipitation Frequency Estimates (inches)																	
ARI*	5	10	15	30	60	120	3	6	12	24	48	4	7	10	20	30	45	60
(year s)	min	min	min	min	min	min	hr	hr	hr	hr	hr	day	day	day	day	day	day	day
1	0.16	0.24	0.29	0.40	0.49	0.59	0.66	0.82	1.02	1.24	1.40	1.66	1.97	2.21	2.84	3.43	4.10	4.75
2	0.20	0.31	0.38	0.51	0.64	0.75	0.84	1.04	1.28	1.56	1.77	2.10	2.50	2.81	3.61	4.37	5.23	6.07
5	0.28	0.42	0.52	0.70	0.87	0.99	1.09	1.33	1.63	1.98	2.26	2.70	3.21	3.60	4.57	5.56	6.68	7.78
10	0.34	0.52	0.64	0.86	1.07	1.20	1.30	1.56	1.91	2.31	2.65	3.18	3.77	4.21	5.27	6.45	7.78	9.03
25	0.43	0.66	0.82	1.10	1.36	1.51	1.60	1.90	2.29	2.75	3.19	3.83	4.54	5.03	6.17	7.62	9.22	10.66
50	0.51	0.78	0.97	1.30	1.61	1.77	1.86	2.17	2.58	3.10	3.62	4.34	5.14	5.67	6.84	8.48	10.31	11.87
100	0.60	0.92	1.14	1.53	1.90	2.07	2.15	2.46	2.88	3.46	4.06	4.88	5.76	6.32	7.50	9.35	11.42	13.10
200	0.71	1.07	1.33	1.79	2.22	2.40	2.47	2.80	3.19	3.82	4.52	5.43	6.40	6.97	8.14	10.21	12.55	14.32
500	0.86	1.31	1.63	2.19	2.71	2.90	2.95	3.30	3.64	4.31	5.16	6.19	7.28	7.87	8.99	11.34	14.06	15.95
1000	1.00	1.53	1.89	2.55	3.15	3.33	3.39	3.72	4.05	4.69	5.66	6.80	7.97	8.57	9.62	12.20	15.25	17.21

Sub-basin 6 Utah 37.2941 N 114.0227 W 3825 feet

	Precipitation Frequency Estimates (inches)																	
ARI*	5	10	15	30	60	120	3	6	12	24	48	4	7	10	20	30	45	60
(year s)	min	min	min	min	min	min	hr	hr	hr	hr	hr	day	day	day	day	day	day	day
1	0.15	0.23	0.28	0.38	0.47	0.56	0.63	0.79	0.97	1.18	1.33	1.58	1.86	2.08	2.64	3.18	3.80	4.37
2																		
5	0.26	0.40	0.50	0.67	0.83	0.95	1.04	1.27	1.55	1.88	2.12	2.50	2.95	3.30	4.15	5.01	5.99	6.91
10	0.33	0.49	0.61	0.83	1.02	1.15	1.24	1.50	1.82	2.18	2.47	2.92	3.44	3.84	4.76	5.77	6.90	7.93
25	0.42	0.64	0.79	1.06	1.31	1.46	1.54	1.82	2.17	2.60	2.96	3.50	4.11	4.56	5.54	6.74	8.07	9.24
50	0.50	0.76	0.94	1.26	1.56	1.71	1.79	2.09	2.45	2.93	3.35	3.95	4.63	5.11	6.11	7.46	8.94	10.20
100	0.59	0.90	1.11	1.49	1.85	2.01	2.07	2.38	2.74	3.26	3.75	4.43	5.17	5.67	6.67	8.17	9.80	11.15
200	0.69	1.05	1.30	1.76	2.17	2.34	2.39	2.70	3.05	3.60	4.17	4.92	5.71	6.24	7.22	8.87	10.65	12.07
500	0.85	1.29	1.60	2.16	2.67	2.85	2.88	3.20	3.50	4.06	4.73	5.59	6.46	7.00	7.92	9.77	11.74	13.24
1000	0.99	1.51	1.87	2.52	3.12	3.29	3.32	3.63	3.90	4.42	5.18	6.12	7.04	7.59	8.43	10.44	12.56	14.11

B-12 December 2007

Sub-basin 7 Utah 37.2611 N 113.9029 W 3989 feet

							Precipit	ation Fre	quency E	stimates	(inches)							
ARI*	5	10	15	30	60	120	3	6	12	24	48	4	7	10	20	30	45	60
(year	min	min	min	min	min	min	hr	hr	hr	hr	hr	day	day	day	day	day	day	day
s)																		
1	0.15	0.23	0.28	0.38	0.47	0.56	0.64	0.80	0.98	1.19	1.33	1.58	1.86	2.08	2.65	3.20	3.82	4.39
2	0.19	0.29	0.36	0.49	0.61	0.72	0.80	1.00	1.23	1.49	1.67	1.98	2.34	2.62	3.34	4.03	4.81	5.54
5	0.26	0.40	0.50	0.67	0.83	0.95	1.04	1.28	1.56	1.87	2.10	2.49	2.95	3.30	4.15	5.03	6.03	6.93
10	0.33	0.50	0.61	0.83	1.02	1.15	1.24	1.51	1.82	2.17	2.45	2.90	3.43	3.83	4.75	5.78	6.93	7.96
25	0.42	0.64	0.79	1.06	1.31	1.45	1.54	1.83	2.18	2.59	2.94	3.47	4.09	4.54	5.52	6.74	8.12	9.29
50	0.50	0.76	0.94	1.26	1.56	1.71	1.79	2.10	2.46	2.91	3.31	3.92	4.60	5.09	6.08	7.45	8.99	10.25
100	0.59	0.90	1.11	1.49	1.85	2.01	2.07	2.39	2.74	3.24	3.71	4.38	5.13	5.65	6.63	8.15	9.87	11.21
200	0.69	1.05	1.30	1.76	2.17	2.34	2.39	2.71	3.05	3.58	4.11	4.85	5.66	6.21	7.16	8.84	10.72	12.14
500	0.85	1.29	1.60	2.16	2.67	2.84	2.88	3.22	3.49	4.04	4.66	5.50	6.39	6.97	7.84	9.71	11.82	13.32
1000	0.99	1.51	1.87	2.52	3.12	3.28	3.32	3.65	3.90	4.39	5.10	6.02	6.95	7.55	8.33	10.36	12.64	14.19

Sub-basin 8 Utah 37.397 N 113.91 W 5101 feet

	Precipitation Frequency Estimates (inches)																	
ARI*	5	10	15	30	60	120	3	6	12	24	48	4	7	10	20	30	45	60
(year s)	min	min	min	min	min	min	hr	hr	hr	hr	hr	day	day	day	day	day	day	day
1	0.17	0.26	0.32	0.44	0.54	0.64	0.73	0.92	1.15	1.42	1.63	1.94	2.33	2.63	3.41	4.18	5.04	5.88
2	0.22	0.34	0.42	0.56	0.70	0.81	0.92	1.15	1.45	1.78	2.06	2.45	2.94	3.33	4.32	5.29	6.38	7.46
5	0.30	0.46	0.57	0.77	0.95	1.07	1.19	1.46	1.83	2.25	2.62	3.13	3.75	4.24	5.41	6.66	8.03	9.39
10	0.37	0.56	0.70	0.94	1.17	1.30	1.42	1.72	2.14	2.62	3.08	3.67	4.41	4.96	6.23	7.70	9.29	10.83
25	0.47	0.72	0.89	1.20	1.48	1.64	1.75	2.08	2.55	3.13	3.72	4.43	5.31	5.93	7.29	9.06	10.95	12.70
50	0.56	0.85	1.05	1.42	1.75	1.92	2.03	2.38	2.88	3.53	4.23	5.04	6.02	6.69	8.08	10.08	12.21	14.09
100	0.66	1.00	1.24	1.66	2.06	2.25	2.35	2.70	3.22	3.94	4.76	5.67	6.76	7.48	8.87	11.10	13.49	15.49
200	0.77	1.17	1.45	1.95	2.41	2.61	2.70	3.07	3.57	4.36	5.32	6.34	7.54	8.29	9.65	12.12	14.78	16.88
500	0.94	1.43	1.77	2.38	2.95	3.16	3.24	3.63	4.10	4.93	6.10	7.26	8.60	9.39	10.68	13.45	16.51	18.72
1000	1.09	1.66	2.06	2.78	3.44	3.65	3.73	4.10	4.57	5.38	6.72	7.99	9.45	10.25	11.45	14.47	17.86	20.14

December 2007

Sub-basin 9 Utah 37.3989 N 114.0069 W 4363 feet

	Precipitation Frequency Estimates (inches)																	
ARI*	5	10	15	30	60	120	3	6	12	24	48	4	7	10	20	30	45	60
(year	min	min	min	min	min	min	hr	hr	hr	hr	hr	day	day	day	day	day	day	day
s)																		
1	0.15	0.23	0.29	0.39	0.48	0.58	0.65	0.81	1.01	1.25	1.41	1.68	1.99	2.23	2.84	3.44	4.12	4.77
2	0.20	0.30	0.37	0.50	0.62	0.73	0.82	1.02	1.27	1.57	1.77	2.11	2.50	2.81	3.58	4.34	5.20	6.03
5	0.27	0.41	0.51	0.69	0.85	0.97	1.07	1.31	1.62	1.98	2.25	2.67	3.17	3.55	4.48	5.44	6.52	7.56
10	0.33	0.51	0.63	0.85	1.05	1.18	1.28	1.55	1.89	2.30	2.63	3.13	3.71	4.14	5.14	6.27	7.51	8.68
25	0.43	0.65	0.81	1.09	1.35	1.50	1.59	1.88	2.26	2.75	3.17	3.76	4.44	4.92	6.00	7.34	8.79	10.13
50	0.51	0.78	0.96	1.29	1.60	1.76	1.85	2.15	2.56	3.10	3.59	4.25	5.01	5.53	6.63	8.14	9.76	11.19
100	0.60	0.92	1.14	1.53	1.89	2.07	2.15	2.45	2.86	3.45	4.03	4.78	5.61	6.16	7.26	8.93	10.71	12.25
200	0.71	1.08	1.34	1.80	2.23	2.41	2.47	2.79	3.17	3.81	4.48	5.32	6.22	6.79	7.87	9.72	11.67	13.28
500	0.87	1.33	1.64	2.21	2.74	2.93	2.98	3.31	3.65	4.30	5.11	6.06	7.06	7.64	8.66	10.73	12.91	14.62
1000	1.02	1.55	1.92	2.58	3.20	3.39	3.44	3.76	4.08	4.69	5.60	6.65	7.71	8.31	9.25	11.49	13.85	15.62

Sub-basin 10 Utah 37.5091 N 114.0427 W 5774 feet

	Precipitation Frequency Estimates (inches)																	
ARI*	5	10	15	30	60	120	3	6	12	24	48	4	7	10	20	30	45	60
(year s)	min	min	min	min	min	min	hr	hr	hr	hr	hr	day	day	day	day	day	day	day
1	0.17	0.26	0.33	0.44	0.54	0.65	0.74	0.92	1.16	1.44	1.67	2.00	2.38	2.70	3.50	4.28	5.16	6.04
2	0.22	0.34	0.42	0.57	0.70	0.83	0.93	1.16	1.46	1.81	2.11	2.52	3.02	3.42	4.42	5.42	6.53	7.67
5	0.31	0.47	0.58	0.78	0.96	1.10	1.21	1.48	1.85	2.30	2.69	3.23	3.87	4.37	5.57	6.85	8.23	9.66
10	0.38	0.57	0.71	0.96	1.19	1.33	1.44	1.75	2.17	2.68	3.17	3.81	4.56	5.12	6.43	7.93	9.52	11.15
25	0.48	0.73	0.91	1.22	1.51	1.68	1.78	2.12	2.59	3.21	3.84	4.62	5.51	6.15	7.55	9.36	11.23	13.08
50	0.57	0.87	1.07	1.45	1.79	1.98	2.07	2.42	2.93	3.63	4.38	5.26	6.27	6.95	8.40	10.44	12.53	14.53
100	0.67	1.02	1.26	1.70	2.10	2.31	2.40	2.75	3.27	4.05	4.94	5.95	7.07	7.79	9.26	11.53	13.86	15.99
200	0.78	1.19	1.48	1.99	2.46	2.69	2.77	3.13	3.64	4.49	5.53	6.66	7.89	8.65	10.11	12.62	15.21	17.46
500	0.96	1.46	1.81	2.44	3.02	3.26	3.33	3.70	4.18	5.08	6.34	7.65	9.05	9.83	11.23	14.05	17.02	19.41
1000	1.12	1.70	2.11	2.85	3.52	3.77	3.84	4.19	4.67	5.55	7.00	8.45	9.97	10.77	12.09	15.16	18.45	20.92

B-14 December 2007

December 2007

Appendix C HEC-1 Hydrologic Modeling Results Complete HEC-1 Model – All Sub-Basins (pre-fire)

* U.S. ARMY CORPS OF ENGINEERS *

* HYDROLOGIC ENGINEERING CENTER *

* 609 SECOND STREET *

* DAVIS, CALIFORNIA 95616 *

* (916) 756-1104 *

Х	Х	xxxxxxx	ХΣ	XXXX		Х
Х	Х	X	Х	Х		XX
Х	Х	X	Х			Х
XXXX	XXX	XXXX	Х		xxxxx	Х
Х	Х	Х	Х			Х
Х	Х	X	Х	Х		Х
Х	Х	xxxxxx	XX	XXXX		XXX

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE.

THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION

NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY,

DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION

KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

PAGE 1

LINE	ID12345678910
1	ID Mohave County
2	ID BDNOAA14MID100 - Beaver Dam Hydrology NOAA 14 Mid100 w Routing Optimized
3	ID Major Basin: 01
4	ID 100 Year - Return Period
5	ID 24 Hour Storm
6	ID Single Storm
7	ID Unit Hydrograph: Clark
8	ID 11/11/2006
	*DIAGRAM
9	IT 5 31MAY05 0000 1500
10	IO 5
	*
11	KK SUB10BASIN
12	KM RUNOFF CALCULATION FOR SUBBASIN 10
13	BA 76.58
14	PH 575 0.67 1.26 2.10 2.31 2.40 2.75 3.27 4.09
15	LG 0.15 0.36 5.102 0.288 11.4
16	UC 6.07 2.79
	*
17	KK 9UPROUTE
18	KM ROUTE SUBBASIN 10 RUNOFF THROUGH REACH BASIN 9 - UPPER
19	RS 8 FLOW 0 0
20	RC 0.060 0.060 0.060 41282 0.0140
21	RX 0 45 89 94 130 135 160 185
	RY 4160 4142 4125 4120 4120 4125 4142 4160

HEC-1 INPUT

1

23

9LOWROUTE

C-2 December 2007

```
24
                 ROUTE SUBBASIN 10 RUNOFF THROUGH REACH BASIN 9 - LOWER
                                   0
  25
             RS
                          FLOW
                 0.055
  26
             RC
                         0.055 0.055 11913 0.0104
  27
                                                            1020
                                                                    1260
             RX
                          140
                                 285
                                        300
                                              380
                                                      395
  28
             RY
                   3600
                          3560
                                 3559
                                        3556
                                              3556
                                                       3559
                                                              3560
                                                                     3600
 29
             KK
                 SUB09BASIN
  30
                  RUNOFF CALCULATION FOR SUBBASIN 9
 31
             BA
                  54.25
                           575
                                 0.60 1.14
                                              1.89
                                                      2.07
                                                              2.15 2.45
                                                                           2.86
                                                                                  3.45
 32
             PH
 33
             LG
                  0.15 0.387
                                 5.67 0.24
                                                0.
  34
             UC
                  3.80
                         1.62
 35
             KK
                 SUB08BASIN
                  RUNOFF CALCULATION FOR SUBBASIN 8
 36
             KM
 37
                 55.69
  38
             PH
                          575
                                 0.66
                                        1.24
                                               2.06
                                                       2.25
                                                              2.35 2.70 3.22 3.94
 39
             LG
                  0.15
                          0.35 3.984 0.478
                                                0.
                  4.43
  40
             UC:
                          1.79
                                        HEC-1 INPUT
                                                                                           PAGE 2
LINE
             ID.....1....2.....3.....4.....5.....6.....7.....8.....9.....10
  41
             KK
                CONC1COMBINE
                  COMBINE SUBBASINS 09 AND 08 WITH ROUTED 9LOW
  42
             KM
  43
             HC
  44
             KK
                    6UPROUTE
                 ROUTE SUBBASIN 9+8 RUNOFF THROUGH REACH BASIN 6 - UPPER
  45
             KM
                        FLOW
  46
             RS
                 0.075 0.075 0.075 14202 0.0113
```

1

48	RX	0	170	685	700	765	780	930	1130		
49	RY	3580	3540	3539	3536	3536	3539	3540	3580		
	*										
50	KK	6LOWRO	DUTE								
51	KM	ROUTE S	SUBBASIN	9+8 RUNG	OFF THRO	UGH REACH	BASIN 6	- LOWER			
52	RS	8	FLOW	0							
53	RC	0.045	0.045	0.045	21503	0.0102					
54	RX	0	160	885	900	1000	1015	1500	1760		
55	RY	3320	3280	3279	3276	3276	3279	3280	3320		
	*										
56	KK	SUB07B	ASIN								
57	KM	RUNOFE	CALCUL	ATION FOR	R SUBBAS	IN 7					
58	BA	60.32									
59	PH		575	0.59	1.11	1.85	2.01	2.07	2.39	2.74	3.24
60	LG	0.15	0.35	4.849	0.284	14.71					
61	UC	3.89	1.48								
	*										
62	KK	SUB06BA	ASIN								
63	KM	RUNOFE	F CALCUL	ATION FOR	R SUBBAS	IN 6					
64	BA	41.51									
65	PH		575	0.59	1.11	1.85	2.01	2.07	2.38	2.74	3.26
66	LG	0.15	0.38	5.475	0.229	2.55					
67	UC	3.99	1.83								
	*										
68	KK	CONC2CO	OMBINE								
69	KM	COMBIN	IE SUBBA	SINS 07 A	AND 06 W	ITH ROUTE	D 6LOW				
70	HC	3									
	*										
71	KK	5UPRO	DUTE								
72	KM	ROUTE S	SUBBASIN	6+7 RUNG	OFF THRO	UGH REACH	BASIN 5	- UPPER			
73	RS	7	FLOW	0	0						

C-4 December 2007

```
74
              RC
                   0.055
                          0.055
                                 0.055
                                          18610 0.0111
  75
                                    685
                                                                          1190
              RX
                       0
                            180
                                            700
                                                    810
                                                            825
                                                                   940
  76
              RY
                    3020
                            3000
                                   2999
                                           2996
                                                   2996
                                                           2999
                                                                  3000
                                                                          3020
                                           HEC-1 INPUT
                                                                                                 PAGE 3
LINE
              ID.....1....2....3....4.....5.....6.....7....8.....9.....10
  77
                    5MIDROUTE
              KK
                   ROUTE SUBBASIN 6+7 RUNOFF THROUGH REACH BASIN 5 - MIDDLE
  78
              KM
  79
              RS
                            FLOW
                                      0
                   0.055
                          0.055
                                  0.055
                                           8769 0.0116
  80
              RC
              RX
                             260
                                    585
                                                                   900
                                                                           950
                    2880
  82
              RY
                            2860
                                   2859
                                           2856
                                                   2856
                                                           2859
                                                                  2860
                                                                          2880
              KK
                    5LOWROUTE
                   ROUTE SUBBASIN 6+7 RUNOFF THROUGH REACH BASIN 5 - LOWER
  84
              KM
  85
              RS
                       3
                            FLOW
                                      0
                                             Ω
                   0.045
                          0.045
                                  0.045
                                           8049 0.0102
  86
              RC
                                                    730
  87
              RX
                      0
                            340
                                    697
                                            700
                                                            735
                                                                  1190
                                                                          1220
  88
              RY
                    2820
                            2800
                                   2797
                                           2794
                                                   2794
                                                           2797
                                                                  2800
                                                                          2820
  89
              KK
                   SUB05BASIN
                    RUNOFF CALCULATION FOR SUBBASIN 5
              KM
  91
              ВА
                   51.47
                            575
                                   0.60
                                                   1.90
                                                           2.07
                                                                  2.15
                                                                          2.46
                                                                                  2.88
                                                                                        3.46
  92
              PH
                                           1.14
  93
              LG
                    0.15
                            0.35 4.278
                                          0.374
                                                   0.
              UC
                    3.81
                            1.57
  95
              KK
                   SUB03BASIN
  96
                    RUNOFF CALCULATION FOR SUBBASIN 3
              KM
              ВΑ
                   111.2
```

98	PI	H	575	0.61	1.15	1.91	2.08	2.15	2.46	2.87	3.45		
99	LO	G 0.15	0.375	6.495	0.168	0.							
100	U	C 6.97	3.13										
	*												
101	KI	K CONC3	COMBINE										
102	KI	M COMB	INE SUBBA	SINS 05	AND 03 W	ITH ROUTE	ED 5LOW						
103	Н	C 3											
	*												
104	KI	K 4UP	ROUTE										
105	KI	M ROUTE	SUBBASIN	3+5 RUN	OFF THRO	UGH REACH	H BASIN 4	4 - UPPER					
106	R.S	S 4	FLOW	0	0								
107	RO	0.070	0.070	0.070	9425	0.0095							
108	R.	X 0	90	297	300	330	333	870	910				
109	R.	Y 2720	2700	2697	2694	2694	2697	2700	2720				
	*												
110	KI		ROUTE	. 2 5 5-5-					_				
111	K! R!		SUBBASIN	3+5 RUN		UGH REACH	H BASIN 4	4 - MIDDL	E				
112	RO			0.070	0	0.0109							
114	RI		70	385	400	480	495	610	670				
115	R			2599	2596	2596	2599	2600	2620				
110	*	2020	2000	2377	2370	2000	2377	2000	2020				
					HEC-1	INPUT						PAGE	4
LINE	II	D1	2.	3.	4.	5	6.	7	8	9	10		
116	KI	K 4LOW	ROUTE										
117	KI	M ROUTE	SUBBASIN	3+5 RUN	OFF THRO	UGH REACH	H BASIN 4	4 - LOWER					
118	RS	S 1	FLOW	0	0								
119	RO	0.060	0.060	0.060	4442	0.0101							
120	R	X 0	590	685	700	770	795	890	950				
121	R	Y 2600	2580	2579	2576	2576	2579	2580	2600				

1

C-6 December 2007

122	KK	SUB04BA	SIN								
123	KM	RUNOFF	CALCULA	ATION FOR	R SUBBAS	IN 4					
124	BA	16.50									
125	PH		575	0.57	1.07	1.78	1.93	1.98	2.27	2.60	3.09
126	LG	0.15	0.35	4.505	0.322	1.01					
127	UC	2.38	1.18								
	*										
128	KK	SUB02BA	SIN								
129	KM	RUNOFF	CALCUL	ATION FOR	R SUBBAS	IN 2					
130	BA	33.34									
131	PH		575	0.60	1.13	1.89	2.05	2.12	2.41	2.81	3.40
132	LG	0.15	0.35	4.394	0.343	0.					
133	UC	3.97	2.06								
	*										
134	KK	CONC4CO	MBINE								
135	KM	COMBIN	E SUBBAS	SINS 04 A	AND 02 W	ITH ROUTE	D 4LOW				
136	HC	3									
	*										
137	KK	1UPRO	UTE								
138	KM	ROUTE S	UBBASIN	2+4 RUN	OFF THRO	UGH REACH	BASIN 1	- UPPER			
139	RS	19	FLOW	0	0						
140	RC	0.052	0.052	0.052	49818	0.0099					
141	RX	0	190	285	300	1000	1015	1600	2050		
142	RY	2320	2300	2299	2296	2296	2299	2300	2320		
	*										
143	KK	1LOWRO	UTE								
144	KM	ROUTE S	UBBASIN	2+4 RUNG	OFF THRO	UGH REACH	BASIN 1	- LOWER			
145	RS	13	FLOW	0	0						
146	RC	0.058	0.058	0.058	29796	0.0079					
147	RX	0	90	485	500	1800	1815	2220	2400		

```
1979
           148
                        RY
                              2000
                                                    1976
                                                            1976
                                                                           1980
                                                                                   2000
                                     1980
                                             1979
           149
                             SUB01BASIN
           150
                              RUNOFF CALCULATION FOR SUBBASIN 1
           151
                             76.00
                        BA
           152
                        PH
                                      575
                                             0.55
                                                    1.04
                                                           1.73
                                                                   1.88
                                                                           1.93
                                                                                 2.22 2.53
                                                                                                3.00
           153
                              0.15
                                     0.35
                                             4.47
                                                    0.331
                                                            2.73
                        LG
           154
                        UC
                              4.80
                                     2.00
1
                                                    HEC-1 INPUT
                                                                                                          PAGE 5
          LINE
                        ID.....1....2....3....4.....5.....6.....7.....8.....9.....10
           155
                        KK
                            CONC5COMBINE
           156
                              COMBINE SUBBASIN 01 WITH ROUTED 1LOW
                        KM
           157
           158
                                 2
                        HC
           159
                        7.7.
1
                SCHEMATIC DIAGRAM OF STREAM NETWORK
 INPUT
           (V) ROUTING
 LINE
                              (--->) DIVERSION OR PUMP FLOW
  NO.
           (.) CONNECTOR
                               (<---) RETURN OF DIVERTED OR PUMPED FLOW
   11
            SUB10
               V
   17
              9UP
               V
               V
   23
             9LOW
```

C-8 December 2007

29		SUB09	
35			SUB08
41	CONC1		
	V		
	V		
44	6UP		
	V		
	V		
50	6LOW		
56		SUB07	
62			SUB06
		•	
68	CONC2		
	V		
	V		
71	5UP		
	V		
	V		
77	5MID		
	V		
	V		
83	5LOW		
89		SUB05	
	-	-	
	•	•	

95	-		SUB03
	•		•
	•		•
101	CONC3.		
	V		
	V		
104	4UP		
	V		
	V		
110	4MID		
	V		
	V		
116	4LOW		
	•		
122	•	SUB04	
	•		
128			SUB02
134	CONC4.		
	V		
	V		
137	1UP		
	V		
	V		
143	1LOW		
149		SUB01	
	-		
	-		
155	CONC5.		

(***) RUNOFF ALSO COMPUTED AT THIS LOCATION

1**	***********	**	*********					
*		*	*		*			
*	FLOOD HYDROGRAPH PACKAGE (HEC-1)	*	*	U.S. ARMY CORPS OF ENGINEERS	*			
*	JUN 1998	*	*	HYDROLOGIC ENGINEERING CENTER	*			
*	VERSION 4.1	*	*	609 SECOND STREET	*			
*		*	*	DAVIS, CALIFORNIA 95616	*			
*	RUN DATE 20JUN07 TIME 07:37:12	*	*	(916) 756-1104	*			
*		*	*		*			
**	*************	**	***	**********	**			

Mohave County

BDNOAA14MID100 - Beaver Dam Hydrology NOAA 14 Mid100 w Routing Optimized

Major Basin: 01

100 Year - Return Period

24 Hour Storm

Single Storm

Unit Hydrograph: Clark

11/11/2006

10 IO OUTPUT CONTROL VARIABLES

IPRNT 5 PRINT CONTROL

IPLOT 0 PLOT CONTROL

QSCAL 0. HYDROGRAPH PLOT SCALE

IT HYDROGRAPH TIME DATA

NMIN 5 MINUTES IN COMPUTATION INTERVAL

IDATE 31MAY 5 STARTING DATE

ITIME 0000 STARTING TIME

NQ 1500 NUMBER OF HYDROGRAPH ORDINATES

NDDATE 5JUN 5 ENDING DATE
NDTIME 0455 ENDING TIME

ICENT 19 CENTURY MARK

COMPUTATION INTERVAL .08 HOURS

TOTAL TIME BASE 124.92 HOURS

ENGLISH UNITS

DRAINAGE AREA SQUARE MILES

PRECIPITATION DEPTH INCHES

LENGTH, ELEVATION FEET

FLOW CUBIC FEET PER SECOND

STORAGE VOLUME ACRE-FEET

SURFACE AREA ACRES

TEMPERATURE DEGREES FAHRENHEIT

*** ***

* *

155 KK * CONC5 * COMBINE

* *

157 KO OUTPUT CONTROL VARIABLES

IPRNT 3 PRINT CONTROL

IPLOT 0 PLOT CONTROL

QSCAL 0. HYDROGRAPH PLOT SCALE

IPNCH 0 PUNCH COMPUTED HYDROGRAPH

IOUT 21 SAVE HYDROGRAPH ON THIS UNIT

1 FIRST ORDINATE PUNCHED OR SAVED

1500 LAST ORDINATE PUNCHED OR SAVED

TIMINT .083 TIME INTERVAL IN HOURS

158 HC HYDROGRAPH COMBINATION

ISAV1

ISAV2

C-12 December 2007

ICOMP 2 NUMBER OF HYDROGRAPHS TO COMBINE

HYDROGRAPH AT STATION CONC5

PEAK FLOW TIME MAXIMUM AVERAGE FLOW 6-HR 24-HR 72-HR 124.92-HR (CFS) (HR) (CFS) 26134. 20.33 21446. 9266. 3222. 1857. (INCHES) .597 .623 .623 10634. 18379. 19172. 19172. (AC-FT)

CUMULATIVE AREA = 576.86 SQ MI

1

RUNOFF SUMMARY

FLOW IN CUBIC FEET PER SECOND

TIME IN HOURS, AREA IN SQUARE MILES

			PEAK	TIME OF	AVERAGE FL	OW FOR MAXIM	MUM PERIOD	BASIN	MAXIMUM	TIME OF
	OPERATION	STATION	FLOW	PEAK				AREA	STAGE	MAX STAGE
+					6-HOUR	24-HOUR	72-HOUR			
	HYDROGRAPH AT									
+		SUB10	6725.	16.83	5390.	2061.	699.	76.58		
	ROUTED TO									
+		9UP	6701.	17.50	5371.	2058.	699.	76.58		
+									4130.89	17.50
	ROUTED TO									
+		9LOW	6687.	17.92	5344.	2058.	699.	76.58		

+									3560.73	17.92
+	HYDROGRAPH AT	SUB09	4877.	15.00	2881.	777.	259.	54.25		
+	HYDROGRAPH AT	SUB08	3651.	15.50	2370.	662.	221.	55.69		
+	3 COMBINED AT	CONC1	11695.	15.75	9397.	3496.	1178.	186.52		
+	ROUTED TO	6UP	11586.	16.33	9368.	3496.	1178.	186.52	3542.16	16.33
+	ROUTED TO	6LOW	11518.	17.00	9262.	3495.	1178.	186.52	3280.75	17.00
+	HYDROGRAPH AT	SUB07	6826.	15.00	4258.	1355.	456.	60.32		
+	HYDROGRAPH AT	SUB06	3611.	15.25	2269.	656.	219.	41.51		
+	3 COMBINED AT	CONC2	17552.	16.58	13608.	5435.	1853.	288.35		
+	ROUTED TO	5UP	17192.	17.17	13556.	5434.	1853.	288.35	3002.22	17.17
+	ROUTED TO	5MID	17097.	17.33	13525.	5434.	1853.	288.35	2862.73	17.33

C-14 December 2007

+	ROUTED TO	5LOW	17059.	17.58	13503.	5434.	1853.	288.35	2801.15	17.58	
+	HYDROGRAPH AT	SUB05	3777.	15.00	2216.	594.	198.	51.47			
+	HYDROGRAPH AT	SUB03	6881.	17.58	5672.	2048.	683.	111.20			
+	3 COMBINED AT	CONC3	25065.	17.42	20293.	8076.	2734.	451.02			
+	ROUTED TO	4UP	25014.	17.75	20262.	8075.	2734.	451.02	2703.44	17.75	
+	ROUTED TO	4MID	24997.	17.83	20249.	8075.	2734.	451.02	2604.96	17.75	
+	ROUTED TO	4LOW	24973.	17.92	20234.	8075.	2734.	451.02	2586.07	17.92	
+	HYDROGRAPH AT	SUB04	1699.	14.00	720.	187.	62.	16.50			
+	HYDROGRAPH AT	SUB02	2254.	15.33	1429.	407.	136.	33.34			
+	3 COMBINED AT	CONC4	25911.	17.75	21225.	8666.	2932.	500.86			
+	ROUTED TO	1UP	25669.	19.33	21095.	8658.	2932.	500.86			

+									2300.34	19.33
+	ROUTED TO	1LOW	25473.	20.42	20855.	8645.	2932.	500.86		
+									1979.57	20.42
+	HYDROGRAPH AT	SUB01	4083.	15.75	2837.	867.	290.	76.00		
	2 COMBINED AT									
+		CONC5	26134.	20.33	21446.	9266.	3222.	576.86		

*** NORMAL END OF HEC-1 ***

Upper Watershed HEC-1 Model –Sub-Basins 6-10 (pre-fire)

 * U.S. ARMY CORPS OF ENGINEERS *

* HYDROLOGIC ENGINEERING CENTER *

* 609 SECOND STREET *

* DAVIS, CALIFORNIA 95616 *

* (916) 756-1104 *

Х	X	xxxxxxx	XXXXX			Х
Х	Х	Х	Х	Х		XX
Х	Х	X	х			Х
xxxxxxx		XXXX	х		xxxxx	Х
Х	Х	Х	Х			Х
Х	Х	X	х	Х		Х
Х	Х	xxxxxx	XX	XXX		XXX

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE.

THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION

NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY,

DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION

KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

1 ${\tt HEC-1\ INPUT}$ PAGE 1

LINE	ID	1	2.	3	4	5	6	7	8	9	10
1	ID	Mol	have Cou	unty							
2	ID	BDI	NOAA14MI	ID100 - Be	eaver Da	m Hydrol	ogy NOAA	14 Mid1	00 w Rou	ting Opt	imized
3	ID	Bas	sins 6-1	10							
4	ID	100	0 Year -	- Return F	eriod						
5	ID	24	Hour St	corm							
6	ID	Sin	ngle Sto	orm							
7	ID	Un	it Hydro	ograph: Cl	ark						
8	ID	11,	/11/2006	5							
	*DIA	AGRAM									
9	IT	5 3	1MAY05	0000	1500						
10	IO	5									
	*										
11	KK	SUB10BA	SIN								
12	KM	RUNOFF	CALCULA	ATION FOR	SUBBASI	N 10					
13	BA	76.58									
14	PH		575	0.67	1.26	2.10	2.31	2.40	2.75	3.27	4.05
15	LG	0.15	0.36	5.102	0.288	11.4					
16	UC	6.07	2.79								
	*										
17	KK	9UPROI	UTE								
18	KM	ROUTE ST	UBBASIN	10 RUNOFF	THROUG	H REACH	BASIN 9	- UPPER			
19	RS	8	FLOW	0	0						
20	RC	0.060	0.060	0.060	41282	0.0140					
21	RX	0	45	89	94	130	135	160	185		
22	RY	4160	4142	4125	4120	4120	4125	4142	4160		
	*										
23	KK	9LOWRO	UTE								
24	KM	ROUTE SU	UBBASIN	10 RUNOFF	THROUG	H REACH	BASIN 9	- LOWER			
25	RS	5	FLOW	0	0						

C-18 December 2007

26	RC	0.055	0.055	0.055	11913	0.0104							
27	RX	0	140	285	300	380	395	1020	1260				
28	RY	3600	3560	3559	3556	3556	3559	3560	3600				
	*												
29	KK	SUB09B	ASIN										
30	KM	RUNOF	F CALCUL	ATION FO	R SUBBAS	SIN 9							
31	BA	54.25											
32	PH		575	0.60	1.14	1.89	2.07	2.15	2.45	2.86	3.45		
33	LG	0.15	0.387	5.67	0.24	0.							
34	UC	3.80	1.62										
	*												
35	KK	SUB08B											
36	KM		F CALCUL	ATION FO	R SUBBAS	SIN 8							
37	BA	55.69											
38	PH		575	0.66	1.24		2.25	2.35	2.70	3.22	3.94		
39	LG	0.15	0.35	3.984	0.478	0.							
40	UC *	4.43	1.79										
1					₩FC_1	INPUT						PAGE 2	
1					IIEC I	INFOI						FAGE Z	
LINE	ID.	1.	2 .	3.	4 .	5	6	7	8	9	10		
41	KK	CONC1C	OMBINE										
42	KM	COMBI	NE SUBBA	SINS 09	AND 08 W	ITH ROUTE	ED 9LOW						
43	HC	3											
	*												
44	KK	6UPR	OUTE										
45	KM	ROUTE	SUBBASIN	9+8 RUN	OFF THRO	OUGH REACH	H BASIN 6	- UPPER					
46	RS	7	FLOW	0									
47	RC	0.075	0.075	0.075	14202	0.0113							
48	RX	0	170	685	700	765	780	930	1130				
49	RY	3580	3540	3539	3536	3536	3539	3540	3580				

*

1

INPUT

```
50
            KK
                 6LOWROUTE
 51
                 ROUTE SUBBASIN 9+8 RUNOFF THROUGH REACH BASIN 6 - LOWER
                          FLOW
                 0.045
                        0.045 0.045
                                       21503 0.0102
 53
            RC
 54
            RX
                     0
                          160
                                  885
                                         900
                                               1000
                                                       1015
                                                               1500
                                                                      1760
                  3320
                          3280
                                 3279
                                         3276
                                                3276
                                                        3279
                                                               3280
                                                                       3320
 55
             RY
 56
            KK
                 SUB07BASIN
 57
            ΚM
                  RUNOFF CALCULATION FOR SUBBASIN 7
                 60.32
 58
            BA
                          575
                                                                              2.74
 59
            PH
                                 0.59
                                        1.11 1.85
                                                       2.01
                                                               2.07 2.39
                                                                                    3.24
                  0.15
                          0.35 4.849
                                        0.284 14.71
 60
            LG
 61
            UC
                  3.89
                          1.48
 62
                 SUB06BASIN
 63
            KM
                  RUNOFF CALCULATION FOR SUBBASIN 6
 64
            ВΑ
                 41.51
 65
             PH
                          575
                               0.59
                                       1.11
                                               1.85
                                                        2.01
                                                                     2.38
                                                                            2.74
                                                                                    3.26
 66
             LG
                  0.15
                          0.38 5.475 0.229
                                                2.55
 67
            UC
                  3.99
                         1.83
 68
 69
                  COMBINE SUBBASINS 07 AND 06 WITH ROUTED 6LOW
            HC
                     3
 70
 71
    SCHEMATIC DIAGRAM OF STREAM NETWORK
(V) ROUTING
                 (--->) DIVERSION OR PUMP FLOW
```

C-20 December 2007

NO.	(.) CONNEC	TOR	(<) RETURN (OF DIVERTED OR PUMPED FLOW		
11	SUB10					
	V					
	V					
17	9UP					
	V					
	V					
23	9LOW					
29		SUB09				
35			SUB08			
41	CONC1					
	V					
	V					
44	6UP					
	V					
	V					
50	6LOW					
56		SUB07				
62			SUB06			
			•			
68	CONC2					
(***) RU	NOFF ALSO COM	PUTED AT TH	IS LOCATION			
1******	******	*****	*****		*********	****

*		*	*		*
*	FLOOD HYDROGRAPH PACKAGE (HEC-1)	*	*	U.S. ARMY CORPS OF ENGINEERS	*
*	JUN 1998	*	*	HYDROLOGIC ENGINEERING CENTER	*
*	VERSION 4.1	*	*	609 SECOND STREET	*
*		*	*	DAVIS, CALIFORNIA 95616	*
*	RUN DATE 20JUN07 TIME 07:52:46	*	*	(916) 756-1104	*
*		*	*		*
**	***********	**	***	*********	***

Mohave County

BDNOAA14MID100 - Beaver Dam Hydrology NOAA 14 Mid100 w Routing Optimized

Basins 6-10

100 Year - Return Period

24 Hour Storm

Single Storm

Unit Hydrograph: Clark

11/11/2006

10 IO OUTPUT CONTROL VARIABLES

IPRNT 5 PRINT CONTROL

IPLOT 0 PLOT CONTROL

QSCAL 0. HYDROGRAPH PLOT SCALE

IT HYDROGRAPH TIME DATA

NMIN 5 MINUTES IN COMPUTATION INTERVAL

IDATE 31MAY 5 STARTING DATE

ITIME 0000 STARTING TIME

NQ 1500 NUMBER OF HYDROGRAPH ORDINATES

NDDATE 5JUN 5 ENDING DATE

NDTIME 0455 ENDING TIME

ICENT 19 CENTURY MARK

C-22 December 2007

COMPUTATION INTERVAL .08 HOURS

TOTAL TIME BASE 124.92 HOURS

ENGLISH UNITS

DRAINAGE AREA SQUARE MILES

PRECIPITATION DEPTH INCHES

LENGTH, ELEVATION FEET

FLOW CUBIC FEET PER SECOND

STORAGE VOLUME ACRE-FEET

SURFACE AREA ACRES

TEMPERATURE DEGREES FAHRENHEIT

1

RUNOFF SUMMARY

FLOW IN CUBIC FEET PER SECOND

TIME IN HOURS, AREA IN SQUARE MILES

			PEAK	TIME OF	AVERAGE FL	OW FOR MAXIM	UM PERIOD	BASIN	MAXIMUM	TIME OF
	OPERATION	STATION	FLOW	PEAK				AREA	STAGE	MAX STAGE
+					6-HOUR	24-HOUR	72-HOUR			
	HYDROGRAPH AT									
+		SUB10	6725.	16.83	5390.	2061.	699.	76.58		
	ROUTED TO									
+		9UP	6701.	17.50	5371.	2058.	699.	76.58		
+									4130.89	17.50
	ROUTED TO									
+		9LOW	6687.	17.92	5344.	2058.	699.	76.58		
+									3560.73	17.92
	HYDROGRAPH AT									
+		SUB09	4877.	15.00	2881.	777.	259.	54.25		
	HYDROGRAPH AT									
+		SUB08	3651.	15.50	2370.	662.	221.	55.69		

+	3 COMBINED AT	CONC1	11695.	15.75	9397.	3496.	1178.	186.52		
+	ROUTED TO	6UP	11586.	16.33	9368.	3496.	1178.	186.52	3542.16	16.33
+	ROUTED TO	6LOW	11518.	17.00	9262.	3495.	1178.	186.52	3280.75	17.00
+	HYDROGRAPH AT	SUB07	6826.	15.00	4258.	1355.	456.	60.32		
+	HYDROGRAPH AT	SUB06	3611.	15.25	2269.	656.	219.	41.51		
+	3 COMBINED AT	CONC2	17552.	16.58	13608.	5435.	1853.	288.35		

*** NORMAL END OF HEC-1 ***

C-24 December 2007

Lower Watershed HEC-1 Model –Sub-Basins 1, 2, 4 & 5 (prefire)

* U.S. ARMY CORPS OF ENGINEERS

* HYDROLOGIC ENGINEERING CENTER

* 609 SECOND STREET

* DAVIS, CALIFORNIA 95616

* (916) 756-1104

X	Х	XXXXXXX	XX	XXX		Х
Х	Х	X	Х	Х		XX
Х	Х	X	Х			Х
XXXXX	XX	XXXX	Х		xxxxx	Х
X	Х	X	Х			Х
X	Х	X	Х	Х		Х
Х	Х	XXXXXX	XX	XXX		XXX

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE.

THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION

NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY,

DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION

KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

HEC-1 INPUT	PAGE 1

LINE	ID.	12345678910	
1	ID	Mohave County	
2	ID	BDNOAA14MID100 - Beaver Dam Hydrology NOAA 14 Mid100 w Routing Optimized	
3	ID	Basins 1, 2, 4 and 5	
4	ID	100 Year - Return Period	
5	ID	24 Hour Storm	
6	ID	Single Storm	
7	ID	Unit Hydrograph: Clark	
8	ID	04/22/07	
	*DI	AGRAM	
9	IT	5 31MAY05 0000 1500	
10	IO	5	
	*		
11	KK	SUB05BASIN	
12	KM	RUNOFF CALCULATION FOR SUBBASIN 5	
13	BA	51.47	
14	PH	575 0.60 1.14 1.90 2.07 2.15 2.46 2.88 3.46	
15	LG	0.15 0.35 4.278 0.374 0.	
16	UC	3.81 1.57	
	*		
17	KK	4UPROUTE	
18	KM	ROUTE SUBBASIN 3+5 RUNOFF THROUGH REACH BASIN 4 - UPPER	
19	RS	4 FLOW 0 0	
20	RC	0.070 0.070 0.070 9425 0.0095	
21	RX	0 90 297 300 330 333 870 910	
22	RY	2720 2700 2697 2694 2694 2697 2700 2720	
	*		
23	KK	4MIDROUTE	
24	KM	ROUTE SUBBASIN 3+5 RUNOFF THROUGH REACH BASIN 4 - MIDDLE	

C-26 December 2007

25	RS	1	FLOW	0	0								
26	RC	0.070	0.070	0.070	3665	0.0109							
27	RX	0	70	385	400	480	495	610	670				
28	RY	2620	2600	2599	2596	2596	2599	2600	2620				
	*												
29	KK	4LOWR	OUTE										
30	KM	ROUTE	SUBBASIN	3+5 RUN	OFF THRO	OUGH REACH	H BASIN 4	- LOWER	<u>!</u>				
31	RS	1	FLOW	0	0								
32	RC	0.060	0.060	0.060	4442	0.0101							
33	RX	0	590	685	700	770	795	890	950				
34	RY	2600	2580	2579	2576	2576	2579	2580	2600				
	*												
35	KK	SUB04B	ASIN										
36	KM	RUNOF	F CALCUL	ATION FO	R SUBBAS	SIN 4							
37	BA	16.50											
38	PH		575	0.57	1.07	1.78	1.93	1.98	2.27	2.60	3.09		
39	LG	0.15	0.35	4.505	0.322	1.01							
40	UC	2.38	1.18										
	*												
1					HEC-1	LINPUT						PAGE 2	
LINE	ID	1.	2.	3.	4 .	5	6	7	8	9	10		
41		SUB02B											
42	KM		F CALCUL	ATION FO	R SUBBAS	SIN 2							
43		33.34											
44	PH	0.15				1.89	2.05	2.12	2.41	2.81	3.40		
45	LG			4.394	0.343	0.							
46	UC *	3.97	2.06										
	*												
4.5	7,572	CONC 4 C	OMD TATE										
47		CONC4C		CINC 04	AND OO T	atmii poimi	2D 41 014						
48	KM	COMBI	NE SUBBA	ытир U4.	MIND OZ N	VITH ROUTE	4TOM						

```
49
             HC
                      3
50
             KK
                    1UPROUTE
 51
                  ROUTE SUBBASIN 2+4 RUNOFF THROUGH REACH BASIN 1 - UPPER
                                      0
                                              0
 52
             RS
                     19
                           FLOW
53
             RC
                  0.052
                          0.052
                                 0.052
                                          49818 0.0099
                      0
                            190
                                                  1000
                                                          1015
                                                                  1600
                                                                          2050
54
             RX
                                    285
                                            300
 55
             RY
                   2320
                           2300
                                   2299
                                           2296
                                                  2296
                                                           2299
                                                                  2300
                                                                          2320
56
             KK
                   1LOWROUTE
57
                  ROUTE SUBBASIN 2+4 RUNOFF THROUGH REACH BASIN 1 - LOWER
             KM
 58
             RS
                     13
                           FLOW
                                      0
                                              0
                  0.058
                          0.058
                                  0.058
                                         29796 0.0079
59
             RC
 60
             RX
                      0
                             90
                                    485
                                            500
                                                  1800
                                                          1815
                                                                  2220
                                                                          2400
                   2000
                           1980
                                   1979
                                          1976
                                                  1976
                                                          1979
 61
             RY
                                                                  1980
                                                                          2000
                  SUB01BASIN
 62
             KK
 63
             KM
                   RUNOFF CALCULATION FOR SUBBASIN 1
             ВА
                  76.00
 65
             PH
                           575
                                   0.55
                                          1.04
                                                  1.73
                                                          1.88
                                                                  1.93 2.22
                                                                                2.53 3.00
 66
             LG
                   0.15
                           0.35
                                   4.47 0.331
                                                  2.73
 67
             UC
                   4.80
                           2.00
 68
                  CONC5COMBINE
                   COMBINE SUBBASIN 01 WITH ROUTED 1LOW
 69
             KM
 70
             KO
                                                    21
72
             ZZ
    SCHEMATIC DIAGRAM OF STREAM NETWORK
(V) ROUTING
                  (--->) DIVERSION OR PUMP FLOW
```

C-28 December 2007

1

INPUT

LINE

NO.	(.) CONNECTOR	(<) RETURN	OF DIVERTED	OR PUMPED FL	MOr
11	SUB05				
	V				
	V				
17	4UP				
	V				
	V				
23	4MID				
	V				
	V				
29	4LOW				
35	. SUB04				
41		SUB02			
47	CONC4				
	V				
	V				
50	lup				
	V				
	V				
56	1LOW				
62	. SUB01				
68	CONC5				

(***) RUNOFF ALSO COMPUTED AT THIS LOCATION

Mohave County

BDNOAA14MID100 - Beaver Dam Hydrology NOAA 14 Mid100 w Routing Optimized

Basins 1, 2, 4 and 5

100 Year - Return Period

24 Hour Storm

Single Storm

Unit Hydrograph: Clark

04/22/07

10 IO OUTPUT CONTROL VARIABLES

IPRNT 5 PRINT CONTROL

IPLOT 0 PLOT CONTROL

QSCAL 0. HYDROGRAPH PLOT SCALE

IT HYDROGRAPH TIME DATA

NMIN 5 MINUTES IN COMPUTATION INTERVAL

IDATE 31MAY 5 STARTING DATE

ITIME 0000 STARTING TIME

NQ 1500 NUMBER OF HYDROGRAPH ORDINATES

NDDATE 5JUN 5 ENDING DATE

NDTIME 0455 ENDING TIME

ICENT 19 CENTURY MARK

C-30 December 2007

COMPUTATION INTERVAL .08 HOURS

TOTAL TIME BASE 124.92 HOURS

ENGLISH UNITS

DRAINAGE AREA SQUARE MILES

PRECIPITATION DEPTH INCHES

LENGTH, ELEVATION FEET

FLOW CUBIC FEET PER SECOND

STORAGE VOLUME ACRE-FEET

SURFACE AREA ACRES

TEMPERATURE DEGREES FAHRENHEIT

*** ***

* *

68 KK * CONC5 * COMBINE

* *

70 KO OUTPUT CONTROL VARIABLES

IPRNT 3 PRINT CONTROL

IPLOT 0 PLOT CONTROL

QSCAL 0. HYDROGRAPH PLOT SCALE

IPNCH 0 PUNCH COMPUTED HYDROGRAPH

IOUT 21 SAVE HYDROGRAPH ON THIS UNIT

ISAV1 1 FIRST ORDINATE PUNCHED OR SAVED

1500 LAST ORDINATE PUNCHED OR SAVED

TIMINT .083 TIME INTERVAL IN HOURS

71 HC HYDROGRAPH COMBINATION

ISAV2

ICOMP 2 NUMBER OF HYDROGRAPHS TO COMBINE

HYDROGRAPH AT STATION CONC5

	PEAK FLOW	TIME			MAXIMUM A	VERAGE FLOW	
				6-HR	24-HR	72-HR	124.92-HR
+	(CFS)	(HR)					
			(CFS)				
+	5639.	20.00		4056.	2047.	686.	396.
			(INCHES)	.213	.429	.432	.432
			(AC-FT)	2011.	4059.	4083.	4083.

CUMULATIVE AREA = 177.31 SQ MI

1

RUNOFF SUMMARY

FLOW IN CUBIC FEET PER SECOND

TIME IN HOURS, AREA IN SQUARE MILES

			PEAK	TIME OF	AVERAGE FI	LOW FOR MAXIM	MUM PERIOD	BASIN	MAXIMUM	TIME OF
	OPERATION	STATION	FLOW	PEAK				AREA	STAGE	MAX STAGE
+					6-HOUR	24-HOUR	72-HOUR			
	HYDROGRAPH AT									
+		SUB05	3777.	15.00	2216.	594.	198.	51.47		
	ROUTED TO									
+		4UP	3723.	15.58	2192.	594.	198.	51.47		
+									2699.69	15.58
	ROUTED TO									
+		4MID	3677.	15.83	2186.	594.	198.	51.47		

C-32 December 2007

+									2600.46	15.83
+	ROUTED TO	4LOW	3636.	16.00	2177.	594.	198.	51.47	2580.67	16.00
+	HYDROGRAPH AT	SUB04	1699.	14.00	720.	187.	62.	16.50		
+	HYDROGRAPH AT	SUB02	2254.	15.33	1429.	407.	136.	33.34		
+	3 COMBINED AT	CONC4	6266.	15.67	4178.	1188.	396.	101.31		
+	ROUTED TO	1UP	6014.	17.58	3895.	1188.	396.	101.31	2297.86	17.58
+	ROUTED TO	1LOW	4842.	20.00	3631.	1187.	396.	101.31	1977.32	20.00
+	HYDROGRAPH AT	SUB01	4083.	15.75	2837.	867.	290.	76.00		
+	2 COMBINED AT	CONC5	5639.	20.00	4056.	2047.	686.	177.31		

*** NORMAL END OF HEC-1 ***

Lower 2/3 Watershed HEC-1 Model –Sub-Basins 1 - 7 (pre-fire)

1 ****************************

* FLOOD HYDROGRAPH PACKAGE (HEC-1) *

VERSION 4.1

* RUN DATE 20JUN07 TIME 07:53:36 *

.....

* *

HYDROLOGIC ENGINEERING CENTER

* U.S. ARMY CORPS OF ENGINEERS

609 SECOND STREET

* DAVIS, CALIFORNIA 95616

* (916) 756-1104

Х	Х	XXXXXXX	XX	XXX		Х
Х	Х	X	Х	Х		XX
Х	Х	X	Х			х
XXXX	XXX	XXXX	Х		xxxxx	Х
Х	Х	X	Х			Х
Х	Х	X	Х	Х		х
x	x	xxxxxxx	xx	xxx		xxx

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE.

THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION

NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY,

DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION

KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

C-34 December 2007

HEC-1 INPUT					
LINE	ID12345678910				
1	ID Mohave County				
2	ID BDNOAA14MID100 - Beaver Dam Hydrology NOAA 14 Mid100 w Routing Optimized				
3	ID Basins 1-7				
4	ID 100 Year - Return Period				
5	ID 24 Hour Storm				
6	ID Single Storm				
7	ID Unit Hydrograph: Clark				
8	ID 11/11/2006				
	*DIAGRAM				
9	IT 5 31MAY05 0000 1500				
10	10 5				
	*				
11	KK SUB07BASIN				
12	KM RUNOFF CALCULATION FOR SUBBASIN 7				
13	BA 60.32				
14	PH 575 0.59 1.11 1.85 2.01 2.07 2.39 2.74 3.24				
15	LG 0.15 0.35 4.849 0.284 14.71				
16	UC 3.89 1.48				
	*				
17	KK SUB06BASIN				
18	KM RUNOFF CALCULATION FOR SUBBASIN 6				
19	BA 41.51				
20	PH 575 0.59 1.11 1.85 2.01 2.07 2.38 2.74 3.26				
21	LG 0.15 0.38 5.475 0.229 2.55				
22	UC 3.99 1.83				
	*				
23	KK CONC2COMBINE				

COMBINE SUBBASINS 07 AND 06

24

```
25
               HC
                         2
  26
               KK
                       5UPROUTE
  27
                    ROUTE SUBBASIN 6+7 RUNOFF THROUGH REACH BASIN 5 - UPPER
                                          0
  28
               RS
                              FLOW
  29
               RC
                     0.055
                             0.055
                                     0.055
                                              18610 0.0111
  30
                                                700
                                                        810
                                                                 825
                                                                         940
                                                                                1190
               RX
                         0
                               180
                                       685
  31
               RY
                      3020
                              3000
                                       2999
                                               2996
                                                       2996
                                                                2999
                                                                        3000
                                                                                 3020
  32
               KK
                     5MIDROUTE
  33
                    ROUTE SUBBASIN 6+7 RUNOFF THROUGH REACH BASIN 5 - MIDDLE
               KM
  34
               RS
                              FLOW
                                          0
                                                  0
                    0.055
                             0.055
                                     0.055
                                               8769 0.0116
  35
               RC
  36
               RX
                         0
                               260
                                       585
                                                600
                                                        660
                                                                 675
                                                                         900
                                                                                 950
  37
                      2880
                                                                                 2880
               RY
                              2860
                                       2859
                                               2856
                                                       2856
                                                                2859
                                                                        2860
                                               HEC-1 INPUT
                                                                                                          PAGE 2
LINE
               {\tt ID},\ldots,1,\ldots,2,\ldots,3,\ldots,4,\ldots,5,\ldots,6,\ldots,7,\ldots,8,\ldots,9,\ldots,10
  38
               KK
                     5LOWROUTE
                    ROUTE SUBBASIN 6+7 RUNOFF THROUGH REACH BASIN 5 - LOWER
  39
               KM
                                         0
  40
               RS
                              FLOW
                     0.045
                             0.045
                                     0.045
                                               8049 0.0102
  42
               RX
                         0
                               340
                                       697
                                                700
                                                        730
                                                                 735
                                                                        1190
                                                                                 1220
                      2820
                                               2794
                                                       2794
  43
               RY
                              2800
                                       2797
                                                                2797
                                                                        2800
                                                                                 2820
  44
                    SUB05BASIN
                     RUNOFF CALCULATION FOR SUBBASIN 5
  45
               KM
  46
               BA
                    51.47
  47
               PH
                               575
                                      0.60
                                                       1.90
                                                                2.07
                                                                        2.15
                                                                                                 3.46
                                               1.14
  48
                      0.15
                              0.35
                                     4.278
                                              0.374
                                                         0.
```

1

C-36 December 2007

```
49
           UC
                3.81
                      1.57
50
               SUB03BASIN
51
                RUNOFF CALCULATION FOR SUBBASIN 3
               111.2
52
           BA
                        575
                                            1.91
                                                   2.08 2.15 2.46 2.87 3.45
53
           PH
                               0.61 1.15
54
           LG
                0.15 0.375 6.495 0.168
                                               0.
55
           UC
                6.97
                      3.13
56
           KK
               CONC3COMBINE
57
                COMBINE SUBBASINS 05 AND 03 WITH ROUTED 5LOW
           KM
           HC
                 4UPROUTE
59
           KK
               ROUTE SUBBASIN 3+5 RUNOFF THROUGH REACH BASIN 4 - UPPER
61
           RS
                        FLOW
                                0
                                       0
                     0.070 0.070
                                      9425 0.0095
62
           RC
               0.070
                                                            870
                                                                   910
63
           RX
                  0
                         90
                               297
                                       300 330
                                                   333
                2720
                        2700
                                      2694 2694
                                                            2700
64
           RY
                               2697
                                                    2697
                                                                   2720
65
           KK
                4MIDROUTE
               ROUTE SUBBASIN 3+5 RUNOFF THROUGH REACH BASIN 4 - MIDDLE
           KM
66
           RS
                       FLOW
68
           RC
                0.070
                      0.070 0.070
                                      3665 0.0109
                 0
                        70
                               385
                                       400
                                            480
                                                     495
                                                          610
                                                                   670
69
           RX
70
           RY
                2620
                        2600
                               2599
                                      2596
                                             2596
                                                    2599
                                                            2600
                                                                   2620
71
                4LOWROUTE
           KK
               ROUTE SUBBASIN 3+5 RUNOFF THROUGH REACH BASIN 4 - LOWER
72
           KM
73
                  1
                      FLOW
                                0
           RS
               0.060 0.060 0.060 4442 0.0101
```

```
75
                                                                         950
              RX
                      0
                            590
                                    685
                                           700
                                                  770
                                                          795
                                                                  890
  76
                   2600
              RY
                           2580
                                   2579
                                          2576
                                                  2576
                                                         2579
                                                                 2580
                                                                         2600
                                          HEC-1 INPUT
                                                                                               PAGE 3
              ID.....1....2....3....4.....5.....6.....7....8.....9.....10
LINE
  77
                  SUB04BASIN
  78
                   RUNOFF CALCULATION FOR SUBBASIN 4
              KM
                  16.50
  79
              BA
  80
              PH
                            575
                                  0.57
                                          1.07
                                                  1.78
                                                         1.93
                                                                 1.98
                                                                      2.27
                                                                                2.60
                                                                                      3.09
                   0.15
                           0.35 4.505 0.322
                                                  1.01
  81
              LG
  82
              UC
                   2.38
                           1.18
  83
                  SUB02BASIN
              KK
                   RUNOFF CALCULATION FOR SUBBASIN 2
  85
              BA
                  33.34
                            575
                                                         2.05
                                                               2.12 2.41 2.81 3.40
  86
              PH
                                  0.60
                                         1.13
                                                  1.89
  87
              LG
                   0.15
                           0.35
                                 4.394
                                        0.343
                                                   0.
              UC
                   3.97
                           2.06
  89
              KK
                  CONC4COMBINE
                   COMBINE SUBBASINS 04 AND 02 WITH ROUTED 4LOW
  90
              KM
              HC
                    1UPROUTE
  92
              KK
  93
                  ROUTE SUBBASIN 2+4 RUNOFF THROUGH REACH BASIN 1 - UPPER
  94
              RS
                     19
                           FLOW
                                     0
                                             0
                  0.052
                          0.052 0.052
                                         49818 0.0099
  95
              RC
                                                 1000
  96
              RX
                      0
                            190
                                    285
                                           300
                                                         1015
                                                                 1600
                                                                         2050
              RY
                   2320
                           2300
                                   2299
                                          2296
                                                  2296
                                                         2299
                                                                 2300
                                                                         2320
```

C-38 December 2007

```
KK
                             ROUTE SUBBASIN 2+4 RUNOFF THROUGH REACH BASIN 1 - LOWER
           99
                        KM
          100
                                13
                                      FLOW
                        RS
                                                     29796 0.0079
          101
                        RC
                             0.058
                                     0.058
                                            0.058
          102
                                        90
                                               485
                                                      500
                                                             1800
                                                                     1815
                                                                             2220
                                                                                     2400
                        RX
                                 0
          103
                              2000
                                             1979
                                                     1976
                                                             1976
                                                                                     2000
                        RY
                                      1980
                                                                     1979
                                                                             1980
          104
                             SUB01BASIN
                        KK
                              RUNOFF CALCULATION FOR SUBBASIN 1
          105
                        KM
                             76.00
          106
                        BA
          107
                        PH
                                       575
                                             0.55
                                                     1.04
                                                             1.73
                                                                     1.88
                                                                             1.93
                                                                                    2.22
                                                                                             2.53
                                                                                                   3.00
          108
                              0.15
                                      0.35
                                              4.47
                                                     0.331
                                                              2.73
                              4.80
                                      2.00
          109
                        UC
          110
                        KK
                             CONC5COMBINE
                              COMBINE SUBBASIN 01 WITH ROUTED 1LOW
          111
                        KM
          112
                        KO
                                                               2.1
                        HC
                                 2
          113
          114
                        ZZ
               SCHEMATIC DIAGRAM OF STREAM NETWORK
INPUT
          (V) ROUTING
                               (--->) DIVERSION OR PUMP FLOW
LINE
 NO.
          (.) CONNECTOR
                               (<---) RETURN OF DIVERTED OR PUMPED FLOW
           SUB07
  11
  17
                       SUB06
  23
           CONC2.....
```

98

1

1LOWROUTE

	V		
	V		
26	5UP		
	V		
	V		
32	5MID		
	V		
	V		
38	5LOW		
44		SUB05	
50			SUB03
56	CONC3.		
	V		
	V		
59	4UP		
	V		
	V		
65	4MID		
	V		
	V		
71	4LOW		
77		SUB04	
83			SUB02
89	CONC4.		

C-40 December 2007

V V 92 1UP 98 1LOW 104 SUB01 CONC5..... 110 (***) RUNOFF ALSO COMPUTED AT THIS LOCATION FLOOD HYDROGRAPH PACKAGE (HEC-1) * U.S. ARMY CORPS OF ENGINEERS JUN 1998 HYDROLOGIC ENGINEERING CENTER VERSION 4.1 609 SECOND STREET DAVIS, CALIFORNIA 95616 * RUN DATE 20JUN07 TIME 07:53:36 * (916) 756-1104 ********** *********

```
Mohave County

BDNOAA14MID100 - Beaver Dam Hydrology NOAA 14 Mid100 w Routing Optimized

Basins 1-7

100 Year - Return Period

24 Hour Storm

Single Storm

Unit Hydrograph: Clark

11/11/2006
```

10 IO OUTPUT CONTROL VARIABLES

IPRNT 5 PRINT CONTROL

IPLOT 0 PLOT CONTROL

QSCAL 0. HYDROGRAPH PLOT SCALE

IT HYDROGRAPH TIME DATA

NMIN 5 MINUTES IN COMPUTATION INTERVAL

IDATE 31MAY 5 STARTING DATE

ITIME 0000 STARTING TIME

NQ 1500 NUMBER OF HYDROGRAPH ORDINATES

NDDATE 5JUN 5 ENDING DATE

NDTIME 0455 ENDING TIME

ICENT 19 CENTURY MARK

COMPUTATION INTERVAL .08 HOURS

TOTAL TIME BASE 124.92 HOURS

ENGLISH UNITS

DRAINAGE AREA SQUARE MILES

PRECIPITATION DEPTH INCHES

LENGTH, ELEVATION FEET

FLOW CUBIC FEET PER SECOND

STORAGE VOLUME ACRE-FEET

SURFACE AREA ACRES

TEMPERATURE DEGREES FAHRENHEIT

*** ***

* *

110 KK * CONC5 * COMBINE

* *

C-42 December 2007

112 KO OUTPUT CONTROL VARIABLES

IPRNT 3 PRINT CONTROL

IPLOT 0 PLOT CONTROL

QSCAL 0. HYDROGRAPH PLOT SCALE

IPNCH 0 PUNCH COMPUTED HYDROGRAPH

IOUT 21 SAVE HYDROGRAPH ON THIS UNIT

ISAV1 1 FIRST ORDINATE PUNCHED OR SAVED

ISAV2 1500 LAST ORDINATE PUNCHED OR SAVED

TIMINT .083 TIME INTERVAL IN HOURS

113 HC HYDROGRAPH COMBINATION

ICOMP 2 NUMBER OF HYDROGRAPHS TO COMBINE

HYDROGRAPH AT STATION CONC5

PEAK FLOW TIME MAXIMUM AVERAGE FLOW

6-HR 24-HR 72-HR 124.92-HR

(CFS) (HR)

1

(CFS)

20792. 19.42 15064. 6031. 2044. 1178.

(INCHES) .359 .575 .584 .584

(AC-FT) 7470. 11962. 12161. 12161.

CUMULATIVE AREA = 390.34 SQ MI

RUNOFF SUMMARY

FLOW IN CUBIC FEET PER SECOND

TIME IN HOURS, AREA IN SQUARE MILES

			PEAK	TIME OF	AVERAGE FL	OW FOR MAXIM	IUM PERIOD	BASIN	MAXIMUM	TIME OF
+	OPERATION	STATION	FLOW	PEAK	6-HOUR	24-HOUR	72-HOUR	AREA	STAGE	MAX STAGE
+	HYDROGRAPH AT	SUB07	6826.	15.00	4258.	1355.	456.	60.32		
+	HYDROGRAPH AT	SUB06	3611.	15.25	2269.	656.	219.	41.51		
+	2 COMBINED AT	CONC2	10420.	15.08	6521.	2011.	675.	101.83		
+	ROUTED TO	5UP	10330.	15.67	6474.	2010.	675.	101.83	3001.24	15.67
+	ROUTED TO	5MID	10238.	16.00	6436.	2009.	675.	101.83	2861.68	16.00
+	ROUTED TO	5LOW	10168.	16.33	6413.	2009.	675.	101.83	2800.26	16.25
+	HYDROGRAPH AT	SUB05	3777.	15.00	2216.	594.	198.	51.47		
+	HYDROGRAPH AT	SUB03	6881.	17.58	5672.	2048.	683.	111.20		
+	3 COMBINED AT	CONC3	18929.	16.17	13838.	4642.	1555.	264.50		
	ROUTED TO									

C-44 December 2007

+		4UP	18871.	16.50	13792.	4642.	1555.	264.50	2702.61	16.50
	ROUTED TO									
+	KOUTED TO	4MID	18845.	16.58	13776.	4642.	1555.	264.50		
+									2603.97	16.58
+	ROUTED TO	4LOW	18805.	16.67	13758.	4641.	1555.	264.50		
+									2584.95	16.67
+	HYDROGRAPH AT	SUB04	1699.	14.00	720.	187.	62.	16.50		
	HYDROGRAPH AT									
+		SUB02	2254.	15.33	1429.	407.	136.	33.34		
	3 COMBINED AT									
+		CONC4	20574.	16.58	15124.	5234.	1753.	314.34		
+	ROUTED TO	1UP	20081.	18.25	14950.	5231.	1753.	314.34		
+									2299.88	18.25
+	ROUTED TO	1LOW	19763.	19.50	14445.	5229.	1753.	314.34		
+									1979.05	19.50
+	HYDROGRAPH AT	SUB01	4083	15.75	2837.	867.	290.	76.00		
	2 COMPTANTS AT	20201	1005.	13.73	2337.	337.	250.	, 3 , 3 0		
+	2 COMBINED AT	CONC5	20792.	19.42	15064.	6031.	2044.	390.34		

*** NORMAL END OF HEC-1 ***

C-46 December 2007

Appendix D HEC-RAS Hydraulic Modeling Results

HEC-RAS Version 3.1.3 May 2005

U.S. Army Corp of Engineers

Hydrologic Engineering Center

609 Second Street

Davis, California

Х	Х	XXXXXX	XX	XX		XX	XX	Х	X	XXXX
Х	Х	Х	Х	Х		Х	Х	Х	Х	X
Х	Х	Х	Х			Х	Х	Х	Х	X
XXX	XXXXX	XXXX	Х		XXX	XX	XX	XXX	XXX	XXXX
Х	Х	Х	Х			Х	Х	Х	Х	Х
Х	Х	Х	Х	Х		Х	Х	Х	Х	Х
Х	Х	XXXXXX	XX	XX		Х	Х	Х	Х	XXXXX

PROJECT DATA

Project Title: Beaver Dam Wash Bridge

Project File : BEAVER_RMS_NEW_CS.prj

Run Date and Time: 1/28/2007 11:23:21 AM

Project in English units

Project Description:

Beaver Dam Wash bridge hydraulic study.

PLAN DATA

Plan Title: Plan 32

Plan File : d:\P\Mohave County\Beaver Dam Wash\Models\HEC-RAS\BEAVER_RMS_NEW_CS.p32

Geometry Title: 400 Bridge W Chl Exc

Geometry File : d:\P\Mohave County\Beaver Dam Wash\Models\HEC-

RAS\BEAVER_RMS_NEW_CS.g02

Flow Title : 100-year flow

Flow File : d:\P\Mohave County\Beaver Dam Wash\Models\HEC-

RAS\BEAVER_RMS_NEW_CS.F01

Plan Summary Information:

Number of: Cross Sections = 26 Multiple Openings = 0

Culverts = 0 Inline Structures = 0

Bridges = 1 Lateral Structures = 0

Computational Information

Water surface calculation tolerance = 0.01

Critical depth calculation tolerance = 0.01

Maximum number of iterations = 20

Maximum difference tolerance = 0.3

Flow tolerance factor = 0.001

Computation Options

Critical depth computed only where necessary

Conveyance Calculation Method: At breaks in n values only

Friction Slope Method: Average Conveyance

Computational Flow Regime: Subcritical Flow

D-2 December 2007

FLOW DATA

Flow Title: 100-year flow

Flow File : d:\P\Mohave County\Beaver Dam Wash\Models\HEC-RAS\BEAVER_RMS_NEW_CS.F01

Flow Data (cfs)

River Reach RS 100 yr 25 yr

Reach #1 Beaver Dam Wash 25 21000 11990

Boundary Conditions

River Reach Profile Upstream

Downstream

Reach #1 Beaver Dam Wash 100 yr Normal S = 0.01 Normal S =

0.01

GEOMETRY DATA

Geometry Title: 400 Bridge W Chl Exc

 $\label{thm:control} \textit{Geometry File} : d:\P\Mohave \ \textit{County}\Beaver \ \textit{Dam Wash}\Models\HEC-RAS\BEAVER_RMS_NEW_CS.g02$

CROSS SECTION

RIVER: Reach #1

REACH: Beaver Dam Wash RS: 25

INPUT

Description:

 Station Elevation Data
 num=
 28

 Sta
 Elev
 Sta
 Elev

Manning's n Values num= 3

Sta n Val Sta n Val Sta n Val Sta n Val
3526.439 .073966.769 .034575.291 .05

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.

3966.7694575.291 481.74 506.65 552.44 .1 .3

CROSS SECTION OUTPUT Profile #100 yr

E.G. Elev (ft)	1876.86	Element	Left OB	Channel	Right OB
Vel Head (ft)	1.36	Wt. n-Val.		0.030	
W.S. Elev (ft)	1875.49	Reach Len. (ft)	481.74	506.65	552.44
Crit W.S. (ft)	1875.01	Flow Area (sq ft)		2241.36	
E.G. Slope (ft/ft)	0.005710	Area (sq ft)		2241.36	
Q Total (cfs)	21000.00	Flow (cfs)		21000.00	
Top Width (ft)	563.77	Top Width (ft)		563.77	
Vel Total (ft/s)	9.37	Avg. Vel. (ft/s)		9.37	
Max Chl Dpth (ft)	5.60	Hydr. Depth (ft)		3.98	
Conv. Total (cfs)	277916.0	Conv. (cfs)		277916.0	
Length Wtd. (ft)	506.65	Wetted Per. (ft)		565.87	
Min Ch El (ft)	1869.89	Shear (lb/sq ft)		1.41	
Alpha	1.00	Stream Power (lb/ft s)		13.23	

D-4 December 2007

Frctn Loss (ft)	3.60	Cum Volume (acre-ft)	30.32	393.98	37.37
C & E Loss (ft)	0.02	Cum SA (acres)	16.72	90.75	22.87

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION OUTPUT Profile #25 yr

E.G. Elev (ft)	1875.24	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.85	Wt. n-Val.		0.030	
W.S. Elev (ft)	1874.38	Reach Len. (ft)	481.74	506.65	552.44
Crit W.S. (ft)	1873.90	Flow Area (sq ft)		1620.20	
E.G. Slope (ft/ft)	0.005398	Area (sq ft)		1620.20	
Q Total (cfs)	11990.00	Flow (cfs)		11990.00	
Top Width (ft)	556.93	Top Width (ft)		556.93	
Vel Total (ft/s)	7.40	Avg. Vel. (ft/s)		7.40	
Max Chl Dpth (ft)	4.49	Hydr. Depth (ft)		2.91	
Conv. Total (cfs)	163200.9	Conv. (cfs)		163200.9	
Length Wtd. (ft)	506.65	Wetted Per. (ft)		558.66	
Min Ch El (ft)	1869.89	Shear (lb/sq ft)		0.98	
Alpha	1.00	Stream Power (lb/ft s)		7.23	
Frctn Loss (ft)	3.42	Cum Volume (acre-ft)	9.97	272.83	12.26
C & E Loss (ft)	0.01	Cum SA (acres)	8.47	88.08	13.76

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Reach #1

REACH: Beaver Dam Wash RS: 24

INPUT

Description:

Station I	Elevation	Data	num=	94					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
0	1908	7.18	1906	15.48	1904	24.13	1902	33.37	1900
43.88	1898	46.27	1896	48.45	1894	51.26	1892	54.54	1890
67.49	1890	96.01	1890	183.89	1888	186.74	1886	189.54	1884
192.78	1882	201.4	1879.59	203.22	1880	493.14	1880	503.49	1880
622.96	1878.03	627.6	1878	641.69	1876	645.59	1874	657.9	1872
669.31	1870	706	1870	718.27	1870	722.23	1868	847.16	1868
890.02	1868	893.25	1868	926.69	1868	1003.9	1868	1024.94	1868
1050.1	1868	1053.37	1870	1074.5	1870	1256.28	1868	1265.44	1868
1348.69	1870	1349.92	1872	1353.44	1880	1363.04	1880.44	1499.17	1880.64
1637.4	1880	1641.8	1880	1663.86	1880	1789.74	1880	1813.02	1879.78
1827.06	1880	1834.72	1880.15	2041.02	1884	2047.24	1884.58	2065.9	1885.02
2070.5	1886	2073.79	1888	2076.94	1890	2096.88	1892	2137.73	1894
2181.15	1896	2185.3	1898	2186.83	1900	2188.68	1902	2198.04	1904
2202.73	1906	2203.42	1908	2209.34	1910	2216.5	1912.87	2232.27	1913.01
2257	1913.76	2261.18	1914	2266.13	1916	2269.6	1918	2273.02	1920
2275.73	1922	2277.3	1924	2278.19	1926	2279.11	1928	2279.97	1930
2280.68	1932	2281.17	1934	2283.68	1936	2286.31	1938	2289.29	1940
2292.46	1942	2295.54	1944	2298.69	1946	2301.81	1948	2304.96	1950
2308.06	1952	2311.21	1954	2314.21	1956	2317.37	1958		

Manning's n Values num= 3

Sta n Val Sta n Val Sta n Val

0 .07 627.6 .03 1353.44 .05

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.
627.6 1353.44 431.03 464.84 465.88 .1 .3

D-6 December 2007

CROSS SECTION OUTPUT Profile #100 yr

E.G. Elev (ft)	1873.24	Element	Left OB	Channel	Right OB
Vel Head (ft)	1.53	Wt. n-Val.		0.030	
W.S. Elev (ft)	1871.70	Reach Len. (ft)	431.03	464.84	465.88
Crit W.S. (ft)	1871.70	Flow Area (sq ft)		2113.48	
E.G. Slope (ft/ft)	0.009088	Area (sq ft)		2113.48	
Q Total (cfs)	21000.00	Flow (cfs)		21000.00	
Top Width (ft)	690.15	Top Width (ft)		690.15	
Vel Total (ft/s)	9.94	Avg. Vel. (ft/s)		9.94	
Max Chl Dpth (ft)	3.70	Hydr. Depth (ft)		3.06	
Conv. Total (cfs)	220291.0	Conv. (cfs)		220291.0	
Length Wtd. (ft)	464.84	Wetted Per. (ft)		692.33	
Min Ch El (ft)	1868.00	Shear (lb/sq ft)		1.73	
Alpha	1.00	Stream Power (lb/ft s)		17.21	
Frctn Loss (ft)	3.05	Cum Volume (acre-ft)	30.32	368.66	37.37
C & E Loss (ft)	0.12	Cum SA (acres)	16.72	83.46	22.87

Warning: The energy equation could not be balanced within the specified number of iterations. The

 $\hspace{1cm} \hbox{program selected the water surface that had the least amount of error between computed} \\$

assumed values.

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical

depth, the calculated water surface came back below critical depth. This indicates that there

is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION OUTPUT Profile #25 yr

E.G. Elev (ft)	1871.81	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.96	Wt. n-Val.		0.030	
W.S. Elev (ft)	1870.85	Reach Len. (ft)	431.03	464.84	465.88
Crit W.S. (ft)	1870.73	Flow Area (sq ft)		1526.90	
E.G. Slope (ft/ft)	0.008655	Area (sq ft)		1526.90	
Q Total (cfs)	11990.00	Flow (cfs)		11990.00	
Top Width (ft)	684.76	Top Width (ft)		684.76	
Vel Total (ft/s)	7.85	Avg. Vel. (ft/s)		7.85	
Max Chl Dpth (ft)	2.85	Hydr. Depth (ft)		2.23	
Conv. Total (cfs)	128877.7	Conv. (cfs)		128877.7	
Length Wtd. (ft)	464.84	Wetted Per. (ft)		686.38	
Min Ch El (ft)	1868.00	Shear (lb/sq ft)		1.20	
Alpha	1.00	Stream Power (lb/ft s)		9.44	
Frctn Loss (ft)	3.96	Cum Volume (acre-ft)	9.97	254.53	12.26
C & E Loss (ft)	0.00	Cum SA (acres)	8.47	80.86	13.76

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Reach #1

REACH: Beaver Dam Wash RS: 23

INPUT

Description:

Station El	evation	Data	num=	80					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
0	1894	2.42	1894	17.23	1893.91	78.42	1892	81.58	1890
84.73	1888	87.9	1886	91.03	1884	95.67	1882	105.02	1880
111.37	1878	113.57	1877.26	575.08	1876	591.68	1874	609	1872

D-8 December 2007

631.02	1870	639.59	1869.52	761.39	1868	773.9	1866	789.88	1864
901.22	1864	937.75	1864	996.41	1864	1034.55	1864	1038.86	1864
1071.35	1864	1100.5	1864	1120.03	1864	1122.04	1864	1402.73	1866
1404.4	1868	1405.82	1870	1407.53	1872	1409.27	1874	1410.84	1876
1581.86	1877.39	1602.52	1877.29	1669.05	1876.76	1680.92	1877.13	1981.86	1878
1989.84	1880	1992.29	1880.7	2015.44	1881.92	2022.37	1884	2028.54	1886
2033.92	1887.87	2037.75	1888	2044.1	1888.79	2046.32	1890	2050.86	1892
2055.08	1894	2059.12	1896	2059.98	1896	2081.79	1896	2085.55	1898
2089.09	1900	2092.41	1902	2095.85	1904	2098.81	1906	2101.42	1908
2104.19	1910	2107.25	1912	2110.31	1914	2113.79	1916	2117.41	1918
2121.08	1920	2124.18	1922	2127.41	1924	2130.59	1926	2133.94	1928
2137.26	1930	2140.67	1932	2144.03	1934	2147.35	1936	2150.73	1938
2154.09	1940	2157.47	1942	2160.67	1944	2163.86	1946	2167.39	1948

Manning's n Values num= 3

Sta n Val Sta n Val Sta n Val
0 .07 761.39 .03 1410.84 .05

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.

761.39 1410.84 393.03 393.38 464.14 .1 .3

CROSS SECTION OUTPUT Profile #100 yr

E.G. Elev (ft)	1869.49	Element	Left OB	Channel	Right OB
Vel Head (ft)	1.13	Wt. n-Val.	0.070	0.030	
W.S. Elev (ft)	1868.36	Reach Len. (ft)	393.03	393.38	464.14
Crit W.S. (ft)		Flow Area (sq ft)	5.09	2462.07	
E.G. Slope (ft/ft)	0.004966	Area (sq ft)	5.09	2462.07	
Q Total (cfs)	21000.00	Flow (cfs)	2.41	20997.59	
Top Width (ft)	671.83	Top Width (ft)	28.56	643.26	
Vel Total (ft/s)	8.51	Avg. Vel. (ft/s)	0.47	8.53	
Max Chl Dpth (ft)	4.36	Hydr. Depth (ft)	0.18	3.83	
Conv. Total (cfs)	297988.1	Conv. (cfs)	34.2	297953.8	

Beaver Dam Wash Flood Hazard Assessment Report

Length Wtd. (ft)	393.38	Wetted Per. (ft)	28.56	644.67	
Min Ch El (ft)	1864.00	Shear (lb/sq ft)	0.06	1.18	
Alpha	1.00	Stream Power (lb/ft s)	0.03	10.10	
Frctn Loss (ft)	1.43	Cum Volume (acre-ft)	30.29	344.24	37.37
C & E Loss (ft)	0.01	Cum SA (acres)	16.58	76.35	22.87

Warning: The energy loss was greater than $1.0 \, \text{ft} \, (0.3 \, \text{m})$. between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION OUTPUT Profile #25 yr

E.G. Elev (ft)	1867.84	Element	Left OB	Channel	Right OB
Vel Head (ft)	1.00	Wt. n-Val.		0.030	
W.S. Elev (ft)	1866.84	Reach Len. (ft)	393.03	393.38	464.14
Crit W.S. (ft)	1866.71	Flow Area (sq ft)		1494.32	
E.G. Slope (ft/ft)	0.008391	Area (sq ft)		1494.32	
Q Total (cfs)	11990.00	Flow (cfs)		11990.00	
Top Width (ft)	634.81	Top Width (ft)		634.81	
Vel Total (ft/s)	8.02	Avg. Vel. (ft/s)		8.02	
Max Chl Dpth (ft)	2.84	Hydr. Depth (ft)		2.35	
Conv. Total (cfs)	130891.6	Conv. (cfs)		130891.6	
Length Wtd. (ft)	393.38	Wetted Per. (ft)		635.41	
Min Ch El (ft)	1864.00	Shear (lb/sq ft)		1.23	
Alpha	1.00	Stream Power (lb/ft s)		9.88	
Frctn Loss (ft)	1.83	Cum Volume (acre-ft)	9.97	238.41	12.26
C & E Loss (ft)	0.08	Cum SA (acres)	8.47	73.82	13.76

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate the need for additional cross sections.

D-10 December 2007

CROSS SECTION

RIVER: Reach #1

REACH: Beaver Dam Wash RS: 22

INPUT

Description:

Station 1	Elevation	Data	num=	83					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
0	1900	9.94	1898	13.19	1896	16.33	1894	19.58	1892
22.66	1890	25.88	1888	29.5	1886	34.53	1884	39.41	1882
41.17	1880	43.2	1878	49.45	1876	69.47	1874.18	554.92	1874
587.36	1872	605.51	1870	629.3	1868	634.24	1866.77	658.22	1868
725.18	1868	731.16	1866	737.29	1864	744.49	1862	862.43	1860
887.4	1860	968.95	1860	989.67	1860	1060.81	1862	1085.23	1862
1110.08	1862	1164.2	1864	1166.63	1866	1169.43	1868	1172.93	1870
1174.65	1872	1237.08	1872	1253.37	1871.77	1260.86	1871.85	1267.21	1872
1457.13	1874	1585.26	1875.21	1609.1	1875.45	1629.52	1875.67	1637.24	1875.46
1735.38	1884.62	1750.14	1884.49	1775.16	1876	1776.04	1875.98	1795.28	1878
1801.7	1878.73	1805.04	1880	1811.05	1884	1813.99	1886	1817.11	1888
1820.5	1890	1848.83	1891.65	1866.17	1891.56	1877.63	1892	1889.09	1894
1892.39	1896	1895.69	1898	1899.19	1900	1902.86	1902	1906.62	1904
1910.54	1906	1914.41	1908	1915.65	1910	1916.95	1912	1918.63	1914
1923.84	1916	1929.01	1918	1933.67	1920	1936.96	1922	1941.19	1924
1944.17	1926	1947.26	1928	1950.12	1930	1953.03	1932	1956.09	1934
1959.12	1936	1961.63	1938	1964.04	1940				

Manning's n Values num= 3

Sta n Val Sta n Val Sta n Val
0 .07 725.18 .03 1174.65 .05

Bank Sta: Left	Right	Lengths:	Left	Channel	Right	Coeff	Contr.	Expan
725.18	1174.65	3	88.99	396.75	377.61		.1	. 3

CROSS SECTION OUTPUT Profile #100 yr

E.G. Elev (ft)	1868.04	Element	Left OB	Channel	Right OB
Vel Head (ft)	1.08	Wt. n-Val.	0.070	0.030	
W.S. Elev (ft)	1866.96	Reach Len. (ft)	388.99	396.75	377.61
Crit W.S. (ft)		Flow Area (sq ft)	0.40	2516.51	
E.G. Slope (ft/ft)	0.002788	Area (sq ft)	0.40	2516.51	
Q Total (cfs)	21000.00	Flow (cfs)	0.09	20999.91	
Top Width (ft)	444.02	Top Width (ft)	4.36	439.66	
Vel Total (ft/s)	8.34	Avg. Vel. (ft/s)	0.23	8.34	
Max Chl Dpth (ft)	6.96	Hydr. Depth (ft)	0.09	5.72	
Conv. Total (cfs)	397718.9	Conv. (cfs)	1.8	397717.2	
Length Wtd. (ft)	396.75	Wetted Per. (ft)	4.39	441.52	
Min Ch El (ft)	1860.00	Shear (lb/sq ft)	0.02	0.99	
Alpha	1.00	Stream Power (lb/ft s)	0.00	8.28	
Frctn Loss (ft)	1.73	Cum Volume (acre-ft)	30.27	321.76	37.37
C & E Loss (ft)	0.12	Cum SA (acres)	16.43	71.46	22.87

Warning: Divided flow computed for this cross-section.

Warning: The velocity head has changed by more than $0.5\ \mathrm{ft}\ (0.15\ \mathrm{m})$. This may indicate the need for

additional cross sections.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION OUTPUT Profile #25 yr

D-12 December 2007

E.G. Elev (ft)	1865.93	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.73	Wt. n-Val.		0.030	
W.S. Elev (ft)	1865.21	Reach Len. (ft)	388.99	396.75	377.61
Crit W.S. (ft)		Flow Area (sq ft)		1753.58	
E.G. Slope (ft/ft)	0.002952	Area (sq ft)		1753.58	
Q Total (cfs)	11990.00	Flow (cfs)		11990.00	
Top Width (ft)	432.07	Top Width (ft)		432.07	
Vel Total (ft/s)	6.84	Avg. Vel. (ft/s)		6.84	
Max Chl Dpth (ft)	5.20	Hydr. Depth (ft)		4.06	
Conv. Total (cfs)	220660.9	Conv. (cfs)		220660.9	
Length Wtd. (ft)	396.75	Wetted Per. (ft)		433.05	
Min Ch El (ft)	1860.00	Shear (lb/sq ft)		0.75	
Alpha	1.00	Stream Power (lb/ft s)		5.10	
Frctn Loss (ft)	1.84	Cum Volume (acre-ft)	9.97	223.74	12.26
C & E Loss (ft)	0.08	Cum SA (acres)	8.47	69.01	13.76

Warning: The velocity head has changed by more than $0.5\ \mathrm{ft}\ (0.15\ \mathrm{m})$. This may indicate the need for

additional cross sections.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Reach #1

REACH: Beaver Dam Wash RS: 21

INPUT

Description:

Station H	Elevation	n Data	num=	80						
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	
0	1896	8.6	1894	12.22	1892	15.79	1890	24.67	1888	
30.6	1886	36.19	1884	40.96	1882	45.89	1880	50.48	1878	
54.72	1876	65.06	1874	73.83	1872.12	83.55	1872	334.26	1872	
689.28	1872	708.78	1870	727.34	1868	743.79	1866	751.31	1865.16	
786.93	1864	795.74	1862	801.41	1860	866.85	1858	1036.77	1858	
1040.25	1860	1062.79	1860	1066.21	1860	1155.82	1862	1162.52	1864	
1169.44	1866	1194.51	1868	1259.58	1870	1284.2	1872	1311.39	1872	
1315.4	1871.9	1321.84	1871.91	1326.24	1872	1378.94	1872.07	1390.22	1872.18	
1618.97	1874	1625.87	1874.9	1651.4	1875.27	1668.85	1876	1679.49	1882.07	
1711.43	1882.22	1721.19	1885.02	1746.23	1883.92	1749.85	1884	1761.94	1886	
1764.18	1888	1766.36	1890	1773.74	1890	1775.78	1890	1782.56	1892	
1784.87	1894	1787.25	1896	1789.42	1898	1799.44	1900	1802.04	1902	
1804.48	1904	1807.01	1906	1809.36	1908	1812.09	1910	1815.94	1912	
1819.15	1914	1822.56	1916	1826.08	1918	1829.66	1920	1833.17	1922	
1836.71	1924	1840.25	1926	1843.8	1928	1847.38	1930	1850.67	1932	
1853.94	1934	1857.51	1936	1861	1938	1864.34	1940	1867.62	1942	
Manning's	s n Value	es	num=	3						
Sta	n Val	Sta	n Val	Sta	n Val					
0	.07	786.93	.03	1169.44	.05					
Bank Sta	Left	Right	Lengths	s: Left (Channel	Right	Coefi	f Contr.	Expan.	
5	786.93 1	169.44		369.36	389.17	399.71		.1	.3	
CROSS SEC	CTION OUT	TPUT Pro	ofile #10	00 yr						
E.G. El	Lev (ft)		1866.1	L8 Ele	ement		I	Left OB	Channel	Right OB
Vel Hea	ad (ft)		2.2	28 Wt.	. n-Val.				0.030	
W.S. El	Lev (ft)		1863.9	90 Rea	ach Len.	(ft)	3	369.36	389.17	399.71
Crit W.	S. (ft)		1863.8	36 Flo	ow Area	(sq ft)			1733.40	

D-14 December 2007

1733.40

E.G. Slope (ft/ft) 0.007805 Area (sq ft)

Q Total (cfs)	21000.00	Flow (cfs)		21000.00	
Top Width (ft)	374.85	Top Width (ft)		374.85	
Vel Total (ft/s)	12.11	Avg. Vel. (ft/s)		12.11	
Max Chl Dpth (ft)	5.90	Hydr. Depth (ft)		4.62	
Conv. Total (cfs)	237706.0	Conv. (cfs)		237706.0	
Length Wtd. (ft)	389.17	Wetted Per. (ft)		376.27	
Min Ch El (ft)	1858.00	Shear (lb/sq ft)		2.24	
Alpha	1.00	Stream Power (lb/ft s)		27.19	
Frctn Loss (ft)	2.26	Cum Volume (acre-ft)	30.26	302.41	37.37
C & E Loss (ft)	0.17	Cum SA (acres)	16.42	67.75	22.87

Warning: The velocity head has changed by more than $0.5~{\rm ft}~(0.15~{\rm m})$. This may indicate the need for

additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION OUTPUT Profile #25 yr

E.G. Elev (ft)	1864.01	Element	Left OB	Channel	Right OB
Vel Head (ft)	1.55	Wt. n-Val.		0.030	
W.S. Elev (ft)	1862.46	Reach Len. (ft)	369.36	389.17	399.71
Crit W.S. (ft)	1862.39	Flow Area (sq ft)		1200.48	
E.G. Slope (ft/ft)	0.008304	Area (sq ft)		1200.48	
Q Total (cfs)	11990.00	Flow (cfs)		11990.00	
Top Width (ft)	363.66	Top Width (ft)		363.66	
Vel Total (ft/s)	9.99	Avg. Vel. (ft/s)		9.99	
Max Chl Dpth (ft)	4.46	Hydr. Depth (ft)		3.30	
Conv. Total (cfs)	131575.1	Conv. (cfs)		131575.1	
Length Wtd. (ft)	389.17	Wetted Per. (ft)		364.70	
Min Ch El (ft)	1858.00	Shear (lb/sq ft)		1.71	
Alpha	1.00	Stream Power (lb/ft s)		17.04	

Beaver Dam Wash Flood Hazard Assessment Report

Frctn Loss (ft)	2.50	Cum Volume (acre-ft)	9.97	210.29	12.26
C & E Loss (ft)	0.10	Cum SA (acres)	8.47	65.38	13.76

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Reach #1

REACH: Beaver Dam Wash RS: 20

INPUT

Description:

Station I	Elevation	n Data	num=	95					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
0	1890	11	1888	16.97	1886	22.29	1884	25.93	1882
29.76	1880	33.96	1878	38.59	1876	44.5	1874	51.18	1872
58.79	1870.14	62.33	1870	191.84	1868	212.47	1866	236.96	1864
329.85	1864	355.72	1864	453.09	1864	696.84	1866	747.1	1867
748.12	1867.4	748.77	1867	750.44	1866	751.37	1866	753.01	1867
753.65	1867.4	789.17	1867	796.41	1866	813.52	1865	819.83	1864
824.58	1863	825.59	1862	826.58	1861	827.64	1860	828.64	1859
833.44	1858	834.8	1857	836.1	1856	942.93	1855	950.31	1855
975.21	1856	983.94	1856	985.4	1856	1022.32	1856	1037.63	1855
1070.72	1855	1083.81	1856	1086.65	1857	1131.49	1858	1154.72	1859
1169.28	1860	1174.53	1861	1178.77	1862	1184.4	1863	1190.16	1864
1198.92	1865	1199.59	1866	1200.37	1867	1201.23	1868	1202.19	1869
1203.21	1870	1218.75	1870.95	1225.78	1871.01	1641.53	1872	1651.32	1874
1657.31	1874.63	1683.12	1875.12	1692.73	1876	1695.53	1878	1697.5	1880
1699.49	1882	1701.48	1884	1703.49	1886	1705.42	1888	1707.42	1890
1707.46	1890	1731.4	1890.57	1745.65	1890.35	1751.96	1892	1752.55	1894

D-16 December 2007

1752.9	1896 1753.59	1898 1753.85	1900 1754.35	1902 1754.83	1904
1755.25	1906 1755.77	1908 1761.27	1910 1767.82	1912 1772.27	1914
1775.59	1916 1778.91	1918 1782.22	1920 1785.62	1922 1788.93	1924

Manning's n Values num= 3

Sta n Val Sta n Val Sta n Val

0 .07 813.52 .03 1203.21 .05

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.
813.52 1203.21 250.89 254.9 .1 .3

CROSS SECTION OUTPUT Profile #100 yr

E.G. Elev (ft)	1863.75	Element	Left OB	Channel	Right OB
Vel Head (ft)	1.71	Wt. n-Val.		0.030	
W.S. Elev (ft)	1862.04	Reach Len. (ft)	250.91	250.89	254.90
Crit W.S. (ft)		Flow Area (sq ft)		1999.75	
E.G. Slope (ft/ft)	0.004502	Area (sq ft)		1999.75	
Q Total (cfs)	21000.00	Flow (cfs)		21000.00	
Top Width (ft)	353.43	Top Width (ft)		353.43	
Vel Total (ft/s)	10.50	Avg. Vel. (ft/s)		10.50	
Max Chl Dpth (ft)	7.04	Hydr. Depth (ft)		5.66	
Conv. Total (cfs)	312996.9	Conv. (cfs)		312996.9	
Length Wtd. (ft)	250.89	Wetted Per. (ft)		355.99	
Min Ch El (ft)	1855.00	Shear (lb/sq ft)		1.58	
Alpha	1.00	Stream Power (lb/ft s)		16.58	
Frctn Loss (ft)	1.42	Cum Volume (acre-ft)	30.26	285.73	37.37
C & E Loss (ft)	0.09	Cum SA (acres)	16.42	64.49	22.87

Warning: The velocity head has changed by more than $0.5\ \mathrm{ft}\ (0.15\ \mathrm{m})$. This may indicate the need for

additional cross sections.

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION OUTPUT Profile #25 yr

E.G. Elev (ft)	1861.40	Element	Left OB	Channel	Right OB
Vel Head (ft)	1.22	Wt. n-Val.		0.030	
W.S. Elev (ft)	1860.19	Reach Len. (ft)	250.91	250.89	254.90
Crit W.S. (ft)		Flow Area (sq ft)		1355.36	
E.G. Slope (ft/ft)	0.005135	Area (sq ft)		1355.36	
Q Total (cfs)	11990.00	Flow (cfs)		11990.00	
Top Width (ft)	342.82	Top Width (ft)		342.82	
Vel Total (ft/s)	8.85	Avg. Vel. (ft/s)		8.85	
Max Chl Dpth (ft)	5.19	Hydr. Depth (ft)		3.95	
Conv. Total (cfs)	167324.7	Conv. (cfs)		167324.7	
Length Wtd. (ft)	250.89	Wetted Per. (ft)		344.43	
Min Ch El (ft)	1855.00	Shear (lb/sq ft)		1.26	
Alpha	1.00	Stream Power (lb/ft s)		11.16	
Frctn Loss (ft)	1.63	Cum Volume (acre-ft)	9.97	198.87	12.26
C & E Loss (ft)	0.07	Cum SA (acres)	8.47	62.23	13.76

Warning: The velocity head has changed by more than $0.5 \ \text{ft} \ (0.15 \ \text{m})$. This may indicate the need for

additional cross sections.

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Reach #1

REACH: Beaver Dam Wash RS: 19.5

D-18 December 2007

INPUT

Description:

Station	Elevation	Data	num=	91					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
0	1886	8.75	1884	14.62	1882	20.5	1880	51.01	1878
56.44	1876	60.57	1874	64.63	1872	69.38	1870	73.31	1868
82.14	1866	89.52	1865.14	116.14	1864	472.56	1864	763.39	1866
765.97	1867	766.45	1867.18	766.71	1867	768.01	1866	770.15	1866
771.82	1866.99	774.73	1866	784.09	1866	830.48	1866	861.3	1865
880.71	1864	886.32	1863	889.08	1862	890.37	1861	891.68	1860
893.06	1859	894.29	1858	895.67	1857	897.13	1856	898.51	1855
912.11	1854	969.22	1854	1051.28	1854	1086.97	1854	1125.87	1854
1145.4	1853	1167.26	1853	1168.44	1854	1169.69	1855	1174.62	1856
1181.53	1857	1184.11	1858	1186.77	1859	1211.91	1859	1215.3	1859
1225.54	1860	1235.17	1861	1242.42	1862	1249.08	1863	1251.55	1864
1254.01	1865	1256.59	1866	1259.09	1867	1261.63	1868	1264.07	1869
1272.45	1870	1282.6	1870	1321.18	1869.79	1327.68	1869.69	1740.7	1870
1745.73	1872	1760.11	1873.21	1785.42	1872.75	1791.69	1874	1794.71	1876
1797.68	1878	1800.64	1880	1803.64	1882	1806.66	1884	1812.58	1884
1816.54	1883.88	1820.2	1884	1825.07	1884.16	1828.03	1886	1831	1888
1833.8	1890	1836.53	1892	1839.4	1894	1842.35	1896	1850.89	1896
1852.2	1895.69	1859.62	1896	1860.12	1895.89	1867.13	1898	1868.34	1900
1869.13	1902								

Manning's n Values num= 3

Sta n Val Sta n Val Sta n Val

0 .07 880.71 .03 1186.77 .05

 Bank Sta: Left
 Right
 Lengths: Left
 Channel
 Right
 Coeff
 Contr.
 Expan.

 880.71
 1186.77
 122.77
 122.37
 121.5
 .1
 .3

CROSS SECTION OUTPUT Profile #100 yr

E.G. Elev (ft)	1862.24	Element	Left OB	Channel	Right OB
Vel Head (ft)	2.64	Wt. n-Val.		0.030	0.050
W.S. Elev (ft)	1859.59	Reach Len. (ft)	122.77	122.37	121.50
Crit W.S. (ft)	1859.59	Flow Area (sq ft)		1605.72	18.69
E.G. Slope (ft/ft)	0.007337	Area (sq ft)		1605.72	18.69
Q Total (cfs)	21000.00	Flow (cfs)		20968.47	31.53
Top Width (ft)	329.12	Top Width (ft)		294.53	34.59
Vel Total (ft/s)	12.93	Avg. Vel. (ft/s)		13.06	1.69
Max Chl Dpth (ft)	6.59	Hydr. Depth (ft)		5.45	0.54
Conv. Total (cfs)	245165.2	Conv. (cfs)		244797.1	368.1
Length Wtd. (ft)	122.37	Wetted Per. (ft)		297.35	34.62
Min Ch El (ft)	1853.00	Shear (lb/sq ft)		2.47	0.25
Alpha	1.02	Stream Power (lb/ft s)		32.30	0.42
Frctn Loss (ft)	0.92	Cum Volume (acre-ft)	30.26	275.35	37.32
C & E Loss (ft)	0.05	Cum SA (acres)	16.42	62.63	22.77

Warning: The energy equation could not be balanced within the specified number of iterations. The

 $\hspace{1cm} \hbox{program selected the water surface that had the least amount of error between computed} \\$ and

assumed values.

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical

depth, the calculated water surface came back below critical depth. This indicates that there

is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION OUTPUT Profile #25 yr

E.G. Elev (ft) 1859.71 Element Left OB Channel Right OB

D-20 December 2007

Vel Head (ft)	1.88	Wt. n-Val.		0.030	
W.S. Elev (ft)	1857.83	Reach Len. (ft)	122.77	122.37	121.50
Crit W.S. (ft)	1857.83	Flow Area (sq ft)		1090.24	
E.G. Slope (ft/ft)	0.008478	Area (sq ft)		1090.24	
Q Total (cfs)	11990.00	Flow (cfs)		11990.00	
Top Width (ft)	289.14	Top Width (ft)		289.14	
Vel Total (ft/s)	11.00	Avg. Vel. (ft/s)		11.00	
Max Chl Dpth (ft)	4.83	Hydr. Depth (ft)		3.77	
Conv. Total (cfs)	130216.5	Conv. (cfs)		130216.5	
Length Wtd. (ft)	122.37	Wetted Per. (ft)		291.15	
Min Ch El (ft)	1853.00	Shear (lb/sq ft)		1.98	
Alpha	1.00	Stream Power (lb/ft s)		21.80	
Frctn Loss (ft)	1.06	Cum Volume (acre-ft)	9.97	191.83	12.26
C & E Loss (ft)	0.04	Cum SA (acres)	8.47	60.41	13.76

Warning: The energy equation could not be balanced within the specified number of iterations. The

 $\hspace{1cm} \hbox{program selected the water surface that had the least amount of error between computed} \\$

assumed values.

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical

depth, the calculated water surface came back below critical depth. This indicates that there

is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Reach #1

REACH: Beaver Dam Wash RS: 19

INPUT

Description:

Station Eleva	tion Dat	a num=	114					
Sta E	lev	Sta Ele	v Sta	Elev	Sta	Elev	Sta	Elev
2901.73	892 2921	.19 189	2946.99	1888	2948.06	1887.83	2960.65	1887
2972.49 1	886 2978	.04 188	4 2986.59	1882	2999.03	1880	3005.66	1880
3009.07	880 3014	.48 187	3019.87	1876	3025.01	1874	3029.87	1872
3034.48	870 3039	.15 186	3043.88	1866	3048.71	1864	3050.05	1863.69
3421.31 1863	.91 3485	.44 1863.9	4 3677.85	1863	3775.7	1862.54	3812.24	1863
3856.75	863 386	4.1 186	2 3866.09	1861	3868.07	1860	3870.06	1859
3872.18 1	858 3876	.74 185	7 3881.13	1856	3885.38	1855	3892.66	1855
3904.8 1	855 3907	.81 185	4 4040.63	1853	4079.39	1853	4105.08	1853
4109.87 1	852 4125	.35 185	2 4159.39	1853	4162.81	1853	4175.31	1853
4198.65 1	854 4199	.96 185	5 4201.27	1856	4202.59	1857	4203.93	1858
4264.97 1	859 4278	.47 186	4288.96	1861	4297.83	1862	4300.56	1863
4303.29	864 4305	.93 186	5 4308.69	1866	4311.44	1867	4314.32	1868
4337.75	869 4342	.97 1869.0	7 4349.31	1869	4349.6	1868.98	4692.96	1868
4724.78 1	868 4770	.45 187	0 4784.39	1871.47	4808.06	1871.45	4809.46	1872
4814.27	874 4819	.79 1875.0	5 4830.93	1876	4835.16	1876.31	4837.42	1878
4840.02 1	880 4843	.01 188	2 4847.22	1884	4850.95	1886	4855.21	1888
4859.19 1	890 4863	.36 189	2 4866.45	1894	4869.83	1896	4873.26	1898
4875.96 1	900 4878	.95 190	2 4881.88	1904	4884.93	1906	4887.96	1908
4890.67	910 489	3.5 191	2 4896.71	1914	4899.97	1916	4902.92	1918
4905.98 1	920 4909	.04 192	2 4912.09	1924	4915.2	1926	4918.51	1928
4921.61 1	930 492	1.7 193	2 4928.22	1934	4931.98	1936	4935.75	1938
4939.56	940 4943	.28 194	2 4947.27	1944	4952.98	1946	4958.9	1948
4965.09 1	950 4972	.83 195	2 4978.47	1954	4985.04	1956		

Manning's n Values num= 3

Sta n Val Sta n Val Sta n Val Sta n Val

2901.73 .07 3864.1 .03 4203.93 .05

D-22 December 2007

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.

3864.1 4203.93 425.19 441.09 451.49 .1 .3

CROSS SECTION OUTPUT Profile #100 yr

E.G. Elev (ft)	1860.94	Element	Left OB	Channel	Right OB
Vel Head (ft)	2.48	Wt. n-Val.		0.030	0.050
W.S. Elev (ft)	1858.45	Reach Len. (ft)	425.19	441.09	451.49
Crit W.S. (ft)	1858.45	Flow Area (sq ft)		1660.35	6.27
E.G. Slope (ft/ft)	0.007706	Area (sq ft)		1660.35	6.27
Q Total (cfs)	21000.00	Flow (cfs)		20993.93	6.07
Top Width (ft)	360.37	Top Width (ft)		332.71	27.66
Vel Total (ft/s)	12.60	Avg. Vel. (ft/s)		12.64	0.97
Max Chl Dpth (ft)	6.45	Hydr. Depth (ft)		4.99	0.23
Conv. Total (cfs)	239227.6	Conv. (cfs)		239158.4	69.2
Length Wtd. (ft)	441.09	Wetted Per. (ft)		334.80	27.66
Min Ch El (ft)	1852.00	Shear (lb/sq ft)		2.39	0.11
Alpha	1.01	Stream Power (lb/ft s)		30.17	0.11
Frctn Loss (ft)	3.38	Cum Volume (acre-ft)	30.26	270.76	37.28
C & E Loss (ft)	0.21	Cum SA (acres)	16.42	61.75	22.68

Warning: The energy equation could not be balanced within the specified number of iterations. The

program selected the water surface that had the least amount of error between computed and

assumed values.

Warning: The velocity head has changed by more than $0.5~{\rm ft}~(0.15~{\rm m})$. This may indicate the need for

additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical

depth, the calculated water surface came back below critical depth. This indicates that there

is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION OUTPUT Profile #25 yr

E.G. Elev (ft)	1858.59	Element	Left OB	Channel	Right OB
Vel Head (ft)	1.76	Wt. n-Val.		0.030	
W.S. Elev (ft)	1856.83	Reach Len. (ft)	425.19	441.09	451.49
Crit W.S. (ft)	1856.83	Flow Area (sq ft)		1126.40	
E.G. Slope (ft/ft)	0.008855	Area (sq ft)		1126.40	
Q Total (cfs)	11990.00	Flow (cfs)		11990.00	
Top Width (ft)	324.89	Top Width (ft)		324.89	
Vel Total (ft/s)	10.64	Avg. Vel. (ft/s)		10.64	
Max Chl Dpth (ft)	4.83	Hydr. Depth (ft)		3.47	
Conv. Total (cfs)	127417.0	Conv. (cfs)		127417.0	
Length Wtd. (ft)	441.09	Wetted Per. (ft)		326.36	
Min Ch El (ft)	1852.00	Shear (lb/sq ft)		1.91	
Alpha	1.00	Stream Power (lb/ft s)		20.31	
Frctn Loss (ft)	3.60	Cum Volume (acre-ft)	9.97	188.71	12.26
C & E Loss (ft)	0.17	Cum SA (acres)	8.47	59.54	13.76

Warning: The energy equation could not be balanced within the specified number of iterations. The

 $\hspace{1cm} \hbox{program selected the water surface that had the least amount of error between computed} \\$ and

assumed values.

Warning: The velocity head has changed by more than $0.5 \ \text{ft} \ (0.15 \ \text{m})$. This may indicate the need for

additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical

D-24 December 2007

depth, the calculated water surface came back below critical depth. This indicates that there

is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Reach #1

REACH: Beaver Dam Wash RS: 18

INPUT

Description:

Station E	Elevation	n Data	num=	101					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
0	1886	3.2	1884	6.35	1882	9.41	1880	12.48	1878
15.65	1876	18.55	1874	21.96	1872	25.52	1870	29.05	1868
34.04	1866	39.9	1864	46.33	1862	394.14	1860	495.34	1860
595.13	1860	605.85	1860	617.17	1860	721.57	1860	773.04	1860
785.46	1859	797.47	1858	803.3	1857	808.69	1856	814.63	1855
821.43	1854	828.35	1853	841.92	1852	846.02	1851	850.12	1850
931.41	1850	1033.42	1850	1034.94	1849	1080.82	1849	1108.85	1849
1152.17	1849	1191.93	1850	1196.09	1850	1235.43	1850	1259.15	1851
1263.3	1852	1289.49	1853	1296.21	1854	1304.79	1854	1305.52	1853
1306.18	1852	1306.76	1851	1315.7	1851	1317.67	1852	1319.39	1853
1320.59	1854	1353.91	1855	1382.79	1855	1382.91	1855	1398.35	1856
1505.08	1858	1519.41	1860	1524.17	1862	1528.63	1864	1878.45	1868
1891.74	1868.26	1916.28	1868.41	1922.49	1870	1926.25	1872	1929.82	1874
1931.16	1876	1932.76	1878	1934.01	1880	1935.43	1882	1937.62	1884
1940.35	1886	1943.19	1888	1945.98	1890	1948.72	1892	1951.61	1894
1954.62	1896	1957.54	1898	1960.55	1900	1963.58	1902	1966.57	1904
1969.69	1906	1972.75	1908	1975.86	1910	1978.98	1912	1982.09	1914
1985.22	1916	1988.35	1918	1991.46	1920	1994.57	1922	1997.7	1924
2001.18	1926	2004.6	1928	2008.02	1930	2011.44	1932	2014.86	1934

2018.29 1936 2021.72 1938 2025.15 1940 2028.65 1942 2032.24 1944

2036.49 1946

Manning's n Values num= 3

Sta n Val Sta n Val Sta n Val
0 .07 773.04 .03 1320.59 .05

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.

773.04 1320.59 368.22 402.4 428.15 .1 .3

CROSS SECTION OUTPUT Profile #100 yr

E.G. Elev (ft)	1855.90	Element	Left OB	Channel	Right OB
Vel Head (ft)	1.78	Wt. n-Val.		0.030	0.050
W.S. Elev (ft)	1854.12	Reach Len. (ft)	368.22	402.40	428.15
Crit W.S. (ft)	1853.97	Flow Area (sq ft)		1960.63	0.24
E.G. Slope (ft/ft)	0.007630	Area (sq ft)		1960.63	0.24
Q Total (cfs)	21000.00	Flow (cfs)		20999.91	0.09
Top Width (ft)	503.93	Top Width (ft)		499.97	3.96
Vel Total (ft/s)	10.71	Avg. Vel. (ft/s)		10.71	0.40
Max Chl Dpth (ft)	5.12	Hydr. Depth (ft)		3.92	0.06
Conv. Total (cfs)	240407.3	Conv. (cfs)		240406.2	1.1
Length Wtd. (ft)	402.40	Wetted Per. (ft)		503.36	3.96
Min Ch El (ft)	1849.00	Shear (lb/sq ft)		1.86	0.03
Alpha	1.00	Stream Power (lb/ft s)		19.87	0.01
Frctn Loss (ft)	3.10	Cum Volume (acre-ft)	30.26	252.43	37.25
C & E Loss (ft)	0.01	Cum SA (acres)	16.42	57.53	22.52

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION OUTPUT Profile #25 yr

D-26 December 2007

E.G. Elev (ft)	1854.09	Element	Left OB	Channel	Right OB
Vel Head (ft)	1.19	Wt. n-Val.		0.030	
W.S. Elev (ft)	1852.90	Reach Len. (ft)	368.22	402.40	428.15
Crit W.S. (ft)	1852.68	Flow Area (sq ft)		1371.68	
E.G. Slope (ft/ft)	0.007534	Area (sq ft)		1371.68	
Q Total (cfs)	11990.00	Flow (cfs)		11990.00	
Top Width (ft)	470.84	Top Width (ft)		470.84	
Vel Total (ft/s)	8.74	Avg. Vel. (ft/s)		8.74	
Max Chl Dpth (ft)	3.90	Hydr. Depth (ft)		2.91	
Conv. Total (cfs)	138137.8	Conv. (cfs)		138137.8	
Length Wtd. (ft)	402.40	Wetted Per. (ft)		473.12	
Min Ch El (ft)	1849.00	Shear (lb/sq ft)		1.36	
Alpha	1.00	Stream Power (lb/ft s)		11.92	
Frctn Loss (ft)	3.28	Cum Volume (acre-ft)	9.97	176.07	12.26
C & E Loss (ft)	0.03	Cum SA (acres)	8.47	55.51	13.76

Warning: Divided flow computed for this cross-section.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Reach #1

REACH: Beaver Dam Wash RS: 17

INPUT

Description:

Station Elevation Data num= 118

Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev

0 1878 6.83 1876 13.64 1874 22.59 1872 31.84 1870

37.82	1868	43.28	1866	48.62	1864	53.92	1862	55.35	1861.47
68.26	1860	179.86	1858	398.49	1858	456	1858	536.2	1856
567.71	1856	641.33	1856	647.39	1855	650.38	1854	653.33	1853
656.26	1852	692.75	1851	730.36	1850	732.26	1849	734.09	1848
747.82	1847	758.34	1846	760.24	1846	786.27	1846	787.22	1846
833.21	1846	889.82	1846	941.64	1846	969.44	1846	976.08	1847
979.71	1847	997.06	1846	1074.19	1846	1076.31	1847	1077.82	1848
1078.69	1849	1079.53	1850	1080.4	1851	1095.98	1851	1116.94	1850
1118.47	1849	1119.95	1848	1121.43	1847	1126.75	1846	1132.72	1846
1161.74	1847	1167.33	1848	1170.36	1849	1177.53	1850	1180.35	1851
1216.58	1851	1226.58	1851	1264.41	1851	1270.19	1851	1291.24	1852
1308.98	1853	1347.47	1854	1360.37	1855	1366.82	1856	1370.53	1857
1374.24	1858	1377.82	1859	1384.89	1860	1417.88	1860.61	1435.15	1861.39
1446.23	1862	1489.7	1861.34	1499.25	1861.16	1569.47	1861.4	1589.86	1861.24
1625.71	1862	1637.15	1862	1646.74	1861.2	1667.4	1861.44	1743.12	1861.28
1754.22	1861.4	1855.34	1862	1875.38	1862.39	1892.55	1862	1903.2	1861.83
1903.74	1862	1909.25	1864	1915.22	1866	1918.48	1868	1922.37	1870
1926.15	1872	1930.23	1874	1933.11	1876	1937.29	1878	1940.25	1880
1943.6	1882	1947.15	1884	1951.16	1886	1953.67	1888	1956.44	1890
1959.21	1892	1961.94	1894	1964.82	1896	1967.56	1898	1970.32	1900
1973.45	1902	1977.19	1904	1980.73	1906	1984.38	1908	1988.16	1910
1992.35	1912	1996.44	1914	2000.17	1916	2004.35	1918	2008.07	1920
2011.06	1922	2014.73	1924	2018.71	1926				

Manning's n Values num= 3

Sta n Val Sta n Val Sta n Val

0 .07 641.33 .03 1180.35 .05

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.
641.33 1180.35 381.74 435.9 487.97 .1 .3

CROSS SECTION OUTPUT Profile #100 yr

D-28 December 2007

E.G. Elev (ft)	1852.79	Element	Left OB	Channel	Right OB
Vel Head (ft)	1.90	Wt. n-Val.		0.030	
W.S. Elev (ft)	1850.89	Reach Len. (ft)	381.74	435.90	487.97
Crit W.S. (ft)	1850.75	Flow Area (sq ft)		1897.01	
E.G. Slope (ft/ft)	0.007754	Area (sq ft)		1897.01	
Q Total (cfs)	21000.00	Flow (cfs)		21000.00	
Top Width (ft)	465.07	Top Width (ft)		465.07	
Vel Total (ft/s)	11.07	Avg. Vel. (ft/s)		11.07	
Max Chl Dpth (ft)	4.89	Hydr. Depth (ft)		4.08	
Conv. Total (cfs)	238481.2	Conv. (cfs)		238481.2	
Length Wtd. (ft)	435.90	Wetted Per. (ft)		469.14	
Min Ch El (ft)	1846.00	Shear (lb/sq ft)		1.96	
Alpha	1.00	Stream Power (lb/ft s)		21.67	
Frctn Loss (ft)	3.45	Cum Volume (acre-ft)	30.26	234.61	37.25
C & E Loss (ft)	0.03	Cum SA (acres)	16.42	53.07	22.50

Warning: Divided flow computed for this cross-section.

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION OUTPUT Profile #25 yr

E.G. Elev (ft)	1850.79	Element	Left OB	Channel	Right OB
Vel Head (ft)	1.48	Wt. n-Val.		0.030	
W.S. Elev (ft)	1849.31	Reach Len. (ft)	381.74	435.90	487.97
Crit W.S. (ft)	1849.27	Flow Area (sq ft)		1228.60	
E.G. Slope (ft/ft)	0.008829	Area (sq ft)		1228.60	
Q Total (cfs)	11990.00	Flow (cfs)		11990.00	
Top Width (ft)	401.87	Top Width (ft)		401.87	
Vel Total (ft/s)	9.76	Avg. Vel. (ft/s)		9.76	
Max Chl Dpth (ft)	3.31	Hydr. Depth (ft)		3.06	
Conv. Total (cfs)	127606.7	Conv. (cfs)		127606.7	

Beaver Dam Wash Flood Hazard Assessment Report

Length Wtd. (ft)	435.90	Wetted Per. (ft)		404.60	
Min Ch El (ft)	1846.00	Shear (lb/sq ft)		1.67	
Alpha	1.00	Stream Power (lb/ft s)		16.33	
Frctn Loss (ft)	3.45	Cum Volume (acre-ft)	9.97	164.06	12.26
C & E Loss (ft)	0.05	Cum SA (acres)	8.47	51.48	13.76

Warning: Divided flow computed for this cross-section.

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Reach #1

REACH: Beaver Dam Wash RS: 16

INPUT

Description:

Station E	Elevation	n Data	num=	102					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
0	1874	13.16	1872	17.23	1870	21.13	1868	25.25	1866
29.28	1864	33.55	1862	40.48	1860	56.86	1858	118.38	1856
129.2	1856	212.38	1856	294.21	1854	407.46	1852	548.23	1851
556.94	1851	592.14	1850	599.63	1850	630.09	1851	668.26	1851
674.88	1850	680.59	1849	686.79	1848	694.29	1847	702.92	1846
711.93	1845	719.88	1844	727.23	1843	741.13	1843	753.81	1843
773.42	1842	794.83	1842	864.2	1842	873.97	1842	882.16	1843
894.26	1843	901.41	1843	938.91	1843	1014.23	1842	1035.02	1842
1056.28	1843	1060.17	1843	1064.27	1843	1091.38	1844	1100.56	1845
1102.7	1846	1104.95	1847	1107.69	1848	1113.55	1849	1123.98	1850
1179.46	1851	1219.44	1852	1231.34	1852.8	1249.94	1852.67	1263.29	1853
1337.32	1854.87	1340.93	1855	1374.3	1856	1398.61	1857	1534.15	1857.55

D-30 December 2007

1783.15	1856.96	1817.42	1857.28	1827.94	1861.08	1844.55	1858	1853.21	1860
1854.11	1862	1854.7	1864	1855.56	1866	1856.43	1868	1857.35	1870
1857.83	1872	1858.97	1874	1859.77	1876	1860.66	1878	1862.07	1880
1863.64	1882	1865.04	1884	1866.57	1886	1868.04	1888	1874.01	1890
1881.16	1892	1886.61	1894	1893.04	1896	1898.03	1898	1903.49	1900
1908	1902	1912.44	1904	1918.42	1906	1923.32	1908	1927.91	1910
1933.55	1912	1938.74	1914	1943.93	1916	1949.1	1918	1954.14	1920
1959.15	1922	1963.97	1924	1968.64	1926	1973.38	1928	1978.1	1930
1984.09	1932	1991.17	1934						

Manning's n Values num= 3

 Sta
 n Val
 Sta
 n Val
 Sta
 n Val

 0
 .07
 668.26
 .03 1123.98
 .05

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.

668.26 1123.98 275 282.5 290 .1 .3

CROSS SECTION OUTPUT Profile #100 yr

E.G. Elev (ft)	1849.31	Element	Left OB	Channel	Right OB
Vel Head (ft)	2.16	Wt. n-Val.		0.030	
W.S. Elev (ft)	1847.15	Reach Len. (ft)	275.00	282.50	290.00
Crit W.S. (ft)	1847.15	Flow Area (sq ft)		1780.22	
E.G. Slope (ft/ft)	0.008089	Area (sq ft)		1780.22	
Q Total (cfs)	21000.00	Flow (cfs)		21000.00	
Top Width (ft)	412.23	Top Width (ft)		412.23	
Vel Total (ft/s)	11.80	Avg. Vel. (ft/s)		11.80	
Max Chl Dpth (ft)	5.15	Hydr. Depth (ft)		4.32	
Conv. Total (cfs)	233492.4	Conv. (cfs)		233492.4	
Length Wtd. (ft)	282.50	Wetted Per. (ft)		413.13	
Min Ch El (ft)	1842.00	Shear (lb/sq ft)		2.18	
Alpha	1.00	Stream Power (lb/ft s)		25.67	
Frctn Loss (ft)	2.30	Cum Volume (acre-ft)	30.26	216.21	37.25

C & E Loss (ft) 0.04 Cum SA (acres) 16.42 48.68 22.50

Warning: The energy equation could not be balanced within the specified number of iterations. The

 $\hspace{1cm} \hbox{program selected the water surface that had the least amount of error between computed} \\$ and

assumed values.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical

depth, the calculated water surface came back below critical depth. This indicates that there

is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION OUTPUT Profile #25 yr

E.G. Elev (ft)	1847.29	Element	Left OB	Channel	Right OB
Vel Head (ft)	1.31	Wt. n-Val.		0.030	
W.S. Elev (ft)	1845.98	Reach Len. (ft)	275.00	282.50	290.00
Crit W.S. (ft)	1845.74	Flow Area (sq ft)		1304.56	
E.G. Slope (ft/ft)	0.007123	Area (sq ft)		1304.56	
Q Total (cfs)	11990.00	Flow (cfs)		11990.00	
Top Width (ft)	399.57	Top Width (ft)		399.57	
Vel Total (ft/s)	9.19	Avg. Vel. (ft/s)		9.19	
Max Chl Dpth (ft)	3.98	Hydr. Depth (ft)		3.26	
Conv. Total (cfs)	142065.4	Conv. (cfs)		142065.4	
Length Wtd. (ft)	282.50	Wetted Per. (ft)		400.16	
Min Ch El (ft)	1842.00	Shear (lb/sq ft)		1.45	
Alpha	1.00	Stream Power (lb/ft s)		13.32	
Frctn Loss (ft)	2.28	Cum Volume (acre-ft)	9.97	151.38	12.26
C & E Loss (ft)	0.01	Cum SA (acres)	8.47	47.47	13.76

D-32 December 2007

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Reach #1

REACH: Beaver Dam Wash RS: 15

INPUT

Description:

Station	Elevation	n Data	num=	88					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
0	1867.3	10.96	1877.68	12.82	1867.31	18.85	1866	25.4	1864
36.11	1862	40.33	1860	80.5	1858	166.29	1856	228.87	1854
315.46	1852	398.99	1850	485.51	1848	605.54	1848	743.21	1848
765.3	1847	773.43	1846	782.43	1845	796.58	1844	811.53	1843
828.87	1842	845.84	1841	876.26	1840	1014.74	1840	1021.97	1840
1027.58	1840	1060.18	1841	1077.41	1841	1094.54	1841	1116.79	1841
1182.66	1841	1220.13	1841	1225.91	1841	1361.46	1842	1363.32	1843
1364.05	1844	1364.85	1845	1365.64	1846	1367.93	1847	1373.68	1848
1378.63	1849	1382.49	1850	1384.08	1851	1385.68	1852	1387.23	1853
1389.17	1854	1748.03	1854.34	1769.99	1854.39	1801.16	1854.53	1815.86	1856
1816.82	1858	1817.66	1860	1818.53	1862	1819.47	1864	1820.38	1866
1821.12	1868	1822.17	1870	1824.22	1872	1826.9	1874	1829.45	1876
1832.17	1878	1834.78	1880	1837.35	1882	1839.92	1884	1842.56	1886
1845.16	1888	1847.76	1890	1850.37	1892	1853	1894	1855.6	1896
1858.73	1898	1861.81	1900	1865.18	1902	1868.02	1904	1871.36	1906
1874.72	1908	1877.7	1910	1881.03	1912	1885.14	1914	1888.43	1916
1891.58	1918	1895.56	1920	1900.96	1922	1906.41	1924	1911.6	1926
1918.14	1928	1923.63	1930	1929	1932				

Manning's n Values num= 3

Sta n Val Sta n Val Sta n Val

0 .07 743.21 .03 1389.17 .05

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.

743.21 1389.17 305.8 329.92 377.91 .1 .3

Ineffective Flow num= 1

Sta L Sta R Elev Permanent

1240 1929 1880 F

CROSS SECTION OUTPUT Profile #100 yr

E.G. Elev (ft)	1846.91	Element	Left OB	Channel	Right OB
Vel Head (ft)	2.01	Wt. n-Val.		0.030	
W.S. Elev (ft)	1844.90	Reach Len. (ft)	305.80	329.92	377.91
Crit W.S. (ft)	1844.90	Flow Area (sq ft)		1844.53	
E.G. Slope (ft/ft)	0.008205	Area (sq ft)		2256.78	
Q Total (cfs)	21000.00	Flow (cfs)		21000.00	
Top Width (ft)	580.90	Top Width (ft)		580.90	
Vel Total (ft/s)	11.39	Avg. Vel. (ft/s)		11.39	
Max Chl Dpth (ft)	4.90	Hydr. Depth (ft)		4.04	
Conv. Total (cfs)	231841.2	Conv. (cfs)		231841.2	
Length Wtd. (ft)	329.92	Wetted Per. (ft)		456.29	
Min Ch El (ft)	1840.00	Shear (lb/sq ft)		2.07	
Alpha	1.00	Stream Power (lb/ft s)		23.57	
Frctn Loss (ft)	2.36	Cum Volume (acre-ft)	30.26	203.12	37.25
C & E Loss (ft)	0.21	Cum SA (acres)	16.42	45.46	22.50

Warning: The energy equation could not be balanced within the specified number of iterations. The

 $\,$ program used critical depth for the water surface and continued on with the calculations.

D-34 December 2007

Warning: The velocity head has changed by more than $0.5 \, \text{ft} \, (0.15 \, \text{m})$. This may indicate the need for

additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical

depth, the calculated water surface came back below critical depth. This indicates that there

is not a valid subcritical answer. The program defaulted to critical depth.

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid,

water surface was used.

CROSS SECTION OUTPUT Profile #25 yr

E.G. Elev (ft)	1845.00	Element	Left OB	Channel	Right OB
Vel Head (ft)	1.43	Wt. n-Val.		0.030	
W.S. Elev (ft)	1843.57	Reach Len. (ft)	305.80	329.92	377.91
Crit W.S. (ft)	1843.53	Flow Area (sq ft)		1249.20	
E.G. Slope (ft/ft)	0.009257	Area (sq ft)		1495.85	
Q Total (cfs)	11990.00	Flow (cfs)		11990.00	
Top Width (ft)	560.66	Top Width (ft)		560.66	
Vel Total (ft/s)	9.60	Avg. Vel. (ft/s)		9.60	
Max Chl Dpth (ft)	3.57	Hydr. Depth (ft)		2.86	
Conv. Total (cfs)	124619.4	Conv. (cfs)		124619.4	
Length Wtd. (ft)	329.92	Wetted Per. (ft)		437.03	
Min Ch El (ft)	1840.00	Shear (lb/sq ft)		1.65	
Alpha	1.00	Stream Power (lb/ft s)		15.85	
Frctn Loss (ft)	2.59	Cum Volume (acre-ft)	9.97	142.30	12.26
C & E Loss (ft)	0.16	Cum SA (acres)	8.47	44.36	13.76

Warning: The velocity head has changed by more than $0.5 \ \mathrm{ft} \ (0.15 \ \mathrm{m})$. This may indicate the need for

additional cross sections.

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate the need for additional cross sections.

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, $\frac{1}{2}$

water surface was used.

CROSS SECTION

RIVER: Reach #1

REACH: Beaver Dam Wash RS: 14

INPUT

Description:

Station	Elevation	n Data	num=	82					
Sta	a Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
(1872	3.4	1870	6.56	1868	9.63	1866	12.84	1864
16.08	1862	20.53	1860	31.06	1859.08	42.45	1858.16	58.6	1858
206.7	7 1856	217.94	1854	223	1852	227.34	1850	230.72	1848
244.31	1846	616.03	1844	664.26	1844	680.25	1844	693.09	1843
702.76	1842	713.5	1841	755.09	1840	780.57	1839	782.91	1838
803.55	1838	806.57	1838	849.76	1838	855.69	1838	863.62	1838.07
878.46	1838	894.57	1839	925.27	1839	944.02	1839	947.62	1839
951.73	1838	1136.87	1838	1142.02	1839	1280.6	1840	1323.58	1840
1454.51	1840	1455.42	1841	1456.31	1842	1457.22	1843	1458.12	1844
1459.03	1845	1460	1846	1460.92	1847	1461.83	1848	1462.8	1849
1463.	7 1850	1464.68	1851	1750.53	1850.6	1784.03	1850.26	1787.72	1850
1802.95	1850	1809.35	1852	1814.1	1854	1818.12	1856	1821.96	1858
1828.79	1860	1835.15	1862	1840.6	1864	1844.6	1866	1849.41	1868
1854.67	7 1870	1859.26	1872	1863.65	1874	1867.45	1876	1871.73	1878
1875.32	1880	1878.84	1882	1882.53	1884	1886.62	1886	1890.53	1888
1893.64	1890	1897.34	1892	1901.43	1894	1905.47	1896	1910.09	1898

D-36 December 2007

1914.9 1900 1919.72 1902

Manning's n Values num= 3

Sta n Val Sta n Val Sta n Val
0 .07 680.25 .03 1464.68 .04

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.

680.25 1464.68 297.63 277.08 281.46 .3 .5

Ineffective Flow num= 2

Sta L Sta R Elev Permanent

0 738 1851 F

1366 1919.72 1851 F

CROSS SECTION OUTPUT Profile #100 yr

E.G. Elev (ft)	1843.78	Element	Left OB	Channel	Right OB
Vel Head (ft)	1.33	Wt. n-Val.		0.030	
W.S. Elev (ft)	1842.45	Reach Len. (ft)	297.63	277.08	281.46
Crit W.S. (ft)	1842.11	Flow Area (sq ft)		2272.82	
E.G. Slope (ft/ft)	0.006269	Area (sq ft)		2546.41	
Q Total (cfs)	21000.00	Flow (cfs)		21000.00	
Top Width (ft)	758.32	Top Width (ft)		758.32	
Vel Total (ft/s)	9.24	Avg. Vel. (ft/s)		9.24	
Max Chl Dpth (ft)	4.45	Hydr. Depth (ft)		3.62	
Conv. Total (cfs)	265229.8	Conv. (cfs)		265229.8	
Length Wtd. (ft)	277.09	Wetted Per. (ft)		628.48	
Min Ch El (ft)	1838.00	Shear (lb/sq ft)		1.42	
Alpha	1.00	Stream Power (lb/ft s)		13.08	
Frctn Loss (ft)	1.39	Cum Volume (acre-ft)	30.26	184.93	37.25
C & E Loss (ft)	0.06	Cum SA (acres)	16.42	40.39	22.50

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross

section. This may indicate the need for additional cross sections.

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid,

water surface was used.

CROSS SECTION OUTPUT Profile #25 yr

E.G. Elev (ft)	1842.25 Element		Left OB	Channel	Right OB
Vel Head (ft)	0.88	Wt. n-Val.		0.030	
W.S. Elev (ft)	1841.36	Reach Len. (ft)	297.63	277.08	281.46
Crit W.S. (ft)	1841.08	Flow Area (sq ft)		1588.40	
E.G. Slope (ft/ft)	0.006747	Area (sq ft)		1726.46	
Q Total (cfs)	11990.00	Flow (cfs)		11990.00	
Top Width (ft)	746.12	Top Width (ft)		746.12	
Vel Total (ft/s)	7.55	Avg. Vel. (ft/s)		7.55	
Max Chl Dpth (ft)	3.36	Hydr. Depth (ft)		2.53	
Conv. Total (cfs)	145975.5	Conv. (cfs)		145975.5	
Length Wtd. (ft)	277.08	Wetted Per. (ft)		628.48	
Min Ch El (ft)	1838.00	Shear (lb/sq ft)		1.06	
Alpha	1.00	Stream Power (lb/ft s)		8.04	
Frctn Loss (ft)	1.83	Cum Volume (acre-ft)	9.97	130.10	12.26
C & E Loss (ft)	0.04	Cum SA (acres)	8.47	39.41	13.76

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid,

water surface was used.

CROSS SECTION

RIVER: Reach #1

D-38 December 2007

REACH: Beaver Dam Wash RS: 13

INPUT

Description: Section @ Upstream End of Guide Banks

Station H	Elevation	n Data	num=	92					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
0	1870	1.18	1869	2.33	1868	3.49	1867	4.66	1866
5.82	1865	7.06	1864	8.32	1863	9.5	1862	10.67	1861
11.82	1860	12.98	1859	14.16	1858	15.31	1857	16.47	1856
17.61	1855	18.77	1854	20.33	1853	22.02	1852	23.71	1851
25.4	1850	27.1	1849	28.88	1848	30.97	1847	33.45	1846
38.21	1845	229.9	1844	282.4	1844	289.89	1844	352.59	1843.18
361.75	1843.12	420.1	1843	433.29	1842	439.71	1842	453.07	1843
464.68	1843	510.74	1842	547.9	1841	642.18	1840	650.71	1839
659.37	1838	675.7	1837	696.21	1836	720.74	1836	725.83	1837
754.57	1837	765.4	1837	777.25	1837	786.7	1836	814.07	1836
836.49	1836	860.8	1835	868.96	1835	926.74	1836	936.8	1836
952.94	1836	958.05	1837	974.41	1838	979.86	1839	993.26	1839
995.66	1838	998.9	1837	1003.65	1837	1005.58	1836	1026.45	1836
1057	1836	1103.65	1836	1160.55	1838	1210.89	1839	1218.61	1840
1224.33	1841	1229.21	1842	1241.24	1843	1245.58	1844	1247.49	1845
1248.31	1846	1249.06	1847	1249.8	1848	1271.71	1848.72	1399.16	1848.9
1419.11	1849	1450.03	1849	1462.79	1849	1490.65	1849.27	1551.25	1849
1551.29	1849.05	1564.34	1848.57	1594.53	1848.42	1651.26	1848.57	1680.94	1848.15
1681.68	1848	1728.05	1847						

Manning's n Values num= 3

Sta n Val Sta n Val Sta n Val

0 .07 642.18 .03 1249.8 .04

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.
642.18 1249.8 205 205 205 3 .5

Ineffective Flow num= 2

Sta L	Sta R	Elev	Permanent
0	630	1851	F
1152	1728.05	1851	F

CROSS SECTION OUTPUT Profile #100 yr

E.G. Elev (ft)	1842.33	Element	Left OB	Channel	Right OB
Vel Head (ft)	1.21	Wt. n-Val.	0.070	0.030	
W.S. Elev (ft)	1841.12	Reach Len. (ft)	205.00	205.00	205.00
Crit W.S. (ft)	1840.23	Flow Area (sq ft)	12.79	2373.16	
E.G. Slope (ft/ft)	0.004112	Area (sq ft)	58.18	2548.70	
Q Total (cfs)	21000.00	Flow (cfs)	17.98	20982.02	
Top Width (ft)	681.24	Top Width (ft)	98.53	582.71	
Vel Total (ft/s)	8.80	Avg. Vel. (ft/s)	1.41	8.84	
Max Chl Dpth (ft)	6.11	Hydr. Depth (ft)	1.05	4.65	
Conv. Total (cfs)	327467.6	Conv. (cfs)	280.4	327187.2	
Length Wtd. (ft)	205.00	Wetted Per. (ft)	12.18	511.01	
Min Ch El (ft)	1835.00	Shear (lb/sq ft)	0.27	1.19	
Alpha	1.01	Stream Power (lb/ft s)	0.38	10.54	
Frctn Loss (ft)	0.69	Cum Volume (acre-ft)	30.07	168.73	37.25
C & E Loss (ft)	0.00	Cum SA (acres)	16.08	36.13	22.50

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid,

water surface was used.

CROSS SECTION OUTPUT Profile #25 yr

E.G. Elev (ft)	1840.38	Element	Left OB	Channel	Right OB
Vel Head (ft)	1.03	Wt. n-Val.		0.030	
W.S. Elev (ft)	1839.35	Reach Len. (ft)	205.00	205.00	205.00
Crit W.S. (ft)	1839.02	Flow Area (sq ft)		1475.37	

D-40 December 2007

E.G. Slope (ft/ft)	0.006453	Area (sq ft)		1531.46	
Q Total (cfs)	11990.00	Flow (cfs)		11990.00	
Top Width (ft)	565.87	Top Width (ft)		565.87	
Vel Total (ft/s)	8.13	Avg. Vel. (ft/s)		8.13	
Max Chl Dpth (ft)	4.35	Hydr. Depth (ft)		2.93	
Conv. Total (cfs)	149256.5	Conv. (cfs)		149256.5	
Length Wtd. (ft)	205.00	Wetted Per. (ft)		505.43	
Min Ch El (ft)	1835.00	Shear (lb/sq ft)		1.18	
Alpha	1.00	Stream Power (lb/ft s)		9.56	
Frctn Loss (ft)	0.83	Cum Volume (acre-ft)	9.97	119.74	12.26
C & E Loss (ft)	0.12	Cum SA (acres)	8.47	35.24	13.76

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Note: Multiple critical depths were found at this location. The critical depth with the

water surface was used.

CROSS SECTION

lowest, valid,

RIVER: Reach #1

REACH: Beaver Dam Wash RS: 12

INPUT

Description:

Station Elevation Data num= 28

 Sta
 Elev
 St

1009.05 1849.67 1091.05 1849.52 1114.05 1849.42 1163.05 1849.47 1177 1849

1248 1849 1287 1849 1290 1859

Manning's n Values num= 3

Sta n Val Sta n Val Sta n Val
0 .07 402.791 .03 911.045 .04

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.

402.791 911.045 141.97 67.49 188.08 .3 .5

Ineffective Flow num= 2

Sta L Sta R Elev Permanent

0 485 1850.5 F

865 1290 1850.5 F

Skew Angle = 15

CROSS SECTION OUTPUT Profile #100 yr

E.G. Elev (ft)	1841.63	Element	Left OB	Channel	Right OB
Vel Head (ft)	1.23	Wt. n-Val.		0.030	
W.S. Elev (ft)	1840.40	Reach Len. (ft)	2.00	2.00	2.00
Crit W.S. (ft)	1838.75	Flow Area (sq ft)		2361.89	
E.G. Slope (ft/ft)	0.002820	Area (sq ft)		2729.05	
Q Total (cfs)	21000.00	Flow (cfs)		21000.00	
Top Width (ft)	457.21	Top Width (ft)		457.21	
Vel Total (ft/s)	8.89	Avg. Vel. (ft/s)		8.89	
Max Chl Dpth (ft)	7.06	Hydr. Depth (ft)		6.22	
Conv. Total (cfs)	395472.0	Conv. (cfs)		395472.0	
Length Wtd. (ft)	2.00	Wetted Per. (ft)		380.00	
Min Ch El (ft)	1833.34	Shear (lb/sq ft)		1.09	
Alpha	1.00	Stream Power (lb/ft s)		9.73	
Frctn Loss (ft)		Cum Volume (acre-ft)	29.93	156.31	37.25
C & E Loss (ft)		Cum SA (acres)	15.85	33.68	22.50

D-42 December 2007

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, $\frac{1}{2}$

energy was used.

CROSS SECTION OUTPUT Profile #25 yr

E.G. Elev (ft)	1839.42	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.78	Wt. n-Val.		0.030	
W.S. Elev (ft)	1838.64	Reach Len. (ft)	2.00	2.00	2.00
Crit W.S. (ft)	1837.33	Flow Area (sq ft)		1692.90	
E.G. Slope (ft/ft)	0.002789	Area (sq ft)		1932.84	
Q Total (cfs)	11990.00	Flow (cfs)		11990.00	
Top Width (ft)	447.32	Top Width (ft)		447.32	
Vel Total (ft/s)	7.08	Avg. Vel. (ft/s)		7.08	
Max Chl Dpth (ft)	5.30	Hydr. Depth (ft)		4.46	
Conv. Total (cfs)	227022.5	Conv. (cfs)		227022.5	
Length Wtd. (ft)	2.00	Wetted Per. (ft)		380.00	
Min Ch El (ft)	1833.34	Shear (lb/sq ft)		0.78	
Alpha	1.00	Stream Power (lb/ft s)		5.49	
Frctn Loss (ft)		Cum Volume (acre-ft)	9.97	111.58	12.26
C & E Loss (ft)		Cum SA (acres)	8.47	32.85	13.76

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid,

energy was used.

BRIDGE

RIVER: Reach #1

REACH: Beaver Dam Wash RS: 11.5

INPUT

Description:

Distance from Upstream XS = 2

Deck/Roadway Width = 37

Weir Coefficient = 2.6

Upstream Deck/Roadway Coordinates

num= 24

Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord

0 1854.56 40 1854.44 103 1854.25

166 1854.06 238 1853.85 289 1853.69

325 1853.58 380 1853.36 400 1852.96

400 1855.63 475 1855.4 1837 475 1855.4 1848.04

875 1854.2 1846.84 875 1854.2 1844.25 950 1853.93

950 1851.66 1082 1850.94 1102 1850.8

1148 1850.44 1171 1850.04 1177 1849

1248 1849 1287 1849 1290 1859

Upstream Bridge Cross Section Data

Station Elevation Data num= 28

Sta Elev Sta Elev Sta Elev Sta Elev

0 1854.97 347.482 1851.52 402.791 1850.9 448.711 1835 465.538 1834.43

472.077 1833.34 4751833.403 476.259 1833.43 535.654 1833.62 607.123 1833.86

 $670.111 \quad 1834.2 \quad 706.7 \quad 1834.32 \quad 714.128 \quad 1834.32 \quad 718.668 \quad 1834.37 \quad 736.055 \quad 1834.44$

754.045 1834.51 756.426 1834.52 875 1835 881.045 1837 911.045 1848

1009.05 1849.67 1091.05 1849.52 1114.05 1849.42 1163.05 1849.47 1177 1849

1248 1849 1287 1849 1290 1859

Manning's n Values num= 3

Sta n Val Sta n Val Sta n Val

0 .07 402.791 .03 911.045 .04

Bank Sta: Left Right Coeff Contr. Expan.

402.791 911.045 .3 .5

D-44 December 2007

Ineffective Flow num= 2

Sta L Sta R Elev Permanent

0 485 1850.5 F

865 1290 1850.5 F

Skew Angle = 15

Downstream Deck/Roadway Coordinates

num= 24

Sta	Hi Cord	Lo Cord	Sta	Hi Cord	Lo Cord	Sta	Hi Cord	Lo Cord
-53.9	1854.59		-3	1854.44		60	1854.25	
123	1854.06		195	1853.85		246	1853.69	
282	1853.58		337	1853.36		357	1852.96	
357	1855.63		432	1855.4	1834	432	1855.4	1848.04
832	1854.2	1846.84	832	1854.2	1834.9	907	1853.93	
907	1851.66	1	039	1850.94		1059	1850.8	
1105	1850.44	1	128	1850.04		1134	1849	
1205	1849	1	244	1849		1247	1859	

Downstream Bridge Cross Section Data

Station Elevation Data num= 41

 Sta
 Elev
 St

Manning's n Values num= 3

Sta n Val Sta n Val Sta n Val

```
-53.899 .05 413.474 .03 923.85 .04
Bank Sta: Left Right Coeff Contr. Expan.
     413.474 923.85
                     .3
                                . 5
Ineffective Flow num=
  Sta L Sta R Elev Permanent
-53.899 442 1847.01 F
    822 1247 1843.5 F
Left Levee Station= 132.4 Elevation= 1852.03
Skew Angle = 15
Upstream Embankment side slope = 4 horiz. to 1.0 vertical
Downstream Embankment side slope =
                                       4 horiz. to 1.0 vertical
Maximum allowable submergence for weir flow =
                                       .95
Elevation at which weir flow begins
Energy head used in spillway design
Spillway height used in design
Weir crest shape
                                  = Broad Crested
Number of Abutments = 2
Abutment Data
Upstream num= 2
   Sta Elev Sta Elev
   475 1844.2 490 1834.2
Downstream num=
    Sta Elev
                Sta Elev
    432 1844.2 447 1834.2
Abutment Data
Upstream
         num=
   Sta Elev
               Sta Elev
    860 1833.2 875 1843.2
```

D-46 December 2007

Downstream num= 2

Sta Elev Sta Elev

817 1833.2 832 1843.2

Number of Piers = 3

Pier Data

Pier Station Upstream= 575 Downstream= 532

Upstream num= 2

Width Elev Width Elev

7 1830 7 1848

Downstream num= 2

Width Elev Width Elev

6 1830 6 1848

Pier Data

Pier Station Upstream= 675 Downstream= 632

Upstream num= 2

Width Elev Width Elev

7 1830 7 1848

Downstream num= 2

Width Elev Width Elev

6 1830 6 1848

Pier Data

Pier Station Upstream= 775 Downstream= 732

Upstream num= 2

Width Elev Width Elev

7 1830 7 1848

Downstream num= 2

Width Elev Width Elev

6 1830 6 1848

```
Number of Bridge Coefficient Sets = 1
```

Low Flow Methods and Data

Energy

Momentum Cd = 1.2

Yarnell KVal = 1.05

Selected Low Flow Methods = Highest Energy Answer

High Flow Method

Pressure and Weir flow

Submerged Inlet Cd =

Submerged Inlet + Outlet Cd = .8

Max Low Cord =

Additional Bridge Parameters

Add Friction component to Momentum

Do not add Weight component to Momentum

Class B flow critical depth computations use critical depth

inside the bridge at the upstream end $% \left(1\right) =\left(1\right) \left(1\right)$

Criteria to check for pressure flow = Upstream energy grade line

BRIDGE OUTPUT Profile #100 yr

E.G. US. (ft)	1841.63	Element	Inside BR US	Inside BR DS
W.S. US. (ft)	1840.40	E.G. Elev (ft)	1841.55	1839.94
Q Total (cfs)	21000.00	W.S. Elev (ft)	1839.90	1837.60
Q Bridge (cfs)	21000.00	Crit W.S. (ft)	1838.98	1837.60
Q Weir (cfs)		Max Chl Dpth (ft)	6.50	5.78
Weir Sta Lft (ft)		Vel Total (ft/s)	10.30	12.28
Weir Sta Rgt (ft)		Flow Area (sq ft)	2038.01	1709.52
Weir Submerg		Froude # Chl	0.76	1.00
Weir Max Depth (ft)		Specif Force (cu ft)	12551.98	12113.33
Min El Weir Flow (ft)	1850.51	Hydr Depth (ft)	5.68	4.72

D-48 December 2007

Min El Prs (ft)	1848.04	W.P. Total (ft)	395.50	392.96
Delta EG (ft)	1.95	Conv. Total (cfs)	301154.5	225646.4
Delta WS (ft)	2.83	Top Width (ft)	367.94	363.78
BR Open Area (sq ft)	4744.52	Frctn Loss (ft)		
BR Open Vel (ft/s)	12.28	C & E Loss (ft)		
Coef of Q		Shear Total (lb/sq ft)	1.56	2.35
Br Sel Method	Momentum	Power Total (lb/ft s)	16.12	28.90

Warning: The flow regime calculated by the momentum equation shows class B flow. For the best solution, this profile should be run as a mixed flow problem.

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid,

energy was used.

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid,

energy was used.

BRIDGE OUTPUT Profile #25 yr

E.G. US. (ft)	1839.42	Element	Inside BR US	Inside BR DS
W.S. US. (ft)	1838.64	E.G. Elev (ft)	1839.37	1837.80
Q Total (cfs)	11990.00	W.S. Elev (ft)	1838.35	1836.50
Q Bridge (cfs)	11990.00	Crit W.S. (ft)	1837.50	1836.10
Q Weir (cfs)		Max Chl Dpth (ft)	4.95	4.68
Weir Sta Lft (ft)		Vel Total (ft/s)	8.09	9.13
Weir Sta Rgt (ft)		Flow Area (sq ft)	1482.03	1313.41
Weir Submerg		Froude # Chl	0.70	0.84
Weir Max Depth (ft)		Specif Force (cu ft)	6118.62	5844.11
Min El Weir Flow (ft)	1850.51	Hydr Depth (ft)	4.13	3.64
Min El Prs (ft)	1848.04	W.P. Total (ft)	386.21	384.47
Delta EG (ft)	1.80	Conv. Total (cfs)	179923.9	147559.1
Delta WS (ft)	2.19	Top Width (ft)	363.29	360.49
BR Open Area (sq ft)	4744.52	Frctn Loss (ft)		

Beaver Dam Wash Flood Hazard Assessment Report

 BR Open Vel (ft/s)
 9.13
 C & E Loss (ft)

 Coef of Q
 Shear Total (lb/sq ft)
 1.06
 1.41

 Br Sel Method
 Momentum
 Power Total (lb/ft s)
 8.61
 12.85

Warning: The water surface upstream of the bridge computed by the Yarnell method was below critical

depth. The Yarnell solution has been disregarded.

Note: Yarnell answer is not valid if the water surface is above the low chord or if there is weir flow.

The Yarnell answer has been disregarded.

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid,

energy was used.

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid,

energy was used.

CROSS SECTION

RIVER: Reach #1

REACH: Beaver Dam Wash RS: 11

INPUT

Description:

Station Elevation Data num= 41

Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 0 1842.53 60.322 1842.26 127.889 1852.03 195.494 1841.12 -53.899 1843.56 241.993 1840.95 280.63 1838.34 299.775 1839.04 328.357 1837.99 347.926 1838.52 369.525 1837.98 413.474 1838.89 422.515 1832.71 4321832.627 435.121 1832.6 444.413 1833.56 475.313 1833.41 510.038 1832.21 534.669 1833.19 565.501 1832.9 571.567 1832.09 611.441 1831.82 620.81 1832.9 637.482 1832.9 661.273 1832.9 693.854 1832.9 752.022 1832.9 809.697 1832.9 832 1832.9 862.697 1836.32

D-50 December 2007

 $923.85\ 1844.92\ 955.648\ 1844.89\ \ 968.36\ 1844.741055.834\ 1845.871082.291\ 1849.47$

1105 1850.44 1128 1850.04 1134 1849 1205 1849 1244 1849

1247 1859

Manning's n Values num= 3

Sta n Val Sta n Val Sta n Val -53.899 .05 413.474 .03 923.85 .04

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.

413.474 923.85 448.39 424.85 389.32 .3 .5

Ineffective Flow num= 2

Sta L Sta R Elev Permanent

-53.899 442 1847.01 F

822 1247 1843.5 F

Left Levee Station= 132.4 Elevation= 1852.03

Skew Angle = 15

CROSS SECTION OUTPUT Profile #100 yr

E.G. Elev (ft)	1839.67	Element	Left OB Channel		Right OB
Vel Head (ft)	2.11	Wt. n-Val.		0.030	
W.S. Elev (ft)	1837.57	Reach Len. (ft)	448.39	424.85	389.32
Crit W.S. (ft)	1837.39	Flow Area (sq ft)		1803.57	
E.G. Slope (ft/ft)	0.006932	Area (sq ft)		2057.58	
Q Total (cfs)	21000.00	Flow (cfs)		21000.00	
Top Width (ft)	456.17	Top Width (ft)		456.17	
Vel Total (ft/s)	11.64	Avg. Vel. (ft/s)		11.64	
Max Chl Dpth (ft)	5.75	Hydr. Depth (ft)		4.75	
Conv. Total (cfs)	252217.5	Conv. (cfs)		252217.5	
Length Wtd. (ft)	420.32	Wetted Per. (ft)		380.17	
Min Ch El (ft)	1831.82	Shear (lb/sq ft)		2.05	
Alpha	1.00	Stream Power (lb/ft s)		23.91	
Frctn Loss (ft)	3.31	Cum Volume (acre-ft)	29.93	153.37	37.25

C & E Loss (ft) 0.12 Cum SA (acres) 15.85 33.08 22.50

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate the need for additional cross sections.

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid,

energy was used.

CROSS SECTION OUTPUT Profile #25 yr

E.G. Elev (ft)	1837.62	Element	Left OB Channel		Right OB
Vel Head (ft)	1.18	Wt. n-Val.		0.030	
W.S. Elev (ft)	1836.45	Reach Len. (ft)	448.39	424.85	389.32
Crit W.S. (ft)	1835.97	Flow Area (sq ft)		1377.88	
E.G. Slope (ft/ft)	0.005544	Area (sq ft)		1551.94	
Q Total (cfs)	11990.00	Flow (cfs)		11990.00	
Top Width (ft)	446.57	Top Width (ft)		446.57	
Vel Total (ft/s)	8.70	Avg. Vel. (ft/s)		8.70	
Max Chl Dpth (ft)	4.63	Hydr. Depth (ft)		3.63	
Conv. Total (cfs)	161029.5	Conv. (cfs)		161029.5	
Length Wtd. (ft)	420.51	Wetted Per. (ft)		380.17	
Min Ch El (ft)	1831.82	Shear (lb/sq ft)		1.25	
Alpha	1.00	Stream Power (lb/ft s)		10.92	
Frctn Loss (ft)	3.13	Cum Volume (acre-ft)	9.97	109.38	12.26
C & E Loss (ft)	0.05	Cum SA (acres)	8.47	32.26	13.76

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate the need for additional cross sections.

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid,

energy was used.

D-52 December 2007

CROSS SECTION

RIVER: Reach #1

REACH: Beaver Dam Wash RS: 10

INPUT

Description:

Station Elevation Data 58 num= Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev -624.4 1870 -517.53 1865 -509.73 1860 -478.64 1850 -465.44 1845 -441.68 1840 -335.04 1840 -330.76 1842 -312.04 1842 -296.02 1838 -272.72 1835.2 -226.77 1834.84 -224.8 1835.6 -115.24 1836 -30.15 1.8 1835.69 12.66 1835.63 15.32 1835 27.96 1834.99 40.86 1832.75 72.3 1830.99 75.46 1829.3 94.02 1830 115.3 1829.74 126.77 1830 150.84 1829.91 168.51 1830 186.53 1830 196.49 1828.86 212.07 1831.66 251.25 1831.64 253.65 1830.14 276.35 1830.95 307.97 1830.62 312.9 1830 313.66 1827.14 328.33 1826.87 332.45 1830 333.29 1828.83 353.61 1829.44 354.48 1830 360.3 1830 372.2 1830 399.14 1830 414.51 1830 451.96 1830 462 1830 528.31 1832.87 560.9 1834.35 589.09 1833.46 705.12 1834.38 758.84 1840 765.96 1841 831.17 1841 1077.83 1841 1113.54 1843 1226.17 1843 1291.78 1847

Manning's n Values num= 3

Sta n Val Sta n Val Sta n Val

-624.4 .05 27.96 .03 360.3 .04

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.

27.96 360.3 464.82 392.17 304.28 .3 .5

Ineffective Flow num= 2

Sta L Sta R Elev Permanent

-624.4 -22 1860 E

552 1291.78 1839 F

CROSS SECTION OUTPUT Profile #100 yr

E.G. Elev (ft)	1836.25	Element	Left OB	Channel	Right OB
Vel Head (ft)	1.87	Wt. n-Val.		0.030	0.040
W.S. Elev (ft)	1834.38	Reach Len. (ft)	464.82	392.17	304.28
Crit W.S. (ft)	1834.38	Flow Area (sq ft)		1326.37	663.92
E.G. Slope (ft/ft)	0.009022	Area (sq ft)		1326.37	732.89
Q Total (cfs)	21000.00	Flow (cfs)		15639.11	5360.89
Top Width (ft)	673.66	Top Width (ft)		328.83	344.83
Vel Total (ft/s)	10.55	Avg. Vel. (ft/s)		11.79	8.07
Max Chl Dpth (ft)	7.51	Hydr. Depth (ft)		4.03	3.46
Conv. Total (cfs)	221089.7	Conv. (cfs)		164649.8	56439.9
Length Wtd. (ft)	378.63	Wetted Per. (ft)		334.29	191.79
Min Ch El (ft)	1826.87	Shear (lb/sq ft)		2.23	1.95
Alpha	1.08	Stream Power (lb/ft s)		26.35	15.74
Frctn Loss (ft)	3.06	Cum Volume (acre-ft)	29.93	136.87	33.97
C & E Loss (ft)	0.08	Cum SA (acres)	15.85	29.25	20.95

Warning: The energy equation could not be balanced within the specified number of iterations. The

 $\,$ program used critical depth for the water surface and continued on with the calculations.

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical

depth, the calculated water surface came back below critical depth. This indicates that there

is not a valid subcritical answer. The program defaulted to critical depth.

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid,

water surface was used.

D-54 December 2007

CROSS SECTION OUTPUT Profile #25 yr

E.G. Elev (ft)	1834.44	Element	Left OB	Channel	Right OB
Vel Head (ft)	1.36	Wt. n-Val.		0.030	0.040
W.S. Elev (ft)	1833.08	Reach Len. (ft)	464.82	392.17	304.28
Crit W.S. (ft)	1833.08	Flow Area (sq ft)		904.83	423.53
E.G. Slope (ft/ft)	0.010504	Area (sq ft)		904.83	423.53
Q Total (cfs)	11990.00	Flow (cfs)		9058.59	2931.41
Top Width (ft)	494.09	Top Width (ft)		321.36	172.73
Vel Total (ft/s)	9.03	Avg. Vel. (ft/s)		10.01	6.92
Max Chl Dpth (ft)	6.21	Hydr. Depth (ft)		2.82	2.45
Conv. Total (cfs)	116986.3	Conv. (cfs)		88384.6	28601.7
Length Wtd. (ft)	380.53	Wetted Per. (ft)		326.71	172.79
Min Ch El (ft)	1826.87	Shear (lb/sq ft)		1.82	1.61
Alpha	1.07	Stream Power (lb/ft s)		18.18	11.13
Frctn Loss (ft)	3.43	Cum Volume (acre-ft)	9.97	97.40	10.36
C & E Loss (ft)	0.08	Cum SA (acres)	8.47	28.52	12.99

Warning: The energy equation could not be balanced within the specified number of iterations. The

 $\,$ program used critical depth for the water surface and continued on with the calculations.

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical

depth, the calculated water surface came back below critical depth. This indicates that there

is not a valid subcritical answer. The program defaulted to critical depth.

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid,

water surface was used.

CROSS SECTION

RIVER: Reach #1

REACH: Beaver Dam Wash RS: 9

INPUT

Description:

Station	Elevation	Data	num=	114					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
0	1862	5.78	1860	11.05	1858	16.57	1856	22.49	1854
46.53	1852	54.59	1851.11	71.08	1850.02	71.3	1850	101.38	1848
124.3	1846	137.33	1844	149.56	1842	161.98	1840	166.52	1838
176.48	1836	190.36	1834	199.22	1832	207.22	1830.83	227.54	1830.97
237.24	1830.98	255.84	1830.34	466.13	1832	496.66	1832	521.07	1831
526.07	1830	531.07	1829	541.63	1828	545.73	1827	592.89	1826
626.81	1826	627.92	1827	646.37	1827	651.2	1826	680.6	1826
692.2	1826	695.05	1825	710.78	1825	737.67	1826	743.07	1827
759.16	1827	770.29	1827	778.38	1827	792.68	1827	828.09	1827
861.67	1827	878.71	1827	905.36	1827	928.31	1827	937.47	1826
941.43	1825	946.91	1824	952.4	1824	969.08	1825	973.03	1826
976.35	1827	979.59	1828	982.46	1829	987.34	1829	1004.03	1828.54
1010.97	1828.78	1047.62	1828	1054.07	1828	1080.46	1829	1114.3	1830
1123.94	1830	1138.29	1829.73	1255.65	1830	1293.94	1831	1345.42	1832
1378.73	1832.62	1383.73	1833	1385.54	1833.12	1400.85	1834	1422.19	1835
1470.77	1836	1501.81	1838	1553.86	1838.72	1724.51	1838	1727.97	1838
1851.55	1838	1903.25	1838	1947.97	1839	1965.53	1840	1984.99	1841
1986.85	1841.25	1993.58	1842	2002.41	1843	2010.58	1844	2021.8	1845
2030.14	1845.75	2039.82	1845	2043.57	1844	2047.03	1843	2050.41	1842
2053.74	1841	2057.05	1840	2091.22	1840	2107.87	1841	2112.91	1841
2119.32	1840	2129.95	1839.69	2141.77	1840	2145.89	1840.03	2149.6	1840
2151.08	1840	2180.24	1841	2182.77	1842	2186.09	1843	2190.47	1844
2195	1845	2198.42	1846	2201.31	1847	2204.05	1848		

D-56 December 2007

Manning's n Values num= 3

Sta n Val Sta n Val Sta n Val

0 .04 521.07 .03 982.46 .04

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.

521.07 982.46 454.9 368.46 304.53 .2 .4

Ineffective Flow num= 2

Sta L Sta R Elev Permanent

0 500 1840 F

1142 2204.05 1833 F

CROSS SECTION OUTPUT Profile #100 yr

E.G. Elev (ft)	1832.26	Element	Left OB	Channel	Right OB
Vel Head (ft)	1.70	Wt. n-Val.		0.030	0.040
W.S. Elev (ft)	1830.56	Reach Len. (ft)	454.90	368.46	304.53
Crit W.S. (ft)	1830.56	Flow Area (sq ft)		1860.24	255.67
E.G. Slope (ft/ft)	0.007259	Area (sq ft)	3.83	1860.24	340.41
Q Total (cfs)	21000.00	Flow (cfs)		19892.13	1107.87
Top Width (ft)	788.44	Top Width (ft)	34.54	459.20	294.70
Vel Total (ft/s)	9.92	Avg. Vel. (ft/s)		10.69	4.33
Max Chl Dpth (ft)	6.56	Hydr. Depth (ft)		4.05	1.60
Conv. Total (cfs)	246476.4	Conv. (cfs)		233473.3	13003.0
Length Wtd. (ft)	365.00	Wetted Per. (ft)		461.19	159.60
Min Ch El (ft)	1824.00	Shear (lb/sq ft)		1.83	0.73
Alpha	1.11	Stream Power (lb/ft s)		19.55	3.15
Frctn Loss (ft)	2.77	Cum Volume (acre-ft)	29.91	122.52	30.22
C & E Loss (ft)	0.17	Cum SA (acres)	15.66	25.71	18.72

Warning: The energy equation could not be balanced within the specified number of iterations. The

 $\,$ program used critical depth for the water surface and continued on with the calculations.

Warning: Divided flow computed for this cross-section.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical

depth, the calculated water surface came back below critical depth. This indicates that there

is not a valid subcritical answer. The program defaulted to critical depth.

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid,

water surface was used.

CROSS SECTION OUTPUT Profile #25 yr

E.G. Elev (ft)	1830.58	Element	Left OB	Channel	Right OB
Vel Head (ft)	1.21	Wt. n-Val.		0.030	0.040
W.S. Elev (ft)	1829.38	Reach Len. (ft)	454.90	368.46	304.53
Crit W.S. (ft)	1829.30	Flow Area (sq ft)		1319.69	87.54
E.G. Slope (ft/ft)	0.007808	Area (sq ft)		1319.69	87.54
Q Total (cfs)	11990.00	Flow (cfs)		11744.40	245.60
Top Width (ft)	564.03	Top Width (ft)		453.27	110.76
Vel Total (ft/s)	8.52	Avg. Vel. (ft/s)		8.90	2.81
Max Chl Dpth (ft)	5.38	Hydr. Depth (ft)		2.91	0.79
Conv. Total (cfs)	135689.4	Conv. (cfs)		132909.9	2779.4
Length Wtd. (ft)	367.24	Wetted Per. (ft)		455.15	110.80
Min Ch El (ft)	1824.00	Shear (lb/sq ft)		1.41	0.39
Alpha	1.07	Stream Power (lb/ft s)		12.58	1.08
Frctn Loss (ft)	3.44	Cum Volume (acre-ft)	9.97	87.39	8.58
C & E Loss (ft)	0.04	Cum SA (acres)	8.47	25.03	12.00

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate the need for additional cross sections.

D-58 December 2007

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid,

water surface was used.

CROSS SECTION

RIVER: Reach #1

REACH: Beaver Dam Wash RS: 8

INPUT

Description:

Station I	Elevation	n Data	num=	149					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
0	1886	8.92	1884	18.39	1882	29.39	1880	39.17	1878
50.2	1876	62.45	1874	67.54	1872	72.04	1870	73.17	1869.31
76.62	1868.97	88.46	1868	108.89	1866	123.34	1864	139.14	1862
154.87	1860	171.01	1858	183.63	1856	196.6	1854	209.64	1852
223.38	1850	239.77	1848	256.5	1846	269.32	1844	282.89	1842
303.07	1840	316.92	1838.17	318.49	1838	337.3	1836.29	337.53	1835.98
337.94	1836	346.26	1835.15	347.14	1835.41	352.95	1834	367.96	1832
401.38	1830	467.53	1829.34	471.57	1830	475.25	1830.72	488.9	1830
508.81	1829	515.12	1828	519.7	1827	528.77	1826	554.16	1825
640.53	1824	709.1	1824	711.64	1825	713.17	1825	736.45	1824
743.7	1824	749.17	1825	756.39	1825	758.92	1824	874.94	1823
878.64	1822	887.25	1822	916.55	1822	937.05	1822	949.64	1823
961.38	1824	963.16	1825	966.29	1826	975.04	1826	1002.38	1825
1020.76	1825	1052	1825	1058.08	1825	1066.32	1825	1074.97	1824
1083.07	1824	1083.21	1824	1086.78	1823	1091.84	1822	1109.73	1822
1130.88	1823	1146.24	1824	1153.85	1824	1156.96	1824	1171.38	1824
1174.66	1823	1179.95	1823	1182.19	1824	1183.19	1825	1212.21	1826
1221.65	1827	1226.64	1828	1230.47	1828	1242.08	1827	1264.18	1826.45
1271.24	1826.76	1324.34	1826	1325.29	1826	1458.23	1826	1463.53	1825

1514.84	1825	1520.17	1826	1523.8	1827	1527.15	1828	1542.33	1829
1554.8	1830	1566.55	1831	1582.8	1832	1601.66	1834	1617.2	1835.5
1623.02	1835.95	1633.97	1836	1641.66	1836	1728.61	1838	1816.61	1838.6
1836.89	1838.37	1845.29	1838.48	1871.85	1838	1876.75	1837.92	1887.51	1838
1957.47	1838.2	1971.58	1838	2004.22	1837.78	2095.77	1837.25	2116.18	1837
2150.66	1837	2200.56	1838	2218.58	1839	2246.76	1840	2248.21	1840.21
2251.32	1840.88	2252.8	1841	2261.88	1842	2271.04	1843	2281.67	1844
2289.43	1844.67	2292.12	1845	2296.66	1845	2300.66	1844	2303.47	1843
2306.25	1842	2309.01	1841	2311.8	1840	2318.1	1839	2362.75	1839
2372.57	1839.07	2386.33	1839.12	2409.66	1840	2434.54	1841	2437.26	1842
2441.82	1843	2444.28	1844	2446.52	1845	2448.78	1846		

Manning's n Values num= 3

Sta n Val Sta n Val Sta n Val

0 .04 508.81 .03 1226.64 .04

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.

508.81 1226.64 378.01 321.27 255.23 .2 .4

CROSS SECTION OUTPUT Profile #100 yr

E.G. Elev (ft)	1828.37	Element	Left OB	Channel	Right OB
Vel Head (ft)	1.27	Wt. n-Val.		0.030	0.040
W.S. Elev (ft)	1827.10	Reach Len. (ft)	378.01	321.27	255.23
Crit W.S. (ft)	1827.10	Flow Area (sq ft)		2140.45	322.78
E.G. Slope (ft/ft)	0.007965	Area (sq ft)		2140.45	322.78
Q Total (cfs)	21000.00	Flow (cfs)		19833.18	1166.82
Top Width (ft)	985.99	Top Width (ft)		702.86	283.14
Vel Total (ft/s)	8.53	Avg. Vel. (ft/s)		9.27	3.61
Max Chl Dpth (ft)	5.09	Hydr. Depth (ft)		3.05	1.14
Conv. Total (cfs)	235303.1	Conv. (cfs)		222229.0	13074.1
Length Wtd. (ft)	317.69	Wetted Per. (ft)		705.30	283.49
Min Ch El (ft)	1822.00	Shear (lb/sq ft)		1.51	0.57

D-60 December 2007

Alpha	1.13	Stream Power (lb/ft s)		13.98	2.05
Frctn Loss (ft)	1.59	Cum Volume (acre-ft)	29.89	105.60	27.91
C & E Loss (ft)	0.19	Cum SA (acres)	15.48	20.79	16.70

Warning: The energy equation could not be balanced within the specified number of iterations.

 $\,$ program used critical depth for the water surface and continued on with the calculations.

Warning: Divided flow computed for this cross-section.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical

depth, the calculated water surface came back below critical depth. This indicates that there

is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION OUTPUT Profile #25 yr

E.G. Elev (ft)	1827.11	Element	Left OB	Channel	Right OB
Vel Head (ft)	1.11	Wt. n-Val.		0.030	0.040
W.S. Elev (ft)	1826.00	Reach Len. (ft)	378.01	321.27	255.23
Crit W.S. (ft)	1826.00	Flow Area (sq ft)		1380.65	56.56
E.G. Slope (ft/ft)	0.011470	Area (sq ft)		1380.65	56.56
Q Total (cfs)	11990.00	Flow (cfs)		11778.58	211.42
Top Width (ft)	736.54	Top Width (ft)		674.61	61.93
Vel Total (ft/s)	8.34	Avg. Vel. (ft/s)		8.53	3.74
Max Chl Dpth (ft)	4.00	Hydr. Depth (ft)		2.05	0.91
Conv. Total (cfs)	111955.4	Conv. (cfs)		109981.2	1974.1
Length Wtd. (ft)	320.43	Wetted Per. (ft)		676.92	62.12
Min Ch El (ft)	1822.00	Shear (lb/sq ft)		1.46	0.65

Beaver Dam Wash Flood Hazard Assessment Report

Alpha	1.03	Stream Power (lb/ft s)		12.46	2.44
Frctn Loss (ft)	2.37	Cum Volume (acre-ft)	9.97	75.96	8.07
C & E Loss (ft)	0.17	Cum SA (acres)	8.47	20.26	11.40

Warning: The energy equation could not be balanced within the specified number of iterations. The

 $\hspace{1cm} \hbox{program selected the water surface that had the least amount of error between computed} \\$

assumed values.

Warning: Divided flow computed for this cross-section.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical

depth, the calculated water surface came back below critical depth. This indicates that there

is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Reach #1

REACH: Beaver Dam Wash RS: 7

INPUT

Description:

Station E	levation	Data	num=	127					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
109.32	1896	139.34	1894	142.81	1892	146.26	1890	149.76	1888
152.6	1886	155.98	1884	159.33	1882	162.71	1880	165.88	1878
169.28	1876	170.79	1874	171.95	1872	172.76	1870	173.86	1868

D-62 December 2007

174.87	1866	175.83	1864	176.69	1862	177.77	1860	178.6	1858
180.72	1856	183.94	1854	187.22	1852	190.55	1850	192.98	1848
194.27	1846	195.25	1844	196.22	1842	197.07	1840	198.17	1838
199.16	1836	200.12	1834	200.92	1832	201.97	1830	205.8	1828
212.35	1826	223.4	1824	426.14	1824	432.81	1825	438.6	1826
443.48	1827	448.22	1828	452.75	1829	456.27	1829.77	477.3	1829
522.4	1828.11	529.03	1828.04	530.53	1828	585.91	1828	586.59	1828
587.47	1827	588.38	1826	589.82	1825	593.63	1824	598.79	1823
616.44	1823	621.95	1823	629.78	1823	650.25	1823	669.55	1823
741.14	1823	744.89	1822	772.23	1821	823.88	1820	827.34	1820
837.33	1820	844.28	1820	860.37	1821	861.66	1821	864	1820
876.25	1820	878.9	1820	898.89	1820	901.69	1819	906.88	1819
910.25	1819	916.07	1819	921.06	1820	926.07	1820	943	1820
1014.64	1820	1035.7	1820	1048.42	1820	1089.95	1819	1122.79	1819
1143.95	1820	1146.69	1821	1190.88	1822	1242.23	1822	1248.57	1821
1265.49	1821	1272.67	1822	1275	1823	1279.38	1824	1310.14	1824
1330.72	1823	1396.45	1823	1532.3	1824	1597.89	1825	1620.17	1826
1663.62	1828	1673.29	1830	1682.84	1832	1699.54	1834	1705.65	1834.5
1729.2	1834.78	1738.38	1834	1742.28	1833.53	1747.97	1833.7	1755.8	1834
1912.78	1836	2093.68	1836.83	2130.37	1836	2236.52	1836	2297.07	1837
2305.85	1838	2314.16	1839	2321.63	1840	2324.03	1840	2348.75	1840
2357.68	1841	2360.13	1841.31	2365.48	1842	2373.23	1843	2374.28	1843.14
2382.49	1844	2388.17	1844.59						

Manning's n Values num= 3

Sta n Val Sta n Val Sta n Val

109.32 .04 585.91 .03 1279.38 .04

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.

585.91 1279.38 308.17 320.9 357.01 .2 .4

CROSS SECTION OUTPUT Profile #100 yr

E.G. Elev (ft)	1825.76	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.78	Wt. n-Val.		0.030	0.040
W.S. Elev (ft)	1824.97	Reach Len. (ft)	308.17	320.90	357.01
Crit W.S. (ft)	1824.15	Flow Area (sq ft)		2734.32	421.25
E.G. Slope (ft/ft)	0.003446	Area (sq ft)	203.15	2734.32	421.25
Q Total (cfs)	21000.00	Flow (cfs)		19889.22	1110.78
Top Width (ft)	1220.84	Top Width (ft)	214.61	689.46	316.77
Vel Total (ft/s)	6.65	Avg. Vel. (ft/s)		7.27	2.64
Max Chl Dpth (ft)	5.97	Hydr. Depth (ft)		3.97	1.33
Conv. Total (cfs)	357730.1	Conv. (cfs)		338808.2	18921.9
Length Wtd. (ft)	323.43	Wetted Per. (ft)		691.04	316.81
Min Ch El (ft)	1819.00	Shear (lb/sq ft)		0.85	0.29
Alpha	1.14	Stream Power (lb/ft s)		6.19	0.75
Frctn Loss (ft)	1.41	Cum Volume (acre-ft)	29.01	87.62	25.73
C & E Loss (ft)	0.13	Cum SA (acres)	14.55	15.66	14.94

Warning: Divided flow computed for this cross-section.

Warning: The velocity head has changed by more than $0.5\ \mathrm{ft}\ (0.15\ \mathrm{m})$. This may indicate the need for

additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid,

water surface was used.

CROSS SECTION OUTPUT Profile #25 yr

E.G. Elev (ft)	1824.27	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.69	Wt. n-Val.		0.030	0.040

D-64 December 2007

W.S. Elev (ft)	1823.57	Reach Len. (ft)	308.17	320.90	357.01
Crit W.S. (ft)	1823.11	Flow Area (sq ft)		1772.23	63.17
E.G. Slope (ft/ft)	0.005152	Area (sq ft)		1772.23	63.17
Q Total (cfs)	11990.00	Flow (cfs)		11897.48	92.52
Top Width (ft)	836.86	Top Width (ft)		681.67	155.19
Vel Total (ft/s)	6.53	Avg. Vel. (ft/s)		6.71	1.46
Max Chl Dpth (ft)	4.57	Hydr. Depth (ft)		2.60	0.41
Conv. Total (cfs)	167036.5	Conv. (cfs)		165747.7	1288.9
Length Wtd. (ft)	321.78	Wetted Per. (ft)		683.03	155.21
Min Ch El (ft)	1819.00	Shear (lb/sq ft)		0.83	0.13
Alpha	1.05	Stream Power (lb/ft s)		5.60	0.19
Frctn Loss (ft)	1.52	Cum Volume (acre-ft)	9.97	64.34	7.72
C & E Loss (ft)	0.03	Cum SA (acres)	8.47	15.26	10.76

Warning: Divided flow computed for this cross-section.

Warning: The energy loss was greater than $1.0 \, \text{ft} \, (0.3 \, \text{m})$. between the current and previous cross section. This may indicate the need for additional cross sections.

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid,

water surface was used.

CROSS SECTION

RIVER: Reach #1

REACH: Beaver Dam Wash RS: 6

INPUT

Description:

Station Elevation Data num= 111

 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev

 116.85
 1890
 123.25
 1888
 129.57
 1886
 133.11
 1884
 135.83
 1882

139.09	1880	142.84	1878	146.21	1876	151.62	1874	153.01	1872
154.48	1870	155.85	1868	157.21	1866	158.49	1864	159.72	1862
160.93	1860	162.1	1858	163.29	1856	164.43	1854	165.63	1852
166.75	1850	168	1848	169.14	1846	170.34	1844	171.44	1842
172.44	1840	173.55	1838	174.67	1836	175.79	1834	180.94	1832
190.95	1830	200.6	1828	455.58	1826.87	529.91	1827	530.08	1827.09
531.61	1827	537.02	1826.66	630.99	1827	690.1	1828	704.68	1829
714.03	1830	721.77	1830	726.92	1829	733.87	1828	744.87	1826.94
757.01	1827.23	846.69	1827	872.92	1826	874	1825	874.97	1824
875.96	1823	876.95	1822	877.92	1821	885.05	1820	895.24	1819
917.93	1818	984.67	1817	1066.87	1817	1080.53	1818	1089.38	1818
1091.37	1817	1107.42	1817	1109.73	1818	1113.91	1819	1116.06	1820
1121.64	1820	1122.51	1819	1197.3	1819	1208.33	1819	1217.04	1819
1225.89	1819	1256.48	1819	1303.22	1820	1305.05	1821	1403.48	1821
1415.88	1820.41	1428.35	1820.83	1458.36	1820.51	1494.72	1821	1587.78	1822
1780.44	1824.82	1785.38	1824	1797.1	1826	1806.27	1828	1814.32	1830
1820.65	1830.9	1883.1	1830.13	1915.75	1830.04	1977.39	1830.38	2042.71	1830.1
2075.86	1830.04	2081.92	1830.77	2093.96	1831	2132.85	1832	2156.08	1833
2160.54	1834	2163.12	1834	2190.61	1834	2200.22	1835	2208.04	1835.93
2210.83	1836	2222.1	1836.28	2238.17	1836.3	2240.57	1836	2250.69	1835
2261.65	1835	2272.74	1836	2342.83	1836.11	2363.4	1836.63	2370.99	1837
2384.56	1838								

Manning's n Values num= 3

Sta n Val Sta n Val Sta n Val

116.85 .04 872.92 .03 1305.05 .04

 Bank Sta: Left Right
 Lengths: Left Channel
 Right
 Coeff Contr.
 Expan.

 872.92 1305.05
 270.26 292.58 317.61
 .2 .4

CROSS SECTION OUTPUT Profile #100 yr

E.G. Elev (ft) 1824.22 Element Left OB Channel Right OB

D-66 December 2007

Vel Head (ft)	1.45	Wt. n-Val.		0.030	0.040
W.S. Elev (ft)	1822.77	Reach Len. (ft)	270.26	292.58	317.61
Crit W.S. (ft)	1822.59	Flow Area (sq ft)		1908.18	501.00
E.G. Slope (ft/ft)	0.005664	Area (sq ft)		1908.18	501.00
Q Total (cfs)	21000.00	Flow (cfs)		19169.39	1830.61
Top Width (ft)	764.12	Top Width (ft)		428.86	335.26
Vel Total (ft/s)	8.72	Avg. Vel. (ft/s)		10.05	3.65
Max Chl Dpth (ft)	5.77	Hydr. Depth (ft)		4.45	1.49
Conv. Total (cfs)	279041.4	Conv. (cfs)		254716.8	24324.6
Length Wtd. (ft)	294.19	Wetted Per. (ft)		431.30	335.30
Min Ch El (ft)	1817.00	Shear (lb/sq ft)		1.56	0.53
Alpha	1.23	Stream Power (lb/ft s)		15.72	1.93
Frctn Loss (ft)	1.49	Cum Volume (acre-ft)	28.29	70.52	21.95
C & E Loss (ft)	0.08	Cum SA (acres)	13.79	11.54	12.27

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION OUTPUT Profile #25 yr

E.G. Elev (ft)	1822.72	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.85	Wt. n-Val.		0.030	0.040
W.S. Elev (ft)	1821.87	Reach Len. (ft)	270.26	292.58	317.61
Crit W.S. (ft)		Flow Area (sq ft)		1521.34	226.35
E.G. Slope (ft/ft)	0.004320	Area (sq ft)		1521.34	226.35
Q Total (cfs)	11990.00	Flow (cfs)		11499.00	491.00
Top Width (ft)	698.23	Top Width (ft)		427.97	270.26
Vel Total (ft/s)	6.86	Avg. Vel. (ft/s)		7.56	2.17
Max Chl Dpth (ft)	4.87	Hydr. Depth (ft)		3.55	0.84
Conv. Total (cfs)	182424.2	Conv. (cfs)		174953.7	7470.5
Length Wtd. (ft)	292.43	Wetted Per. (ft)		430.03	270.29
Min Ch El (ft)	1817.00	Shear (lb/sq ft)		0.95	0.23

Beaver Dam Wash Flood Hazard Assessment Report

Alpha	1.17	Stream Power (lb/ft s)		7.21	0.49
Frctn Loss (ft)	1.32	Cum Volume (acre-ft)	9.97	52.21	6.54
C & E Loss (ft)	0.06	Cum SA (acres)	8.47	11.17	9.02

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Reach #1

REACH: Beaver Dam Wash RS: 5

INPUT

Description:

Station I	Elevatior	n Data	num=	94					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
214.45	1838	224.91	1836.61	228.1	1836	235.12	1834	239.71	1832
244.43	1830	249.35	1828	255.43	1826	302.4	1824	506.79	1823.69
514.52	1823.45	539.1	1824	684.49	1824	700.14	1823	710.2	1822
721.86	1821	733.24	1820	752.26	1819	770.96	1819	782.93	1820
799.25	1820.06	813.59	1820.33	819.82	1821	827.3	1822	835.03	1823
850.87	1823	856.7	1822	862.59	1821	868.45	1820	932.78	1819
934.38	1818	936.05	1817	961.96	1816	975.23	1816	996	1817
1008.14	1818	1028.23	1819	1030.05	1820	1033.24	1821	1055.42	1821
1057.52	1820	1057.67	1819	1057.81	1818	1058.03	1817	1058.22	1816
1068.03	1815	1081.14	1814	1127.04	1814	1130.77	1815	1137.98	1816
1140.37	1817	1142.45	1818	1148.57	1819	1153.67	1819	1160.09	1818
1179.27	1817	1183.11	1816	1194.48	1815	1246.72	1815	1273.06	1816
1274.58	1817	1276.19	1818	1303.49	1819	1308.89	1820	1327.41	1821
1346.27	1821	1364.27	1819.98	1398.89	1820	1417.77	1820	1427.98	1820.23
1450.7	1820.03	1451.11	1820	1465.7	1819	1876.22	1820	1892.64	1821

D-68 December 2007

1824.28	1957.32	1824	1948.05	1823	1926.78	1822	1908.09	1821.88	1905.88
1829	2025.65	1828	1989.16	1827	1978.96	1826	1970.5	1825	1962.94
1830.89	2103.43	1830	2091.84	1829.9	2090.68	1829	2071.75	1829	2058.16
		1831	2160.06	1830	2149.95	1829.92	2116.21	1830	2115.29

Manning's n Values num= 3

Sta n Val Sta n Val Sta n Val

214.45 .04 1055.42 .03 1276.19 .04

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.

1055.42 1276.19 430.91 414.45 462.38 .2 .4

CROSS SECTION OUTPUT Profile #100 yr

E.G. Elev (ft)	1822.65	Element	Left OB	Channel	Right OB
Vel Head (ft)	1.25	Wt. n-Val.	0.040	0.030	0.040
W.S. Elev (ft)	1821.40	Reach Len. (ft)	430.91	414.45	462.38
Crit W.S. (ft)	1821.40	Flow Area (sq ft)	720.04	1293.22	1071.44
E.G. Slope (ft/ft)	0.004538	Area (sq ft)	720.04	1293.22	1071.44
Q Total (cfs)	21000.00	Flow (cfs)	3346.62	13803.34	3850.03
Top Width (ft)	1144.04	Top Width (ft)	300.80	220.77	622.47
Vel Total (ft/s)	6.81	Avg. Vel. (ft/s)	4.65	10.67	3.59
Max Chl Dpth (ft)	7.40	Hydr. Depth (ft)	2.39	5.86	1.72
Conv. Total (cfs)	311728.7	Conv. (cfs)	49678.0	204899.9	57150.8
Length Wtd. (ft)	423.15	Wetted Per. (ft)	302.20	226.04	622.72
Min Ch El (ft)	1814.00	Shear (lb/sq ft)	0.68	1.62	0.49
Alpha	1.74	Stream Power (lb/ft s)	3.14	17.30	1.75
Frctn Loss (ft)	2.17	Cum Volume (acre-ft)	26.05	59.77	16.21
C & E Loss (ft)	0.01	Cum SA (acres)	12.86	9.36	8.78

Warning: The energy equation could not be balanced within the specified number of iterations. The

program used critical depth for the water surface and continued on with the calculations.

Warning: Divided flow computed for this cross-section.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical

depth, the calculated water surface came back below critical depth. This indicates that there

is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION OUTPUT Profile #25 yr

E.G. Elev (ft)	1821.34	Element	Left OB	Channel	Right OB
Vel Head (ft)	1.14	Wt. n-Val.	0.040	0.030	0.040
W.S. Elev (ft)	1820.20	Reach Len. (ft)	430.91	414.45	462.38
Crit W.S. (ft)	1820.20	Flow Area (sq ft)	396.94	1029.17	362.99
E.G. Slope (ft/ft)	0.004718	Area (sq ft)	396.94	1029.17	362.99
Q Total (cfs)	11990.00	Flow (cfs)	1561.91	9671.73	756.37
Top Width (ft)	1009.24	Top Width (ft)	239.19	219.09	550.95
Vel Total (ft/s)	6.70	Avg. Vel. (ft/s)	3.93	9.40	2.08
Max Chl Dpth (ft)	6.20	Hydr. Depth (ft)	1.66	4.70	0.66
Conv. Total (cfs)	174556.7	Conv. (cfs)	22739.1	140806.0	11011.6
Length Wtd. (ft)	418.84	Wetted Per. (ft)	240.25	224.18	551.12
Min Ch El (ft)	1814.00	Shear (lb/sq ft)	0.49	1.35	0.19
Alpha	1.64	Stream Power (lb/ft s)	1.91	12.71	0.40
Frctn Loss (ft)	2.17	Cum Volume (acre-ft)	8.73	43.64	4.39
C & E Loss (ft)	0.03	Cum SA (acres)	7.73	9.00	6.02

Warning: The energy equation could not be balanced within the specified number of iterations. The

 $\,$ program used critical depth for the water surface and continued on with the calculations.

Warning: Divided flow computed for this cross-section.

D-70 December 2007

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical

depth, the calculated water surface came back below critical depth. This indicates that there

is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Reach #1

REACH: Beaver Dam Wash RS: 4

INPUT

Description:

Station I	Elevation	n Data	num=	91					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
135.29	1860	142.32	1850	149.22	1840	150.95	1838	153.5	1836
155.79	1834	158.79	1832	161.11	1830	165.34	1828	166.79	1826
168.17	1824	173.4	1822	181.04	1820.41	187.05	1820	187.8	1819.93
225.83	1818	292.92	1816	361.55	1814	383.14	1812	401.53	1812
415.21	1814	418.85	1816	422.89	1816	428.33	1814	454.2	1814
467.7	1814	472.48	1812	481.88	1810	508.81	1810	512.29	1812
518.51	1814	853.62	1814	867.59	1812	1014.18	1810	1040.25	1810
1045.54	1810	1058.32	1808	1086.48	1808	1092.43	1810	1098.95	1812
1116.71	1812	1124.06	1812	1146.46	1814	1161.22	1815.44	1167.47	1815.71
1263.59	1816	1286.46	1818	1300	1818	1316.05	1816	1320.39	1816
1343.19	1816	1353.76	1814	1363.27	1812.9	1405.54	1812.62	1408.27	1813.48
1420.48	1814	1429.78	1814.44	1442.96	1814.79	1465.39	1815.12	1504.6	1816
1518.32	1816.46	1540.11	1816.52	1553.9	1816.61	1575.11	1817.43	1588.04	1817.71
1610.81	1817.8	1615.66	1818	1623.96	1818.4	1645.47	1818.51	1658.7	1818.72
1680.67	1819.44	1690.75	1819.02	1728.92	1818.64	1807.34	1822	1828.54	1824
1833.5	1827.1	1835.55	1828	1839.28	1830	1842.13	1832	1845.93	1834

1850.21	1836 1854.32	1838 1858.56	1840 1862.89	1842 1866.95	1844
1871.22	1846 1875.53	1848 1879.69	1850 1883.93	1852 1888.32	1854
1892.48	1856				

Manning's n Values num= 3

Sta n Val Sta n Val Sta n Val

135.29 .04 853.62 .03 1167.47 .04

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.

853.62 1167.47 291.64 429.09 457.75 .2 .4

CROSS SECTION OUTPUT Profile #100 yr

E.G. Elev (ft)	1817.00	Element	Left OB	Channel	Right OB
Vel Head (ft)	1.31	Wt. n-Val.	0.040	0.030	0.040
W.S. Elev (ft)	1815.70	Reach Len. (ft)	291.64	429.09	457.75
Crit W.S. (ft)	1815.70	Flow Area (sq ft)	1097.75	1445.88	236.20
E.G. Slope (ft/ft)	0.005835	Area (sq ft)	1097.75	1445.88	236.20
Q Total (cfs)	21000.00	Flow (cfs)	4958.11	15120.99	920.90
Top Width (ft)	1004.67	Top Width (ft)	544.86	313.53	146.27
Vel Total (ft/s)	7.55	Avg. Vel. (ft/s)	4.52	10.46	3.90
Max Chl Dpth (ft)	7.70	Hydr. Depth (ft)	2.01	4.61	1.61
Conv. Total (cfs)	274912.6	Conv. (cfs)	64907.0	197950.1	12055.6
Length Wtd. (ft)	405.36	Wetted Per. (ft)	547.32	314.64	146.66
Min Ch El (ft)	1808.00	Shear (lb/sq ft)	0.73	1.67	0.59
Alpha	1.48	Stream Power (lb/ft s)	3.30	17.51	2.29
Frctn Loss (ft)	1.27	Cum Volume (acre-ft)	17.06	46.74	9.27
C & E Loss (ft)	0.17	Cum SA (acres)	8.68	6.82	4.70

Warning: The energy equation could not be balanced within the specified number of iterations. The

 $\,$ program used critical depth for the water surface and continued on with the calculations.

D-72 December 2007

Warning: Divided flow computed for this cross-section.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical

depth, the calculated water surface came back below critical depth. This indicates that there

is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION OUTPUT Profile #25 yr

E.G. Elev (ft)	1815.70	Element	Left OB	Channel	Right OB
Vel Head (ft)	1.08	Wt. n-Val.	0.040	0.030	0.040
W.S. Elev (ft)	1814.62	Reach Len. (ft)	291.64	429.09	457.75
Crit W.S. (ft)	1814.62	Flow Area (sq ft)	532.41	1116.66	109.88
E.G. Slope (ft/ft)	0.005732	Area (sq ft)	532.41	1116.66	109.88
Q Total (cfs)	11990.00	Flow (cfs)	1574.14	10052.61	363.25
Top Width (ft)	888.05	Top Width (ft)	502.93	299.17	85.95
Vel Total (ft/s)	6.82	Avg. Vel. (ft/s)	2.96	9.00	3.31
Max Chl Dpth (ft)	6.62	Hydr. Depth (ft)	1.06	3.73	1.28
Conv. Total (cfs)	158362.3	Conv. (cfs)	20791.0	132773.5	4797.8
Length Wtd. (ft)	417.18	Wetted Per. (ft)	504.91	300.22	86.23
Min Ch El (ft)	1808.00	Shear (lb/sq ft)	0.38	1.33	0.46
Alpha	1.49	Stream Power (lb/ft s)	1.12	11.98	1.51
Frctn Loss (ft)	1.30	Cum Volume (acre-ft)	4.14	33.43	1.88
C & E Loss (ft)	0.15	Cum SA (acres)	4.05	6.53	2.64

Warning: The energy equation could not be balanced within the specified number of iterations. The

 $\,$ program used critical depth for the water surface and continued on with the calculations.

Warning: Divided flow computed for this cross-section.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical

depth, the calculated water surface came back below critical depth. This indicates that there

is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: Reach #1

REACH: Beaver Dam Wash RS: 3

INPUT

Description:

Station	Elevation	Data	num=	99					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
0	1870	5.96	1868	10.12	1866	14.35	1864	18.65	1862
23.01	1860	27.56	1858	31.82	1856	36.27	1854	40.6	1852
44.28	1850	46.35	1848	48.68	1846	50.83	1844	51.92	1842
52.37	1840	52.78	1838	53.21	1836	53.56	1834	54.02	1832
54.43	1830	54.84	1828	55.04	1826	55.57	1824	55.97	1822
56.41	1820	56.82	1818	57.25	1816	59.3	1814	62.52	1812
65.55	1810	72.42	1808.55	78.61	1808.33	126.47	1810	402.1	1812
524.89	1814	558.4	1814	603.02	1814	611.02	1814	649.08	1814
689.25	1814	694.08	1812	696.28	1810	698.42	1808	700.48	1806
702.55	1804	729.01	1804	740.85	1806	773.27	1806	776.34	1806
890.29	1806	922.52	1806	925.7	1806	947.55	1806	955.96	1806
969.4	1806	971.69	1808	973.98	1810	1006.92	1812	1011.32	1814
1039.15	1816	1045.1	1816	1062.19	1814	1072.41	1812	1090.24	1810.39

D-74 December 2007

1191.26	1811.18	1248.88	1814	1404.14	1815.3	1444.63	1815.4	1445.11	1815.81
1477.02	1816	1565.15	1822.23	1569.99	1824	1574.54	1826	1579.02	1828
1583.46	1830	1587.89	1832	1591.88	1834	1595.17	1836	1598.37	1838
1601.56	1840	1604.75	1842	1607.92	1844	1611.04	1846	1614.14	1848
1617.2	1850	1620.23	1852	1623.25	1854	1626.25	1856	1629.26	1858
1632.26	1860	1635.25	1862	1638.24	1864	1641.23	1866	1644.29	1868
1647.57	1870	1650.72	1872	1653.9	1874	1664.5	1876		

Manning's n Values num= 3

Sta n Val Sta n Val Sta n Val
0 .04 689.25 .03 973.98 .04

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.
689.25 973.98 294.24 375.19 433.01 .1 .3

CROSS SECTION OUTPUT Profile #100 yr

E.G. Elev (ft)	1814.20	Element	Left OB	Channel	Right OE
Vel Head (ft)	0.87	Wt. n-Val.	0.040	0.030	0.040
W.S. Elev (ft)	1813.33	Reach Len. (ft)	294.24	375.19	433.01
Crit W.S. (ft)		Flow Area (sq ft)	961.67	2091.46	425.21
E.G. Slope (ft/ft)	0.001950	Area (sq ft)	961.67	2091.46	425.21
Q Total (cfs)	21000.00	Flow (cfs)	2721.59	17147.14	1131.27
Top Width (ft)	911.76	Top Width (ft)	423.26	283.11	205.39
Vel Total (ft/s)	6.04	Avg. Vel. (ft/s)	2.83	8.20	2.66
Max Chl Dpth (ft)	9.33	Hydr. Depth (ft)	2.27	7.39	2.07
Conv. Total (cfs)	475517.8	Conv. (cfs)	61626.9	388274.8	25616.1
Length Wtd. (ft)	367.59	Wetted Per. (ft)	424.44	288.22	206.00
Min Ch El (ft)	1804.00	Shear (lb/sq ft)	0.28	0.88	0.25
Alpha	1.54	Stream Power (lb/ft s)	0.78	7.24	0.67
Frctn Loss (ft)	0.90	Cum Volume (acre-ft)	10.17	29.32	5.80
C & E Loss (ft)	0.07	Cum SA (acres)	5.44	3.88	2.85

Warning: Divided flow computed for this cross-section.

Warning: The velocity head has changed by more than $0.5 \ \text{ft} \ (0.15 \ \text{m})$. This may indicate the need for

additional cross sections.

CROSS SECTION OUTPUT Profile #25 yr

E.G. Elev (ft)	1812.33	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.71	Wt. n-Val.	0.040	0.030	0.040
W.S. Elev (ft)	1811.62	Reach Len. (ft)	294.24	375.19	433.01
Crit W.S. (ft)		Flow Area (sq ft)	336.47	1611.65	116.50
E.G. Slope (ft/ft)	0.001952	Area (sq ft)	336.47	1611.65	116.50
Q Total (cfs)	11990.00	Flow (cfs)	613.29	11215.47	161.24
Top Width (ft)	716.66	Top Width (ft)	286.80	279.48	150.37
Vel Total (ft/s)	5.81	Avg. Vel. (ft/s)	1.82	6.96	1.38
Max Chl Dpth (ft)	7.62	Hydr. Depth (ft)	1.17	5.77	0.77
Conv. Total (cfs)	271387.1	Conv. (cfs)	13881.5	253856.1	3649.5
Length Wtd. (ft)	373.49	Wetted Per. (ft)	287.48	284.19	150.49
Min Ch El (ft)	1804.00	Shear (lb/sq ft)	0.14	0.69	0.09
Alpha	1.35	Stream Power (lb/ft s)	0.26	4.81	0.13
Frctn Loss (ft)	1.23	Cum Volume (acre-ft)	1.23	19.99	0.69
C & E Loss (ft)	0.19	Cum SA (acres)	1.41	3.68	1.40

Warning: Divided flow computed for this cross-section.

Warning: The velocity head has changed by more than $0.5\ \mathrm{ft}\ (0.15\ \mathrm{m})$. This may indicate the need for

additional cross sections.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate the need for additional cross sections.

D-76 December 2007

CROSS SECTION

RIVER: Reach #1

REACH: Beaver Dam Wash RS: 2

INPUT

Description:

Station Elevation Data num= 39

 Sta
 Elev
 St

Manning's n Values num= 3

Sta n Val Sta n Val Sta n Val
0 .04 751.23 .03 929.2 .04

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.

751.23 929.2 306.5 408.93 457.37 .2 .4

Ineffective Flow num= 1

Sta L Sta R Elev Permanent

1205.84 1577.75 1815 F

CROSS SECTION OUTPUT Profile #100 yr

E.G. Elev (ft) 1813.23 Element Left OB Channel Right OB

Vel Head (ft) 1.59 Wt. n-Val. 0.040 0.030 0.040

W.S. Elev (ft)	1811.65	Reach Len. (ft)	306.50	408.93	457.37
Crit W.S. (ft)	1811.65	Flow Area (sq ft)	989.01	1489.53	360.62
E.G. Slope (ft/ft)	0.003160	Area (sq ft)	989.01	1489.53	360.62
Q Total (cfs)	21000.00	Flow (cfs)	2975.06	16702.61	1322.33
Top Width (ft)	928.62	Top Width (ft)	571.49	177.90	179.24
Vel Total (ft/s)	7.40	Avg. Vel. (ft/s)	3.01	11.21	3.67
Max Chl Dpth (ft)	11.77	Hydr. Depth (ft)	1.73	8.37	2.01
Conv. Total (cfs)	373553.4	Conv. (cfs)	52921.1	297110.3	23522.0
Length Wtd. (ft)	402.91	Wetted Per. (ft)	572.08	184.31	180.53
Min Ch El (ft)	1799.88	Shear (lb/sq ft)	0.34	1.59	0.39
Alpha	1.87	Stream Power (lb/ft s)	1.03	17.88	1.45
Frctn Loss (ft)	1.82	Cum Volume (acre-ft)	3.58	13.90	1.89
C & E Loss (ft)	0.31	Cum SA (acres)	2.08	1.89	0.94

Warning: The energy equation could not be balanced within the specified number of iterations. The

 $\,$ program used critical depth for the water surface and continued on with the calculations.

Warning: Divided flow computed for this cross-section.

Warning: The velocity head has changed by more than $0.5 \, \text{ft} \, (0.15 \, \text{m})$. This may indicate the need for

additional cross sections.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical

depth, the calculated water surface came back below critical depth. This indicates that there

is not a valid subcritical answer. The program defaulted to critical depth.

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid,

water surface was used.

D-78 December 2007

CROSS SECTION OUTPUT Profile #25 yr

E.G. Elev (ft)	1810.91	Element	Left OB	Channel	Right OB
Vel Head (ft)	2.56	Wt. n-Val.	0.040	0.030	0.040
W.S. Elev (ft)	1808.35	Reach Len. (ft)	306.50	408.93	457.37
Crit W.S. (ft)	1808.35	Flow Area (sq ft)	12.88	930.79	10.74
E.G. Slope (ft/ft)	0.006731	Area (sq ft)	12.88	930.79	10.74
Q Total (cfs)	11990.00	Flow (cfs)	14.06	11965.97	9.97
Top Width (ft)	284.69	Top Width (ft)	60.10	160.70	63.89
Vel Total (ft/s)	12.56	Avg. Vel. (ft/s)	1.09	12.86	0.93
Max Chl Dpth (ft)	8.47	Hydr. Depth (ft)	0.21	5.79	0.17
Conv. Total (cfs)	146138.4	Conv. (cfs)	171.3	145845.5	121.5
Length Wtd. (ft)	408.89	Wetted Per. (ft)	60.11	165.42	63.94
Min Ch El (ft)	1799.88	Shear (lb/sq ft)	0.09	2.36	0.07
Alpha	1.05	Stream Power (lb/ft s)	0.10	30.40	0.07
Frctn Loss (ft)	3.02	Cum Volume (acre-ft)	0.05	9.05	0.06
C & E Loss (ft)	0.13	Cum SA (acres)	0.24	1.79	0.34

Warning: The energy equation could not be balanced within the specified number of iterations. The

 $\,$ program used critical depth for the water surface and continued on with the calculations.

Warning: Divided flow computed for this cross-section.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical

depth, the calculated water surface came back below critical depth. This indicates that there

is not a valid subcritical answer. The program defaulted to critical depth.

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid,

water surface was used.

CROSS SECTION

RIVER: Reach #1

REACH: Beaver Dam Wash RS: 1

INPUT

Description:

Station	Elevation	n Data	num=	66					
Sta	a Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
(1845	11.88	1844	39.02	1842	64.03	1840	81.55	1838
102.8	1836	111.85	1834	128.39	1832	188.4	1830	197.04	1828
203.93	1826	209.89	1824	216.15	1822	225.78	1820	247.78	1818
273.7	5 1816	304.68	1816	305.77	1816.26	312.34	1816	342.01	1815.79
351.4	5 1814	359.62	1812	366.49	1810	373.63	1808	383.02	1806
387.3	1804	387.63	1803.73	394.99	1803.74	395.74	1804	401.49	1806
406.3	2 1808	408.98	1808	413.5	1806	453.56	1806	468.61	1806
489.8	1806	554.71	1808	584.39	1808	625.79	1808	707.89	1808
773.5	7 1808	831.09	1808	868.98	1806	871.68	1804	883.52	1802
944.4	5 1802	968.56	1802	971.61	1800	1000.69	1798	1019.12	1796
1074.3	9 1796	1090.17	1798	1091.14	1800	1095.9	1810	1100.65	1820
1105.5	3 1830	1110.28	1840	1115.01	1850	1115.95	1852	1116.89	1854
1117.7	3 1856	1118.7	1858	1125.47	1860	1131.65	1862	1137.4	1864
1146.6	5 1866								

Manning's n Values num= 3

Sta n Val Sta n Val Sta n Val
0 .04 868.98 .03 1095.9 .04

Bank Sta: Left Right Coeff Contr. Expan.

868.98 1095.9 .2 .4

D-80 December 2007

CROSS SECTION OUTPUT Profile #100 yr

E.G. Elev (ft)	1809.10	Element	Left OB	Channel	Right OB
Vel Head (ft)	3.11	Wt. n-Val.	0.040	0.030	
W.S. Elev (ft)	1805.99	Reach Len. (ft)			
Crit W.S. (ft)	1805.99	Flow Area (sq ft)	28.85	1471.44	
E.G. Slope (ft/ft)	0.006984	Area (sq ft)	28.85	1471.44	
Q Total (cfs)	21000.00	Flow (cfs)	116.89	20883.11	
Top Width (ft)	243.43	Top Width (ft)	18.43	225.00	
Vel Total (ft/s)	14.00	Avg. Vel. (ft/s)	4.05	14.19	
Max Chl Dpth (ft)	9.99	Hydr. Depth (ft)	1.57	6.54	
Conv. Total (cfs)	251285.9	Conv. (cfs)	1398.7	249887.2	
Length Wtd. (ft)		Wetted Per. (ft)	19.35	231.77	
Min Ch El (ft)	1796.00	Shear (lb/sq ft)	0.65	2.77	
Alpha	1.02	Stream Power (lb/ft s)	2.63	39.29	
Frctn Loss (ft)		Cum Volume (acre-ft)			
C & E Loss (ft)		Cum SA (acres)			

Warning: Divided flow computed for this cross-section.

Warning: Slope too steep for slope area to converge during supercritical flow calculations (normal depth

is below critical depth). Water surface set to critical depth.

CROSS SECTION OUTPUT Profile #25 yr

E.G. Elev (ft)	1806.11	Element	Left OB	Channel	Right OB
Vel Head (ft)	2.25	Wt. n-Val.	0.040	0.030	
W.S. Elev (ft)	1803.86	Reach Len. (ft)			
Crit W.S. (ft)	1803.86	Flow Area (sq ft)	0.97	996.31	
E.G. Slope (ft/ft)	0.008129	Area (sq ft)	0.97	996.31	
Q Total (cfs)	11990.00	Flow (cfs)	0.80	11989.20	
Top Width (ft)	228.35	Top Width (ft)	7.87	220.48	

Beaver Dam Wash Flood Hazard Assessment Report

Vel Total (ft/s)	12.02	Avg. Vel. (ft/s)	0.82	12.03
Max Chl Dpth (ft)	7.86	Hydr. Depth (ft)	0.12	4.52
Conv. Total (cfs)	132987.0	Conv. (cfs)	8.8	132978.1
Length Wtd. (ft)		Wetted Per. (ft)	7.94	225.23
Min Ch El (ft)	1796.00	Shear (lb/sq ft)	0.06	2.24
Alpha	1.00	Stream Power (lb/ft s)	0.05	27.01
Frctn Loss (ft)		Cum Volume (acre-ft)		
C & E Loss (ft)		Cum SA (acres)		

Warning: Divided flow computed for this cross-section.

Warning: Slope too steep for slope area to converge during supercritical flow calculations (normal depth

is below critical depth). Water surface set to critical depth.

SUMMARY OF MANNING'S N VALUES

River:Reach #1

Reach	River Sta.	n1	n2	n3
Beaver Dam Wash	25	.07	.03	.05
Beaver Dam Wash	24	.07	.03	.05
Beaver Dam Wash	23	.07	.03	.05
Beaver Dam Wash	22	.07	.03	.05
Beaver Dam Wash	21	.07	.03	.05
Beaver Dam Wash	20	.07	.03	.05
Beaver Dam Wash	19.5	.07	.03	.05
Beaver Dam Wash	19	.07	.03	.05
Beaver Dam Wash	18	.07	.03	.05
Beaver Dam Wash	17	.07	.03	.05

D-82 December 2007

Beaver Dam Wash	16	.07	.03	.05
Beaver Dam Wash	15	.07	.03	.05
Beaver Dam Wash	14	.07	.03	.04
Beaver Dam Wash	13	.07	.03	.04
Beaver Dam Wash	12	.07	.03	.04
Beaver Dam Wash	11.5	Bridge		
Beaver Dam Wash	11	.05	.03	.04
Beaver Dam Wash	10	.05	.03	.04
Beaver Dam Wash	9	.04	.03	.04
Beaver Dam Wash	8	.04	.03	.04
Beaver Dam Wash	7	.04	.03	.04
Beaver Dam Wash	6	.04	.03	.04
Beaver Dam Wash	5	.04	.03	.04
Beaver Dam Wash	4	.04	.03	.04
Beaver Dam Wash	3	.04	.03	.04
Beaver Dam Wash	2	.04	.03	.04
Beaver Dam Wash	1	.04	.03	.04

SUMMARY OF REACH LENGTHS

River: Reach #1

Reach	River Sta.	Left	Channel	Right
Beaver Dam Wash	25	481.74	506.65	552.44
Beaver Dam Wash	24	431.03	464.84	465.88
Beaver Dam Wash	23	393.03	393.38	464.14
Beaver Dam Wash	22	388.99	396.75	377.61
Beaver Dam Wash	21	369.36	389.17	399.71
Beaver Dam Wash	20	250.91	250.89	254.9

Beaver Dam Wash Flood Hazard Assessment Report

Beaver Da	ım Wash	19.5	122.77	122.37	121.5
Beaver Da	ım Wash	19	425.19	441.09	451.49
Beaver Da	ım Wash	18	368.22	402.4	428.15
Beaver Da	ım Wash	17	381.74	435.9	487.97
Beaver Da	ım Wash	16	275	282.5	290
Beaver Da	ım Wash	15	305.8	329.92	377.91
Beaver Da	ım Wash	14	297.63	277.08	281.46
Beaver Da	ım Wash	13	205	205	205
Beaver Da	ım Wash	12	141.97	67.49	188.08
Beaver Da	ım Wash	11.5	Bridge		
Beaver Da	ım Wash	11	448.39	424.85	389.32
Beaver Da	ım Wash	10	464.82	392.17	304.28
Beaver Da	ım Wash	9	454.9	368.46	304.53
Beaver Da	ım Wash	8	378.01	321.27	255.23
Beaver Da	ım Wash	7	308.17	320.9	357.01
Beaver Da	ım Wash	6	270.26	292.58	317.61
Beaver Da	ım Wash	5	430.91	414.45	462.38
Beaver Da	ım Wash	4	291.64	429.09	457.75
Beaver Da	ım Wash	3	294.24	375.19	433.01
Beaver Da	ım Wash	2	306.5	408.93	457.37
Beaver Da	ım Wash	1			

SUMMARY OF CONTRACTION AND EXPANSION COEFFICIENTS

River: Reach #1

Reach	River Sta.	Contr.	Expan
Beaver Dam Wash	25	.1	.3
Beaver Dam Wash	24	.1	. 3

D-84 December 2007

Beaver	Dam	Wash	23		.1	.3
Beaver	Dam	Wash	22		.1	.3
Beaver	Dam	Wash	21		.1	.3
Beaver	Dam	Wash	20		.1	.3
Beaver	Dam	Wash	19.5		.1	.3
Beaver	Dam	Wash	19		.1	.3
Beaver	Dam	Wash	18		.1	.3
Beaver	Dam	Wash	17		.1	.3
Beaver	Dam	Wash	16		.1	.3
Beaver	Dam	Wash	15		.1	.3
Beaver	Dam	Wash	14		.3	.5
Beaver	Dam	Wash	13		.3	.5
Beaver	Dam	Wash	12		.3	.5
Beaver	Dam	Wash	11.5	Bridge		
Beaver	Dam	Wash	11		.3	.5
Beaver	Dam	Wash	10		.3	.5
Beaver	Dam	Wash	9		. 2	. 4
Beaver	Dam	Wash	8		. 2	. 4
Beaver	Dam	Wash	7		. 2	. 4
Beaver	Dam	Wash	6		. 2	. 4
Beaver	Dam	Wash	5		. 2	. 4
Beaver	Dam	Wash	4		. 2	. 4
Beaver	Dam	Wash	3		.1	.3
Beaver	Dam	Wash	2		. 2	. 4
Beaver	Dam	Wash	1		. 2	. 4

ERRORS WARNINGS AND NOTES

Errors Warnings and Notes for Plan : 400-ft Brdg

River: Reach #1 Reach: Beaver Dam Wash RS: 25 Profile: 100 yr

the need for additional cross sections.

River: Reach #1 Reach: Beaver Dam Wash RS: 25 Profile: 25 yr

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate

the need for additional cross sections.

River: Reach #1 Reach: Beaver Dam Wash RS: 24 Profile: 100 yr

Warning: The energy equation could not be balanced within the specified number of iterations. The program selected the water

surface that had the least amount of error between computed and assumed values.

Warning: The energy loss was greater than $1.0 \ \text{ft} \ (0.3 \ \text{m})$. between the current and previous cross section. This may indicate

the need for additional cross sections.

Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated

 $\hbox{water surface came back below critical depth. This indicates that there is not a} \\$ valid subcritical answer. The

program defaulted to critical depth.

River: Reach #1 Reach: Beaver Dam Wash RS: 24 Profile: 25 yr

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate

the need for additional cross sections.

River: Reach #1 Reach: Beaver Dam Wash RS: 23 Profile: 100 yr

Warning: The energy loss was greater than $1.0 \ \text{ft} \ (0.3 \ \text{m})$. between the current and previous cross section. This may indicate

the need for additional cross sections.

River: Reach #1 Reach: Beaver Dam Wash RS: 23 Profile: 25 yr

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate

the need for additional cross sections.

River: Reach #1 Reach: Beaver Dam Wash RS: 22 Profile: 100 yr

Warning: Divided flow computed for this cross-section.

D-86 December 2007

Warning: The velocity head has changed by more than $0.5 \, \text{ft} \, (0.15 \, \text{m})$. This may indicate the need for additional cross sections.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate

the need for additional cross sections.

River: Reach #1 Reach: Beaver Dam Wash RS: 22 Profile: 25 yr

Warning: The velocity head has changed by more than $0.5 \, \text{ft} \, (0.15 \, \text{m})$. This may indicate the need for additional cross sections.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate

the need for additional cross sections.

River: Reach #1 Reach: Beaver Dam Wash RS: 21 Profile: 100 yr

Warning: The velocity head has changed by more than $0.5 \, \text{ft} \, (0.15 \, \text{m})$. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate

the need for additional cross sections.

River: Reach #1 Reach: Beaver Dam Wash RS: 21 Profile: 25 yr

Warning: The energy loss was greater than $1.0 \ \text{ft} \ (0.3 \ \text{m})$. between the current and previous cross section. This may indicate

the need for additional cross sections.

River: Reach #1 Reach: Beaver Dam Wash RS: 20 Profile: 100 yr

Warning: The velocity head has changed by more than $0.5~{\rm ft}~(0.15~{\rm m})$. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate

the need for additional cross sections.

River: Reach #1 Reach: Beaver Dam Wash RS: 20 Profile: 25 yr

Warning: The velocity head has changed by more than $0.5 \ \text{ft} \ (0.15 \ \text{m})$. This may indicate the need for additional cross sections.

the need for additional cross sections.

River: Reach #1 Reach: Beaver Dam Wash RS: 19.5 Profile: 100 yr

Warning: The energy equation could not be balanced within the specified number of iterations. The program selected the water

surface that had the least amount of error between computed and assumed values.

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate

the need for additional cross sections.

Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated

water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The

program defaulted to critical depth.

River: Reach #1 Reach: Beaver Dam Wash RS: 19.5 Profile: 25 yr

Warning: The energy equation could not be balanced within the specified number of iterations. The program selected the water

surface that had the least amount of error between computed and assumed values.

Warning: The energy loss was greater than $1.0 \ \text{ft} \ (0.3 \ \text{m})$. between the current and previous cross section. This may indicate

the need for additional cross sections.

Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated

water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The

program defaulted to critical depth.

River: Reach #1 Reach: Beaver Dam Wash RS: 19 Profile: 100 yr

Warning: The energy equation could not be balanced within the specified number of iterations. The program selected the water

surface that had the least amount of error between computed and assumed values.

Warning: The velocity head has changed by more than $0.5 \ \text{ft} \ (0.15 \ \text{m})$. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate

the need for additional cross sections.

D-88 December 2007

Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated

water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The

program defaulted to critical depth.

River: Reach #1 Reach: Beaver Dam Wash RS: 19 Profile: 25 yr

Warning: The energy equation could not be balanced within the specified number of iterations. The program selected the water

surface that had the least amount of error between computed and assumed values.

Warning: The velocity head has changed by more than $0.5 \, \text{ft} \, (0.15 \, \text{m})$. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate

the need for additional cross sections.

Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated

water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The

program defaulted to critical depth.

River: Reach #1 Reach: Beaver Dam Wash RS: 18 Profile: 100 yr

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate

the need for additional cross sections.

River: Reach #1 Reach: Beaver Dam Wash RS: 18 Profile: 25 yr

Warning: Divided flow computed for this cross-section.

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate

the need for additional cross sections.

River: Reach #1 Reach: Beaver Dam Wash RS: 17 Profile: 100 yr

Warning: Divided flow computed for this cross-section.

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate

the need for additional cross sections.

River: Reach #1 Reach: Beaver Dam Wash RS: 17 Profile: 25 yr

Warning:Divided flow computed for this cross-section.

the need for additional cross sections.

River: Reach #1 Reach: Beaver Dam Wash RS: 16 Profile: 100 yr

Warning: The energy equation could not be balanced within the specified number of iterations. The program selected the water

surface that had the least amount of error between computed and assumed values.

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate

the need for additional cross sections.

Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated

water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The

program defaulted to critical depth.

River: Reach #1 Reach: Beaver Dam Wash RS: 16 Profile: 25 yr

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate

the need for additional cross sections.

River: Reach #1 Reach: Beaver Dam Wash RS: 15 Profile: 100 yr

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth

for the water surface and continued on with the calculations.

Warning: The velocity head has changed by more than $0.5 \, \text{ft} \, (0.15 \, \text{m})$. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate

the need for additional cross sections.

Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated

water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The

program defaulted to critical depth.

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was

used.

River: Reach #1 Reach: Beaver Dam Wash RS: 15 Profile: 25 yr

D-90 December 2007

Warning: The velocity head has changed by more than $0.5 \, \text{ft} \, (0.15 \, \text{m})$. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate

the need for additional cross sections.

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was

used.

River: Reach #1 Reach: Beaver Dam Wash RS: 14 Profile: 100 yr

Warning: The energy loss was greater than $1.0 \ \text{ft} \ (0.3 \ \text{m})$. between the current and previous cross section. This may indicate

the need for additional cross sections.

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was

used.

River: Reach #1 Reach: Beaver Dam Wash RS: 14 Profile: 25 yr

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate

the need for additional cross sections.

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was

used.

River: Reach #1 Reach: Beaver Dam Wash RS: 13 Profile: 100 yr

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was

used.

River: Reach #1 Reach: Beaver Dam Wash RS: 13 Profile: 25 yr

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was

used.

River: Reach #1 Reach: Beaver Dam Wash RS: 12 Profile: 100 yr

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.

River: Reach #1 Reach: Beaver Dam Wash RS: 12 Profile: 25 yr

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.

River: Reach #1 Reach: Beaver Dam Wash RS: 11.5 Profile: 100 yr

Warning: The flow regime calculated by the momentum equation shows class B flow. For the best solution, this profile should

be run as a mixed flow problem.

River: Reach #1 Reach: Beaver Dam Wash RS: 11.5 Profile: 100 yr Upstream

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.

River: Reach #1 Reach: Beaver Dam Wash RS: 11.5 Profile: 100 yr Downstream

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.

River: Reach #1 Reach: Beaver Dam Wash RS: 11.5 Profile: 25 yr

Warning: The water surface upstream of the bridge computed by the Yarnell method was below critical depth. The Yarnell

solution has been disregarded.

Note: Yarnell answer is not valid if the water surface is above the low chord or if there is weir flow. The Yarnell answer

has been disregarded.

River: Reach #1 Reach: Beaver Dam Wash RS: 11.5 Profile: 25 yr Upstream

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.

River: Reach #1 Reach: Beaver Dam Wash RS: 11.5 Profile: 25 yr Downstream

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.

River: Reach #1 Reach: Beaver Dam Wash RS: 11 Profile: 100 yr

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate

the need for additional cross sections.

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.

River: Reach #1 Reach: Beaver Dam Wash RS: 11 Profile: 25 yr

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate

the need for additional cross sections.

D-92 December 2007

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.

River: Reach #1 Reach: Beaver Dam Wash RS: 10 Profile: 100 yr

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth

for the water surface and continued on with the calculations.

Warning: The energy loss was greater than $1.0 \ \text{ft} \ (0.3 \ \text{m})$. between the current and previous cross section. This may indicate

the need for additional cross sections.

Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated

water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The

program defaulted to critical depth.

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was

used.

River: Reach #1 Reach: Beaver Dam Wash RS: 10 Profile: 25 yr

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth

for the water surface and continued on with the calculations.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate

the need for additional cross sections.

Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated

water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The

program defaulted to critical depth.

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was

used.

River: Reach #1 Reach: Beaver Dam Wash RS: 9 Profile: 100 yr

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth

for the water surface and continued on with the calculations.

Warning: Divided flow computed for this cross-section.

the need for additional cross sections.

Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated

water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The

program defaulted to critical depth.

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was

used.

River: Reach #1 Reach: Beaver Dam Wash RS: 9 Profile: 25 yr

Warning: The energy loss was greater than $1.0 \ \text{ft} \ (0.3 \ \text{m})$. between the current and previous cross section. This may indicate

the need for additional cross sections.

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was

used.

River: Reach #1 Reach: Beaver Dam Wash RS: 8 Profile: 100 yr

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth

for the water surface and continued on with the calculations.

 $\label{thm:marring:Divided flow computed for this cross-section.} \\$

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

Warning: The energy loss was greater than $1.0 \ \text{ft} \ (0.3 \ \text{m})$. between the current and previous cross section. This may indicate

the need for additional cross sections.

Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated

water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The

program defaulted to critical depth.

River: Reach #1 Reach: Beaver Dam Wash RS: 8 Profile: 25 yr

Warning: The energy equation could not be balanced within the specified number of iterations. The program selected the water

D-94 December 2007

surface that had the least amount of error between computed and assumed values.

Warning: Divided flow computed for this cross-section.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate

the need for additional cross sections.

Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated

water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The

program defaulted to critical depth.

River: Reach #1 Reach: Beaver Dam Wash RS: 7 Profile: 100 yr

Warning: Divided flow computed for this cross-section.

Warning: The velocity head has changed by more than $0.5 \, \text{ft} \, (0.15 \, \text{m})$. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate

the need for additional cross sections.

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was

used.

River: Reach #1 Reach: Beaver Dam Wash RS: 7 Profile: 25 yr

Warning: Divided flow computed for this cross-section.

Warning: The energy loss was greater than $1.0 \ \text{ft} \ (0.3 \ \text{m})$. between the current and previous cross section. This may indicate

the need for additional cross sections.

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was

used.

River: Reach #1 Reach: Beaver Dam Wash RS: 6 Profile: 100 yr

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate

the need for additional cross sections.

River: Reach #1 Reach: Beaver Dam Wash RS: 6 Profile: 25 yr

the need for additional cross sections.

River: Reach #1 Reach: Beaver Dam Wash RS: 5 Profile: 100 yr

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth

for the water surface and continued on with the calculations.

Warning: Divided flow computed for this cross-section.

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate

the need for additional cross sections.

Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated

water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The

program defaulted to critical depth.

River: Reach #1 Reach: Beaver Dam Wash RS: 5 Profile: 25 yr

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth

for the water surface and continued on with the calculations.

Warning: Divided flow computed for this cross-section.

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate

the need for additional cross sections.

Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated

water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The

program defaulted to critical depth.

River: Reach #1 Reach: Beaver Dam Wash RS: 4 Profile: 100 yr

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth

for the water surface and continued on with the calculations.

Warning: Divided flow computed for this cross-section.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

D-96 December 2007

This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate

the need for additional cross sections.

Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated

water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The

program defaulted to critical depth.

River: Reach #1 Reach: Beaver Dam Wash RS: 4 Profile: 25 yr

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth

for the water surface and continued on with the calculations.

Warning: Divided flow computed for this cross-section.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

Warning: The energy loss was greater than $1.0 \ \text{ft} \ (0.3 \ \text{m})$. between the current and previous cross section. This may indicate

the need for additional cross sections.

Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated

water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The

program defaulted to critical depth.

River: Reach #1 Reach: Beaver Dam Wash RS: 3 Profile: 100 yr

Warning: Divided flow computed for this cross-section.

Warning: The velocity head has changed by more than $0.5~{\rm ft}~(0.15~{\rm m})$. This may indicate the need for additional cross sections.

River: Reach #1 Reach: Beaver Dam Wash RS: 3 Profile: 25 yr

Warning: Divided flow computed for this cross-section.

Warning: The velocity head has changed by more than $0.5~{\rm ft}~(0.15~{\rm m})$. This may indicate the need for additional cross sections.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

the need for additional cross sections.

River: Reach #1 Reach: Beaver Dam Wash RS: 2 Profile: 100 yr

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth

for the water surface and continued on with the calculations.

Warning: Divided flow computed for this cross-section.

Warning: The velocity head has changed by more than $0.5 \ \text{ft} \ (0.15 \ \text{m})$. This may indicate the need for additional cross sections.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate

the need for additional cross sections.

Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated

water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The

program defaulted to critical depth.

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was

used.

River: Reach #1 Reach: Beaver Dam Wash RS: 2 Profile: 25 yr

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth

for the water surface and continued on with the calculations.

Warning:Divided flow computed for this cross-section.

Warning: The energy loss was greater than 1.0 ft $(0.3\ m)$. between the current and previous cross section. This may indicate

the need for additional cross sections.

Warning:During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated

water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The

program defaulted to critical depth.

D-98 December 2007

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was

used.

River: Reach #1 Reach: Beaver Dam Wash RS: 1 Profile: 100 yr

Warning: Divided flow computed for this cross-section.

Warning:Slope too steep for slope area to converge during supercritical flow calculations (normal depth is below critical

depth). Water surface set to critical depth.

River: Reach #1 Reach: Beaver Dam Wash RS: 1 Profile: 25 yr

Warning: Divided flow computed for this cross-section.

 $\label{thm:warning:Slope too steep for slope area to converge during supercritical flow calculations \\ (normal depth is below critical$

depth). Water surface set to critical dep

Appendix E Digital Data on DVD

E-2 December 2007

Appendix F Proposed Flood Warning System Instrumentation Location Map