Peoria Avenue Corridor Improvement Study: Jackrabbit Trail Parkway to Dysart Road

Final Report:
Appendix
July 2011

Appendices

Appendix A - Technical Memorandum No. 1: Existing and Future Corridor Features

Appendix B - Technical Memorandum No. 2: Environmental Overview Appendix C - Technical Memorandum No. 3: Drainage Overview
Appendix D - Technical Memorandum No. 4: Candidate Alternative Alignments and Evaluation Appendix E - Technical Memorandum No. 5: Preferred Alignment
Appendix F - Technical Memorandum No. 6: Public and Stakeholder Participation

Appendix G - Technical Memorandum No. 7: Traffic Analysis

Appendix H - MCDOT RightRoads Summary of Public and Stakeholder Involvement

Dute Expires: $9-30-2013$

Appendix A

Technical Memorandum No. 1: Existing and Future Corridor Features

Peoria Avenue Corridor Improvement Study: Jackrabbit Trail Parkway to Dysart Road

Technical Memorandum \#1: Existing and Future Corridor Conditions

January 2011
 Peoria Avenue Corridor Improvement Study
Jackrabbit Trail Parkway to Dysart Road

Table of Contents
1.0 INTRODUCTION
2.0 LAND USE, ZONING, AND OWNERSHIP3
Land Ownership and Managemen 3
Existing Land Use 4
Future Land Use. 4
Zoning 8
Socioeconomic Data 8
3.0 PHYSICAL FEATURES 20
Topography 20
Drainage Features. 21
Utilities 23
Recreation and Trails23
4.0 TRANSPORTATION NETWORK 29
Existing Transportation Network 29
Future Transportation Network. 29
Public Transit. 32
Circulation Plans 33
Programmed Transportation Improvement 33
5.0 ROADWAY CHARACTERISTICS42
Existing Horizontal/Vertical Alignment 42
Existing Roadway Widths 42
Existing Right-of-Way 44
Pavement Conditions 44
Intersection and Lane Geometry 45
Access Conditions 46
Future Typical Sections 46
Design Criteria 47
6.0 TRAFFIC CONDITIONS 59
Existing Traffic Volumes 59
Future Traffic Projections 59
8.0 RELEVANT PLANS, REPORTS, GUIDELINES, STUDIES, AND STANDARDS67

List of Figures

Figure 1 - Vicinity Map .. 2 Figure 2 - Land Ownership.
Figure 3 - Municipal Planning Areas and Incorporated Areas...
Figure 4 - Existing Land Use. .. .11
12
Figure 5 - Future Land Use
Figure 6 - Master Planned Communities.
Figure 6 - Master Planned Communities..
Figure 7 - Potential Traffic Generators and Attractors .. 14
Figure 9 - Population Density 2005
Figure 9 - Population Density 2005.. 16
Figure 10 - Population Density 2030 ... 17
Figure 11 - Employment Density 2005.. 18

Figure 13 - Slope AnalysisFigure 14 - Land Subsidence and Fissures..
Figure 14 - Land Subsidence and Fissures
Figure 15 - Major Drainage Features
Figure 15 - Major
Figure 16 - Utilities
Figure 17 - Recreation and Trails $\begin{array}{r}.25 \\ . . .26 \\ \hline\end{array}$
Figure 17 - Recreation and Trails... 27
Figure 18 - Existing Transportation Network.. 28
Figure 19 - Maricopa County Major Streets and Routes Plan Functional Classification.............. 36
Figure 20 - MAG I-10/Hassayampa Valley Transportation Framework

$$
\text { Study Functional Classification... } 37
$$

Figure 21 - MAG 2030 Arterial Street System.. 38
Figure 22 - City of Surprise Functional Classification Map .. 39
Figure 23 - City of Glendale Functional Classification Map ...
Figure 24 - Future Roadway Network Including Public Transit.. 41
Figure 25 - Existing Roadway Alignment
Figure 26 - Existing Right-of-Way Widths .
Figure 27 - Existing Intersection Configurations... 50
Figure 28 - Existing Access Conditions (Sheet 1)
Figure 29 - Existing Access Conditions (Sheet 2) .. 54
Figure 30 - MCDOT Principal Arterial Cross-Section 56
Figure 31 - MAG Principal Arterial Cros Section .
Figure 32 - City of Surprise Maior Arterial Cross-Section 5
Figure 33 - City of El Mirage Minor Arterial Cross-Section
Figure 34 - City of Glendale Major Arterial Cross-Section ... 57
Figure 35 - Non-Motorized and Other Transportation Routes.. 58
Figure 36 - Existing ADT Volumes
Figure 37 - Existing 2010 Peak Hour Turning Movement Volumes 61
Figure 38-2031 Projected ADT Volumes

List of Tables

Table 1 - Study Area by MPA.
Table 2 - Summary of Study Area Master Planned Communities. 4
Table 3 - Socioeconomic Data ...
Table 4 - Programmed Roadway Improvements: MAG TIP.
Table 5 - Roadway Characteristics ...
Table 6 - Existing Pavement Condition.........
Table 7 - Existing Intersection Characteristics \qquad
Table 8 - Adopted Design Guidelines
9 Proliminary Issues and Opportunities ... 48

Table 10 - Special Interest Areas.

Appendix A - City Limits Map Jackrabbit Trail Parkway to Dysart Road

1.0 INTRODUCTION

The Maricopa Association of Governments (MAG) prepared the Interstate 10/Hassayampa Valley Roadway Framework Study (Hassayampa Framework Study) that identified a comprehensive roadway network to meet traffic demands for the build out of the area west of State Route 303 (SR 303L). This long range regional transportation study identified the need for a roadway network consisting of freeways, parkways, and major arterial roads.

The Hassayampa Framework Study recommended an extension of Peoria Avenue west from Perryville Road to the future Jackrabbit Trail Parkway, and identified Peoria Avenue as a major arterial from the future Jackrabbit Trail Parkway to Sarival Avenue. The study area for this project includes Peoria Avenue from the future Jackrabbit Trail Parkway alignment to Dysart Road (Peoria Avenue Corridor). The study area generally encompasses a 2-mile wide corridor centered on the existing Peoria Avenue. The study area is shown in Figure 1.

This study will establish the facility type, number of lanes, right-of-way needs, and general alignment for the Peoria Avenue Corridor that will be required to accommodate projected traffic growth and enhance safety. In cooperation with the City of Surprise, the City of Glendale, and the City of El Mirage, the study will also develop access management guidelines, determine design standards based upon which jurisdiction anticipates annexing the roadway, and develop an implementation plan. In general, the purpose of this Corridor Improvement Study is to provide the Maricopa County Department of Transportation (MCDOT) and other jurisdictions with a future "footprint" of the Peoria Avenue Corridor and a timeframe for the implementation of the recommended future roadway improvements.

The key objectives of this Corridor Improvement Study are to

- Define and assess strategic issues within the project study area;
- Develop and evaluate conceptual alternative alignments within the corridor study area
- Recommend a preferred alignment;
- Develop consensus for the preferred alignment;
- Define the characteristics of the preferred alignment; and
- Develop an implementation plan.

This technical memorandum identifies the existing and future corridor conditions including physical features (utilities, drainage, topography); land use and zoning; transportation network; roadway characteristics; traffic conditions; programmed improvements; and preliminary issues and constraints for the Peoria Avenue Corridor

PEORIA AVENUE CORRIDOR IMPROVEMENT STUDY

Jackrabbit Trail Parkway to Dysart Road

Legend

- Study Area Boundary	Railroad	Stream/Wash
-r Peoria Avenue Section Line	Topography (100')	Jurisdiction
- Proposed Freeway	Luke AFB Noise Contour	El Mirage
Proposed Parkway	General Floodplain Limits	Glendale
Road	Drainage Structure (canal, dam)	Surprise

2.0 LAND USE, ZONING, AND OWNERSHIP

Land Ownership and Managemen

Land ownership is identified in terms of public or private control, whereas land jurisdiction refers to the city, town, county, state, or federal agency or agencies exercising governmental authority over an area. The majority of the land in the study area is privately owned, with only about 20 percent of the westermmost study area publicly owned by the Arizona State Land Department (ASLD) (Figure 2). While much of the private land is parceled out and owned by individual property owners, there are several major private land holdings in the study area, including the Flood Control District of Maricopa County (FCDMC), Maricopa Water District (MWD), and Dysart Unified School District \#89, as well as the major master planned community land owners of Property Reserve Arizona LLC and J ohn F. Long and Home Place Development LLC.

Figure 3 depicts the boundaries of all the jurisdictions and their municipal planning areas (MPAs) within the study area. An MPA is defined as the geographic area in which the municipal planning process is carried out. It includes, but is not necessarily limited to, the incorporated territory of the city or town. Three MPAs lie partially within the study area: City of EI Mirage, City of Glendale, and City of Surprise. Peoria Avenue serves as the boundary between the Glendale and Surprise MPAs. Maricopa County has planning and zoning authority over the unincorporated areas, including areas inside an MPA but outside the current city limits. The MPAs of EI Mirage and Surprise are largely incorporated in the study area, while the areas in the Glendale MPA are mostly unincorporated, with the exception of a parcel abutting SR 303L and a 10 -foot strip of land along the south side of Peoria Avenue from Perryville Road to east of Litchfield Road. This annexation is part of the City of Glendale Strip Annex Area which includes approximately 39 square miles of land with Peoria Avenue serving as the northem boundary. Other communities cannot annex property within the strip annex area. Maricopa County Planning and Development Department administers the zoning and subdivision ordinances within the strip annex area. The strip annex area is within the Glendale Municipal Planning Area. The northem edge of the 10 -foot wide strip annex is located either 23 or 30 feet south of the Peoria Avenue section line. In some areas, this is within the existing Peoria Avenue right-ofway. While this does not impact the planning for the overall footprint of Peoria Avenue, the municipal control of the corridor is undefined due to the multi-jurisdictional nature of land ownership.

Within unincorporated areas, the county has planning authority over privately owned land. The county works jointly with the ASLD on lands that ASLD owns outside municipal boundaries Table 1 notes the extent of the study area in each MPA, as well as the remaining land within the county

Table 1 - Study Area by MPA

MPA/Jurisdiction	Area (acres)	Percent of Study Area
EI Mirage	320	3%
Glendale	4,160	38%
Surprise	5,440	50%
Maricopa County	960	$\mathbf{9}$
Total	$\mathbf{1 0 , 8 8 0}$	$\mathbf{1 0 0 \%}$

Existing Land Use

Figure 4 illustrates existing land uses within the study area. The majority of the area is categorized as vacant (i.e., undeveloped) or agricultural. Several single-family residential subdivisions are built or under development, which include three elementary schools, one middle school, and one high school within the communities. Several existing homes, not associated with large master-planned communities, are located adjacent to Peoria Avenue. Small clusters of industrial and commercial development are scattered throughout the area.

The BNSF Railway (BNSF) owns and operates a north-south railroad spur (Ennis Spur) that crosses Peoria Avenue at the half-mile between Litchfield and Dysart Roads. The Ennis Spur connects to a major branch line (Peavine) that links the Phoenix metropolitan area with the connects to a major branch line (Peava. That links the Phoenix metropolitan area with the Transcon mainline in northem Arizona. The nine-mile long Ennis Spur runs from Ennis, a unction on the Peavine in the Surprise area, west and south through farmland to Fennemore siding, where a fertilizer plant is located. Three other freight customers are currently served by
way of the Ennis Spur. The primary commodities carried on the Ennis Spur are natural gas, way of the Ennis Sp
fertilizer and lumber.

The City of Surprise's 16.3-MGD (millions gallons per day) Surprise South Water Reclamation Plant (SSWRP) occupies the half-section between the Ennis Spur and Litchfield Road. The White Tanks Regional Water Treatment Facility, an Arizona American Water Company (AAW) facility that began operation in April 2009, is a 13.7-MGD water treatment facility located at the intersection of Cactus Road and Perryville Road. The plant treats Colorado River Water from the Central Arizona Project (CAP) Canal that is delivered to the facility via the Beardsley Canal.

Future Land Use

Figure 5 illustrates anticipated future buildout land uses within the study area, based on longrange planning efforts conducted by each jurisdiction. This map shows that the majority of the vacant and agricultural land will be converted to single-family residential housing and mixed-use developments in the future. Commercial and industrial development will expand, but remain scattered throughout the study area. The majority of employment land uses are clustered in the
eastern part of the study area, between Litchfield and Dysart Roads. Much of the study area will consist of planned developments (i.e., master-planned communities).

The City of Surprise is working with BNSF and private developers to create a new industrial park along the Ennis Spur. New warehouse districts, distribution centers, and commercial enterprises are expected to double the business demand on the BNSF branch in the future. Additionally, BNSF plans to improve the Ennis Spur with construction of a new wye at Grand Avenue (US 60) and a new rail-oriented business park adjacent to Luke Air Force Base, likely causing rail traffic crossing Peoria Avenue to increase in the future.

Master Planned Communities

With the exception of the southeast portion of the study area, which is affected by the noise contours of Luke Air Force Base, much of the study area is anticipated to lie within master planned communities (Figure 6). About half of the major residential communities located in the planned communities (Figure 6). About half of the major residential communities located in the
study area are built or actively in the development phase. These communities are primarily composed of residences, with some local commercial development. The only major retail town center thus far envisioned is at the north end of Sycamore Farms, between SR 303L and Sarival Avenue, abutting Cactus Road on the south side.

Three commercial/business parks are planned between Litchfield and Dysart Roads; one is in the development phase. Glendale 303, located at the southeast comer of Peoria Avenue and SR 303L, has been annexed by the City of Glendale and is planned as a major commercial center to potentially include auto dealerships and/or large retail businesses. Due to current economic conditions, the rate of growth has slowed, but it is expected to increase in the futurealthough the timeframe for buildout will likely be extended. Built out, active (e.g., under construction), and future master planned communities in the study area are summarized in Table 2.

Table 2 - Summary of Study Area Master Planned Communities

Master Planned Community	MPA	Development Status	Acres	Anticipated Dwelling Units	Acreage of Commercial and Industrial Development
Cortessa	Glendale	Active	605	1,732	4
Desert Cove Commercial Park	Surprise	Active	95	0	95
Glendale 303	Glendale	Active	110	0	0
Greer Ranch	Surprise	Active	586	1,664	38
J ohn F Long Industrial Complex	El Mirage	Future	1,470	0	348
Kenly Farms	Surprise	Active	187	256	118
Copper Canyon Ranch	Surprise	Active	416	682	15
Prasada	Surprise	Future	3,355	14,180	850
Rancho Gabriela	Surprise	Active	799	2,329	197
Skyway Business Park	Surprise	Active	145	0	145
Sycamore Farms	Surprise	Active	640	2,131	96
Twelve Oaks Estates	Glendale	Active	133	130	0
Zanjero Pass	Glendale	Future	544	187	0
Zanjero Trails	Surprise	Future	879	3,054	11
Source: City of Sumise, City of Glendale	MAGi 2010				

Potential Traffic Generators and Attractors

During the weekday momings and aftemoons, schools will become significant traffic generators; specifically Shadow Ridge High School, which is the largest school in the study area, located along Peoria Avenue on the west side of the study area. Dysart High School and the Dysart Unified School District \#89 Administration Center are both located just outside the study area, between Peoria Avenue and Cactus Road, east of Dysart Road. On weekends, churches could become large traffic generators. Two large "megachurches" exist (Parkway Christian Church, attendance of approximately 2,000) or are planned (Calvary Chapel) on Peoria Avenue, both between Reems Road and Bullard Avenue.

SR 303L, currently a major arterial, is planned to be upgraded to a freeway, with construction beginning in 2011. This corridor is expected to generate adjacent commercial and office/employment land uses, which will become major traffic generators during peak commuting times. The freeway itself will also become a generator because of its nature as a high-capacity transportation facility, providing the ability to move faster and more efficiently around the region.

Because of the proximity to Luke Air Force Base, the area south of Peoria Avenue and east of Reems Road is not compatible with residential development. Therefore, this area may see commercial and industrial land uses - becoming a regional employment center and generating peak hour commuting traffic. Currently, the area is planned to be mixed-use. Additionally, the
three commercial/industrial planned developments between Litchfield and Dysart Roads may also be generators of peak hour commuter traffic. Lastly, the land west of the Beardsley Canal belonging to the ASLD, has the potential to see intense development in the future, although no plans are currently active.

While not located within the study area, the White Tank Mountain Regional Park, accessed via Olive Avenue just west of the study area, is a popular recreational destination.

Prasada, a master planned community, is composed of several "villages", of which a residentia village is located within the study area. Between Cactus Road and Greenway Road, two other villages span SR 303L, which have a heavy commercial component. To the west of SR 303L, a major auto mall is planned between Cactus Road and Waddell Road. To the east, a regional mall and lifestyle center, as well as a mixed-use urban village are planned. North of Waddell Road and west of SR 303L is a planned major regional medical campus; to the east of SR 303L is a planned regional employment/office campus. All of these concentrated commercial and employment land uses can generate and attract traffic all day long.

Potential traffic generators and attractors are illustrated on Figure 7.

Growth Areas

The City of Surprise 2030 General Plan illustrates two major growth areas in the Peoria Avenue Corridor study area. A regional center (defined as an area of intense and high-density development with strong connections to the regional transportation system) spans approximately one mile on each side of the planned SR 303L freeway. Concentrated and mixed-use development is encouraged. Streetscapes in regional centers should support future transit-oriented development and must encourage the use of alternative modes of transportation as the preferred method of travel.

The area between Litchfield and Dysart Roads and Waddell Road and Peoria Avenue is intended as an employment center. Employment centers support a variety of employment types that are expected to contain prime industrial land that support export-oriented activities, such as warehouse distribution, heavy or light manufacturing, research and development uses, and selected business services.

The City of Glendale 2025 General Plan also illustrates two major growth areas within the study area. The first includes the Luke Compatible Growth Area, located along and south of Peoria Avenue, from approximately Reems Road east. Special legislation pertaining to land utilization in the Luke Air Force Base vicinity establishes parameters to restrict residential and business development.

The second growth area is the Loop 303 Growth Area, with a growth cluster located at the future traffic interchange of SR 303L and Peoria Avenue. The General Plan calls for commercial and employment uses within this growth area.

Zoning

Zoning, as defined by each jurisdiction in the study area, is illustrated on Figure 8. Except for pockets of commercial and industrial development, the majority of the area is either zoned for rural (one or less dwelling units per acre) or single-family (approximately two to seven dwelling units per acre) residential development.

As of August 2010, no rezoning requests are being processed by the study area jurisdictions.

Socioeconomic Data

The thirteen socioeconomic analysis zones (SAZ) within the study area constitute approximately 17.5 square miles (less than one-half percent) of the 9,223 -square-mile MAG planning area and modeling region. In 2005, the study area had a population of approximately 4,550 persons and an employment base of approximately 1,500 employees. By 2030 , these numbers are expected to dramatically increase.

Table 3 presents the socioeconomic data for the existing 2005 and adopted 2030 forecast scenarios, as well as the percent change between the two forecast years

Table 3 - Socioeconomic Data

Scenario	Population (persons)	Employment (employees)
2005	4,550	1,500
2030	36,330	21,010
Percent Change	698%	$1,300 \%$

Population density maps (Figures 9 and 10) show the highest existing density located in the built out/under construction master-planned communities located north of Peoria Avenue between Reems and Litchfield Roads. While that will remain an area of higher density, the greatest densities will be located in the Prasada community, north of Peoria Avenue between Citrus Road and SR 303L. The areas of lowest population density include much of the area affected by the BNSF Ennis Spur and Luke Air Force Base noise contours, and the area surrounding the McMicken Dam.

Employment density maps (Figures 11 and 12) illustrate that the largest number of existing jobs are located north of Peoria Avenue between Reems and Dysart Roads, although the employment density is still quite low, reflecting an average of 1.1 to 4 jobs per acre. Employment growth to 2030 is scattered, with the highest densities of jobs located adjacent to SR 303L and Dysart Road. The areas with the lowest employment densities are the McMicken Dam and the area south of Peoria Avenue between Sarival Road and the Ennis Spur generally affected by the Luke Air Force Base noise contours.

PEORIA AVENUE CORRIDOR IMPROVEMENT STUDY

Jackrabbit Trail Parkway to Dysart Road

Legend

Study Area Bounda	Topography (100')	Land Ownership
- Proposed Freeway	Luke AFB Noise Contour	State Trust Land
-- Proposed Parkway	General Floodplain Limits	Private Land Parcels
Road	Drainage Structure (canal, dam)	
- Railroad	Stream/Wash	

PEORIA AVENUE CORRIDOR IMPROVEMENT STUDY

Jackrabbit Trail Parkway to Dysart Road

Figure 3 - Municipal Planning Areas and Incorporated Areas

PEORIA AVENUE CORRIDOR IMPROVEMENT STUDY

Jackrabbit Trail Parkway to Dysart Road

PEORIA AVENUE CORRIDOR IMPROVEMENT STUDY

Jackrabbit Trail Parkway to Dysart Road

PEORIA AVENUE CORRIDOR IMPROVEMENT STUDY

Jackrabbit Trail Parkway to Dysart Road

Legend

Study Area Boundary		Luke AFB Noise Contour		Local Commercial Development	\square	High School
- Proposed Freeway		General Floodplain Limits	Wlo	Mixed Use	\square	Megachurc
Proposed Parkway		Drainage Structure (canal, dam)	Traffic	Generators and Attractors		
Road	~n	Stream/Wash	\square	Elementary School	\square	mmercial Ce
Railroad		Master Planned Community	\square	Middle School	\square	Industrial Center

Source: ALRIS, MAG 2007, City of Glendale, City of Surprise

PEORIA AVENUE CORRIDOR IMPROVEMENT STUDY

Jackrabbit Trail Parkway to Dysart Road

PEORIA AVENUE CORRIDOR IMPROVEMENT STUDY

Jackrabbit Trail Parkway to Dysart Road

Figure 9 - Population Density 2005

PEORIA AVENUE CORRIDOR IMPROVEMENT STUDY
Jackrabbit Trail Parkway to Dysart Road

Figure 10 - Population Density 2030

PEORIA AVENUE CORRIDOR IMPROVEMENT STUDY

Jackrabbit Trail Parkway to Dysart Road

Figure 11 - Employment Density 2005

PEORIA AVENUE CORRIDOR IMPROVEMENT STUDY

Jackrabbit Trail Parkway to Dysart Road

3.0 PHYSICAL FEATURES

Topography

This section describes the existing physical and natural environment of the Peoria Avenue Corridor study area relative to topographical features, including slopes, land subsidence and fissures. Generally speaking, the study area is relatively flat, with an elevation range of 1,094 to 1,402 feet above mean sea level.

Slope Analysis

Figure 13 shows the slope analysis for the Peoria Avenue Corridor study area. Slope analysis aids in understanding the topography of a region and helps to delineate compatible and incompatible slopes for urban development. It is combined with surface geology and soil data to determine the most appropriate sites for land uses and transportation corridors. The slope of a line segment is the ratio of the change in elevation (rise) to the horizontal distance between endpoints (run). The larger the rise per unit of run, the steeper the slope.

The slopes for the study area have been divided into four ranges. Areas with slopes less than 5 percent are considered "flat," while slopes of 5 to 10 percent are "gradual." Slopes of 10 to 20 percent are "moderate," while slopes of 20 percent or more are "steep." The lighter shades on the map represent flatter terrain, while darker shades denote steeper slopes. Almost the entire study area falls under the "flat" category, with the exception of a small area at the westemmost end, between Waterfall and Cholla Washes, south of the Peoria Avenue section line. These steeper slopes begin the ascent of the White Tank Mountains directly to the west. Therefore, the majority of the study area is deemed suitable for transportation corridor development.

Land Subsidence and Fissures

Figure 14 shows land subsidence for the Peoria Avenue Corridor study area. Land subsidence has been identified in several Arizona locations. This phenomenon occurs when water is removed from underground reservoirs and the weight of the overlying material compresses, causing the land to settle. Once compressed, alluvial deposits take up less space than before and the ground surface sinks. The amount of subsidence varies by location. Portions of the study area have seen land subsidence between five and 15 feet, some of the highest levels in Arizona.

Land subsidence creates another potential problem: earth fissures. These are cracks in the ground surface that occur because of uneven or differentiated land subsidence. Depending on circumstances, fissures can form gullies as much as 50 feet wide and 10 to 15 feet deep. Once fissures start to form, they tend to increase in number and length, spreading at uneven speeds and directions for several miles

The effects of land subsidence and earth fissuring can be significant, because they may cause significant damage to infrastructure, increase flooding potential, worsen groundwater pollution, and accelerate soil erosion. Continued urban development on lands that require groundwater pumping ensures a future land subsidence problem.

The Arizona Geological Survey is currently conducting a mapping exercise to locate and define fissure locations throughout Arizona. Nine "study areas" have been defined in Maricopa County as areas of earth fissure development. The Luke Air Force Base study area, ranging from approximately Indian School to Waddell Roads, and Jackrabbit Trail to EI Mirage Road, contains a series of earth fissures. A fissure crosses Peoria Avenue just west of Sarival Avenue. Additionally, a series of unconfirmed (not confirmed by recent surface investigations, but previously reported) and discontinuous (confirmed portions of fissures, likely representing an incipient surface expression of an earth fissure) are documented approximately along the Peoria Avenue section line, west of the Beardsley Canal.

Drainage Features

Figure 15 depicts major drainage features for the Peoria Avenue study area. Three major drainage structures/features are located within the study area: the McMicken Dam, the Beardsley Canal, and the Reems Road Channel and Basin. The McMicken Dam is almost eleven miles long, following an alignment offset from the Beardsley Canal, beginning at Peoria Avenue west of Perryville Road and extending north and east to Happy Valley Road west of Bullard Avenue. The dam is operated and maintained by the FCDMC. The dam detains storm runoff and meters outflows through a channel located at the east end of the structure. The Peoria Avenue section line intersects the detention basin located immediately south of the dam.

The Beardsley Canal is located approximately a half mile west of Perryville Road and is owned by the MWD. A series of irrigation canals/ditches is also owned by the MWD in the study area. These east-west canals connect with the Beardsley Canal on the west end, extending to approximately one-half mile east of Sarival Road, located south of Peoria Avenue and south of Cactus Road. Parallel, but privately owned, irrigation canals also exist in segments along the south side of Peoria Avenue. Additionally, MWD manages the Cross-Cut Canal and Pipeline, south side of Peoria Avenue. Additionally, MWD manages the Cross-Cut Canal and Pipeline,
which crosses Peoria Avenue underground, along Citrus Avenue. Any crossings of MWD facilities will require close coordination with MWD.

The Reems Road Channel and Basin is a regional flood control facility to intercept and convey the 100-year stormwater event. The ultimate facility includes a channel flowing south along Reems Road from Bell Road to the Reems Basin, an off-line detention basin is located a quarter-mile south of Peoria Avenue. The purpose of the channel is to protect Reems Road and the land to the east, including the City of Surprise wastewater treatment plant and various utilities. In the summer of 2009, FCDMC completed the construction of the segment of the project south of Peoria Avenue.

While no rivers are located within the study area, several streams and washes traverse the area, generally located in the westemmost portion, draining from the White Tank Mountains Federal Emergency Management Agency (FEMA) maps show most of the study area to be within the 100-year to 500-year floodplain. Concentrations of land are located within the 100year floodplain, including drainage areas west of McMicken Dam, major washes, and channel west of Cotton Lane, Reems Road, and the Ennis Spur. The 100 -year floodplains listed adjacent to major roadways serve as permanent drainage channels, with the land owned and controlled by the FCDMC, and therefore preserved against future development. As uncontrolled or natural drainage features, both Waterfall and Cholla Washes include floodway areas.

The Arizona Department of Water Resources (ADWR) regulates and permits ground water wells in Arizona. There are a number of wells within the study area, including several located adjacent to Peoria Avenue, whose locations will need to be considered with respect to potential roadway improvements.

Improvement Project

The FCDMC is implementing and planning improvements to many drainage features to reduce area flooding and drainage problems as new development expands west. Two FCDMC Area Drainage Master Plans (ADMPs) or Area Drainage Master Plan Updates (ADMPUs) cover the study area. The studies estimate flood potential for a watershed, map watercourses, identify existing and potential drainage problems, and develop preliminary solutions and standards for floodplain and stormwater management. A discussion of their major findings follows.

Loop 303 Corridor/White Tanks ADMPU: The study included the analysis of approximately 220 square miles of watershed from the McMicken Dam south to the Gila River and from the White Tank Mountains east to the Agua Fria River, including the entire study area. Three development alternatives recommended in the ADMPU fall within this project's study area: the SR 303L channel and basins, the Reems Road Channel and Basin and the BNSF Railway Channel and Basin. The Beardsley Canal is classified as a facility under development.

Wittman ADMP: The Wittman ADMP study area is approximately 310 square miles and is located within the City of Surprise and unincorporated Maricopa County. The area including and west of the McMicken Dam is in this study area. Recommended improvements in the Peoria Avenue study area include removal of the floodplains west of the McMicken Dam and development of a parallel scenic/wildlife/multi-use corridor west of the dam.

McMicken Dam Fissure Zone Remediation Project: Because a series of fissures and conditions sufficient for fissure development were found adjacent to the south end of the dam, this study was conducted to consider altemative alignments or modifications to the dam to negate potential future damage. The recommended action included removing the southem segment of the dam and replacing it with a realigned soil-cement dam segment and basin located outside the area with a high risk of fissures. This project has recently been completed by FCDMC.

Additionally, a series of channels and basins are in varying stages of development throughout the corridor, including those public channels and basins cited above in the Loop 303 Corridor/White Tanks ADMPU, as well as a series of private channels and basins, such as at Shadow Ridge High School and within the master planned communities of Greer Ranch, Twelve Oaks Estates, and Copper Canyon Ranch (Mountain Gate).

Utilities

There are numerous utilities within the study area (Figure 16). A portion of the study area, the properties between the Beardsley Canal and Reems Road, is within the MWD Conservation district providing water services to its customers. The District's irrigation conveyance and delivery channels and pipelines span the entire length of its service areas along Peoria Avenue Many MWD wells and private irrigation wells (active and inactive) are also sited along Peoria Avenue. Under a contract with Arizona Public Service (APS), MWD also delivers power and Avenue through APS's distribution facilities to water wells belonging to the District and its customers.

Numerous overhead power distribution lines run in an east-west direction parallel to Peoria Avenue, along both sides of the roadway, as well as in a north-south direction along the cross streets: Cotton Lane, Sarival Avenue, Dysart Road, and the Ennis Spur. Aboveground power lines along Peoria Avenue are fragmented, a result of gradual burying of overhead distribution lines in front of new housing developments over the years. The future APS West Valley-North 230 kV power transmission line, scheduled to be placed in service in 2015 in a corridor west of SR 303L, follows SR 303L from Olive Avenue to Cactus Road through the study area, where it will then turn west to parallel Cactus Road to the north. Power substation sites are planned on the adjacent major arterials to Peoria Avenue (Olive Avenue and Cactus Road).
City utilities along Peoria Avenue include underground water and sewer lines and appurtenances: a 30 -inch reclaimed water line and reclaimed water delivery headers on the south side of Peoria Avenue across from the SSWRP. Other public utilities along Peoria Avenue include Southwest Gas natural gas lines and Qwest overhead and underground telephone lines.

Recreation and Trails

Figure 17 depicts recreational opportunities in the study area. While there are no regional parks within the study area, White Tank Mountain Regional Park sits just to the west, beyond ackrabb frai. Tricts vistors from the to the park is located on Olve Avenue, one mile to the parks exist in developed communities.

The 1,521 miles of the planned Maricopa County Regional Trail System are organized into The 1,521 miles of the planned Maricopa County Regional Trail System are organized into priorities to serve as a guide while implementing the trail system plan. The two coridors in the
study area, adjacent to and west of both the McMicken Dam and the Beardsley Canal are study area, adjacent to and west of both the McMicken Dam and the Beardsley Canal are from the Beardsley Canal has yet to be built. These corridors are part of the Maricopa Trail, connecting the regional parks in the Maricopa County Park System. The study area corridors provide connections to White Tank Mountain Regional Park.

PEORIA AVENUE CORRIDOR IMPROVEMENT STUDY
Jackrabbit Trail Parkway to Dysart Road

Legend

- Study Area Boundary	Topography ($100{ }^{\prime}$)	Land Subsidence	Fissure*
- Proposed Freeway	Luke AFB Noise Contour	$<1 \mathrm{ft}$.	Continuous
- Proposed Parkway	General Floodplain Limits	$1-5 \mathrm{ft}$.	Discontinuous
Road	Drainage Structure (canal, dam)	5-10 ft.	-- Unconfirmed
- Railroad	Stream/Wash	$10-15 \mathrm{ft}$.	

*Continuous fissures are manifested as open cracks or gullies. Discontinous fissures are manifested as elongated to circular depressions; frequently representing an incipient surface expressio not be confirmed by surface investigations by Arizona Geological not be confirmed by surface investigations by Arizona Geological
Survey geologists, but which have been previously reported by professional geologists in published documents or maps.

PEORIA AVENUE CORRIDOR IMPROVEMENT STUDY
Jackrabbit Trail Parkway to Dysart Road

Legend

-u= Study Area Boundary	--- Topography (100')	Floodplain
- Proposed Freeway	Luke AFB Noise Contour	100-year floodplain
- Proposed Parkway	- Drainage Structure (canal, dam)	Floodway
Road	\sim Stream/Wash	Between 100-year and 500-year floodplain
- Railroad	- Well	

PEORIA AVENUE CORRIDOR IMPROVEMENT STUDY

Jackrabbit Trail Parkway to Dysart Road

Legend

Study Area Bounda	Topography (100')	Well	Substation Site
- Proposed Freeway	Luke AFB Noise Contour	Power Line Corridor	\triangle Existing
Proposed Parkway	General Floodplain Limits	- APS Proposed West Valley-North Power Line	\triangle Proposed
Road	Drainage Structure (canal, dam)		
Railroad	Stream/Wash	Future 230kV Power Lin	

PEORIA AVENUE CORRIDOR IMPROVEMENT STUDY

Jackrabbit Trail Parkway to Dysart Road

Legend

4.0 TRANSPORTATION NETWORK

Relevant information regarding the existing and future transportation network is detailed in the following sections, including discussions of roadway functional classification, planned network improvements, transit plans, local circulation plans, and programmed transportation improvements.

Existing Transportation Network

Figure 18 illustrates the existing transportation network in the study area. At the time of this report, Peoria Avenue is a two-lane roadway, with varying degrees of improvements. Peoria Avenue extends west as far as Perryville Road as a paved road, with the exception of one mile between Citrus Road and Cotton Lane that is unpaved. Between Perryville Road and the Beardsley Canal, an unpaved and narrow maintenance/access road exists. In the wider context of the study area, J ackrabbit Trail Parkway does not yet exist; Olive Avenue is the only crossing of the Beardsley Canal, providing access to the west; and SR 303L remains a major arteria road with no freeway improvements completed. Local roadways are intermittently developed depending on the degree of built residential and industrial land uses. The BNSF Ennis Spur crosses Peoria Avenue at an at-grade railroad crossing, protected by lights and gates.

Based on its current function in the existing network, MCDOT functionally classifies the existing Peoria Avenue roadway as a major collector in the Maricopa County Transportation System Plan, February 2007. A major collector provides short-distance (less than three miles) traffic movement, collects and distributes traffic between local and arterial streets, and provides direct access to abutting land.

Future Transportation Network

For the planned future network, functional classification is the process by which roads are grouped into classes or systems according to the kind of service they will provide in the future. Roadways functionally classified as high-speed, high-capacity facilities tend to maximize mobility and minimize direct land access. The hierarchy of functional classification typically includes freeways, expressways, parkways, major and minor arterials, collectors, and local streets.

Maricopa County and MAG similarly classify Peoria Avenue as an (urban) principal arterial in the future network. However, Peoria Avenue actually falls within multiple jurisdictions in the study area. Each jurisdiction has assigned its own future functional classification to the portion of Peoria Avenue within its boundaries. The overlapping classifications are even more complex where Peoria Avenue forms the boundary between jurisdictions.

For the planned future network, Peoria Avenue has been classified by the local jurisdictions as listed below:

- MCDOT - Urban Principal Arterial
- MAG - Major Arterial
- City of El Mirage - Minor Arterial
- City of Glendale - Major Arterial
- City of Surprise - Major Arterial

The future MCDOT functional classification of Peoria Avenue in the study area is as an urban principal arterial, as stated in the Maricopa County Major Streets and Routes Plan, adopted in 2001 and revised in 2004 (Figure 19). The corridor currently exists from Dysart to Perryville Roads, and is classified as "future" from Perryville Road to J ackrabbit Trail. A principal arterial is defined as a street that provides for long-distance traffic movement within Maricopa County or between Maricopa County and urban areas. Access to abutting land is restricted and controlled through frontage roads and raised medians, as well as by the spacing and location of driveways and intersections. Opposing traffic flows may be separated by a raised median.

MCDOT also classifies all other one-mile grid roadways in the study area as principal arterials, except Perryville Road south of Cactus Road, which is defined as a minor arterial, and SR 303L, defined as a future freeway.

The Maricopa Association of Govemments (MAG) I-10/Hassayampa Valley Transportation Framework Study identifies Peoria Avenue as a major arterial, as illustrated in the functional classification network map in Figure 20. This is supported in the 2010 MAG Regional Transportation Plan (RTP), which defines Peoria Avenue as a four-lane arterial from Dysart to Reems Road, and as a six-lane arterial from Reems Road to J ackrabbit Trail in 2030 (Figure 21).

The City of Surprise incorporated area within the study area extends north from Peoria Avenue, between the Beardsley Canal and Dysart Road. Surprise classifies Peoria Avenue as a major arterial in the current General Plan, illustrated in Figure 22.

Incorporated EI Mirage includes the areas both north and south of Peoria Avenue east of Dysart Road (and therefore out of the study area), but also the area south of Peoria Avenue between the Ennis Spur and Dysart Road. El Mirage classifies Peoria Avenue as a minor arterial (based upon City of Peoria standard details). El Mirage does not have a functional classification map at the current time.

The City of Glendale maintains planning jurisdiction over the south side of Peoria Avenue from the Ennis Spur to Perryville Road as part of its MPA. One-half mile between SR 303L and Sarival Road is incorporated, fronting Peoria Avenue to the south. Recent General Plan amendments have upgraded Peoria Avenue to a major arterial roadway (Figure 23).

Planned Network Improvements

Much of the surrounding roadway system to the project area does not exist or is planned to be expanded or adjusted from its current configuration. SR 303L, J ackrabbit Trail Parkway, and Northem Avenue Parkway are other planned roadway facilities in the surrounding network that are considered regional routes.

SR 303L Corridor: SR 303L is located roughly in the center of the study area. It intersects Peoria Avenue between Cotton Lane and Sarival Road. It has been studied, classified, reclassified, restudied, and ultimately confirmed as a major link in the regional and state highway system. SR 303L is currently being improved from an interim two-lane roadway into a "Rural Major Freeway," as classified by MAG. SR 303L is an important link in the regional freeway system because it will alleviate the bottlenecks on the Grand Avenue arterial (US 60/US 93) and provide a new transportation corridor for the West Valley.

The ultimate improved SR 303 L will be a fully access-controlled, grade-separated urban freeway with a rolling profile that will be elevated or depressed at the arterial crossroads and near ground level at all other locations. The ultimate freeway will include four general purpose lanes with high-occupancy vehicle (HOV) lanes and auxiliary lanes between service interchanges. Thirteen service interchanges for arterial crossroads and two system interchanges at Northem Parkway and US 60 are also planned for this freeway.

Peoria Avenue is one of the thirteen service interchanges planned for the build out of the SR 303L corridor. This interchange is under design as a full diamond interchange. The Stage III ADOT design plans have been obtained for this interchange and will be considered throughout the study.

Jackrabbit Trail Parkway: Jackrabbit Trail Parkway has undergone several planning and corridor-level studies in the last few years. In the 2007 MAG I-10/Hassayampa Valley Transportation Framework Study, J ackrabbit Trail was established as an Arizona Parkway, a new category of roadway classification in Arizona. The framework study also changed the alignment of the corridor - specifically within the Peoria Avenue study area, offsetting it a half mile west of the section line - to miss major topographical and drainage features.

J ackrabbit Trail Parkway will follow the new Design Guideline Recommendations for the Arizona Parkway (MCDOT, August 2008), which includes an intermediate-capacity, six- to eight-lane divided highway with partial access control and no direct left turns permitted at major intersections. Compared with a conventional arterial, an Arizona Parkway can provide additional travel capacity without full grade separations at major intersections. It can provide the benefit of increasing intersection capacity while maintaining direct driveway access to each quadrant of the intersection. The junction of Peoria Avenue with J ackrabbit Trail Parkway will need to consider the design standards in the Arizona Parkway Intersection/Interchange Operational Analysis and Design Concepts Study (MCDOT, August 2009).

In 2008, MCDOT completed the J ackrabbit Trail Access Control and Corridor Improvement Study, which further refined the corridor and established a preferred alignment, supported by preliminary engineering considerations that provide operational and design details regarding its classification as an Arizona Parkway. Because Peoria Avenue will intersect J ackrabbit Trail Parkway, this study can provide guidance for future roadway improvements in the study corridor.

Northern Avenue Parkway: While located outside the study area, Northern Avenue through the Phoenix metropolitan area has been under study for several years, with a view to upgrading it to a "super street." With a fourteen-mile gap in the freeway system between I-10 and SR 101L, Northem Avenue has been envisioned as another east-west connection across the metropolitan area, offering more access control and capacity than a major arterial, but less speed than a freeway.

In the MAG I-10/Hassayampa Valley Transportation Framework Study, this facility is defined as an Arizona Parkway, positioned approximately one-half mile between the Northem and Olive Avenue section lines throughout the study corridor.

Scenic Corridors

Maricopa County has designated a series of comidors as scenic for a number of reasons, including their prominent views or vistas, native landscaping, or unique characteristics that attract residents in search of a distinct quality of life. MCDOT has developed design guidelines (e.g., landscape, habitat, character, height, lighting, signage, fencing) to direct and enhance planning of these corridors as development occurs, with the intent of highlighting, promoting, and preserving the scenic and environmental characteristics of the community, while minimizing the impacts of rapid urban growth. Two scenic corridors exist in the study area:

- The Olive Avenue Scenic Corridor has been designated because it provides access to the White Tank Mountain Regional Park, a major recreational destination in Maricopa County.
- The McMicken Dam Scenic Corridor has been designated for its recreational role and potential as a segment of the Maricopa County Regional Trail System.

As altematives are developed for Peoria Avenue, coordination should occur with these studies, if the alternative alignments intersect these corridors in any way.

Public Transit

Figure 24 expands upon the future roadway network planned for the study area and includes other transportation modes planned or proposed by the jurisdictions. They include two future transit services, currently funded through the MAG RTP: bus rapid transit (BRT) along the future SR 303L, and local bus service along Dysart Road. Unfunded but proposed future service includes local bus service along Cotton Lane, Sarival Road, Litchfield Road, and Peoria

Avenue through the study area, and on Reems Road and Bullard Avenue north of Peoria Avenue. Consideration should be given to future bus stops and pullouts for these services

Circulation Plans

As discussed earlier, the study area includes several existing and proposed master planned communities. Each of these communities has its own planned internal circulation system. Most of the communities plan curving and circuitous local roadways that loop back on each other, often with cul-de-sacs and limited connectivity in and out.

Programmed Transportation Improvements

MCDOT's Transportation Improvement Program (TIP) for Fiscal Years (FY) 2011-2015 does not include any transportation improvements for Peoria Avenue within the study area boundaries. In the larger project area, Olive Avenue is slated for intersection improvements in FY 2011 a Reems Road and Cotton Lane, to install traffic signals, make safety improvements, reduce congestion, and increase traffic flow. Along Olive Avenue between Litchfield Road and SR 101L, intelligent transportation system (ITS) elements will be constructed through FY 2013.

MAG maintains two major documents that identify projects: the RTP, which identifies transportation projects for a twenty-year horizon; and the TIP, which summarizes projects programmed during the next five years. The MAG RTP was updated in J uly 2010. With the exception of SR 303L, defined as a five- to six-lane freeway to be constructed between FY 2011 and 2015, the RTP defines the major roads within the study area as arterials, varying between four and six lanes by 2030. No roads, however, are designated for specific improvements within the study area. BRT along SR 303L is planned for implementation in "Phase 5 " of the RTP (FY 2026-2031); no other transit service is specified. ("Phase 5 " is in quotation marks because the half-cent sales tax that funds the RTP expires in 2026, so no funding is actually available beyond that date.)

The MAG TIP for FY 2011-2015, approved in J uly 2010, outines recently completed, deferred and deleted projects from the previous year's TIP. A number of projects have recently been deleted because of revenue and funding shortfalls. The only listing pertaining to Peoria Avenue is the recently completed Peoria Avenue (Cotton Lane to Litchfield Road) and Litchfield Road (Peoria Avenue to Greenway Road) design and construction of fiber optic cable interconnection of existing and future ITS facilities

Table 4 lists programmed projects included in the MAG FY 2011-2015 TIP. The list draws from the individual city and town TIPs, including capital projects currently programmed in the City of Surprise Capital Improvement Plan FY 2010-2014, City of EI Mirage FY 2009-2019 Capital Improvement Plan, and City of Glendale FY 2010-2019 Capital Improvement Plan.

Table 4 - Programmed Roadway Improvements: MAG TIP

Agency	FY	Location	Description	Funding Source*	Funding
ADOT	2011	SR 303L: Glendale Avenue Peoria Avenue	Right-of-way acquisition	STP-AZ	\$85,900,000
ADOT	2011	SR 303L: Peoria Avenue Waddell Road	Landscape design	RARF	\$200,000
ADOT	2011	SR 303L: Peoria Avenue Waddell Road	Construction	NHS	\$60,000,000
ADOT	2012	SR 303L: Glendale Avenue to Peoria Avenue	Landscape design	RARF	\$300,000
ADOT	2012	SR 303L: Peoria Avenue Waddell Road	Landscape construction	RARF	\$2,400,000
ADOT	2013	SR 303L: Glendale Avenue to Peoria Avenue	Landscape construction	RARF	\$3,500,000
EI Mirage	2011	Dysart Ranchettes area: Varney Road, Peoria Avenue, Dysart Road, El Mirage	Paving dirt roads	CMAQ	\$3,000,000
Maricopa County	2012	Olive Avenue: Litchfield Road to SR 101L	Construct and install new conduit and fiber optic cable to connect existing and planned ITS field devices	CMAQ	\$1,265,000
Surprise	2011	Litchfield Road: Desert Cove and Cactus Road	Construct new 2 northbound and 2 southbound lanes	Local	\$2,472,000
Surprise	2011	Peoria Avenue: Perryville Road and east $1 / 4$ mile	Construct new 2 westbound lanes with curb, gutter, sidewalk, raised median, and 1 turn lane	Private	\$500,000
Surprise	2011	Perrvville Road: Peoria Ave and Cactus Road	Construct new 2 lane arterial road	Private	\$1,000,000
Surprise	2011	Reems Road: Cactus Road and Peoria Avenue	Reconstructed 2 lane arterial road adding 1 southbound and 1 northbound lane with curb, gutter, median, and sidewalk	Local	\$2,600,000
Surprise	2011	Peoria Avenue: Cotton Lane to Litchfield Road	Design and installation/construction of fiber optics.	Local	\$800,000
Surprise	2011	SR 303L: Peoria Avenue to Bell Road	JPA with ADOT to install fiber optic conduit	Local	\$190,000
Surprise	2012	SR 303L: Peoria Avenue to Bell Road	Design fiber optic line and ITS devices to interconnect arterial/freeway traffic signals	Local	\$120,000
Surprise	2013	SR 303L: Peoria Avenue to Bell Road	Construction of fiber optic line and ITS devices	CMAQ	\$753,500

National Highway System, CMAQ - Congestion Mitigation and Air Quality.
Sources: MAG FY 2011-2015 TIP, City of Surprise Capital Improvement Plan FY 2010-2014, City of EI Mirage FY 2009-2019

As can be noted from the table, the City of Glendale Capital Improvement Plan contains no capital improvements in the study area during the FY 2010-2019 period.

nd Future Comorandum \#1 Existing and Future Coridor Features
avenue Corridor Improvement Study J ackrabbit Trail Parkway to Dysart Road

Soreat
Figure 19 - Maricopa County Major Streets and Routes Plan Functional Classification

Source: MAG I-10 Hassayampa Valley Transportation Framework Study, 2007
Figure 20 - MAG I-10/Hassayampa Valley Transportation Framework Study Functional Classification

A=COM Page 37 January 2011

Source: MAG RTP 2010 Update, 2010.

Source: City of Sumrise General Plan 2030, Transpotation Plan 2010
Figure 22 - City of Surprise Functional Classification Map

Source: City of Glendale General Plan 2025.

PEORIA AVENUE CORRIDOR IMPROVEMENT STUDY
Jackrabbit Trail Parkway to Dysart Road

Legend

$$
\text { -.---- Topography }\left(100^{\prime}\right) \bigcirc \text { Traffic Interchange }
$$

5.0 ROADWAY CHARACTERISTICS

The following sections detail relevant information regarding the existing and future characteristics of Peoria Avenue. Currently, Peoria Avenue exists as a two-lane roadway with varying degrees of improvements throughout the study area.

Existing Horizontal/Vertical Alignment

Peoria Avenue is currently an east/west roadway from Perryville Road to Dysart Road, with an unpaved section from Citrus Road to Cotton Lane (one mile). Within these limits, the current roadway alignment generally follows the Peoria Avenue section line, with some variation (Figure 25). The existing roadway is centered on the Peoria Avenue section line in the following areas: between Perryville Road and a half-mile east, between a quarter-mile west of Cotton Lane and a half-mile east of Sarival Road, between Reems Road and Bullard Avenue, and between Litchfield Road and Dysart Road. The existing roadway shifts slightly to the south so that the Peoria Avenue section line is near the north edge of the existing roadway between a half-mile east of Perrvville Road and Citrus Road, and between a half-mile east of Sarival Road and Reems Road. Between Bullard Avenue and Litchfield Road, the existing roadway shifts slightly to the north so that the Peoria Avenue section line is near the south edge of the existing roadway. As-built plans are not available for Peoria Avenue, so the horizontal alignment data (curves and angle points) are unknown

The existing roadway profile of Peoria Avenue does not contain any significant changes in elevation. Based on FCDMC; White Tanks-Agua Fria ADMP, 1989; NGVD29 data, the existing roadway elevations vary from 1,280 feet at Perryville Road to 1,108 feet at Dysart Road, which equates to an approximate slope of 0.50 percent. The flattest section is between Reems Road and Bullard Avenue (approximate 0.2 percent slope) and the steepest section is from Perryville Road to Cotton Lane (approx. 0.70 percent slope). Exact vertical alignment data is unknown, since as-built plans are not available

Existing Roadway Widths

In general, existing Peoria Avenue from Perryville Road to Dysart Road has been built as a twolane roadway, with varying degrees of improvements along the route. The existing roadway currently has a speed limit of 45 miles per hour. No designated parking lanes or bicycle lanes exist along the roadway. There is existing sidewalk (primarily detached) at various locations along the route where curb and gutter exist.

Table 5 lists the number of lanes by direction, median type, and approximate roadway width along Peoria Avenue between Perryville Road and Dysart Road.

Table 5 - Roadway Characteristics

Segment	Number of Lanes EB	Number of Lanes WB	Median Type	Roadway Width
Perryville Road				
to	1	2	Raised	96'
1/4M Mile East				
to	1	1	None	96'-27'
1/2Mile East				
to	1	1	None	27'-54'
$3 / 4$ Mile East				
to	1	1	None	36'-52'
Citrus Road				
to	Unpaved	Unpaved	n/a	n/a
$3 / 4$ Mile East				
to	1	1	None	28^{\prime}
Cotton Lane				
to	1	1	None	28^{\prime}
Sarival Road				
to	2	1	TWLTL	50^{\prime}
1/2 Mile East				
to	1	1	None	50'-28'
3/4Mile East				
to	1	1	None	28^{\prime}
Reems Road				
to	1	1	None	28^{\prime}
Bullard Avenue				
to	1	1	None	50'-32'
1/4 Mile East				
to	1	1	None	32'-40'
1/2 Mile East				
to	1	1	None	40'-33'
$3 / 4$ Mile East				
to	1	1	None	33'-50'
Litchfield Road				
to	1	1	TWLTL	64^{\prime}
1/4 Mile East				
to	1	1	TWLTL	64'-47'
1/2 Mile East				
to	1	1	TWLTL	46^{\prime}
$3 / 4$ Mile East				
to	1	2	TWLTL	74'-64'
Dysart Road				

[^0]Source: Maricopa County 2010; Field verification 2010.

Existing Right-of-Way

Existing right-of-way information was obtained from Maricopa County Assessor Maps, recorded plat maps and other surveys, and Maricopa County geographic information systems (GIS) data. The existing right-of-way width along Peoria Avenue varies along the corridor. Figure 26 provides representative right-of-way width information along Peoria Avenue from Perryville Road to Dysart Road. It is important to note that information presented on this map includes formally recorded right-of-way per the Maricopa County Assessor's Office, as of September 2010. This does not reflect right-of-way dedications that may be in process, municipality required developer stipulations that have not been administered, or any other situations not documented with the county.

Pavement Conditions

Peoria Avenue is generally paved with asphalt concrete from Perryville Road to Dysart Road, with the exception of the unpaved segment from Citrus Road to Cotton Lane. MCDOT supplied road summary reports for three specific locations: Cotton Lane to approximately 3,000 feet east, Sarival Avenue to Reems Road, and Reems Road to Bullard Avenue.

Peoria Avenue from Cotton Lane to approximately 3,000 feet east of Cotton Lane was constructed in May 1974 and is currently paved with a two-inch road mix over a native subgrade. This section was last sealed with a chip seal in May 2007. The left and right shoulders consist of native dirt. No curb and gutter are present

Peoria Avenue from Sarival Avenue to Reems Road was originally constructed in J une 1975 and improved in February 2008. It is currently paved with a five-inch road mix over an eight inch aggregate base course. This section was last sealed with a $3 / 8$-inch chip seal in J une 2009. The left shoulders consist of native dirt. Curb and gutter are present on the right edge (south) for most of the segment

Peoria Avenue from Reems Road to Bullard Avenue was constructed in J une 1975 and is currently paved with a one-inch road mix over a native subgrade. This section was last sealed with a $3 / 8$-inch chip seal in J une 2009. The left and right shoulders consist of native dirt. No curb and gutter are present.

The Pavement Condition Rating (PCR) is a composite evaluation of nine surface distress categories for extent and severity. The PCRs for Peoria Avenue, obtained from MCDOT in August 2010, are given in Table 6. The PCR for Peoria Avenue ranges from a low of 60 (from Cotton Lane to a point approximately 3,000 feet east, and from Reems Road to Bullard Avenue) to a high of 86 (between Sarival Road and Reems Road). A PCR of 55 to 70 is considered "good," 71 to 84 rates as "very good," and 85 to 100 rates as "excellent." As shown in Table 6, the section of Peoria Avenue between Sarival Road and Reems Road is in excellent condition, while the other two segments are in good condition. Based on historical data (2002-2007), approximately 70 percent of the arterial road segments in Maricopa County have a higher rating
than the two "good" segments on Peoria Avenue. PCR data was not available for the remaining sections of the study corridor

Also shown in Table 6, the Sufficiency Rating identifies how each arterial roadway segment compares to the MCDOT Roadway Design Manual (RDM) standards for each segment's functional classification. The MCDOT Roadway Management Section maintains information on lane geometry, width, shoulder width, drainage features, vertical sight distance, and horizontal sight distance. This information is then combined so that each road is scored on a scale from 1 to 100 , with an excellent rating of 100 representing a road in complete compliance with RDM standards. The Sufficiency Rating of Peoria Avenue ranges from a good rating of 66 between standards. The Sur Sarival Road and Reems Road to a very good rating of 71 from Cotton Lane to approximately 3,000 feet east. Based on historical data (2002-2007), approximately 85 percent of the arterial
road segments in Maricopa County have a higher rating than all three of these segments on road segments in Maricopa County have a higher rating than all three of these segments on
Peoria Avenue. Sufficiency Rating data were not available for the remaining sections of the Peoria Aver
study area.

Table 6 - Existing Pavement Condition

Segment	Pavement Condition Rating	Sufficiency Rating
Cotton Lane to 2,957' east	60 (Good)	71 (Very Good)
Sarival Road to Reems Road	86 (Excellent)	66 (Good)
Reems Road to Bullard Avenue	60 (Good)	69 (Good)

Source: MCDOT Road Management System - Road Summary Report August 2010

Intersection and Lane Geometry

The existing portion of Peoria Avenue within the study area has eight major cross-street intersections from Perryville Road to Dysart Road. The intersection with Litchfield Road is a intersections from Perryville Road to Dysart Road. The intersection with Litchfield Road is a
four-legged signal controlled intersection. The other seven intersections are either two-way stop four-legged signal controlled intersection. The other seven intersections are either two-way stop controlled or all-way stop controlled. The Perryville Road intersection is a " T " intersection, with the existing Peoria Avenue terminating here. The roadway lane geometry and intersection taffic control was taken from aerial mapping provided by Maricopa County and field-venified in type of intersection, current traffic control, and number of lanes at each approach. Figure 27 shows the lane geometry of each intersection along with an aerial plan view of the intersection.

Table 7 - Existing Intersection Characteristics

Intersection	Type	Traffic Control	Approach Lanes			
			NB	SB	EB	WB
Perrville Road	"T"-intersection	Three-Way STOP	1	1	n/a*	2
Citrus Road	Four-legged	NB/SB STOP		1	1	2
Cotton Lane	Four-legged	EB/WB STOP	1	1	1	1
Sarival Road	Four-legged	Four-Way STOP	3	2	2	2
Reems Road	Four-legged	Four-Way STOP	2	3	1	1
Bullard Avenue	"T"-intersection	Three-Way STOP	n/a	2	1	2
Litchfield Road	Four-legged	SIGNAL	2	3	2	3
Dysart Road	Four-legged	Four-Way STOP	3	3	2	3

apples to approach lanes that do not exist (e.g., three-egged intersection).
Source: Maricopa County 2010; Field verification 2010.

Access Conditions

There are thirty four driveways and fifteen intersections on Peoria Avenue. The names and approximate locations of these driveways and intersections were obtained on a field visit in August 2010. In addition to these defined access points, there is also "undefined" access throughout the corridor at various locations. All of the intersections have full access configurations, but only a few have separate lanes for left and right turns. All of the driveways have full-access, single-lane configurations with shared movements for each approach The have ulime location of these minor intersections and driveways are shown in Figure 28 and apprimate locations of these minorintersections and driveways are shown in Figures 28 and 29. The figures include example photos of the various types of access conditions that are present along the coridor. All intersections and driveways along existing Peoria Avenue have full movement access in all directions (no limited access).

Future Typical Sections

As mentioned in section 4.0, Peoria Avenue has been classified by the local jurisdictions as follows:

- MCDOT - Urban Principal Arterial
- MAG - Major Arteria
- City of El Mirage - Minor Arterial
- City of Glendale - Major Arterial
- City of Surprise - Major Arterial

A MCDOT principal arterial is six lanes wide, constructed on a minimum right-of-way of 130 feet, including a bicycle lane. Right-of-way for future bus pullouts should be provided on the far side of each intersection of a principal arterial with another principal or minor arterial - which, in the study area, includes every one-mile cross street. Figure 30 illustrates this MCDOT typical cross-section for Peoria Avenue

A MAG principal arterial is also six lanes wide, constructed on a minimum right-of-way of 140 feet, including a bicycle lane. Figure 31 depicts the MAG typical cross-section for Peoria Avenue.

Surprise classifies Peoria Avenue as a major arterial in the current General Plan, whereas El Mirage classifies Peoria Avenue as a minor arterial (based on City of Peoria standard details). Typical cross-sections for both cities are illustrated in Figures 32 and 33

The City of Glendale has indicated that amendments to the General Plan have upgraded Peoria Avenue to a major arterial. A typical cross-section for the City of Glendale is shown in Figure 34.

Bicycle lanes are typically part of most arterial cross-sections, but are specifically planned for Perryville Road, Citrus Road, Bullard Avenue, and Litchfield Road - all north of Peoria Avenue in the Surprise General Plan. Multi-use paths are planned along Peoria Avenue and J ackrabbit Trail Parkway. Surprise has designated SR 303L and Dysart Road as truck routes (Figure 35).

Design Criteria

Table 8 summarizes the functional classification guidelines described for each of the typical sections displayed in the last section.

Table 8 - Adopted Design Guidelines

Element	Design Guidelines				
	MCDOT Principal Arterial	Surprise Major Arterial	El Mirage Minor Arterial	Glendale Major Arterial	
Number of Lanes	6	6	4	6	
Minimum Right-of-Way	130 feet	136 feet	110 feet	130 feet	
Roadway Width	101 feet	101 feet	78 feet	95 feet	
Lane Width	12 feet	12 feet	12 feet	$11-12$ feet	
Lane Separation	14 foot Median	24 foot Median	16 foot Median	15 foot Median	
Access (min. driveway spacing)	165^{\prime} for low vol driveways and 330' for high vol driveways	200^{\prime} for all driveways and 300^{\prime} for major arterial intersections	$150^{\prime}-260^{\prime}$ based on 30 mph to 50 mph design speed	150^{\prime} min spacing	
Design Speed	55 mph	55 mph	n / a	n / a	
Bicycle Facilities	5.5 feet	Multi-Use Path	6 feet	5 feet w/11 foot	
lane					

Source: Maricopa County Maior Streets and Routtes Plan, Policy Document revised 2004; MCDOT Roadway Design Manual; City
of Surorise Transportation Plan, 2009: City of Surroise nengineening Design Standards: City of Peoria Standard Detail 2007; City of Peoria Infrastructure Design Guidelines; City of Glendale Standard Detail Index, 2002; City of Glendale Design and Construction standards, 2002

PEORIA AVENUE CORRIDOR IMPROVEMENT STUDY
Jackrabbit Trail Parkway to Dysart Road

Peoria Avenue and Perryville Road

Peoria Avenue and Citrus Road

Peoria Avenue and Cotton Lane

Figure 27 - Existing Intersection Configurations

Peoria Avenue and Sarival Road

Peoria Avenue and Reems Road

Peoria Avenue and Bullard Avenue

Figure 27 - Continued

Peoria Avenue and Litchfield Road

Peoria Avenue and Dysart Road

Figure 27 - Continued

PEORIA AVENUE CORRIDOR IMPROVEMENT STUDY
Jackrabbit Trail Parkway to Dysart Road

Source: Maricopa County Major Streets and Routes Plan, Policy Document, revised 2004.
Figure 30 - MCDOT Principal Arterial Cross-Section

Source: MAG I-10 Hassayampa Valley Transportation Framework Study, 2007.
Figure 31 - MAG Principal Arterial Cross-Section

Source: City of Surprise Street Design Guidelines, 2009

Figure 32 - City of Surprise Major Arterial Cross-Section

Source: City of Peoria Standard Detail, 2007.
Figure 33 - City of El Mirage Minor Arterial Cross-Section

Source: City of Glendale Standard Detail Index, 2002.
Figure 34 - City of Glendale Major Arterial Cross-Section
PEORIA AVENUE CORRIDOR IMPROVEMENT STUDY
Jackrabbit Trail Parkway to Dysart Road

Legend

Study Area Boundary Road	.. Luke AFB Noise Contour General Floodplain Limits	Future Roadway Network \square Freeway	Non-Motorized Transportation Routes = $=\\|$ Bicycle Lane
Railroad	Drainage Structure (canal, dam)	Parkway	-mil Multi-Use Path
Topography (100')	\sim Stream/Wash	Arterial	Other Transportation Routes
		Traffic Interchange	- [l\| Truck Route

Source: Flood Control District of Maricopa County, ALRIS, Maricopa County, City of El Mirage, Glendale, and Surprise General Plans

Figure 35 - Non-Motorized and Other Transportation Routes

6.0 TRAFFIC CONDITIONS

Existing Traffic Volumes

Historical traffic volumes were obtained from the City of Surprise and MCDOT for years 20082009 where available. In addition, Traffic Research \& Analysis, Inc. (TRA) conducted traffic counts in August 2010, at several locations in the study area. The existing average daily traffic (ADT) volumes within the study area are shown in Figure 36. TRA also conducted turning movement counts at eight major intersections in the same month. These intersection volumes represent existing peak hour traffic between the hours of 7:00-9:00 a.m. and 4:00-6:00 p.m. Figure 37 displays the 2010 peak hour turning movements at each of the major intersections along Peoria Avenue.

Existing daily traffic on Peoria Avenue varies in the study area from approximately 900 vehicles per day (vpd) at the west end to 9,000 vpd between Bullard Avenue and Litchfield Road. A majority of the north/south grid cross streets currently carry more traffic than Peoria Avenue. With the exception of SR 303L, Litchfield Road has the highest existing cross street daily traffic volume (16,500 to $14,600 \mathrm{vpd}$) in the study area.

Future Traffic Projections

MAG provided design year 2031 traffic volume projections for use in this study. MAG maintains a regional traffic forecasting model based on projected socioeconomic data, which provides numerous outputs including daily traffic and peak hour traffic. MAG network simulations were provided for two design years under the build scenario. For the purposes of this study, the "build scenario" network corresponds to three traffic lanes in each direction of travel and includes (beyond the study area limits) a future river crossing of the Agua Fria River. The 2031 build traffic volume projections are shown in Figure 38, ranging from approximately $10,000 \mathrm{vpd}$ to $31,000 \mathrm{vpd}$.
PEORIA AVENUE CORRIDOR IMPROVEMENT STUDY
Jackrabbit Trail Parkway to Dysart Road
(
Legend
=.....- Study Area Boundary Future Roadway Network
—_road
\ldots Railroad Freeway

Traffic Interchange
Daily Traffic Projections
XXX 2031 Average Daily Traffic

NOTE: Bullard Avenue from Peoria Avenue to Olive Avenue is not included in the Glendale General Plan, however is in the MAG model network.

PEORIA AVENUE CORRIDOR IMPROVEMENT STUDY
Jackrabbit Trail Parkway to Dysart Road

Figure 37 - Existing 2010 Peak Hour Turning Movement Volumes

Figure 38-2031 Projected ADT Volumes
7.0 PRELIMINARY ISSUES, OPPORTUNITIES, AND SPECIAL INTEREST AREAS

Table 9 presents preliminary issues and opportunities identified as part of the Peoria Avenue Coridor Improvement Study. The list was developed from observations in the field, review of existing studies and plans, and discussions with the Technical Advisory Committee

Table 9 - Preliminary Issues and Opportunities

Topic	Location	Description
Opportunity		
Roadway	Peoria Avenue between Perryville Road and Citrus Road	Full street cross-section built out; tie into and utilize existing improvements
	Corridor-wide	Maximize use of existing half-streets
Major Utility	Corridor-wide	Burying local power lines for corridor consistency
	Corridor-wide	Converting irrigation ditches into pipes to increase corridor safety
Issue/Constraint		
Roadway	Peoria Avenue and SR 303L	Planned upgrade to freeway, including traffic interchange at Peoria Avenue
	Corridor-wide	Peoria Avenue forms boundary between multiple jurisdictions, causing undefined ultimate control and responsibility of corridor (e.g.,land to the north of Peoria Avenue is incorporated by Surprise, land to the south of Peoria Avenue and east of Ennis Spur incorporated by EI Mirage, some land south of Peoria Avenue incorporated by Glendale, including 10 -foot wide strip annex)
Major Utility	Parallel to SR 303L	Installation of future APS West Valley-North 230kV power transmission line
	Peoria Avenue, between Litchfield Road and Ennis Spur	30-inch reclaimed water line and reclaimed water delivery headers
	Corridor-wide	Numerous well sites directly adjacent to Peoria Avenue right-of-way
	Corridor-wide	Underground city water and sewer lines and appurtenances
	Corridor-wide	Underground Southwest Gas natural gas lines
	Corridor-wide	Qwest overhead and underground telephone lines

Table 9 Continued

Topic	Location	Description
Issue/Constraint		
Drainage	Beardsley Canal, west of Perryville Road	Major drainage structure
	McMicken Dam, west of Beardsley Canal	Major drainage structure; cannot cross
	Waterfall Wash, west of Beardsley Canal and south of McMicken Dam	Major drainage feature that crosses Peoria Avenue section line
	South side of Peoria Avenue, west half of corridor	Parallel private irrigation ditches
	Adjacent to Cotton Lane, Reems Road, and Ennis Spur	Flood channels/100-year floodplains
	Peoria Avenue and Citrus Road	MWD underground cross-cut canal
Topography	Peoria Avenue section line, south of McMicken Dam	Existing fissures
	Peoria Avenue and Sarival Road	Existing fissures
Land Ownership	East of Beardsley Canal	State Trust Land
Existing Development	Northeast corner of Peoria Avenue and Perryville Road	Shadow Ridge High School
	South of Peoria Avenue, Perryville Road to Citrus Road	Cortessa master planned community; active development
	South of Peoria Avenue, Citrus Road to Cotton Lane	Adjacent custom home development; individual driveway access to Peoria Avenue; built out
	North of Peoria Avenue, SR 303L to Sarival Road	Limited development within Sycamore Farms master-planned community; active development
	North of Peoria Avenue, Sarival Road to Reems Road	Greer Ranch master planned community; active development
	South of Peoria Avenue, Sarival Road and half-mile east	Twelve Oaks Estate master planned community; active development
	North of Peoria Avenue, Reems Road to Bullard Avenue	Rancho Gabriela master planned community; built out
	North of Peoria Avenue, Bullard Avenue to Litchfield Road	Copper Canyon Ranch master planned community; active development
	North of Peoria Avenue, Ennis Spur to Dysart Road	Skyway Business Park; active development

Table 9 Continued

Topic	Location	Description
Issue/Constraint		
Future Development	North of Peoria Avenue, Beardsley Canal to half-mile east of Perryville Road; South of Peoria Avenue Beardsley Canal to Perryville Road	Zanjero Trails master planned community
	North of Peoria Avenue, halfmile east of Perryville Road to Cotton Lane	Prasada master planned community
	South of Peoria Avenue, Citrus Road to Cotton Lane	Zanjero Pass master planned community; south of existing development directly adjacent to Peoria Avenue
	South of Peoria Avenue, SR 303L to Sarival Road	Glendale 303 commercial development
	North of Peoria Avenue, Reems Road to Bullard Avenue	Two planned megachurch developments
	North of Peoria Avenue, Litchfield Road to Ennis Spur	Desert Cove Commercial Park
	South of Peoria Avenue, Ennis Spur to Dysart Road	J ohn F. Long Industrial Complex
	Parallel to Ennis Spur	Potential industrial development
Growth Areas	Future Peoria Avenue/SR 303L traffic interchange	Major commercial employment center
	North of Peoria Avenue, Litchfield Road to Dysart Road	Major office/industrial employment center

Additionally, Table 10 presents a series of special interest areas that must be considered in any infrastructure improvements proposed

Table 10 - Special Interest Areas

Special Interest Area	\quad Description
Peoria Avenue/Ennis Spur Railroad Crossing	Improvements to Peoria Avenue will have to include close coordination with the BNSF Railway. As traffic may significantly increase along the Ennis Spur in the future, consideration could be given to a grade separation of these two transportation facilities.
Peoria Avenue from Citrus Road to Cotton Lane	Special consideration should be given to this corridor segment due to its unique circumstances, including numerous large lot homes with individual driveway access on the south side, the future Prasada master planned commmunity on the north side, and the use of this segment ty school buses for access to Shadow Ridge High School.
Beardsley Canal to J ackrabbit Trail Parkway	Planning an extension of Peoria Avenue west of Perryville Road to the future J ackrabhit Trail Parkway wwill require close consideration of environmental and drainage features, including coordination with MWD and FCDMC. This extension will include a crossing of the Beardsley Canal, and is is close proximity to the McMicken Dam and Waterfall Wash. In addition, any
planned community circulation connections to J ackrabbit Trail	
Parkway from the west should be understood to construct a	
seamless Peoria Avenue coridor.	

8.0 RELEVANT PLANS, REPORTS, GUIDELINES, STUDIES, AND STANDARDS

Many existing plans, reports, and guidelines were compiled, reviewed, and summarized for this project. Relevant findings, conclusions, and recommendations from these documents have been discussed throughout the working paper. A listing of such references follows

- ADOT SR 303L 60\% Project Plans

APS West Valley-North Power Line and Substation Project, 2005

- Arizona Geological Survey Earth Fissure Map of Maricopa County, December 2009
- City of EI Mirage FY 2009-2019 Capital Improvement Plan, 2009
- City of EI Mirage General Plan, 2010
- City of Glendale FY 2010-2019 Capital Improvement Plan, 2009
- City of Glendale General Plan, 2002
- City of Glendale Major General Plan Amendments, 2005
- City of Glendale Zoning Ordinance, 2009
- City of Surprise Development Master Plans (Copper Canyon Ranch/Mountain Gate Desert Cove, Greer Ranch, Prasada, Rancho Gabriela, Sycamore Farms, Zanjero Trails)
- City of Surprise Designated Truck Routes, 2007
- City of Surprise Developments Status, 2010

City of Surprise General Plan, 2008
City of Surprise Major General Plan Amendments, 2010

- City of Surprise Transportation Plan, 2005
- City of Surprise FY 2010-2014 Capital Improvement P Ian, 2009
- City of Surprise Zoning Ordinance, 2010
- FCDMC Loop 303/White Tanks ADMP, 2003
- FCDMC McMicken Dam Fissure Zone Remediation Project
- FCDMC Wittman ADMP, 2007
- MAG TIP, 2010
- MAG Desert Spaces Plan, 2003
- MAG Interstate 10/Hassayampa Valley Transportation Framework Study, 2008
- MAG RTP, 2010
- Maricopa County Comprehensive Plan, 2002
- Maricopa County Major Streets and Routes Plan (Atlas and Policy Document), 2004
- Maricopa County McMicken Dam Scenic Corridor Guidelines
- Maricopa County Olive Avenue Scenic Corridor Guidelines
- Maricopa County Regional Trail System Plan, 2004
- Maricopa County Transportation System Plan, 2007
- Maricopa County Zoning Ordinance, 2010

MCDOT Design Guideline Recommendations for the Arizona Parkway, 2008

- MCDOT TIP FY 2011-2015, 2010

Appendix B

Technical Memorandum No. 2: Environmental Overview

Peoria Avenue Corridor Improvement Study: Jackrabbit Trail Parkway to Dysart Road

Technical Memorandum \#2: Environmental Overview

January 2011

Table of Contents

1.0 INTRODUCTION.. 1
2.0 SOCIOECONOMIC ENVIRONMENT .. 3

J urisdiction and Ownership ... 3
Existing Land Use ... 3
Planned Development... 5
Title VI/Environmental J ustice .. 5
Section 4(f) Resources.. 6
Section 6(f) Resources.. 7
3.0 PHYSICAL AND NATURAL ENVIRONMENT.. 8

Topography and Physiography... 8
Prime and Unique Farmlands... 10
Land Subsidence and Earth Fissures... 11
Vegetation.. 12
Wildlife and Wildlife Movement... 16
Special Status Species ... 17
Water Resources ... 19
Visual Resources ... 21
Noise... 24
Air Quality ... 26
Hazardous Materials .. 29
4.0 CULTURAL RESOURCES ... 31
5.0 AGENCY AND PUBLIC INVOLVEMENT.. 32
6.0 ENVIRONMENTAL SUMMARY .. 32

Surveys and Impact Evaluations ... 33
Permitting and Planning Requirements ... 33
Design and Construction Considerations: .. 33
7.0 REFERENCES... 36

List of Figures
Figure 1 - Vicinity Map.. \qquad
Figure 2 - Existing Land Use \qquad
Figure 3 - Water Resources, Earth Fissures, and Soils
Figure 4 - Prime and Unique Farmland \qquad ... 13
Figure 6 - Phal
Looking East-Northeast
Looking East-Northeast. ... 24
Figure 7 - Environmental Constraints

List of Tables

Table 1 - Population Distribution.. 6
Table 2 - Plant Species Known to Occur Within the Study Area .. 14
Table 3 - Federally-Listed Species Known to Occur in Maricopa County, Arizona.................... 18
Table 4 - FHWA Noise Abatement Criteria (Hourly Sound Level in A-Weighted Decibels [dBA] ${ }^{1}$
Table 5 - National Ambient Air Quality Standards...

Appendices

Appendix A: Arizona Game and Fish Department On-Line Project Review Tool Receipt Appendix B: Regulatory Database Search Summary

List of Abbreviations and Acronyms

ADA	Arizona Department of Agriculture
ADEQ	Arizona Department of Environmental Quality
ADWR	Arizona Department of Water Resources
AFB	Air Force Base
AGFD	Arizona Game \& Fish Department
AMA	Active Management Area
ASLD	Arizona State Land Department
AWLW	Arizona Wildlife Linkages Workgroup
BG	Block Group
BNSF	Burlington Northem Sante Fe Railroad
CT	Census Tract
CAA	Clean Air Act
CAAA	CAA Amendments and Amendments
CERCLA	Comprehensive Environmental Response, Compensation, \& Liability Act
CFR	Code of Federal Regulations
dBA	A-Weighted Decibels
EO	Environmental Overview
EPA	U.S. Environmental Protection Agency
ESA	Endangered Species Act
FCDMC	Flood Control District of Maricopa County
FHWA	Federal Highway Administration
FPPA	Famland Protection Policy Act
GIS	Geographic Information Systems
L10(h)	The sound level that is exceeded ten percent of the time (the 90th percentile) during an hour
Leq(h)	Hourly Equivalent Sound Level
LWCF	Land and Water Conservation Fund
MAG	Maricopa Association of Govemments
MBTA	Migratory Bird Treaty Act of 1918
MCDOT	Maricopa County Department of Transportation
MPA	Municipal Planning Area
MWD	Maricopa Water District
NAAQS	National Ambient Air Quality Standards
NEPA	National Environmental Policy Act
NAC	Noise Abatement Criteria
NHPA	National Historic Preservation Act
NRCS	Natural Resources Conservation Service
NRHP	National Register of Historic Places
PM ${ }_{2.5}$	Fine Particulate Matter
PM_{10}	Coarse Particulate Matter
ppm	Parts per Million
RCRA	Resource Conservation and Recovery Act
SARA	Superfund Amendments and Reauthorization Act
SHPO	State Historic Preservation Office
SIP	State Implementation Plan
SR	State Route
TIP	Transportation Improvement Program
USACE	U.S. Army Corps of Engineers
USC	United States Code
USFWS	U.S. Fish and Wildlife Service
UST	Underground Storage Tank

1.0 INTRODUCTION

The Maricopa Association of Govemments (MAG) prepared the Interstate 10/Hassayampa Valley Roadway Framework Study (Hassayampa Framework Study) that identified a comprehensive roadway network to meet traffic demand for the build out of the area west of State Route 303 (SR 303L). This long range regional transportation study identified the need for a roadway network consisting of freeways, parkways, and major arterial roads.

The Hassayampa Framework Study recommends an extension of Peoria Avenue west from Peryville Road to the future J ackrabbit Trail Parkway, and identified Peoria Avenue as a majo arterial from the future J ackrabbit Trail Parkway to Sarival Avenue. The study area for this project includes Peoria Avenue from the future J ackrabbit Trail Parkway alignment to Dysart Road (Peoria Avenue Coridor). The study area generally encompasses a two-mile-wide coridor centered on the existing Peoria Avenue. The study area is shown in Figure 1

This study will establish the facility type, number of lanes, right-of-way needs, and general alignment for the Peoria Avenue Corridor that will be required to accommodate projected traffic growth and enhance safety. In cooperation with the City of Surprise (Surprise), the City of Glendale (Glendale), and the City of El Mirage (Mirage), the study will also develop access management guidelines, determine design standards based upon which jurisdiction anticipates annexing the roadway, and develop an implementation plan. In general, the purpose of this Coridor Improvement Study is to provide the Maricopa County Department of Transportation (MCDOT) and other jurisdictions with a future "footorint" of the Peoria Avenue Corridor and timeframe for the implementation of the recommended future roadway improvements.

The key objectives of this Coridor Improvement Study are to:

- Define and assess strategic issues within the project study area;
- Develop and evaluate conceptual altemative alignments within the corridor study area;
- Recommend a preferred alignment;
- Develop consensus for the preferred alignment,
- Define the characteristics of the preferred alignment; and
- Develop an implementation plan.

This technical memorandum identifies the known existing environmental conditions including the physical, natural, and socioeconomic environment, as well as cultural resources. The information in the Environmental Overview (EO) is based on data available from county municipal, state, and federal databases, personal interviews, and a field review of the study area. The EO provides known information to assist in the identification of potentia environmental concems in the study area that would need to be considered in evaluating and prioritizing altematives for future project development. Future improvements would require further study, analysis and documentation under applicable environmental statues. If federal funds are used for such improvements, requirements of the National Environmental Policy Act (NEPA) and associated federal statues would apply.

2.0 SOCIOECONOMIC ENVIRONMENT

The socioeconomic environment includes jurisdictional boundaries, land ownership, existing land use, and planned development. Geographic Information Systems (GIS) data coverage created by the Arizona State Land Department (ASLD) and MAG, and municipal land use plans were used in identifying jurisdiction, ownership, existing land use, and planned land use. The presence of parks or recreation areas was determined using aerial imagery, as well as GIS data coverage from local municipalities and MAG

Jurisdiction and Ownership

For the purposes of this overview, land ownership is identified in terms of public or private control, while land jurisdiction refers to the city, town, county, state, or federal agency or agencies exercising govemmental authority over an area. The majority of the land in the study area is privately-owned, with approximately 20 percent of the westemmost study area publicly owned by the ASLD. While much of the private land is owned by individual property owners, there are several major land holdings in the study area including the Flood Control District of Maricopa County (FCDMC), Maricopa Water District (MWD), the Dysart Unified School District \#89 (Maricopa County Tax Assessor 2010), and major master-planned community land owners.

The study area includes land within the municipal planning areas (MPA) of the City of EI Mirage, City of Glendale, City of Surprise, and Maricopa County. An MPA is defined as the geographic area in which the municipal planning process is carried out, and can include both incorporated and unincorporated areas. Land within the EI Mirage and Surprise MPA's is largely inconorated within the study area, while land within the City of Glendale MPA is mostly unincorporated. Maricopa County has planning and zoning authority over the unincorporated areas, including areas within an MPA. Planning and zoning authority for unincorporated State Trust land is shared jointly by ASLD and the County.

Existing Land Use

Much of the land within the study area is categorized as vacant (i.e., undeveloped) or agriculture. There are several single-family residential subdivisions that are built or under development, as well as three elementary schools, one middle school, and one high school Several existing homes, not associated with the subdivisions, are located adjacent to Peoria Avenue. Small clusters of industrial and commercial development are scattered throughout the area. Existing land use is shown in Figure 2.

Planned Developmen

The Peoria Avenue coridor is located in an area of projected development within Maricopa County. With the exception of the southeast portion of the study area, which is affected by the noise contours of the Luke Air Force Base (AFB), much of the study area is anticipated to reside within master planned communities. Approximately half of the major residential communities located within the study area are built or actively in the development phase.

Based upon long-range planning efforts conducted by each jurisdiction, the majority of the vacant and agricultural land will be converted to single-family residential housing in master planned communities and mixed use developments in the future. Commercial and industrial development will expand, but remain scattered throughout the study area.

Title VI/Environmental Justice

The United State Environmental Protection Agency defines Environmental Justice as the fair treatment and meaningful involvement of all people regardless of race, color, national origin, or income with respect to the development, implementation, and enforcement of environmental laws, regulations, and policies (Environmental Protection Agency 1998). Environmental J ustice is based on Tite VI of the Civil Rights Act of 1964, as amended, which prohibits discrimination on the basis of race, color or national origin by recipients of federal financial assistance Executive Order 12898, issued Feb 11, 1994, provides that feach feral agency, to the Executive Order 12898, issued Februany 11, 199, greatest extent practical part of its mission by identining and addressing, as appropia adverse human health or environmental effects of its programs, policies, and activities on minority and low-income populations.

A minority person is defined as an individual who is racially classified as African American Native American or Alaskan Native, Asian, Native Hawaiian or Pacific Islander, some other race, or two or more races. Hispanics are also considered minorities regardless of their racia affiliation. Elderly refers to individuals who are older than 60 years of age. Low-income is defined as a person whose household income is at or below federal govemment poverty guidelines. The disabled population refers to individuals five years and older that have disability status and are non-institutionalized. Female head-of-household is a family household where there is a female with no spouse present, regardless of whether she has any children less than 18 years of age.

Demographic data obtained from the 2000 U.S. Census were used to compare the demographic profile of the study area with that of EI Mirage, Glendale, Surprise, and Maricopa County. Census block group (BG) data were used to identify disabled, gender, income, age, and minority populations. The study area is comprised of six BGs. The population distribution is summarized in Table 1.

An evaluation of the demographic data indicates that there may be a disabled population and a minority population within the study area. Census Tract (CT) 610.07, BG 1, located North of

Peoria Avenue between Cotton Lane and the Beardsley Canal, contains a population with a high percentage of disabled persons (Table 1). However, aerial imagery reveals that much of the BG that lies within the study area is used for agriculture or is undeveloped. The data also the BG that lies within the study area is used for agriculture or is undeveloped. The data also
indicate that CT 610.07, BG 4, located north of Peoria Avenue between Cotton Lane and Bullard Avenue, has a high percentage of minority persons (Table 1). However, the 2000 Census Data predates the construction of a large residential subdivision currently located within this BG. Additional analysis and data collection would be required to determine the presence of any protected populations within the study area.

Table 1 - Population Distribution

Census Tract, Block Group	506.02, $\text { BG } 2$	$\begin{gathered} 610.06, \\ \text { BG } 3 \end{gathered}$	$\begin{gathered} 610.06, \\ \mathrm{BG} 3 \end{gathered}$	610.07,	610.07,	610.07, $\text { BG } 4$	$\begin{aligned} & \text { Total } \\ & \text { Tracts } \end{aligned}$	City of EI Mirage	City of Glendale	City of Surprise	Maricopa County
$\begin{gathered} \text { Total } \\ \text { Population \# } \end{gathered}$	2,721	1,699	3,767	499	970	109	9,765	7.518	218,596	0,886	149
Total Minority \#	396	309	469	162	242	90	1,668	2,604	53,675	4,219	696,758
Total Minority \%	15\%	18\%	12\%	32\%	25\%	83\%*	17\%	35\%	25\%	14\%	23\%
Age 60 years and over \#	263	270	377	47	100	0	1,057	663	22,842	10,549	465,849
Age 60 years and over \%	10\%	16\%	10\%	9\%	10\%	0\%	11\%	9\%	10\%	34\%	5\%
Total population for whom disabled is determined \#	2,545	1,577	3,500	466	842	109	9,039	6.569	197,407	28,239	2,802,278
Disabled \#	491	410	624	131	145	7	1,808	1,655	36,136	5,608	504,992
Disabled \%	19\%	26\%	18\%	28\%*	17\%	6\%	20\%	25\%	18\%	20\%	18\%
Total population for whom poverty is determined \#	2,710	1,699	3,735	499	970	109	9,722	7,441	215,389	30,763	3,027,299
Below Poverty Level \#	151	90	325	0	25	0	591	1,181	25,688	2,689	355,668
Below Poverty Level $\%$	6\%	5\%	9\%	0\%	3\%	0\%	6\%	16\%	12\%	9\%	12\%
Households \#	861	570	1,165	181	333	20	3,130	2,063	75,697	12,474	1,133,048
Female Head of Household \#	89	65	134	34	32	0	354	446	19,672	2,178	303,905
Female Head of	10\%	11\%	12\%	19\%	10\%	0\%	11\%	22\%	26\%	17\%	27\%

Source: US Census Bureau 2000

Section 4(f) Resources

Section 4(f) of the Department of Transportation Act of 1966 (49 USC 303) prohibits the use of land of significant publicly owned parks, recreation areas, wildlife and waterfowl refuges, and land of a historic site for transportation projects unless the Federal Highway Administration (FHWA) determines that there is no feasible and prudent avoidance alternative and that all possible planning to minimize harm has occurred (FHWA 2005).

Only federally-funded transportation projects are subject to the Section 4(f) requirement If a project uses federal funds to acquire land protected by Section 4(f), or if the project affects any $4(f)$ resources, an evaluation of the impacts must be conducted.

White Tank Mountain Regional Park sits outside of the study area, just to the west of J ackrabbit Trail. The main entrance to the park is on Olive Avenue, which is one mile south of Peoria Avenue. There is a segment of the Maricopa Trail within the study area, along the west side of the McMicken Dam near the White Tank Mountain Regional Park (Figure 2). The Maricopa Trail (Figure 2) connects regional parks within the Maricopa County Park System. An additional segment of the trail is planned within the study limits, but not yet built. The new segment would connect the existing segment to the Beardsley Canal. There are no wildlife or waterfowl refuge areas within the study area.

While there are no other City or County parks within the study area, there are several community or "pocket" parks within developed communities. School playgrounds may qualify as Section $4(f)$ resources if they are publicly owned, open to the public, have a major recreational purpose, and are considered by the community to be a significant resource. Shadow Ridge High School is located immediately adjacent to Peoria Avenue in the westem limits of the study area. There are several other schools within the study limits, though not immediately adjacent to Peoria Avenue: Mountain View Elementary, Sonoran Heights Elementary, Rancho Gabriela Elementary, and Imagine Middle School.

Some historic sites on or eligible for the National Register of Historic Places (NRHP) are also afforded protection by Section 4(f). FHWA's determination of adverse effect under 36 Section 106 (see page 30) does not mean that Section 4(f) automatically applies, nor should it be presumed that the lack of an adverse effect finding (no historic properties adversely affected) means that Section 4(f) will not apply. Section 4(f) applicability should be considered on a case-by-case basis.

There is currently a limited amount of information inventorying historic properties within the study area. Of the known sites within the study area, the Beardsley Canal and the Ennis spur of the BNSF Railway (BNSF) would potentially be afforded protection under Section 4(f). The Beardsley Canal, an historic canal, is partially located within the study area. While numerous sections of the canal are considered eligible, the section within the study area has not been evaluated. A portion of a historic railroad, the Ennis spur of the BNSF, crosses Peoria Avenue just east of 136^{6} Avenue. The segment of the rairoad that lies within the study area has not been evaluated for NRHP eligibility. Further evaluation to determine the eligibility status of these two sites and to survey for the presence of additional sites would be required prior to construction.

Section 6(f) Resources

The Land and Water Conservation Fund Act (LWCF) was signed into law on September 3, 1964 as Public Law 88-578, 16 U.S.C. 4601-4. The Act was established to provide a funding source for acquisition of park and recreation lands by federal, state, and local govemments. As part of
the Act the provisions under Section $\sigma(f)(3)$ mandates that these investments are protected, but the Act, the provisions under Section $6(f)(3)$ mandates that these investments are protected, but
realizes that changes in land use especially in growing urban areas can impact these protected resources. As detailed in the following excerpt from the Act, the LWCF contains a provision to protect these areas from conversions (National Park Service 2010).

SEC. $6(f)(3)$ No property acquired or developed with assistance under this
section shall, without the approval of the Secretary, be converted to other than section shall, without the approval of the Secretary, be converted to other than public outdoor recreation uses. The Secretary shall approve such conversion only if he finds it to be in accord with the then existing comprehensive statewide outdoor recreation plan and only upon such conditions as he deems necessary to value and of reasonably equivalent usefulness and location.

The 2008 Statewide Comprehensive Outdoor Recreation Plan (Arizona State Parks 2007) was reviewed to determine whether any LWCF funds were expended within the study area. No Section 6(f) funded properties are currently located within the Peoria Avenue study area. Section 6(f) funds were used to construct the nearby White Tank Mountain Regional Park, but this is outside of the study area. If a park were to be developed within the study area and LWCF funds were used to construct the park, requirements under the provisions of Section 6(f) could apply. In the event this were to occur, coordination with the Arizona State Parks LWCF Grants Coordinator and the National Park Service would be required, regardless of construction funding.

3.0 PHYSICAL AND NATURAL ENVIRONMENT

This section describes the existing physical and natural environment including topography, physiography, biotic communities, wildifife, sensitive species and habitat, water resources, visual character, noise, air quality, and hazardous materials. The information in this section was gathered from several sources, including local, state, and federal regulatory agencies having jurisdiction within the area. The agencies include the Arizona Department of Environmental Quality (ADEQ), Arizona Game \& Fish Department (AGFD) and U.S. Fish and Wildlife Service (USFWS). The characteristics of the physical and natural environment were also identified from preliminary surveys of the area. The preliminary surveys were conducted by driving the portions of the project area that can be accessed by road and walking surveys of selected representative portions of the project area that could not be accessed by car.

Topography and Physiography

The study area is located within the Basin and Range Physiographic Province of Central Arizona (Hendricks 1985), which is characterized by numerous mountain ranges with broad valleys or basins between them. Portions of the Basin and Range province are composed of broad areas of alluvial fans and fan terraces, separated by isolated desert mountains. The White Tank Mountains, located just west of the study area (shown in Figure 3), are an example of isolated desert mountains found in the Basin and Range province.

PEORIA AVENUE CORRIDOR IMPROVEMENT STUDY
 Jackrabbit Trail Parkway to Dysart Road

Legend

Study Area Boundary Proposed Freeway	- Topography (100')	Soils with limited suitability for road building**
	Drainage Structure (canal, dam)	100-Year Floodplain
Proposed Parkway	Irrigation canal/pipeline	Floodway
Road Railroad	- Earth Fissures*	* Earth Fissures include continuous, discontinuous, and unconfirmed fissures. ** Soils have been characterized by NRCS (2008) as having limited suitability for road building due to flooding characteristics, large stone content, low strength, and shrink-swell potential,

The study area is generally flat with an elevation range of 1,094 to 1,402 feet above mean sea level. The drainage pattem slopes southeast toward the Agua Fria River, located east of the study area. Major topographic features in the vicinity of the study area include the White Tank Mountains at the westem end of the corridor and the Agua Fria River located east of the corridor. Many small washes remain in the undeveloped portions of the study area, but the majority of the land is farmed or has been developed for residential uses. The majority of the surface water in the study area is controlled using drainage channels and retention basins. The Maricopa Water District maintains a mix of open lateral canals and underground pipes that extend along Cactus Road, Peoria Avenue, and Dunlap Avenue between Sarival Road and the Beardsley Canal. The existing Peoria Avenue alignment crosses floodplains at some of the major north-south roads, discussed in more detail on page 21. The McMicken DamTrilby Wash Basin, a flood control structure, is also located within the study area. The Beardsley Canal crosses perpendicular to the Peoria Avenue alignment at the westem end of the study area. There are two ephemeral desert washes located south of McMicken Dam and west of the Beardsley Canal that may be affected depending on the alignment selected for Peoria Avenue in that area. Water resources are discussed further on page 19.

As shown in Figure 3, there are areas of soils with high shrink-swell potential located on both the westem and eastem boundaries of the study area. These soils are one of several soil units present throughout the study area that are rated as having "limited suitability for road building" by the Natural Resources Conservation Service (NRCS) (2008), due to flooding characteristics, large stone content, low strength, and shrink-swell potential (Figure 3). There are no hydric soils, which can be an indicator of wetland conditions, within the study area.

Prime and Unique Farmlands

The Farmland Protection Policy Act (FPPA) was passed in 1981 with the intent to minimize the impact of federal programs that involve converting farmland to non-agricultural uses. As a result, federal agencies must identify important farmland within the study area that would be affected by the project Impacts can be direct, as with the conversion of agricultural land use to non-agricultural use, or indirect, if, for example, a new roadway blocks access to cropland. If there are adverse effects associated with a project that is tied to a federal action/aid, the FPPA requires that measures be considered to reduce those effects.

Important farmlands consist of prime farmland, unique farmland, and farmland of statewide or local importance. Prime farmland is defined as land that has the best combination of physical and chemical characteristics for producing food, feed, fiber, forage, oilseed, and other agricultural crops with a minimum input of fuel, fertilizer, pesticides, and labor, and without intolerable soil erosion. Prime farmland has the soil quality, growing season, and moisture supply needed to economically produce sustained high yields of crops when treated and managed according to acceptable farming methods. The criteria for identification of prime farmlands are entirely related to soil and other physical characteristics. The land could be cropland, pasture land, range land, forest land, or other land, but not urban built-up land or water.

Unique farmland is defined as land other than prime farmland that is used for the production of specific high-value food and fiber crops. It has the special combination of soil quality, location, growing season and moisture supply needed to produce a sustained high quality or high yields of a specific crop in an economic manner when treated and managed according to acceptable farming methods.

Farmland of statewide or local importance is defined as farmland soils that fail to meet one of the requirements of prime or unique farmland, but are important for the production of food, feed, fiber, or forage crops. They include those soils that are nearly prime farmland and that economically produce high yields of crops when treated or managed according to acceptable farming methods. Some may produce as high a yield as prime farmlands if conditions are favorable.

As shown in Figure 4, no prime or unique farmlands are located west of Perryville Road. East of Perryville Road all of the soils surrounding Peoria Avenue are classified as either prime or unique farmland. Much of the soils are considered prime farmland if irigated, with pockets or soils that are considered prime farmland if both irigated and either protected from flooding or not frequently flooded during the growing season. There are also several small inclusions of unique farmland (NRCS 2010).

If federal funds are used for improvements to Peoria Avenue that would require the acquisition of right-of-way, a farmland impact assessment will need to be performed in accordance with the FPPA. This would entail a formal request to see whether prime or unique farmland are within the proposed right-of-way and documentation that altemative routes were explored to attempt to avoid these lands. If no other altermative is available, no penalty is imposed and no mitigation is required. If the land under consideration is already in or committed for urban development, a farmland impact assessment is still required.

Land Subsidence and Earth Fissures

Land subsidence has been identified in several south-central Arizona locations. This phenomenon occurs when water is pumped from underground aquifers and the weight of the overlying material compresses the empty aquifer, causing the land to settle and the ground surface to sink. The amount of subsidence varies by location; subsidence between five and 15 feet occurred throughout the study area between 1957 and 1991 (Schumann 1995). As a result, flooding has increased in some areas and required the Dysart Drain to be re-leveled at a cost of $\$ 16$ million; agricultural fields and irrigation ditches also had to be re-leveled and repaired (Arizona Department of Water Resources [ADWR] 1999).

Groundwater pumping and subsequent land subsidence can also cause earth fissures. These are cracks in the ground surface that occur due to uneven land subsidence. Fissures can form gullies as much as 50 feet wide and 10 to 15 feet deep; they can eventually reach as deep as the water table (ADWR 1999). Existing and potential locations of earth fissures have been mapped south of McMicken Dam, at SR 303L near Olive Avenue, and at Peoria Avenue near

Sarival Road (Arizona Geological Survey 2009). Once fissures start to form, they tend to increase in number and length, spreading at uneven speeds and directions for several miles.

The effects of land subsidence and earth fissures can be significant, causing damage to infrastructure, increasing flood potential, worsening groundwater pollution by allowing contaminants to flow directly into the water table, and accelerating soil erosion (ADWR 1999), Continued land subsidence and accompanying earth fissures will likely occur in this area as long as groundwater overdraft continues.

Vegetation

The study area is located within the Lower Colorado River Valley Subdivision of the Sonoran Desertscrub Biotic Community (Brown 1994), which is found throughout southwestern Arizona at elevations below 3,500 feet. The corridor was originally developed for agricultural use with scattered residences and industrial properties, but is now a patchwork of agricultural, industrial, residential, and community facilities. Some undisturbed desert areas remain, mainly on State Trust Land and land west of Perryville Road at the westem end of the study area abutting White Tank Mountain Regional Park. There is an isolated desert remnant area located north of Olive Avenue between Citrus Road and Cotton Lane. Isolated desert remnants are relatively small tracts of desert that are enclosed by developed land. They have lower conservation value than undisturbed desert because they are no longer connected to undisturbed desert and are likely to have some measure of disturbance as a result of the surrounding land uses.

Plant Communities

The vegetation in the areas of undisturbed desert consists mainly of scattered trees, shrubs and cacti. Common species include palo verde (Parkinsonia sp.), mesquite (Prosopis sp.), ironwood (Olneya tesota), desert broom (Baccharis sarothroides), creosote bush (Larrea tridentata), brittlebush (Encelia farinosa), bursage (Ambrosia deltoidea), cholla (Cylindropuntia spp.), barrel cactus (Ferocactus sp.), and saguaro (Carnegiea gigantea). Various forbs occur throughout the area, including fiddleneck (Amsinckia menziesii), cryptantha (Cryptantha sp.) and plantain (Plantago spp). Table 2 contains a list of plants confirmed within the study area based on the August 2010 field visit and vouchers stored at the Arizona State University Vascular Plant Herbarium; because it is based on only a cursory field visit, it does not contain all species that may be present.

The agricultural land within the study area contains mainly crop plants with additional vegetation typical of desert agriculture-dominated landscapes located at field edges and around residences. This vegetation includes large trees, such as eucalyptus and pine, that were used to serve as windbreaks, or were planted around historic farm houses or businesses. A few orchard remnants were also noted during the preliminary survey.

PEORIA AVENUE CORRIDOR IMPROVEMENT STUDY

Jackrabbit Trail Parkway to Dysart Road

Legend

Study Area Bou	Topography (100')	Soils	
--EP Proposed Freeway	General Floodplain Limits		Farmland of unique importance
- Proposed Parkway	Drainage Structure (canal, dam)		Prime farmland if ifrigated
- Road	Irrigation canal/pipeline		Prime farmland if irrigated and either protected from flooding or not frequently flooded during the growing season
- Railroad	Stream/Wash		Not prime farmland

Residential areas and subdivisions within the study area contain both native and non-native landscape plants. Native plants that have been grown for landscaping purposes are not subject landscape plants. Native plants that have been grown for landscaping purposes are not subject
to Arizona's native plant protection laws; native plants that have been salvaged from the desert may be transplanted by the holder of the native plant permit without additional requirements.

Common Name	Scientific Name	Family	Status ${ }^{1}$
Desert broom	Baccharis sarothroides	Asteraceae	
Britlebush	Encelia farinosa	Asteraceae	
Bursage	Ambrosia deltoidea	Asteraceae	
Fleabane	Erigeron lobatus	Asteraceae	
Chinchweed	Pectis papposa var. papposa	Asteraceae	
Fiddleneck	Amsinckia menziesii	Boraginaceae	
Crpptantha	Cryptantha sp.	Boraginaceae	
Crpptantha	Cryptantha nevadensis	Boraginaceae	
Combseed	Pectocarya platycarpa	Boraginaceae	
Popcomflower	Plagiobothrys arizonicus	Boraginaceae	
Pepperweed	Lepidium lasiocarpum	Brassicaceae	
Sahara mustard	Brassica tournefortii	Brassicaceae	Invasive
London rocket	Sisymbrium irio	Brassicaceae	
Cholla	Cylindropuntia sp.	Cactaceae	SR
Barrel cactus	Ferocactus sp.	Cactaceae	SR
Prickly pear cactus	Opuntia sp.	Cactaceae	SR
Saguaro	Carnegiea gigantea	Cactaceae	HS, SR
Tumbleweed	Salsola tragus	Chenopodiaceae	Invasive
Pygmy weed	Crassula connata	Crassulaceae	
Desert starvine	Brandegea bigelovii	Cucurbitaceae	
Milkvetch	Astragalus didymocarpus	Fabaceae	
Blue palo verde	Parkinsonia florida	Fabaceae	SA
Ironwood	Olneya tesota	Fabaceae	A, HR
Little-leaf palo verde	Parkinsonia microphylla	Fabaceae	SA
Lupine	Lupinus sparsifiorus	Fabaceae	
Mesquite	Prosopis sp.	Fabaceae	SA, HR
Ocotillo	Fouquieria splendens	Fouquieraceae	SR
Stork's bill	Erodium cicutarium	Geraniaceae	
Phacelia	Phacelia distans	Hydrophyllaceae	
Blue fiestaflower	Pholistoma auritum	Hydrophyllaceae	
Chia	Salvia columbariae	Lamiaceae	
Bluedicks	Dichelostemma capitatum ssp. paucifiorum	Liliaceae	SR
Cheeseweed	Malva parviflora	Malvaceae	
Globemallow	Sphaeralcea ambigua	Malvaceae	
Globemallow	Sphaeralcea coulteri	Malvaceae	
Desert Indianwheat	Plantago ovata	Plantaginaceae	
Woolly plantain	Plantago patagonica	Plantaginaceae	
Arizona brome	Bromus arizonicus	Poaceae	
Red brome	Bromus rubens	Poaceae	Invasive

Regional Park, just outside the westem end of the study area, in 1977. This plant may be present within the study area. It is listed as a Salvage Restricted Protected Native Plant by the present within the study area. It is listed as a
Arizona Department of Agriculture (ADA 2010).

Wildlife and Wildlife Movement

The relatively undisturbed desert land within the study area offers potential habitat for many desert wildlife species of all sizes. The proximity and connectivity to the White Tank Mountain Regional Park likely allows use of the area by larger animals than would often be found in land adjacent to urban areas. Typical species that may be found in these parts of the study area include deer (Odocoileus sp.), coyote (Canis latrans), javelina (Pecari tajacu), rabbit or hare (Family Lagomorph), round-tailed ground squirrel (Spermophilus tereticaudus), small rodents, and possibly mountain lion (Puma concolor). Many bird species are also likely present, including cactus wren (Campylorhynchus brunneicapillus), roadrunner (Geococcyx californianus), Gambel's quail (Callipepla gambelii), and likely westem burrowing owls (Athene cunicularia). Reptile species that may occur in the area include Sonoran desert tortoise (Gopherus agassizii), westem rattlesnake (Crotalus oreganus), diamondback rattlesnake (Crotalus atrox), Gila monster (Heloderma suspectum), and gopher snakes (Pituophis spp.)

A significant portion of the study area has long been developed for agricultural uses. However, many species use agricultural areas as habitat Agricultural fields offer some nesting and foraging habitat for birds, small rodents, and other small mammals. Species that might occur in the area include coyotes, raptors, rabbits, a variety of seasonally migrant songbirds, and an array of small mammals, amphibians, reptiles, perching birds and songbirds. As residential and commercial uses develop, a variety of wildlife species adapted to urban conditions will continue to use vegetation in residential and commercial landscaping, parks, and remaining agricultural fields.

The Peoria Avenue Corridor extends from one half-mile east of the White Tank Mountain Regional Park eastem almost to the Agua Fria River. This area could serve as an important wildlife corridor. A Feasibility Study for the Trilby Wash has been initiated by the U.S. Army Corps of Engineers (USACE) and FCDMC to develop and evaluate potential flood contro solutions for the Trilby Wash, McMicken Dam, and outflow channels to the Agua Fria River, AGFD will be involved with the study to facilitate use of an ecosystem restoration approach and tie into a regional connectivity plan to preserve wildlife habitat linkages between the White Tank Mountains and surrounding wildlands as well as to create recreational opportunities within the urban environment (AGFD 2009a). Maintaining access between large habitat blocks, such as the White Tank Mountain Regional Park, and natural corridors in the landscape, such as the Agua Fria River, is key to maintaining native biodiversity as much as possible in the metropolitan area. The Peoria Avenue Comidor could provide such a connection if low-cost wildlife connectivity features are considered during the design process. Guidelines for facilitating wildlife connectivity have been developed by the Arizona Wildlife Linkages Workgroup (AWLW 2006), the AGFD (AGFD 2006a, 2008a, 2009b), and Arizona Missing
burrowing owls were observed during the preliminary field review, but the field review was not conducted at the optimal time for spotting burrowing owls (dawn or dusk). A survey for burrowing owls should be performed prior to construction so that any owls that might be impacted can be relocated following the guidelines from AGFD (2007).

Table 3 - Federally-Listed Species Known to Occur in Maricopa County, Arizona

Common Name	Scientific Name	Status	Suitable Habitat Present?	Occupied Habitat Present?	Critical Habitat Present?	Species Affected?	Critical/ Suitable Habitat Affected
Arizona cliffrose	Purshia subintegra	E	No	No	N/A	No	N/A
Bald eagle	Haliaeetus leucocephalus	T	No	No	N/A	No	N/A
California least tem	Sterna antillarum browni	E	No	No	N/A	No	N/A
Desert pupfish	Cyprinodon macularius	E	No	No	N/A	No	N/A
Gila topminnow	Poeciliopsis occidentalis occidentalis	E	No	No	N/A	No	N/A
Lesser long-nosed bat	Leptonycteris curasoae yerbabuenae	E	No	No	N/A	No	N/A
Mexican spotted owl	Strix occidentalis Lucida	$\begin{gathered} \hline \boldsymbol{\top} \\ (\mathrm{CH}) \end{gathered}$	No	No	No	No	No
Mountain plover	Charadrius montnaus	PT	No	No	N/A	No	N/A
Razorback sucker	Xyrauchen texanus	$\underset{(\mathrm{CH})}{\mathrm{E}}$	No	No	No	No	No
Sonoran pronghom	Antilocapra americana sonoriensis	E	No	No	N/A	No	N/A
Southwestern willow flycatcher	Empidonax traillii extimus	$\underset{(\mathrm{CH})}{\mathrm{E}}$	No	No	No	No	No
Woundfin	Plagopterus argentissimus	E	No	No	N/A	No	N/A
Yuma clapper rail	Rallus longirostris yumanensis	E	No	No	N/A	No	N/A
Roundtail chub	Gila robusta	c	No	No	N/A	No	N/A
Sprague's pipit	Anthus spragueii	c	Yes	No	N/A	No	No
Tucson shovel-nosed snake	Chionactus occipitalis klauberi	c	No	No	N/A	No	N/A
Yellow-billed cuckoo	Coccyzus americanus	c	No	No	N/A	No	N/A

[^1]Source: Federally listed species for Maricopa County (October 28, 2010). Obtained from USFWS on Dec. 6, 2010.

Arizona Special Status Species

In addition to the rare plant species discussed on page 11, the only other species identified by the AGFD On-Line Environmental Review Tool as occuring within three miles of the study area is the lowland leopard frog (Rana yavapaiensis), which is designated by the state of Arizona as
the AGe "Wildlife of Special Concem." One sighting of the frog in the general area of SR 303L near the study area had been reported to AGFD as of February 2008 (AGFD 2008b). This species of frog inhabits and breeds in natural and man-made aquatic systems in desert grasslands to pinyon-juniper forests (AGFD 2006b). Man-made systems that support the lowland leopard frog can include cattle tanks, canals, imigation sloughs, wells, abandoned swimming pools and omamental backyard ponds. The frogs require shallow water with emergent and perimeter vegetation for basking habitat and deep water areas with root masses, undercut banks, and/or debris piles for refuge from predators and hibemation locations (AGFD 2006b). They can survive in semi-permanent aquatic systems by retreating into deep mud cracks, mammal burrows or rock fissures (Howland et al. 1997 as cited in AGFD 2006b). No likely habitat for lowland leopard frogs was observed during the preliminary survey. It is possible that such habitat might occur on agricultural land that was not surveyed or in some of the open lateral canals located in residential yards and undeveloped land along Peoria Avenue. If aquatic systems that meet the description will be impacted by the construction of the Peoria Avenue comidor improvements, mitigation measures to protect lowland leopard frogs and their habitat should be implemented. In addition, design guidelines for culverts to facilitate wildlife crossings should be implemented for this project (AGFD 2006a).

As the project progresses, the review tool should be re-queried to determine whether any additional sightings of special status species have been reported near the project area to AGFD or any additional species have been designated as having special status.

Water Resources

The following subsections discuss groundwater and surface water resources within the study area, including major watercourses, water distribution by the Maricopa Water District, flood control structures, permitting under Sections 401 and 404 of the Clean Water Act, and floodplains.
Groundwater
The study area is located within the West Salt River Valley subbasin of the Phoenix Active Management Area (AMA) for groundwater (ADWR 1999). In 1980, the state of Arizona established the groundwater AMAs in areas where groundwater overdraft was occurring with the goal of achieving balanced withdrawal and recharge over time. Groundwater levels in the West Salt River Valley subbasin have declined substantially since groundwater pumping began in the early 1900s. There are two large cones of depression in the groundwater levels within the subbasin due to groundwater pumping near Luke Air Force Base and in Deer Valley near the Hedgpeth Hills (ADWR 1999). Between 1923 and 1977, water levels declined by more than 300 feet in these areas (Ross 1978, as cited in ADWR 1999). Most of the groundwater in the subbasin flows toward the two cones of depression

In general, groundwater in the Phoenix AMA is of acceptable quality for most uses. Most of the groundwater supplies in the Phoenix AMA meet federal and state drinking water standards, though contaminant levels exceed primary safe drinking water standards in a few areas. Within the study area, tests at four wells have resulted in concentrations of fluoride and arsenic that exceed the permissible levels in the Safe Drinking Water Act and two wells had levels of fluoride only that exceeded the standard (ADWR 2010). These contaminants can occur naturally in the groundwater due to their presence in some geologic formations.

Surface Wate

There are no wetlands or major natural watercourses in the study area. The drainage throughout the area has generally been redirected for use by agriculture and to allow residentia and industrial development. Two ephemeral washes, Waterfall Wash and Cholla Wash, run through the southwest comer of the study area, south of McMicken Dam and west of the Beardsley Canal (Figure 2). The Beardsley Canal, a man-made watercourse constructed to deliver water, is the only major watercourse in the study area. Surface water does not drain into the canal.

The planned drainage channel improvements along Reems Road and SR 303L may cause the drainage channels to be considered jurisdictional if they drain to natural watercourses. The future drainage channel improvements along SR 303L will drain storm water to the Gila River The Reems Road channel will connect to the Dysart Drain, which drains to the Agua Fria River. Both of these channels would likely be considered "Waters of the U.S.," which are under the jurisdiction of the USACE per Section 404 of the Clean Water Act. If so, placement of permanent fill, rip-rap, and construction or extension of bridges and box culverts in these watercourses would require Section 404 permitting. Waterfall and Cholla Washes are both ephemeral washes located south of McMicken Dam and west of the Beardsley Canal. They may be considered jurisdictional in the future if they flow into the future J ackrabbit Trail drainage channel. The future J ackrabbit Trail drainage channel, portions of which are in planning and design stages, is located two to three miles south of the study area and will ultimately connect to the Gila River. A J urisdictional Determination report should be completed for the project once the alignment is set and the project is scheduled to go to design to aid in determining permit requirements.

Irrigation

The MWD owns and operates the Beardsley Canal and several water delivery structures east of the canal and west of Bullard Avenue. This includes the Cross-Cut Canal and Pipeline and several lateral canals within the study area, as shown in Figure 3 and described below. The canals and pipelines do not appear to connect to any natural drainage channels.

The Beardsley Canal flows from north to south and is parallel to the White Tank Mountains. The canal crosses Cactus Road and Olive Avenue within the study area. The extension of Peoria Avenue will have to cross over it to reach the future J ackrabbit Parkway alignment. The canal begins near Lake Pleasant south of the New Waddell Dam, crosses the Agua Fria River and heads generally south and west to cross US 60 northwest of SR 303L. It then parallels the

McMicken Dam for several miles before tuming due south midway between the Perrville Road and J ackrabbit Trail alignments, ending near Indian School Road.

The Cross-Cut Canal is an open canal from Cactus Road south to Peoria Avenue. It runs between Citrus Road and Cotton Lane (Figure 2). South of Peoria Avenue, the canal becomes an underground pipeline which runs south down Citrus Road to Olive Avenue and then west along Olive Avenue to $183^{\text {rd }}$ Avenue, where it tums south and leaves the study area

There are lateral channels and pipelines running along Cactus Road, Peoria Avenue, and Olive Avenue between the Beardsley Canal and Reems Road, as well as north-south laterals along portions of Cotton Lane, Sarival Lane and SR 303L

Flood Control

There are 100-year floodplains present within the study area (Figure 2). The floodplains generally occur in a north-south alignment, and follow the Beardsley Canal, McMicken Dam, two natural washes (Waterfall Wash and Cholla Wash), Cotton Lane and Reems Road. A 100-year floodplain also runs along a portion of the Ennis Spur of the BNSF. Floodwaters from the railroad drain into the Dysart Ditch, which empties into the Agua Fria River.

McMicken Dam, which is under the jurisdiction of the FCDMC, is located within the study area. FCDMC has conducted several studies to support future projects related to flood control and development in the study area and surrounding vicinity. Construction of these channels is planned and/or ongoing. Planned drainage channels in the study area include the SR 303L Channel and Basin (which will drain to the Gila River), the Reems Road Channel (which will direct storm water from Reems Road into the Dysart Drain), and the BNSF/Ennis Spur Channel and Basin. The main drainage channel in the vicinity of the study area is the existing Dysart Detention Basin and Dysart Drain, located south of the study area between Estrella Parkway and the Agua Fria River.

There are also flood control facilities such as channels and retention basins within the commercial and residential developments within the study area. These facilities are privately owned but follow local and county design standards and ordinances for on-site retention of the 100-year 2-hour storm event, the acceptance of pavement runoff for the half street adjacent to the development, and the conveyance of upstream off-site flows through street/roadside channel systems. Future development projects within the study area would likely include similar channel and retention basin facilities.

The majority of the floodwaters detained by the McMicken Dam remain in the Trilby Wash Basin. Planned drainage projects within the study area are discussed in more detail in Technical Memo \#1, and there is a more detailed drainage analysis in Technical Memo \#3.

Visual Resources

The study area is situated within a semi-rural area that includes historic agricultural and industrial developments. The area is a patchwork of agricultural, industrial, residential, and
public uses, and is rapidly transforming from the rural, open desert setting into one with new residential and commercial developments. Some undisturbed desert areas remain in the coridor, mainly in the westem end of the study area abutting the White Tank Mountain Regiona Park. The undeveloped landscape exhibits shades of brown and tans of the Sonoran desert, with greens from the desert scrub that covers much of it

The study area is generally flat, with elevations ranging from 1094 to 1402 feet above sea level As shown in Figure 5, the terrain gently rises northwest as it approaches the base of the White Tank Mountains. J ust west of the study area the White Tank Mountains rise sharply from its base to a peak of over 4,000 feet. Middle ground ($0.25-3$ miles) and background (beyond 3 miles) views of the White Tank Mountains can be seen from much of the study area, with minimal obstruction.

Typically, residential viewers are more sensitive to perceivable changes in their surrounding landscape than other types of land uses. Within the study area the majority of residents live in newer, walled communities, which would likely obstruct immediate views of a roadway project. There are some older homes, outside of these communities, that could potentially be exposed to foreground ($0-.25$ miles) views of the project. Due to the flat terrain, the main views of the project will be immediate foreground views. Middle ground and background views from within the study area were not analyzed because the lack of elevation makes these types of views unlikely.

Recreational viewers in the vicinity of the study area would be users of the White Tank Regional Park (approximately one-half mile west of the study area) and the Maricopa Trail (Figure 5) The natural landscape and open views draw visitors to the Maricopa Trail, as well as the hiking, bicycle and equestrian trails that crisscross the Park, and to the picnic areas and armadas that are scattered throughout the Park. Figure 6 shows the view of the study area from the White Tank Mountain Regional Park. Visitors to the Park and the Maricopa Trail would be highly sensitive to changes in the landscape. Much of the eastem side of the Park has middle ground and background views of the study area.

PEORIA AVENUE CORRIDOR IMPROVEMENT STUDY Jackrabbit Trail Parkway to Dysart Road

Figure 6 - Photo Taken from the Library and Nature Center at the White Tank Regional Park Looking East-Northeast.

Maricopa County has designated a series of coridors as scenic for a number of reasons, including their prominent views or vistas, native landscaping, or unique characteristics that attract residents in search of a distinct quality of life. As part of a public process, design guidelines (e.g., landscape, habitat, character, height, lighting, signage, fencing, etc.) have been developed to direct and enhance planning of such corridors as development occurs, with the intent generally being to highlight, promote, and preserve the scenic and environmental characteristics of the community, while also minimizing the impacts that rapid urban growth may have on an area, and helping accommodate future population growth. Two scenic corridors exist within the study area:

- The Olive Avenue Scenic Corridor has been designated because of its access to the White Tank Mountain Regional Park, which is a major recreational destination in Maricopa County.
- The McMicken Dam Scenic Coridor has been designated for similar reasons, as well as its role as a segment of the Maricopa County Regional Trail System.

As alternatives are developed for Peoria Avenue, coordination should occur with these past studies, if the altemative alignments intersect these corridors in any way.

Noise

MCDOT considers mitigation for receptors predicted to be impacted by increased noise levels associated with proposed transportation projects. MCDOT has developed a Noise Abatement Policy that provides additional guidance in determining the need, feasibility, and reasonableness
of noise abatement or reduction measures on roadway projects, regardless of funding source (MCDOT 2010)

The MCDOT Policy determines traffic noise impacts based upon the FHWA Noise Abatement Criteria (NAC), contained in 23 CFR 772. The FHWA NAC specify an allowable traffic noise level for different categories of land uses and activities. The MCDOT Noise Abatement Policy states that impacts occur if the noise level "approaches" the FHWA NAC (Table 4). MCDOT defines approach as one dBA below the FHWA NAC (Table 4). Impacts also occur if the predicted noise levels result in a substantial noise level increase of 15 dBA or more when compared to the existing noise levels.

Table 4 - FHWA Noise Abatement Criteria
(Hourly Sound Level in A-Weighted Decibels [dBA]) ${ }^{1}$

$\begin{gathered} \hline \text { Activity } \\ \text { Category } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Activity } \\ \text { Leq(h) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Criteria }^{2} \\ \text { L10(h) } \\ \hline \end{gathered}$	Evaluation Location	Activity Description
A	57	60	Exterior	Lands on which serenity and quiet are of extraordinary significance and serve an important public need and where the preservation of those qualities is essential if the area is to continue to its intended purpose.
B^{3}	67	70	Exterior	Residential
C^{3}	67	70	Exterior	Active sport areas, amphitheaters, auditoriums, campgrounds, cemeteries, day care centers, hospitals, libraries, medical facilities, parks, picnic areas, places of worship, playgrounds, public meeting rooms, public or nonprofit institutional structures, radio studios, recording studios, recreation areas, Section 4(f) sites, schools, television studios, trails, and trail crossings.
D	52	55	Interior	Auditoriums, day care centers, hospitals, libraries, medical facilities, places of worship, public meeting rooms, public or nonprofit institutional structures, radio studios, recording studios, schools, and television studios.
E ${ }^{3}$	72	75	Exterior	Hotels, motels, offices, restaurants/bars, and other developed lands, properties or activities not included in A-D or F.
F				Agriculture, airports, bus yards, emergency services, industrial, logging, maintenance facilities, manufacturing, mining, rail yards, retail facilities, shipyards, utilities (water resources, water treatment, electrical), and warehousing.
G				Undeveloped lands that are not pemmitted.

Contains the same acoustic energy as the time-varying sound level during that hour. Lio(h) is defined as the sound level that is exceeded
ten percent of the ime (the eot percentie) during an hour.
The Leq(h) and L10(h) Activity Criteria values are for impact detemmination only, and are not design standards for noise abatement measures.
${ }^{3}$ Includes undeveloped lands pemmitted for this activity category.
Source:
Noise activity categories B, C, D, E, F, and G occur within the study area. Much of the land within the study limits falls under Land Use Category F or G, and includes agricultural land, industrial facilities, and undeveloped lands that are not permitted. Category B land uses include several master-planned residential communities that are still under development. The residential land uses are concentrated in two areas: north of Peoria Avenue between SR 303L and Litchfield Road, and south of Peoria Avenue between Pemyville Road and Cotton Lane. Category C and D land uses, mainly schools, are generally located near the residential areas.

Category E land uses are concentrated north of Peoria Avenue near its intersection with Dysart Category E land uses are concentrated north of Peoria Avenue near its intersection with Dysart
Road. As development in the study area progresses, these areas would need to be evaluated for the presence of any new sensitive noise receptors.

According to the MCDOT Noise Abatement Policy, road projects that create additional throughlane capacity, include a change in horizontal alignment greater than 10 feet, or a change in vertical alignment greater than 3 feet must be evaluated to determine if noise abatement or reduction measures are warranted. If a roadway improvement project along Peoria Avenue would add capacity or result in a change in vertical or horizontal alignment as described above, a noise impact analysis would be required. This is regardless of funding source. The analysis should be performed in accordance with 23 CFR 772, and following MCDOT Noise Abatement Policy.

The 65, 70, and 75 dBA noise contours for Luke Air Force Base intersect Peoria Avenue within the study area. Land-use restrictions apply to areas that fall within the $65+\mathrm{dBA}$ noise contours, but these provisions are primarily focused on restricting residential land uses. Transportation land use has a high noise-level compatibility and can be located within the higher noise zones.

Air Quality

The 1970 Clean Air Act (CAA) and the 1990 CAA Amendments (CAAA), along with the NEPA require that air quality impacts be addressed in the preparation of environmental documents. The level of effort used to evaluate these impacts may vary from a simplified description to a detailed micro-scale analysis, depending on factors such as the type of document to be prepared, the project location and size, the meteorology of the project area, the air quality attainment status of the area, and the state air quality standards. Under the CAAA, areas are classified by levels of ambient air pollution existing at the time of the 1990 amendments, and by whether they attain the National Ambient Air Quality Standards (NAAQS) or are in nonattainment of the standards, as described in the following paragraphs. Primary standards set limits to protect public health, including the health of "sensitive" populations such as asthmatics, children, and the elderly. Secondary standards set limits to protect public welfare, including protections against decreased visibility and damage to animals, crops, vegetation and buildings.
The CAAA established NAAQS for six pollutants. These pollutants, referred to as the "Criteria Pollutants," are carbon monoxide (CO), nitrogen dioxide, ozone, particulate matter (PM), sulfur dioxide and lead. In 1987, the standard for particulate matter was revised by the U.S. Environmental Protection Agency (EPA) from total suspended particulate matter, consisting of aerosols with diameters up to approximately 45 microns, to those aerosols with aerodynamic diameters of 10 microns or less. This standard is referred to as PM_{10}.

In 1997, the EPA revised the standards for both particulate matter and ozone. It revised the PM ${ }_{10}$ standard, added standards for particulates with diameters of 2.5 microns or less ($\mathrm{PM}_{2.5}$) and revised the method for the determination of exceedances. In 2006, due to a lack of evidence linking health problems to long-term exposure to coarse particulates, the EPA revoked the annual PM ${ }_{10}$ standard (effective December 17, 2006). For ozone, the 1 -hour standard was
replaced with an 8 -hour standard. In addition, the concentration of ozone standard was lowered from 0.12 parts per million (ppm) to 0.08 ppm , and the method for determination of exceedances was revised. To ensure effective transition to the new standards, the existing standards will remain in effect until it is determined that they have been met. Arizona standards are identical to the NAAQS summarized in Table 5.

Nonattainment Areas

The CAAA authorized the EPA to designate those areas that have not met the NAAQS as nonattainment, and directed it to classify them according to their degree of severity. States that fail to attain the NAAQS for any of the criteria pollutants are required to submit State Implementation Plans (SIP), which outline those actions that will be taken to attain compliance. The study area lies within the Phoenix non-attainment area for 8 -hour ozone and PM_{10}, and the Phoenix maintenance area for CO. There are no exceedances of the NAAQS for the pollutants nitrogen dioxide, sulfur dioxide, lead, or $\mathrm{PM}_{2.5}$ in Maricopa County.

Table 5 - National Ambient Air Quality Standards

Pollutant	Averaging Time	Primary Standards	Secondary
Carbon Monoxide	1-hour ${ }^{(1)}$	35 ppm	None
	8 -hour ${ }^{(1)}$	9 ppm	None
Lead	Rolling 3-Month Average	$0.15 \mu \mathrm{~g} / \mathrm{m}^{3(2)}$	Same as Primary
	Quarterly Average	$1.5 \mu \mathrm{~g} / \mathrm{m}^{3}$	Same as Primary.
Nitrogen Dioxide	Annual	$53 \mathrm{ppb}{ }^{(3)}$	Same as Primary
	1-hour ${ }^{(4)}$	100 ppb	None
PM ${ }_{10}$	24-hour ${ }^{(5)}$	$150 \mu \mathrm{~g} / \mathrm{m}^{3}$	Same as Primary
PM2.5	Annual ${ }^{(6)}$	$15.0 \mathrm{mg} / \mathrm{m}^{3}$	Same as Primary
	24-hour (1)	$35.0 \mathrm{\mu g} / \mathrm{m}^{3}$	Same as Primary
Ozone	8 -hour ${ }^{(8)}$	0.075 (2008 standard)	Same as Primary
	8 -hour ${ }^{(9)}$	0.08 (1997 standard)	Same as Primary
	1-hour ${ }^{(10)}$	0.12 ppm	Same as Primary
Sulfur Dioxide	Annual	0.03 ppm	$\begin{aligned} & \hline 0.5 \mathrm{ppm} \\ & \text { (3-hour averaging time) }^{(1)} \end{aligned}$
	24-hour ${ }^{\text {(1) }}$	0.14 ppm	
	1-hour	$75 \mathrm{ppb}{ }^{(11)}$	None

N) Notto be exceeded more than once per year.
 14) To atitiain Iteve of thene annu
(effective a aunary 22,2010 .
(1) Not to o oe execeded mone
(5) Not to be exxeeded more than once per year on average over 3 years
(6) To atain this standard, the 3 -year average of the weighted

To attain this standard. the 3 .
IG/33 (effective December 17, 2006).
18) To o tatain this standard, the 3 -yeara average of the fourth-highest daily maximum 8 -hour average ozone concentrations measured at each monitor within an area over

ver each year must not exceed 0.08 .eyer average of the fourth-highest daily maximum 8 -hour average ozone concentrations measured at each monitor within an area (b) The 1997 standard-and the implemen

Source: US Environmental Protection Agency 2010

Conformity

Since 1977, federal agencies and metropolitan planning organizations have been required by Section 176(c) of the CAAA to ensure that all transportation projects conform to the approved air quality SIP. The conformity determinations for federal actions related to transportation projects must meet the requirements of 40 CFR Parts 51 and 93 . According to 40 CFR 93.116, an FHWA-sponsored project must not cause or contribute to any new violations, nor delay an rinment of any NAAQS. In assessing air qualit impacts from proposed tran nor delay projects, analysis typically focuses on vehicle emissions of CO. Other pollutants, such as PM_{10}, projects, analysis typically focuses on vehicle emissions of PM 25 . and nitrogen dioxide are also components of vehicular emissions; however, CO accounts
for the majority of vehicle emissions, Ozone, nitrogen oxides, and hydrocarbons are pollutants that are regional in nature, and as such, cannot be meaningfully evaluated at the project level. that are regional in nature, and as such, cannot be meaningfully evaluated at the project level.
Since the EPA has not yet released guidance for performing quantitative PM analysis for project-level transportation improvements, a qualitative analysis is required.

Because CO emissions are associated with motor vehicles and transportation projects, and because the project is located in a CO maintenance area, CO is a pollutant of concem for a quantitative project-level analysis. Because the study area is located in a PM_{10} non-attainment area, a qualitative assessment of PM_{10} impacts would also need to be conducted

As individual roadway projects are developed, evaluation to determine current NAAQS attainment status will be needed. Should the EPA develop guidelines for quantifying impacts for additional pollutants of concem, additional project-level analysis may be required.

In compliance with conformity requirements, any corridor improvement projects will need to be included in an approved Transportation Improvement Program (TIP) at least one year and no more than three years before construction. This TIP must conform to the SIP. Certain transportation projects are exempted from conformity requirements. These generally include safety improvements, transit and transportation support activities.

During a construction project, disturbance of the soil by heavy equipment and tracking of dirt onto roadways, if uncontrolled, increases fugitive dust, in turn affecting local air quality. In addition, construction-related traffic delays, combined with exhaust emissions from constructionrelated equipment, elevate levels of pollutants. Such impacts would be temporary and eliminated once construction is complete. Any construction activity located within Maricopa County must obtain permits and adhere to local air quality rules and ordinances, including Maricopa County Rules 310 and 310.01.

Hazardous Materials

Hazardous materials are regulated by the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). ADEQ implements CERCLA, commonly known as Superfund, and its amendment, the Superfund Amendments and Reauthorization Act (SARA) of 1986. The inherent environmental concems associated with hazardous materials require a preliminary investigation into the location of permitted and non-regulated hazardous material sites within the study area.

In August 2010, a regulatory database search for hazardous materials was conducted for the study area. The search consisted of both Federal and state environmental record sources, and included data sources provided by the EPA, ADEQ, and ADWR. Fire insurance, topographical maps and aerial maps were also reviewed. The results are attached in Appendix B. A review of the records search identified the following hazardous material related information:

- Registered underground storage tanks (USTs) were identified at 6 properties. The tanks have been permanently removed from 4 of the sites. The existing USTs are located at

13501 West Peoria Avenue and 9000-10000 North Litchfield Avenue; the USTs at both locations are used for diesel and gasoline storage.

- Two leaking USTs were identified at 9801 North Litchfield Road. Both tanks were closed in September 2009 and the surrounding soil met regulatory levels for closure.
- In 1993, 55 gallons of phosphoric acid were spilled at 14702 West Olive Avenue.
- In 1994, illegal dumping of empty drums, debris, and pesticides was reported on a dirt road parallel to the railroad tracks $1 / 4$ mile east of Litchfield Road between Peoria Avenue and Olive Avenue.
- In 1997, 40,000 pounds of anhydrous ammonia were released into the atmosphere when a forklift sheared off a valve on a tank at 17102 West Olive Avenue.
- There are 424 drywells registered with the ADEQ Dry Well Registration Database within the study area. Dry wells are constructed for the purpose of collecting storm water. The wells are registered to schools, housing developments, ranches, water supply and treatment facilities, and businesses (Allands 2010).
- There are 94 groundwater wells registered with the ADWR at locations within the study area (Allands 2010). The wells are registered to housing developments, water companies, individuals, businesses, the City of Surprise, the City of Phoenix, and a ranch. The listed depths-to-water range from 350 to 885 feet below ground surface (bgs). The location data provided in the listing is not adequate to determine precisely where the wells are located within the study area. It is possible that some wells may be impacted depending on the alignment selected for the project. Wells would need to be properly abandoned if they are disturbed.
Some instances of debris dumping, mainly construction materials, were observed during the field visit in August 2010. No obviously hazardous materials were visible. Locations with dumped materials were located along less traveled portions of the roads, including the north side of Olive Avenue between Cotton Lane and Citrus Road and the south side of Peoria Avenue between Sarival Road and Reems Road. No visual indications of contamination were observed that would be contacted during road construction activities within the study area.

Many groundwater wells and drywells are located within the study area and may be impacted depending on the alignment selected for the project. One ranch was identified as having soil contamination associated with their USTs, but the regulatory case file has been closed and residual contamination does not exceed Arizona cleanup guidelines (Allands 2010). There are industrial and agricultural activities within the area that have numerous aboveground storage tanks, but there are no reports of unaddressed contamination issues.

Based on the results of the database search and field visit, further investigation of hazardous materials issues are recommended for this project. Once the construction area has been established, additional research and visual inspection should be performed to evaluate the potential presence of groundwater wells, dry wells, and/or surface contamination within the construction zone. Prior to project construction activities, performing a Phase I/II site assessment on the property acquired for the project would provide information necessary to determine environmental conditions and reduce exposure from hazmat contamination.

4.0 CULTURAL RESOURCES

Cultural resources include archaeological or cultural sites, standing structures, and other historic properties considered to be eligible for or listed on the NRHP. Section 106 of the National Historic Presenvation Act (NHPA) of 1966 (16 U.S. Code Part 470 et seq.) mandates that federal agencies consider the impact of their undertakings on historic properties within a project's area of potential effect If adverse effects on historic, archaeological, or cultural properties are identified, then agencies must attempt to avoid, minimize, or mitigate impacts to resources considered important in our nation's history or prehistory.

Several federal, state and local laws have been enacted to preserve cultural resources. The NHPA requires that projects defined in 36 CFR Part $800.16(y)$ as "Federal Undertakings" be evaluated for their impacts to historic properties. Section 106 of the NHPA defines a process of consultation that federal agencies follow to evaluate impacts on historic properties. NEPA (40 CFR Part 1500) requires that projects with a "Federal Action" be evaluated for impacts to the human and natural environment Other legislation, including the Archaeological Resources Protection Act of 1979 (16 U.S. Code Part 470aa-mm) and the Native American Graves Protection and Repatriation Act of 1990 (25 U.S. Code Part 138), also ensures the proper treatment of cultural resources for projects that occur on federal lands, are funded by federal monies, or that require a federally issued pemit. Similarly, Arizona Revised Statutes sections 41-841 through 41-847 and 861 through 881 protect cultural resources and Native American graves during undertakings within the state that do not fall under federal jurisdiction. The graves during undertakings within the state that do not fall under federal jurisdiction. The their projects may have on historic properties that they own or control.

Sources examined for this overview include files at the State Historic Preservation Office (SHPO) and the AZSITE electronic database at the Arizona State Museum, University of Arizona, which houses Arizona's cultural resources inventory. Records reviewed show that the study area consists of a patchwork of approximately 24 cultural resource inventories undertaken from 1987 to 2004. Inventory levels range from unsurveyed to completely surveyed, with the majority of sections only partially surveyed. Not all archaeological inventories conducted may appear on AZSITE if they were undertaken on private land, as private land owners are not required to report inventories to public officials. Additionally, previously identified sites not surveyed within the last ten years may require re-survey.

The existing cultural resource inventories identify 22 sites within the study area. The majority of NRHP-eligible sites and those requiring testing are located west of the proposed SR 303L. While numerous sections of the historic Beardsley Canal are considered eligible, the section within the study area has not been evaluated. The BNSF (formerly Atchison, Topeka and Santa Fe) has been determined Eligible under Criterion A. However, the segment of the BNSF within the study area, the Ennis Spur, has not been evaluated for NRHP eligibility.

There are no records of historic property inventories within the study area with the exception of the eastern limits within Glendale, AZ. Surveyed historic properties within Glendale are outside the study area. A preliminary field review observed residences and structures present on the
parcels adjacent to Peoria Avenue that could potentially be 50 years old or older. Typically, historic properties are at least 50 years old, but younger properties may be considered for listing if they are of exceptional importance. Should project design include any of these parcels, the structure may need to be evaluated for their eligibility for inclusion in the NRHP.
As large areas remain unsurveyed, an intensive Class III cultural resources inventory of the final right-of-way should be undertaken prior to any ground-disturbing activities. Class III pedestrian surveys must meet State Museum and SHPO standards. Similarly, possible historic properties should be evaluated with completion of Historic American Buildings Survey/Historic American Engineering Record documentation should the property be affected by the proposed project.

5.0 AGENCY AND PUBLIC INVOLVEMENT

An important component of the corridor improvement study is the dissemination of information to public agency and private stakeholders and the solicitation of their input. As the planning process continues, MCDOT will be meeting with appropriate stakeholders (listed below) to identify concems, discuss relevant issues, gather input, and build consensus. In addition to the stakeholders listed below, MCDOT will also be coordinating with the principal land developers within the study area and private property owners:

- Arizona Department of Transportation
- Arizona Public Service
- Arizona Game and Fish Department
- Arizona State Land Department
- City of EI Mirage
- City of Glendale
- City of Surprise
- Dysart School District
- Flood Control District of Maricopa County
- Luke Air Force Base
- Maricopa Association of Govermments
- Maricopa County Planning and Development
- Maricopa County Parks and Recreation
- Maricopa Water District

The project will also include a public outreach effort It is anticipated this effort will include three public open house meetings and presentations to city councils.

6.0 ENVIRONMENTAL SUMMARY

Based upon the preliminary evaluation of the environmental considerations discussed in the previous chapters of this document, no known environmental issues have been identified in the study area that would pose a fatal flaw to the improvement of Peoria Avenue. However, a full environmental study was not conducted at this level of analysis, and for some topics available information does not cover the entire study area. Additionally, new environmental concems not outlined in this document may develop prior to project implementation. Design considerations
are likely to change based upon results of the surveys and technical impact evaluations. As such, further analysis and identification of relevant environmental concems will be required once the scope of the project is determined. Figure 7 identifies the locations of 100 -year floodplains, the scope of the project is determined. Figure 7 identifies the locations of 100 -year floodplains,
potential Section 4(f) sites (schools, recreation trails, and historic sites), earth fissures, potential hazardous material sites, and wells.

It is anticipated that the following surveys, impact evaluations, and permit determinations will need to be conducted prior to implementing any roadway improvements along Peoria Avenue. The level of effort and required documentation for the evaluations will depend upon the scope of the project and, to an extent, federal funding/involvement.

Surveys and Impact Evaluations

- Socioeconomic impact analysis
- Native plant survey
- Biological evaluation
- Special status species surveys
- Visual impact evaluation
- Traffic noise impact evaluation
- Hazardous materials assessment
- Cultural resources survey

Surveys and Impact Evaluations Tied to Federal Aid/Action

- Air quality analysis
- Environmental J ustice evaluation
- Section 4(f) inventory and analysis
- Prime and unique farmlands impact assessment

Permitting and Planning Requirements

- J urisdictional Determination to determine if watercourses within the study area would be considered "Waters of the US." Dependent upon the findings, placement of permanent fill, rip-rap, and construction/extension of bridges/box culverts in the following watercourses would likely require Section 404 permitting: Reems Road Channel, Future drainage channels along SR 303L, Waterfall Wash, and Cholla Wash.
- Maricopa County air quality rules, ordinances, and permits for construction activities
- Air Quality conformity requirements for corridor improvement projects are that the project be included in an approved TIP at least one year and no more than three years before construction. This TIP must conform to the SIP.

Design and Construction Considerations:

- Geotechnical evaluation to determine engineering constraints related to soils of limited suitability for road building, land subsidence, and earth fissures.
- Guidelines for Facilitating Wildlife Connectivity, developed by the AWLW.
- Design guidelines for culverts, developed by AGFD, to facilitate wildlife crossings.
- Scenic corridor design guidelines, if the project intersects the Olive Avenue or McMicken Dam Scenic Corridors.

7.0 REFERENCES

Allands. 2010. Corridor Database Search 2010-08-042D. Prepared for AECOM, Phoenix, Arizona. 19 pp.

Arizona Department of Agriculture (ADA), 2010, "Protected Arizona Native Plants," http://www.azda.gov/esd/nativeplants.htm accessed September 2, 2010.

Arizona Department of Water Resources (ADWR), 1999, "Third Management Plan for the Phoenix Active Management Area 2000-2010," বhttp://www.azwater.gov/AzDWR/ Watermanagement/AMAs/ThirdManagementP lan3.htm\#Phoenix>, accessed September 2, 2010.

ADWR, 2010, "Phoenix AMA Water Quality," বhttp://www.azwater.gov/AzDWR/ StatewidePlanning/WaterAtlas/ActiveManagementAreas/Water/PhoenixAMA.htm>, accessed September 2, 2010.

Arizona Game and Fish Department (AGFD), 2006a, "Guidelines for Culvert Construction to Accommodate Fish and Wildlife Movement and Passage. AGFD Habitat Branch," http://www.azgfd.gov/hgis/pdfs/CulvertGuidelinesforWildlifeCrossings.pdf, accessed September 2, 2010.

AGFD, 2006b, 'Rana yavapaiensis: Unpublished abstract compiled and edited by the Heritage Data Management System, Arizona Game and Fish Department," Phoenix, AZ, October 26, 10pp, uttp://www.azgfd.com/w_c/edits/documents/Ranayava.fi_002.pdf accessed September 2, 2010.

AGFD, 2007, "Burrowing Owl Management Guidelines for Municipalities in Arizona," prepared by the Burrowing Owl Working Group, J une, 11 pp , বtttp://www.azgfd.gov/pdfs/ w_c/owl/BUOWMunicipalitiesWhiteP aper.pdf>, accessed September 2, 2010.

AGFD, 2008a, "Guidelines for Bridge Construction or Maintenance to Accommodate Fish and Wildlife Movement and Passage," AGFD Habitat Branch, November, বttp://www.azgfd.gov/hgis/pdfs/BridgeGuidelines.pdf>, accessed September 2, 2010.

AGFD, 2008b, "Rana yavapaiensis occurrences in Arizona," Online map from the Heritage Data Management System, February 19, বhttp://www.azgfd.com/w_c/edits/ images/ranayava_000.gif>, accessed September 2, 2010,

AGFD, 2009a, "Minutes of the Meeting of the Arizona Game and Fish Commission, Friday August 7, 2009 and Saturday August 8, 2009," Phoenix, AZ, דhttp://www.azgfd.gov/ inside_azgfd/documents/2009087and8CommMtgMinutes. pdf>, accessed September 2, 2010.

AGFD, 2009b, "Wildlife Friendly Guidelines: Community and Project Planning,"
February, 43 pp, <nttt:://www.azgfd.gov/pdfs/w c/WildlifeF riendlyDevelopment.pdf>, accessed September 2, 2010.

AGFD, 2010, "Anthus spragueii," Unpublished abstract compiled and edited by the Heritage Data Management System, Arizona Game and Fish Department, Phoenix, AZ, 7 pp. http://www.azgfd.gov/w_c/edits/documents/Anthspra.d_001.pdf, accessed December 6, 2010.

Arizona Geological Survey, 2009, "Earth Fissure Map of the Luke Study Area: Maricopa County, Arizona," Digital Map Series - Earth Fissure Map 8 (DM-EF-8), Tucson, AZ, <http://azgs.az.gov/Earth\ F issures/Luke2-09.pdf>, accessed September 2, 2010

Arizona State Parks, 2007, "2008 Statewide Comprehensive Outdoor Recreation Plan," September, বhttp://azstateparks.com/publications/index.html\#SCORP>, accessed September 2, 2010.

Arizona Wildlife Linkages Workgroup (AWLW), 2006, "Arizona’s Wildlife Linkages Assessment," বttp://www.azdot.gov/Highways/OES/AZ WildLife_Linkages/assessment.asp>, accessed September 2, 2010

Brown, D.E, 1994, Biotic Communities: Southwestern United States and Northwesterm Mexico, University of Utah Press, Salt Lake City, Utah, 342 pp.

Federal Highway Administration (FHWA), 2005, Section 4(f) Policy Paper
FHWA, 2010, Highway Traffic Noise: Analysis and Abatement Guidance. বhttp://www.fhwa.dot.gov/environment/noise/regulations_and_guidance/ analysis_and_ abatement_guidance/guidancedoc.pdf>, accessed September 2, 2010.

Hendricks, D.M, 1985, Arizona Soils, University of Arizona College of Agriculture, Tucson, Arizona, 244 pp.

Maricopa County Tax Assessor, "GIS Interactive Maps," বhttp://www.maricopa.gov/ assessor/>, accessed September 2, 2010.

Natural Resources Consenvation Service, "Web Soil Survey," বhttp://websoilsurvey. nrcs.usda.gov>, accessed August 26, 2010

National Park Service, 2010, 'Land \& Water Conservation Fund," duttp://www.nps.gov/ ncrc/programs/lwcf/protect.html \geqslant, accessed September 3, 2010.

Schumann, H.H, 1995, Land Subsidence and Earth-Fissure Hazards near Luke Air Force Base, Arizona, Pages 18-21 in U.S. Geological Survey Subsidence Interest Group Force Base, Arizona, Pages 18-21 in U.S. Geological Survey Subsidence Interest Group
Conference, Edwards Air Force Base, Antelope Valley, California, November 18-19: 1992: Abstracts and Summary, Prince, K.R., D.L. Galloway, and S.A. Leake, Eds., USGS Open-file Report 94-532.

US Census Bureau, 2000, "American Fact Finder: Census 2000 Summary File 3 (SF 3) Sample Data," বhttp://factfinder.census.gov/home/saff/main.html?_lang=en>, accessed August 30, 2010.

US Environmental Protection Agency (US EPA), 1998. Final Guidance For Incorporating Environmental J ustice Concems in EPA's NEPA Compliance Analysis.

US EPA, 2010, "National Ambient Air Quality Standards,"
http://epa.gov/air/criteria.html, accessed September 3, 2010.
US Fish and Wildlife Service (USFWS), 2007, "Candidate Species: Section 4 of the Endangered Species Act,"<http://www.fws.gov/endangered/esa-library/pdf/candidate_ species.pdf>, accessed December 6, 2010.

USFWS, 2010a, "Threatened and Endangered Species for Maricopa County," http://www.fws.gov/southwest/es/arizona/Documents/CountyLists/Maricopa.pdf, accessed September 2, 2010.

USFWS, 2010b, "Endangered Species Act Overview," <http://www.fws.gov/endangered/ laws-policies/index.html>, accessed September 13, 2010.

Appendix A

Arizona's On-line Environmental Review Too
Search in: Paine Peorian Ave. CII
Project Nate
Date: 12/6/2010 oli:38:21 AM

Arizon's On-line Environmental Review Too
Search ID: 20101206013878

Please review the entire receipt for project type recommendation
andlor species or location information and retain a copy for futur reference. If any of the infomation you provided did not accurately reflect this project, or if project plans change, another review should be Arizon's Online Environmental Review Tool:

1. This On-line Environmental Review Tool inquiry has generated
 include all U.S. Fish and Wildifife Service federally listed. U.S. Bureau of Land Management sensitive, U.S. Forests sevicice sensitive, and Af concer. authority of Arizane Revised Statutes Titie 5 (Amusements and
Sports), 17 ((ame and Fish), and 28 (Transportation). These
 recommendations are preiminary in scope, designed to provide early
considerations for all species of widlife, pertinent to the project type you entered.
2. This receip
This receipt, generated by the automated O-line Environmental eview Tool does not constitute an official project review by Department biologists and planners. Further coordination may be NEPA) and/or the Endangered Species Act (ESA) ,
The U.S. Fish and Widdife Service (USFWS) has requlatory authority over all federally isted species under the ESA. Contact USFWS cological Services ances: htpp:/larizonaes.fws.gov/.
hoenix Main office
321 W. Royal Palm Road, Suite 103
Phoenix, AZ 85021
Phone $602-242-2210$
Phone 602-242-021
Fax $602-242-2513$
$\begin{aligned} & \text { Tucson Sub-office } \\ & 201 \text { North Bonita, }\end{aligned}$
201 North Bonita, Suite 141
$\begin{aligned} & \text { Turson, AZ } 85775 \\ & \text { Phon 520-670-6144 } \\ & \text { Fax } 520-670-6154\end{aligned}$
Fax 520-670-6154
Flagstaff Sub-Office
323 N. Leroux Street, Suite 101
$\begin{aligned} & \text { Flagstaff AZ } 886001 \\ & \text { Phone } 928 \text {-226-0614 }\end{aligned}$ Phone 928-226-0614
Fax $928-226-1099$
Disclaimer:
3. This is a preliminary environmental screening tool. It is not a substiute fort the potential knowneledge e gaineed by having a biologist
conduute field survey of the projecta area. conduct a field survey of the projecta arae.
4. The Departments Heritage Data Management System (HDMS) data 2. The Departments Heritage Data Management System (HDMS
is not intended do include potential distribution of special status
species Arizon is larg and diverse with plants animals, and species. Atizona is large and divierse with plants, animals, and
environmental conditions that are ever changing Consequety enviranmental conditions that are ever changing. Consequently, many
areas may contain species that biologists do not know about or areas may contain species that ioliogists do
species previously noted in a particular area may no longer occur there.
5. Not all of Arizona has been surveyed for special status species, and surveys that have been conducted have varied greaty in scope and intensity. Such survers may reveal previously undocumented
population of species of special concem. population of species of special concem.
6. HDMS data contains infommation about species occurrences that have actually been reported to the Department

Arizona Game and Fish Department Mission

To conserve, enhance, and restore Arizona's diverse wildilife
resources and habitats through aggressive protection and

APPLICATION INITIALS \qquad

Arizona's On-line Environmental Review Too
Search ID: 20101206013878

management programs, and to provide wildlife resources and
safe watercratt and offt-highway vehicle recreation for the njoyment, appreciation, and use by present and future

Project Category: Transportation \&

 Infrastructure,Road construction (including staging areas),Realignment/ new roads
roject Type Recommendations

All degraded and disturbed lands should be restored to their natural slate. Vegetation restoration projects (includuding treatments of nituasive (identitying environmental have conditions nempecedessarte-evaluation to plan vegetation), a revegetation plan (species, density, method of adaptive manaigement guidelines to address needs for repleplacement adaptive m.
Based on the project type entered; coordination with Arizona Department of Environmental Quality may be required

Based on the project type entered; coordination with County Flood Sased on the project type entered; coordination with State Historic reservation Office may be required

Based on the project type enter

Engineers may be required
Puring planning and construction, minimize potential introduction or anead of exotic invasive species. Invasive species can be plants, may cause atteration to ecological functions or compete with or prey pon native species and can cause social impacts (e.g. livestock forage reduction, increase wildfire tisk). The terms noxious weed or
invasive plants are often used interchangeably. Precautions should b taken to wash all equipment utilized in the project activities before and has noxious weed regulations (Arizona Revised Statutes, Rules R3-4-444 and R3-4-245). See Arizona Department of Agriculture website for restricted plants epartment of Agriculture has infommation regardinga pestand invasive ant control methods including: pesticide, herbibicide, biological ical control thp://Mww.usda.gov/wps//Dorta///sdahome. The Department regulates importation, purchasing, and transportation Restricted Live Wiidlifif), please refer to the hunting regulations for
During the planning stages of your project, please consider the local or regional needs of wildilife in regards to movement connectivity, and ccess to habitat needs. Loss of this permeability prevents wildilife from Idcessing resources, finding mates, reduces gene flow, prevent ccurred, and ulimately prevents wividifife from contributing to prey numbers, and resistance to invasive species. In many cases, reams and washes provide natural movement coridors for wild life and should be maintained in their natural state. Uplands also supporta
large diversity of species, and should be contained within important
\qquad

Arizona's On-line Envir ental Review Too

vildife movement coridors. In addition, maintaining biodiversity and cosystem functions can be facilitated t through improving designs of scrures. fences, roadways, and culverts to promote passage for

Hycroogogical considerations: design culverts to minimize impacts to loodplains) and subustrates to carry expected discharge using local ainages of appropriate size as templates. Aquatic wild
Considerations: reduce/minimize bariers to migration of amohibians or orridors often provide important conididors for moses and stream ilvert width, height, and length should be ooptimized for orverall he greatest number and diversity of species expected to utiize the passage. Culvert designs should consider moisture, light, and noise,
while providing clear views at both ends to maximize utilization. For many species, fencing is an important design feature that can be diized with culverts to funnel wildifif into these areas and minimize ions. Guidelines for culvert designs to top://www.azgtd.
nimization and mitigation of impacts to wildifie and fish species due Changes in water quality, quantity, chemisty, temperature, and of floods) should be evaluated. Minimize impacts to springs, in-strearn
fow, and consider irigation improvements to decrease water use. If edging is a project component, consider timing of the projecti in ord minimize impacts to spawning fish and other aquatic species
dchaing spawning seasons), and to reduce spread of exotic invasiver Evecuation erecommend earry direct coordination with
wetuands, streams, springs, ant that could impact water
wiparian habititats.

Planning: consider impacts of lighting intensity on mammals and bircs
human safety while minimizing potential impacts to willifife. Conduct
wiidlife surveys to determine species within project area, and evaluate proposed activities based on species biology and natural history to
determine if artificial lighting may disupt behavior pattems or habitat determ Preconstruction - Consider design structures and construction plans Preconst
that minimize impacts to channel geometry (i.e. width/depth ratio, sinuosity, allow overflow channels to tovoid alteration of hydrollogical
function. Identify whether wild life species use the structure for roosting function. Identify whether wildifif species use the structure for roosting
or nesting during anticipated construction period. Plan the timing of construction/maintenance to minimize impacts to willdiffe species. In
addition to the species list generated by the Arizona's On-line addition to the species i st generated by the A Aizon'a's on-line
Environmental Review Tool, the epartment recommends that survey be conducted at the bridge and in the vicinity of the bridge to identify
additional or currenty undocumented bat bird, or aquatic species in the project area. To minimize impacts to birds and bats, as well as aquatic species. consider conducting maintenance and constuction activities outside the breecing/matemity season (breeding seasons for
birds s and bats usually occur spring - summer). Examining the crevices for the presence of bats pior to pouring new paving materials. When bats are present, be to falling trought the cracks and potententilly onto bats. If bats are present, maintenance and construction (includuing conducted during nightime hours if possible, when the fewest number of bats will beroosting.
Consider incororating roosting habitat for batt into bridge designs.
Mininimize impacts to the evegetation community A revegetation Minimize impacts to the vegetation community. A revegetation plan
should be developed to replace impacted communities. Unavoidable impacts to vegetation should be mitigated on-site whenever possible. During construction: Erosion control structures and drainage features
should be used to prevent introduction of sediment laden runoff into the waterway. Minimize instream construction activity. If culverts are aned, mitigate impacts to willifife and fish movement. Guidelines for bndge designs to facilitate wildirife eassage
htpo:/wwu.zzgtd. gov/hgis/guidelines. asp.
\qquad

Arizona's On-line Environmental Review Too
Search ID: 20101206013878

Recommendations will be dependant upon goals of the fence project
and the willdife species expected to be impacted by the project. and the wildifie species expected to be impacted by the project Gerbless wire on the top and bottom with the maximum fence height $42^{\prime \prime}$, minimum height for bottom $16^{\prime \prime}$. Modifications to this design may
be considered for fencing anticipated to be routinely encountered by elk, bonsidered for fercing anticipated to be routinely encountered by
elt pronghom (e.g. Pronghom fencing would requir
18. Fencing Guidelines socated at

```
s.aspx.
```

- $)$
The Department recommends that willifife surveys are conducted to

activities outside of breeding seasons.
he Department requests further coordination to provide
project/species specific recommendations, please contact Project
Trenches should be covered or back-filled as soon as possible Incorporate escape ramps in ditiches or fencicing aloong tose perimeter to
deter small mammals and herptefauna (snakes, lizards, tortoise) from deter small mamn
entering ditches.

roject Location and/or Species recommendations:

Heritage Data Management System records indicate that one or more
native plants listed on the Arizona Native Plant Law and Antiquities Act rative plants listed on the Afirona Native Plant Law and Antiquitios Act have been documented within the vicici
page 1 of the receipt). Please contact Arizona Departmenter
11888 Wdams
Phoeni
688 W Adams
hoenix, AZ 85007

Phone: 602-542-4373

> Recommendations Disclaimer
> Potential impacts to fish and wildife resources may be minimized or avoided by the recommendations generated from information 2. These recommentadions srepercoposed actions or 9
considered during preliminary project development.
> 3. Additional site specific recommendations may be proposed during agencies.
4. Making this information directly available does not substiute for the
Departments review of project proposals, and should not decrease o eppartunntits to reveview of project proposals, and should not decrease our opportunity to review and
new proiect proposals.
> 5. The Departmentis. in interested in the consservation of all fish and widifit resources, including those Special 5 tatus Species listed on project vicinity as well as other game and nongame willdiff.
Further coordination requires the submittal of this initialed signed Environmental Review Receipt with a cover letter and oject plans or doown how construction or project narrative acreage to ec impacted, how construction or project activ
are to beaccomplished, and project locality information including site map).
7. Upon receiving infor
> Upon receiving information by AZGFD, please allow 30 days for
completion of project reviews. Mail requests to:
> Project Evaluation Program, Habitat Branc
> Arizona Game and Fish Department
> 000 West Careftree Highway
hoenix, Arizena 85086 -500
> Phoenix, Arizona $85086-5000$
Phone Number: (623) 236-7600

Arizona's On-line Environmental Review Too
Project Name: Peoria A Ave. CIS
Fax Number: (623) 236-7366

of

Using this site, you acknowledge that you have read and
ndirstant he tems of use. Departurnenstaff may revise these term periodically. If you continue to use our website atter we post changes
to these temss. , twill mean that ou acceptsuch changes. If at any
time you do not wish to accept the Terms, you may choose not to use the website.
.This Environmental Review and project planning website was potential impacts on resources of special concem. By indicating your agreement to the terms of use for this website, you warrant that you 2. Unautherized atempts to to upload information or change information . Unauthorized attemptr to upload information or change information Computer Fruad and Abuse Act of 1986 and/or the National
3. The Department resenves the ight at any time, without notice, to
restict your accesss to to the website.
restict your access to the website.
4. This Environental Review is based on the project study yraea that
was entered. The review must be redone if the project study area, location, or the type of project changes. If additional information
becomes available, this review may need to be reconsidered. A signed and initiailed coppy of the Environmental Review Rece dicates that the entire receipt has been read by the signer of the

Security:
The Environmental Review and project planning web application The Envion mental Revew and project planning wes appication
operates on a complex State computer system .This syster is
monitored to ensure proper operation, to verify the functioning of
applicable security features, and for other like purposes. Anyone using
this system expressly consents to such monitoring and is advised that
 personnel may provide the evidence of such monitoring to lo la enforcement officials. Unauthorized attempts to upload or change
information; to defeat or crircumvent security measures; or to utilize thi system for other than it it intended purposes are are prohibitited.
Ths win result as well as al Il contact information. This infomation is maintined
for intemal tracking purposes. Information collected in this application for intemal tracking purposes. Infommation collected in this applat
will not be shared outside of the purposes of the Department
If the Environmental Review Receipt and supporting material are not mailed to the Department or oher apposite agecest months of the Prien six (6) monthl of the Project Review Receipt tate, the recele
be null and void, and a new review must be initited.
Print this Environmental Review Receipt using your Intemet browser's

$$
\begin{aligned}
& \text { pint tunction and keep it for your records. Signature of this receip } \\
& \text { indicates the signer has read and understands the information }
\end{aligned}
$$

provided.

Date:
\qquad
\qquad
\qquad -_

Arizona's On-line Environmental Review Too Search ID: 20101206013878
Project Name: Peeroria Ave. Cls
Trie.

Please provide point of contact information regarding this Environmental Review.

Application or organization responsible for project implementation
Agency/organization:
Contact Name:
Address:

City, State, Zip: \qquad

City, state, Zil
Phone: E-mail:
erson Conducting Search (if not applicant)
Agency/organization:
Contact Name
Address: \qquad -2

Page 7 of 7 APPLICATION INITIALS: \qquad
Appendix B

Database	Date of Database	Approximate Minimum Search Distance (miles)	Reported Facilities
Standard Federal ASTM Environmental Record Sources			
NPL (National Priorities List) / Proposed NPL / DOD (Department of Defense Sites)	08/10	Within corridor boundaries	0
Delisted National Priorities List	08/10	Within corridor boundaries	0
CERCLIS (Comprehensive Environmental Response, Compensation and Liability Information System)/No Further Remedial Action Planned (NFRAP)	08/10	Within corridor boundaries	0
RCRA (Resource Conservation and Recovery Act) Large and Small Quantity Generators	08/10	Within corridor boundaries	1
RCRA - CORRACTS TSDFs (Corrective Action Treatment, Storage, and Disposal Facilities)	08/10	Within corridor boundaries	0
RCRA - Non-CORRACTS TSDFs	08/10	Within corridor boundaries	0
ERNS (Emergency Response Notification System)	08/10	Within corridor boundaries	3
Standard State ASTM Environmental Record Sources			
WQARF (Water Quality Assurance Revolving Fund) Areas	08/10	Within corridor boundaries	0
Superfund Program List (replaces ACIDS)	08/04	Within corridor boundaries	0
Solid Waste Facilities/Landfill Sites - Operating and Closed	$\begin{gathered} 05 / 99 \& \\ 05 / 04 \end{gathered}$	Within corridor boundaries	0
Brownfields / Voluntary Remediation Program	08/10	Within corridor boundaries	1
Registered USTs (Underground Storage Tanks)	01/10	Within corridor boundaries	6
LUSTs (Leaking Underground Storage Tanks) Incident Reports	01/10	Within corridor boundaries	1
Additional Environmental Record Sources			
RCRA Compliance Facilities	11/09	Within corridor boundaries	0
Hazardous Materials Incidents Emergency Response Logbook	$\begin{aligned} & \hline 1984- \\ & 06 / 01 \end{aligned}$	Within corridor boundaries	0
ADEQ Drywell Registration Database	08/10	Within corridor boundaries	424
Fire Insurance Maps	Various	Within corridor boundaries	0
Topographical / Aerial Maps	See text	Within corridor boundaries	1
DRYCLEANER	06/06	Within corridor boundaries	0
Arizona Department of Water Resources Well Registration Database	08/10	Within corridor boundaries	See Text

FACILITY	ADDRESS	$\begin{aligned} & \hline \hline \text { BEG } \\ & \text { REG \# } \end{aligned}$	$\begin{gathered} \hline \hline \text { END } \\ \text { REG \# } \end{gathered}$	TOTAL WELLS
Dysart Middle School	11405 N Dysart Rd	10704		1
Dysart High School	11405 N Dysart Rd	26060	26072	13
Dysart High School	11405 N Dysart Rd	27138		1
Rancho Gabriela Water Supply Facility Exp	13627 W Cactus Rd	41808		1
Cactus Ward Building	15880 W Cactus Rd	44394	44395	2
Surprise Fire Station No. 307	16171 W Cactus Rd	40214		1
Sarah Ann Ranch	NEC Citrus Rd \& Cactus Rd	33403	33478	76
Varamonte - Parcels 1 To 6	NWC Litchfield Rd \& Cactus Rd	32063	32083	21
Arsenic Treatment Plant At Rancho Gabriela	S of Cactus Rd, Approx . 25 Mi E Of Litchfield Rd	43480		1
Rancho Gabriela Phases 3 \& 4a	SEC Cactus \& Reems Rds	27635	27660	26
Mountain Gate - Phase 3	SEC Cactus Rd \& Bullard Ave	27014	27025	12
Mountain Gate - Phase 4	SEC Cactus Rd \& Bullard Ave	27026	27034	9
Mountain Gate - Phase 5	SEC Cactus Rd \& Bullard Ave	27035	27042	8
Kenly Farms	SEC Litchfield Rd \& Cactus Rd	31660	31664	5
Imagine Charter School	SWC Bullard Ave \& Cactus Rd	31025	31027	3
(No Name)	SWC Bullard Ave \& Cactus Rd	35671		1
Rancho Gabriela Phases 2 \& 4	SWC Bullard Rd \& Cactus Rd	25622	25651	30
Diesel Eagle	13374 West Peoria	15968	15970	3
Mountain Gate - Phase I \& li	NEC Peoria Ave \& Bullard Ave	25552	25571	20
Greer Ranch South Infrastructure	NEC Peoria Ave \& Sarival Rd	29032	29056	25
Dysart High School No. 4	NEC Perryville Rd \& Peoria Ave	43434	43478	45
Wyngate At Sycamore Farms	NEC State Route 303 \& Peoria Ave	43975	43978	4
Ministorage At Gabriella Plaza	NWC Bullard Ave \& Peoria Ave	42636	42639	4
Cortessa	NWC Citrus Rd \& Olive Rd	32520	32579	60
White Tank Foothills	SWC Citrus Rd \& Olive Ave	33710	33736	27
Shadow Ridge High School Fine Arts Facility	10909 N Perryville Rd	44940	44943	4
White Tanks WTP	Cactus Rd, Approx 3 Mi W Of 303	44934	44937	4
Spa 1 South WRF	11401 N 136th Ave	43279		1
Canyon Pipe \& Supply	10779 N Milgard Way	43207	43210	4
Skycom Business Park	11081 \& 11113 N Milgard Way	38968	38969	2
Sunstate Plumbing Inc	11051 N 132nd Ave	37806	37807	2
New Dysart District Office Support Facility	SWC Litchfield Rd \& Desert Cove Rd	44482	44489	8

Table B-3. Arizona Department of Water Resources Well Report

ID	T	N/S	R	E/W	S	Q1	Q2	Q3	wu	WD	WL	DIA	NAME
601886	3 N		1 w	w	19	NE	NW	NW	A	943	475	16	Aranda Properties Inc
601885	3 N		1 w	w	19	NE	NW	NW	A	1595	500	18	Courtland Homes Inc
481950	3 N		1 w	w		NE	sw	sw	A				Lennar Communities
481755	3 N		1	w	19	NE	sw	sw	D				Lennar Communities Development, Inc.
601888	3 N		1 w	w	19	NW	NW	NW	A	592	520	18	Courtland Homes Inc
212491	3 N		1 w	w	19	NW	sw	NW	E	1070	393	18	Arizona American Water Company
200469	3 N		1	w		SE	NW	NE	T				Lennar Communities
601887	3 N			w	19	SW	NW	NW	A	1100	550	0	Lennar Communities Development, Inc.
400419	3 N		1 W	w		NE	NE	NE					R G 2223, Inc
607537	3 N		1 w	w		NE	NW	NW	A	1200	535	20	R G 2223, Inc
593638	3		1 w	w	20	NE	SE	SE	E	1517		16	City Of Surprise Water Services Dept
608547	3 N		$1{ }^{1}$	w	20	NW	NW	NW	D	2051	485	18	R.G. 2223 Inc
086408	3 N		1 W	w		NW	NW	NW	A	1239	0	16	Continental Fund 213, Llc
400495	3		1 w	w	20	NW	NW	NW	D				R.G. 2223 Inc
621514	3 N		1 W	w		1 NE	NW	NW	A	1200	550	20	Richmond American Homes Of Az Inc
610110	3 N		1 w	w		1 NW	NW	NW	A	1500	430	20	William Lyons Homes Inc
621515	3 N		1	w		1 SE	NE	NE	D	775	0	8	Smith, P L
572866	3 N		1	w	22				N	200			City of Surprise
628487	3 N		1 w	w		NE	NW	NW	A	670	400	20	Skyway Business Park li Llc
214668	N			w		2 NE	NW	NW	F				Surprise/Dysart Llc
572867	3 N			w	22	2 NW	NE	SE	T	415	365	5	Surprise City Of
218388	N			w	22	2 NW	NE	SE		152		12	City Of Surprise
218387	N			w	22	2 NW	NE	SE		157		12	City Of Surprise
218390	N			w	22	2 NW	NE	SE		150		12	City Of Surprise
218391	N			w		2 NW	NE	SE		150		12	City Of Surprise
218389	N			w	22	2 NW	NE	SE		153		12	City Of Surprise
605189	N			w	22	2 NW	NW	NW	A	840	379	18	Surprise, City Of
218658	3 N			w		2 NW	NW	NW					City Of Surprise
605188	N			w		NW	sw	NE	A	780	350	20	Surprise, City Of
519048	3 N			w	22	2 sw	NE	NE	D	1001	438	8	Sage Development,
520176	3 N			w	22	SW	NE	NE	c	0	0	0	Sage Development,
564527	3 N			w		SW	sw	SW	M	380	335	10	Surprise City Of
909845	3 N			w	27					125		6	City Of Phoenix Aviation Dept.
610631	N			w		NE	NE	NW	A	1820	520	20	John F Long Family Revocable Living Trust U/A/D 2/26/2008
610625	3 N			w		NE	NW	NW	A	1050	520	20	John F Long Family Revocable Living Trust U/A/D 2/26/2008
610626	N			w		NE	NW	sw	A	1050	520	20	John F Long Family Revocable Living Trust U/A/D 2/26/2008
609454	$31 N$		1	w		NW	SE	NW	A	1500	410	20	Mckee,R H

ID	T N/S	R E/W	Q1	Q2	Q3	wu	WD	WL	DIA	NAME
609452	3 N	1 w	27 SW	NE	NW	A	1000	450	20	Mckee,R H
597682	3 N	1 w	27 SW	NW	NW	M	120	300	2	Phoenix, City Of,
579041	3 N	1 w	27 SW	NW	NW	N				City Of Phoenix Aviation Department
597681	3 N	1/w	27 SW	NW	NW	M	0	7300	2	Phoenix, City Of,
597683	3 N	1 w	27 SW	NW	NW	M	120	7300	2	City Of Phoenix Aviation Department
609455	3 N	1/w	27 SW	NW	NW	D	800	400	14	Mckee,R H
625816	3 N	1/w	28 NE	NE	NW	A	1157	515	18	Property Reserve Arizona Llc
625817	3 N	1 w	28 NE	NW	NW	A	1150	450	18	Property Reserve Arizona Llc
631810	3 N	1/w	28 NE	NW	NW	D	475	419	0	Pleshe \& Lesniewicz,
625815	3 N	1/w	28 NE	SE	SE	A	1170	510	18	Property Reserve Arizona Llc
610821	3 N	1 w	28 NW	NE		A	1100	600	20	Beals, K R
903067	3 N	1/w	28 NW	NE	NW	D	640	420	4	Sperry Trading
208837	3 N	1/w	28 NW	NE	NW	D				Webster
210465	3 N	1/w	28 NW	NE	NW	D	680	540	5	Anway
210409	3 N	1/w	28 NW	NE	SE	D	600	400	5	Waldron
626942	3 N	1 w	28 NW	NW	NW	A	1090	545	20	Justice Brothers
609453	3 N	1/w	28 SE	NW	NW	A	1200	450	16	City Of Phoenix
802266	3 N	1/w	28 SW	NW	NE	D	0	450	6	Tkr Enterprises
803677	3 N	1/w	28 SW	NW	NE	D	0	450	6	Wyatt, James, D
626943	3 N	1/w	29 NE	NE	NW	A	927	545	20	Justice Brothers
610103	3 N	1/w	29 NW	NW	NW	A	1200	430	20	Woolf Brothers,
201563	3 N	1/w	29 SE	SE	SE	T	450	0	6	Amerigas
801047	3 N	1/w	29 SE	SE	SE	F	780	519	8	Woolf Brothers,
610104	3 N	1/w	29 SE	SE	SW	A	1350	430	20	Woolf Brothers,
610102	3 N	1/w	29 SW	NW	NW	A	1400	430	20	Woolf Brothers,
584309	3 N	1/w	30 SE	NE	SW	N	1500	475		The London Group
589039	3 N	1/w	30 SE	NW	SE	D				Rose Garden Estates, Llc
606610	3 N	1/w	30 SW	SW	sw	D	705	450	8	Property Reserve Arizona Llc
612994	3 N	2 w	21 NE	NW	NE	A	534	356	20	Maricopa Co Mun Wtr
213494	3 N	2 w	22 NE	NW	NW	A				Property Reserve Arizona
213214	3 N	2 w	22 NE	NW	NW	A				Fulton Homes
604504	3 N	2/w	22 NE	NW	NW	A	1100	0	20	Property Reserve Arizona, L.L.C.
538332	3/N	2 w	22 NW	NE	NE	D	640	470	8	Property Reserve Inc
612997	3 N	2 w	23 NE	NE	NE	A	1032	481	20	Maricopa Co Mun Wtr
612995	3 N	2 w	23 NE	NE	NE	B	1000	420	16	Maricopa Water District
612996	3 N	2/w	23 NW	NE	NE	A	1000	493	20	Maricopa Co Mun Wtr
500768	3 N	2 W	24 NE	NW	NW	A	1050	580	16	Taylor Trust Farms Llc
617465	3 N	2/w	24 NE	NW	NW	A	1050	530	16	Taylor Trust Farms Llc
617464	3 N	2 w	24 NW	NW	SW	A	1160	540	20	Moore Ranches Inc,
212494	3 N	2 w	24 SE	NW	SE	T				Taylor Woodrow
641284	$3 / \mathrm{N}$	2/w	25 NE	SE	NW	D	750	550	8	Jarrell, D E

ID	T N/S	R E/W	Q1	Q2	Q3	WU	WD	WL	DIA	NAME
612998	3 N	2 w	25 NW	NE	NE	A	1000	471	16	Maricopa Co Mun Wtr
606609	3 N	2 ${ }^{\text {w }}$	25 NW	NW	NW	A	2567	885	18	Property Reserve Arizona, Llc
606608	3 N	2 W	25 SE	NW	NW	A	1200	650	20	Property Reserve Arizona, Llc
606607	3 N	2/w	25 SW	NW	NW	A	930	650	18	Property Reserve Arizona, L.L.C.
612999	3 N	$2{ }^{\text {w }}$	26 NW	NE	NE	A	1000	459	20	Maricopa Co Mun Wtr
624692	3 N	2 W	26 SW	SE	SE	D	888	452	20	Arizona-American Water Co
216251	3 N	2/w	27 NE	NE	NE	A				Stardust Development Inc
613001	3 N	$2{ }^{\text {W }}$	27 NE	NE	NE	A	489		16	Maricopa Water District
613000	3 N	2/w	27 NE	NW	NW	A	1030	471	16	Maricopa Co Mun Wtr
213859	3/N	2/w	27 NE	SE	SE	B	1478		21	Stardust Development Inc
577658	3 N	2/w	27 SE	NE	NE	C				Macanudo Investors Ltd Partnership
205432	3 N	2/w	27 SW	SE	SE	T	1620	427	19	Arizona American Water Company
801074	3 N	2/w	29 NW	SE	SE	D	0	0	11	Thorton Lumber Co,
511416	3 N	2/w	29 NW	SE	SE	D	0	0	0	Thornton Lumber Co,
614441	3 N	2\|w	29 NW	SE	sw	D	0	0	0	Thornton Lumber Co,
590348	3 N	2/w	29 NW	SW	sw	D	700	560	6	White Tank Ranch Llc

Appendix C

Technical Memorandum No. 3: Drainage Overview

Peoria Avenue Corridor Improvement Study: Jackrabbit Trail Parkway to Dysart Road

Technical Memorandum \#3: Conceptual Drainage Report

April 2011

Peoria Avenue Corridor Improvement Study Jackrabbit Trail Parkway to Dysart Road

Technical Memorandum \#3 Conceptual Drainage Report

Prepared for:

In Association With:
Prepared by:
r Andes 11811 North Tatum Boulevard Suite 3031
Phoenix, Arizona 85028

AECOM

Table of Contents

Project Location.
\qquad . .1

Prot .2.0 FLOOD CONTROL FACILITIES4
2.1 Existing Facilities 4

2.1.1 McMicken Dam.$\begin{array}{r}. .4 \\ \ldots \\ \hline\end{array}$ 6| ... |
| :--- |
| ... |

2.3 Improvement Prict 7
2.32 SN 303 L Channe and Basins$\begin{array}{r}8 \\ \hline\end{array}$
2.4 Privately Owned Facilities 9
2.4.2 Greer Ranch Subdivision - Channel 10
2.4.3 Twelve Oaks Estates - Channe
2.5 Future Development. 11
3.0 HYDROLOGY 12
Peak Flows.. 13
3.2 Floodways and Floodplains 17
EARTH FISSURES AND GROUND SUBSIDENCE 21
Reems Road Channel Eval uation. 21
5.2 McMicken Dam Evaluation 22
6.0 PROPOSED DRAINAGE IMPROVEMENTS 23
6.2 Onsite Drainage Improvements 26
7.0 REFERENCES 28

List of Figures

Figure 1	Vicinity Map.
Figure 2	Study Area Map.
Figure 3	McMicken Dam near Peoria Avenue
Figure 4	Reems Channel and Basin.
Figure 5	White Tanks ADMPU Recommended Alternatives
Figure 6	Proposed SR 303L Channel..
Figure 7	Proposed Ennis Spur Channel and Basin.
Figure 8	Shadow Ridge High School Off-site Drainage Facilities.
Figure 9	Greer Ranch and Twelve Oaks Estates Off-site Drainage Facilities 10
Figure 10	Copper Canyon Off-site Drainage Facilities
Figure 11	Peoria Avenue Watershed Map
Figure 12	Floodplains Map.
Figure 13	Earth Fissure Map near Reems Road
Figure 14	Fenne Knoll Fissures Map
Figure 15	Points of Concentration al

List of Tables

Table 1 Summary of Off-Site Peak Flows 14
Table 2 Flood Insurance Rate Maps Summary.17

List of Appendices

APPENDIXI Original Hydrology Data
APPENDIX II Modified Hydrologic Model (50-year Peak Flows Estimation) APPENDIX III Flood Insurance Rate Maps
APPENDIX IV ADWR Documentation
APPENDIXV Geotechnical Information
APPENDIX VI Developer Drainage Reports (Excerpts)

List of Abbreviations

ADMP	Area Drainage Master Plan
ADMPU	Area Drainage Master Plan Update
ADMS	Area Drainage Master Study
ADMSU	Area Drainage Master Study Update
ADWR	Arizona Department of Water Resources
CBC	Concrete Box Culvert
DDMSW	Drainage Design Management System
FCDMC	Flood Control District of Maricopa County
FEMA	Federal Emergency Management Agency
FIRM	Flood Insurance Rate Map
FRS	Flood Retarding Structure
HMS	Hydrologic Map Series
MCDOT	Maricopa County Department of Transportation
MWD	Maricopa Water District
NOAA	National Oceanic and Atmospheric Administration
NRCS	Natural Resources Conservation Service
USACOE	United States Army Corps of Engineers

ADMPU Area Drainage Master Plan Update
ADMS Area Drainage Master Study
ADMSU Area Drainage Master Study Update
CBC Concrete Box Culvert
DDMSW Drainage Design Management System
FEMA Federal Emergency Management Agency
FIRM Flood Insurance Rate Map
FRS \quad Flood Retarding Structure
MCDOT Maricopa County Department of Transportation
MWD Maricopa Water District
NRCS Natural Resources Conservation Servic
USACOE United States Army Corps of Engineers

1.0 INTRODUCTION

1.1 Project Location

The Maricopa Association of Governments (MAG) prepared the Interstate 10/Hassayampa Valley Roadway Framework Study (Hassayampa Framework Study) that identified a comprehensive roadway network to meet traffic demands for the build out of the area west of State Route 303 (SR 303L). This long range regional transportation study identified the need for a roadway network consisting of freeways, parkways, and major arterial roads.

The Hassayampa Framework Study recommended an extension of Peoria Avenue west from Perryville Road to the future J ackrabbit Trail Parkway, and identified Peoria Avenue as a major arterial from the future Jackrabbit Trail Parkway to Sarival Avenue The study area for this project includes Peoria A venue from the future Jackrabbit Trail Parkway alignment to Dysart Road (Peoria Avenue Corridor). The study area generally encompasses a 2 -mile wide corridor centered on the existing Peoria A venue. The study area is shown in Figure 2.

Figure 1 - Vicinity Map

This study will establish the facility type, number of lanes, right-of-way needs, and general alignment for the Peoria Avenue Corridor that will be required to accommodate projected traffic growth and enhance safety. In cooperation with the City of Surprise, the City of Glendale, and the City of EI Mirage, the study will also develop access management guidelines, determine design standards based upon which jurisdiction anticipates annexing the roadway, and develop an implementation plan. In general, the purpose of this Corridor Improvement Study is to provide the Maricopa County Department of Transportation (MCDOT) and other jurisdictions with a future "footprint" of the Peoria Avenue Corridor and a timeframe for the implementation of the recommended future roadway improvements.

The key objectives of this Corridor Improvement Study are to:

- Define and assess strategic issues within the project study area
- Develop and evaluate conceptual altemative alignments within the corridor study area;
- Recommend a preferred alignment;
- Develop consensus for the preferred alignment;
- Define the characteristics of the preferred alignment; and
- Develop an implementation plan.
1.2 Purpose of This Report

This report summarizes data collected from the Flood Control District of Maricopa County (FCDMC) studies, Arizona Department of Water Resources (ADWR) reports, Arizona Department of Transportation (ADOT) design documentation, private development drainage reports and field reviews. The data includes peak flows and field conditions. The report also includes an inventory of existing drainage infrastructure within the project area.

PEORIA AVENUE CORRIDOR IMPROVEMENT STUDY
 Jackrabbit Trail Parkway to Dysart Road

Legend

Study Area Boundary	Railroad	$\sim \sim$ Stream/Wash
nunr Peoria Avenue Section Line	Topography (100')	Jurisdiction
- Proposed Freeway	Luke AFB Noise Contour	El Mirage
Proposed Parkway	General Floodplain Limits	Glendale
Road	Drainage Structure (canal, dam)	Surprise

2.0 FLOOD CONTROL FACILITIES

2.1 Existing Facilities

The FCDMC operates and maintains two flood control facilities within the project area:

- McMicken Dam
- Reems Road Channel and Basin

2.1.1 McMicken Dam

McMicken Dam is a flood control structure that is almost 11 miles long and follows an alignment offset from the Beardsley Canal, beginning at Peoria Avenue west of Perryville Road and extending north and east to Happy Valley Road west of Bullard Avenue. A watershed of approximately 220 square miles to the north and west of the structure contributes runoff to the dam. Its storage capacity is 23,800 Acre-ft. The dam was constructed in the mid 1950's by the United States Army Corps of Engineers (USACOE) and is operated and maintained by the FCDMC. The dam detains storm runoff and meters outflows through a channel located at the northeast end of the structure. The emergency spillway is located just southwest of the intersection between the dam and US 60 and has a design peak flow of $22,000 \mathrm{cfs}$. The maximum height of the dam is approximately 34^{\prime}, with a crest width of 12 '. The Peoria Avenue section line intersects the detention basin located immediately south of the dam. The basin is designed for the 500-year event.

Figure 3 - McMicken Dam near Peoria Avenue

The detention basin and the section of the dam south of Waddell Road are located in a fissure risk zone. The detention basin was created when the FCDMC removed the final 0.5 mile segment of the dam within the area determined to have the highest fissure risk potential and replaced it with a realigned soil-cement dam segment located outside of said area (Figure 3 shows the current condition). Construction began in March of 2005 and was completed in August of 2006.

FCDMC and USACOE are considering alternatives for the overall rehabilitation or replacement of the dam in order to address safety issues. Detailed analyses were completed in 2007, but at this time there is no set schedule for the selection of a preferred alternative or further development of the rehabilitation project. The level of flood protection is not expected to change regardless of the selected altemative; therefore no direct impact is expected for the Peoria Avenue corridor.

2.1.2 Reems Road Channel and Basin

The Reems Road Channel and Basin is a regional flood control facility that was recommended in the Loop 303 Whit Tanks Area Drainage Master Plan (ADMP) to intercept and , The ull convey the 100-year stormwater event. The ultimate facility includes a channel flowing south along Reems Road from Bell Road to the Reems Basin, an off-line detention basin ocated $1 / 4$ mile south of Peoria Avenue, continuing to the outfall at the Falcon Dunes golf course/detention basin, which drains into the Dysart Drain.

The purpose of the channel is to protect Reems Road and the land to the east, including the City of Surprise wastewater treatment plant and various utilities. Without the channel a majority of the stormwater flow would be carried within the Reems Road roadway prism, with large flows overtopping and sheetflowing to the southeast.

In the summer of 2009 the FCDMC completed the construction of the segment of the project south of Peoria Avenue, including a 6 -barrel $10^{\prime} \times 4^{\prime} \times 142^{\prime} \mathrm{CBC}$, an approximately 1.5 -mile-long earthen channel mostly on the west side of Reems Road, the Reems detention basin and culvert crossings at Olive Avenue and Reems Road. The

Figure 4 - Reems Channel
and Basin

FCDMC retains ownership and maintenance of these facilities. A Letter of Map Revision (LOMR) reflecting the floodplain mitigation as a result of the project is pending approval.

Ownership, funding, design, construction and maintenance of the segment of the channel north of Peoria Avenue are the responsibility of the City of Surprise. The city is to partner with private developers to complete its portion of the project north of Cactus Road with a currently undefined schedule.

2.2 Previous Studies

2.2.1 Loop 303 Corridor / White Tanks Area Drainage Master Plan Update

In February of 2005 the FCDMC completed the "Loop 303 Corridor / White Tanks Area Drainage Master Plan Update" (the White Tanks ADMPU). The White Tanks ADMPU updated the ADMP previously completed in 1995 with the purpose of developing altematives for

Figure 5 - White Tanks ADMPU Recommended Alternatives structural flood control improvements to mitigate flood hazards. The proposed alternatives address higher runoff rates associated with the onset of development of rangeland and agricultural land to an urban environment.

The White Tanks ADMPU study area covers the entire project area. The greater ADMPU study area is bounded by the White Tank Mountains to the west, McMicken Dam/Deer Valley Road to the north, the Agua Fria River to the east, and Gila River to the south. The area includes the portions of the incorporated areas of Avondale, Buckeye, El Mirage, Glendale, Goodyear, Litchfield Park, Peoria, Sun City, and Surprise, as well as unincorporated areas of Maricopa County.

Three development altermatives recommended in the ADMPU fall within this project's study area: the SR 303L Channel and Basins, the Reems Road Channel and Basin and the BNSF Railway Channel and Basin. These facilities are discussed in greater detail in other sections of this report. Figure 2.3 shows the location of altematives as portrayed in a graphic included in the

White Tanks ADMPU report.
Peak flow data summarized in this technical memorandum is derived from the hydrologic models created for the ADMPU. The models have been updated since completion of the ADMPU. The latest version includes NOAA 14 rainfall depth values and reflects the design of channels and basins along SR 303L and Reems Road.
2.3 Improvement Projects

FCDMC, ADOT, the City of Surprise and the City of Glendale are partnering for the development of the regional flood control facilities recommended in the White Tanks ADMPU. Section 2.1.2 covers the Reems Road Channel and Basin project. The SR 303L Channel and Basins and the BNSF Railway Channel and Basin projects are discussed below.
2.3.1 SR 303L Channel and Basins

FCDMC and ADOT are working on the design of an 18 -mile-long system of channels and basins that will provide 100year flood protection for SR 303L and lands to the east. The channel system is located on the west side of SR 303L, beginning at Bell Road and extending south to the Gila River. ADOT is responsible for the development of the system from Bell Road to Van Buren Street and the FCDMC is responsible for the segment between Van Buren Street and the outfall at the Gila River.

ADOT's portion of the channel system is in the final stages of design. Preliminary design was completed in 2008 in two sections, Bell Road to Peoria Avenue and sections, Bell Road

Figure 6 - Proposed SR 303L Channe
design of the segment from Peoria Avenue to Northem Avenue is currently underway and is expected to be complete by the end of 2010 , with construction scheduled to start in the spring of 2011.

The channel system in the vicinity of Peoria Avenue consists of a concrete-lined open channe with box culverts at major roadway intersections and detention basins located on the north side of Cactus Road and the north side of Northem Avenue. The culvert crossing at Peoria Avenue is a $3-10^{\prime} \times 6^{\prime} \times 221^{\prime} \mathrm{CBC}$, with winged inlet and outlet transitions to a 40^{\prime}-wide channel at the top, is a $3-10^{\prime} \times 6^{\prime} \times 221$
with $2: 1$ side slopes and 6^{\prime} of depth.

2.3.2 BNSF Railway (Ennis

Spur) Channel and Basin

FCDMC is in the initial stages of development of a 100-year event channel and basin system that would parallel the existing railroad track that runs north-south along the half-section line between Litchfield Road and Dysart Road. The system would begin at Waddell Road, collecting runoff approaching from the north-west and conveying it to the south to its and conveying it to the south to it outall the the north
Parkway.

Conceptual design for the segment of the system in the vicinity of Peoria Avenue includes an open channel on the west side of the railroad tracks to the south of Peoria Avenue, a closed conduit system to the north of Peoria Avenue due to limited right-of-way availability, and a detention basin on the north side of Olive Avenue.

Figure 7 - Proposed Ennis Spur Channel And Basin

Design and construction of the channel and basin are not yet programmed, but are expected to proceed within 5 to 10 years. The proposed general alignment of the channel and location of the basin are shown in Figure 7.

2.4 Privately Owned Facilities

The agricultural character of the area has been changing in recent years to an urban environment. Commercial and residential developments along the corridor have introduced changes to runoff patterns and include flood control facilities such as channels and retention basins that are maintained by entities other than municipal and county agencies. The design and construction of these facilities has been monitored by the City of Surprise and the FCDMC through the permitting process, and therefore follow local and county design standards and ordinances. The most relevant requirements are the on-site retention of the 100-year 2-hour storm event, the acceptance of pavement runoff for the half street adjacent to the development, and the conveyance of upstream off-site flows through street/roadside channel systems.

2.4.1 Shadow Ridge High School - Channels and Basin

The Shadow Ridge High School is located on the northeast comer of the Peoria Avenue and Perrville intersection. Off-site flows approaching the school are routed around the site through a natural wash on the north side, and a system of channels and detention basin along the west and south sides. See Figure 8

Figure 8 - Shadow Ridge High School Off-site Drainage Facilities
A 1,450'-long unlined channel along the west side of Perryville Roads collects off-site runoff and routes it to a detention basin located on the northwest comer of the Perryville Road and Peoria Avenue intersection. A single 48" pipe culvert under Perryville Road meters flows out of the basin into a 1,400 '-long grass-lined triangular open channel that flows east along the north side

7 Andes

of Peoria Avenue, which in turn discharges through 5-36" pipe culverts under the southeast roadway school entrance into a $1,100^{\prime}$-long temporary unlined channel. The temporary channe was graded through the adjacent undeveloped land to the east and eventually terminates, allowing runoff to continue east on Peoria Avenue. The school's on-site retention basins were constructed immediately north of the Peoria Avenue roadside channel.

2.4.2 Greer Ranch Subdivision - Channe

Greer Ranch is a residential subdivision located on the north side of Peoria Avenue from Sarival Avenue to Reems Road. Off-site runoff approaching from the northwest is routed around the site, using berms along Cactus Road on the north side and raised entrances along Sarival Avenue on the west side to keep runoff on the roadway's prism. A channel along the north side of Peoria Avenue was built to convey 820 cfs (roughly 50% of the 100 -year event that flows along the roadway) from Sarival Avenue east to the Reems Road Channel. It should be noted that peak flow data used in this section and in Figure 9 is taken from the Greer Ranch Drainage Report of 2003. The segments of the channel along the undeveloped parcels at the Sariva Avenue and Reems Road comers are unlined, while grass and desert landscape are used for lining in front of the residential lots. A $3-10^{\prime} \times 4^{\prime}$ CBC was built at the channel crossing of Greer Ranch Parkway.

Figure 9 - Greer Ranch and Twelve Oaks Estates Off-site Drainage Facilities

2.4.3 Twelve Oaks Estates - Channel

Twelve Oaks Estates is a residential subdivision of large lots for custom home construction that is partially occupied. A hard-lined open channel was constructed along the south side of Peoria is partially occupied. A hard-lined open channel was constructed along the south side of Peoria runoff. The channel begins at Sarival Avenue and daylights to the east, about 1,100' short of the Reems Road Channel. A $3-10^{\prime} \times 6^{\prime}$ CBC was constructed at the channel intersection with $159^{\text {th }}$ Avenue.

It should be noted that the northwest quadrant of the intersection of Sarival Avenue and Peoria Avenue is subject to flooding as no culvert connections to the aforementioned offsite channels exist across either roadway.
2.4.4 Copper Canyon Subdivision - Channel

Copper Canyon (previously known as Mountain Gate) is a residential subdivision located on the north side of Peoria Avenue from Bullard Avenue to Litchfield Road. Off-site runoff from the west is collected in an unlined channel along the west side of Bullard Avenue. The Bullard Avenue channel flows south and outfalls into a channel on the north side of Peoria Avenue through a $2-6^{\prime} \times 3^{\prime}$ CBC. From the CBC the Peoria Avenue roadside channel takes flows from the Bullard Avenue channel and the roadway from the west and extends east to Litchfield Road. The channel is designed for a peak flow of 480 cfs (almost the entire 100-year event of 487 cfs) and has no outfall, as it assumed that future developers will extend the channel to the south along Litchfield Road. Another channel along the west side of Litchfield Road meets the end of the Peoria Avenue channel at the roadway intersection, contributing 342 cfs . A 3-10' $\times 3^{\prime}$ CBC was constructed at the channel intersection with $143^{\text {rd }}$ Avenue

In the existing condition, during a rainfall event the combined runoff from the two channels is retained within the channel sections until capacity is exceeded and breaks over the roadway intersection to the south and east. Extensive flooding has been observed at the intersection requiring closures and pumping of ponded water.

Figure 10 - Copper Canyon Off-site Drainage Facilities

2.5 Future Development

Future development projects along the north side of Peoria Avenue are likely to follow the offsite runoff management practices as the previously mentioned subdivisions. Planning documentation for the proposed Zanjero Trails (Beardsley Canal to Perryville Road) and Prasada developments (Shadow Ridge High School to Cotton Lane) include channels along the west side of Perryville Road and Cotton Lane that would discharge into a channel along the north side of Peoria Avenue for which the SR 303L Channel would be the outfall. On-site retention of the 100-year 2-hour event at all future developments will reduce the amount of offsite runoff that reaches Peoria Avenue.

3.0 HYDROLOGY

The map below shows the contributing watershed for the project area. The prefix in the subbasin ID indicates the major basin in which it is located.

Figure 11 - Peoria Avenue Watershed Map

The hydrologic delineation and model were developed in the White Tanks ADMPU. The delineation and the model have been revised several times in the last few years in order to incorporate on-going changes to land use and the design of capital improvements such as the SR 303L and the Reems Road channel systems. The model referenced in this report was provided by the FCDMC and includes the latest revisions made in 2009.

Three major basins cover the project area, defined by the basin's outfall feature:

- Basin W: located between the McMicken Dam and the Beardsley Canal. Flows are routed to the White Tanks flood retarding structures to the south. Sub-basins L21 and L22 are within Basin W.
- Basin L: located between the Beardsley Canal and the SR 303L freeway. Flows are routed to the SR 303L channel system.
- Basin D: located east of the SR 303L freeway. The ultimate outfall for this basin is the Dysart Drain, located along the north and east boundaries of Luke Air Force Base.

3.1 Peak Flows

HEC-1 models of the contributing watershed were completed as part of the White Tanks ADMPU. The FCDMC continued updating the HEC-1 models after completion of the ADMPU in order to account for changes to the watershed, including design and construction of regional flood control infrastructure. The models referenced in this report are included in the WT1FC02.DAT (Major Basin 1) and FCIP-MB2.DAT (Major Basin 2) HEC-1 files, created by HDR Engineering in August and September of 2009 for the FCDMC. The models correspond to the 100-year 24-hour future condition with capital improvement projects in place (SR 303L, Reems Road and Ennis spur Channels). Revisions in October of 2009 and J anuary of 2010 are noted on the files by the FCDMC (storage, routing and diversion corrections for Major Basin 1).

For the purpose of estimating 50 -year peak flow data, the models were modified by replacing the 100-year precipitation data (with areal reduction factors) in the original J D cards with 50year precipitation data. The 50 -year 24 -hour precipitation depth value of 2.996 " representative of the Peoria Avenue watershed was obtained using the NOAA 14 tool included in the FCDMC's Drainage Design Management Software (DDMSW). The modified models were run for the 50year event. A summary of sub-basin flow data is presented in Table 1.

Tables and graphics with original data are included in Appendix II. Relevant pages of the output files for the modified models are included in Appendix III.

It should be noted that peak flow data used in Section 2 of this technical memorandum was derived from older versions of the HEC-1 model, which did not include FCDMC capital mprovement projects, used NOAA 2 precipitation values, and differed with the current model in improvement projects, used NOAA 2 precipitation values, and differed with the current model in
other aspects such as routing, storage and sub-basin delineation. The HEC-1 model is expected to be updated in the future to account for new designs of capital improvement and private development projects.

Table 1 - Summary of Off-site Peak Flows (1 of 4)

	Drainage Area ID	$\begin{aligned} & \text { Area } \\ & \text { (sq.mi.) } \end{aligned}$	$\begin{gathered} \text { 100-Year } \\ \text { Peak Flow } \\ \text { (cfs) } \end{gathered}$	50-Year Peak Flow (cfs)	Notes
3$\stackrel{c}{\bar{J}}$$\tilde{0}$	L21	0.52	273	173	
	L22	0.36	87	50	
	CPL22	0.89	0	0	
	W01	0.19	151	91	
	CPW01	1.08	150	90	Beardsley Canal @ Peoria Ave.
	W02	0.39	544	364	
	CPW02	1.47	454	82	
	CPW04	4.01	3313	2082	Waterfall Wash @ JT
	L01	0.16	268	221	
	L02	1.88	1737	1416	
	L20	0.35	390	317	
	L03	0.79	958	785	
	CPL03	1.29	60	8	
	L04	0.63	663	534	
	CPLO4	1.93	17	0	
	L05	0.49	660	549	
	CPL05	4.30	636	88	SR 303L @ Bell Road
	L06	0.70	914	754	
	L07	0.63	816	673	
	CPL07	2.62	37	7	
	L08	0.49	647	544	
	CPL08	3.74	36	5	
	L09	0.49	657	547	
	CPL09	4.78	574	82	SR 303L @ Greenway Road
	L10	0.84	845	672	
	L11	0.62	744	607	
	CPL11	4.09	439	156	
	L12	0.36	586	494	
	CPL12	5.56	385	109	
	L13	0.48	860	731	
	CPL13	8.90	502	87	SR 303L @ Waddell Road
	L14	0.23	269	211	
	L15	0.37	438	347	
	CPL15	0.60	0	0	
	L16	0.50	582	463	
	CPL16	1.10	0	0	
	L17	0.50	586	473	
	CPL17	1.61	0	0	
	L18	0.50	604	484	
	CPL18	7.67	44	10	
	L19	0.49	877	745	
	CPL19	11.50	511	89	SR 303L @ Cactus Road
	L23	0.90	922	727	
	L24	0.50	624	496	
	CPL24	1.40	0	0	Peoria Ave. @ Citrus Rd.
	L25	0.24	261	208	

Table 1 - Summary of Off-site Peak Flows (2 of 4)

	Drainage Area ID	$\begin{gathered} \text { Area } \\ \text { (sq.mi.) } \end{gathered}$	100-Year Peak Flow (cfs)	50-Year Peak Flow (cfs)	Notes
	L26	0.76	980	790	
	CPL26	10.07	5	0	Peoria Ave. @ Cotton Ln.
	DL26SE	10.07	0	0	Cotton Ln. South xing Peoria Ave.
	L27	0.51	906	769	
	CPL27	14.41	518	97	SR 303L @ Peoria Ave.
	D01	1.56	1347	1085	
	D02	1.84	1750	1422	
	D06	0.46	616	513	
	D07	0.89	919	751	
	CPD07	1.35	348	17	
	CPD02	4.76	617	31	Reems Rd. @ Bell Rd.
	D09	0.26	360	298	
	D10	0.63	787	650	
	CPD10	5.65	500	54	Reems Rd. @ Greenway Rd.
	D08	0.51	661	550	
	D16	0.52	922	783	
	CPD16	1.03	263	50	
	D18	0.20	321	262	
	CPD18	1.23	22	6	
	D17	0.20	324	266	
	D19	0.51	577	466	
	CPD19	7.58	437	35	Reems Rd. @ Wadell Rd.
	D29	0.51	910	773	
	CPD29	1.54	250	62	
	D30	0.91	1541	1310	
	CPD30	9.01	594	107	Reems Rd. @ Cactus Rd.
	D45	0.49	780	654	
	DD451	0.49	24	3	Sarival Ave. South xing Peoria Ave.
	DD452	0.49	68	8	
	D46	0.92	982	801	
	CPD46	10.41	573	106	Reems Rd. @ Peoria Ave.
	D03	0.72	960	783	
	D04	0.89	1149	949	
	CPD04	1.61	1062	487	
	D05	0.16	325	277	
	CPD05	1.78	337	274	
	D11	0.66	807	667	
	D12	0.35	438	365	
	CPD12	1.01	258	54	
	D13	1.03	1329	1093	
	CPD13	3.65	220	54	
	D14	0.94	1126	932	
	CPD14	4.76	188	33	Greenway Rd. leaving to East

Technical Memorandum \#3 Peoria Avenue Coridor Improveme

Table 1 - Summary of Off-site Peak Flows (3 of 4)

Drainage Area ID	Area (sq.mi.)	100-Year Peak Flow (cfs)	50-Year Peak Flow (cfs)	
	DD111	0.66	564	356

Table 1 - Summary of Off-site Peak Flows (4 of 4)

	Drainage Area ID	$\begin{gathered} \text { Area } \\ \text { (sq-mi.) } \end{gathered}$	$\begin{aligned} & \text { 100-Year } \\ & \text { Peak Flow } \end{aligned}$ (cfs)	50-Year Peak Flow (cfs)	Notes
$\stackrel{\Delta}{\dot{\infty}}$	D41	0.25	557	474	
	D50	0.50	774	653	
	CPD50	0.76	11	0	Dysart Rd. @ Peoria Ave.

3.2 Floodways and Floodplains

Figure 3.2 shows the floodways and floodplains that have been delineated within the project area. The only designated floodway is the Waterfall Wash. Floodplains have been delineated at the McMicken Dam flood pool, the 500-year detention basin, as well as along Cotton Lane, Reems Road, and the BNSF Railway (Ennis) Spur. Table 3.2 is a summary of Flood Insurance Rate Maps (FIRM) that cover the project area. The FIRM plats are included in Appendix IV.

The floodplain along Reems Road is to be eliminated once the pending LOMR for the Reems Road Channel and Basin project is approved. There are no other revisions currently being processed

Table 2 - Flood Insurance Rate Maps Summary

Map Number	Revision Date
04013C1140H	September 30, 2005
04013C1145H	September 30, 2005
04013C1165J	September 30, 2005
04013C1580H	September 30, 2005
04013C1585H	September 30, 2005
04013C1605J	September 30, 2005

PEORIA AVENUE CORRIDOR IMPROVEMENT STUDY

 Jackrabbit Trail Parkway to Dysart Road

4.0 GROUNDWATER

The project area is located within the West Salt River Valley groundwater sub-basin of the Phoenix Active Management Area. The primary sources of groundwater are the upper alluvial units bounded by the Wickenburg and Hieroglyphic Mountains to the north, and the White Tank Mountains to the west.

Extensive agricultural development that requires continued irrigation of crops exists in the area west of the Beardsley Canal. Groundwater pumping through water wells is widely used in the vicinity of Peoria Avenue. Table is 4.1 is a summary of active water wells in the proximity of Peoria Avenue, sorted by location from west to east.

Table 3 - Active Water Wells near Peoria Avenue

Well ID	Location Relative To Peoria Avenue	Nearest Crossroad	Well Depth (ft)	Water Level Below Ground Surface (ft)
613000	South	Citrus Rd.	1030	471
216251	South	Citrus Rd.	n/a	n/a
613001	South	Citrus Rd.	489	n/a
612999	South	$175^{\text {th }}$ Ave.	1000	459
606609	South	Cotton Ln.	2567	885
911652	North	Cotton Ln.	n/a	n/a
612998	South	SR 303L	1000	471
610103	South	Reems Rd.	1200	430
626943	South	Bullard Ave.	927	344
626942	South	Bullard Ave.	1090	545
208837	South	$144^{\text {b }}$ Dr.	n/a	n/a
210465	South	$144^{\text {b/ }}$ Dr.	680	540
903067	South	$144^{\text {b }}$ Dr.	640	420
610821	South	$144^{\text {th }} \mathrm{Dr}$.	1100	600
210409	South	$144^{\text {b }}$ Dr.	600	400
625817	South	$144^{\text {b }}$ Dr.	1150	450
631810	South	$144^{\text {nh }}$ Dr.	475	419
625816	South	$144^{\text {th }}$ Dr.	1157	515
564527	North	Litchfield Rd.	380	335
610626	South	$132^{\text {nd }}$ Ave.	1050	520
610625	South	$132^{\text {nd }}$ Ave	1050	520
610631	South	$132^{\text {nd }}$ Ave.	1820	520
610627	South	Dysart Rd.	1000	520
610628	South	Dysart Rd.	1150	520

Data from the Arizona Department of Water Resources (ADWR) Hydrologic Map Series (HMS) Report No. 35 (Nov. 2002 to Feb. 2003) indicates that ground water levels for wells in the vicinity of the project area ranges between 300' and 500' below ground surface. A similar range of water level values is observed in the HMS Report No. 12 of 1982. The 300' to 500' range
agrees with data shown in Table 4.1 and in Hydrograph Charts plotted by ADWR for some of the listed wells. ADWR and FCDMC documentation indicate that since the 1980's local
 groundwater has recharged, with levels increasing from 50 to 150 from the low levels observed after approximately 40 years of decline. Supporting ADWR documentation is included in Appendix IV.

5.0 EARTH FISSURES AND GROUND SUBSIDENCE

5.1 Reems Road Channel Evaluation

In 2007 the FCDMC completed a Preliminary Ground Subsidence and Earth Fissure Evaluation as part of the Reems Road Channel and Basin project. The evaluation reports on historic groundwater and subsidence conditions.

According to the aforementioned report, the area has undergone significant subsidence due to groundwater withdrawal since groundwater pumping commenced in the west valley. The overal depression extends from the White Tank Mountains to the vicinity of the Luke Air Force Base, with a major subsidence depression of about 15 ' in depth and a 4-mile-radius centered on the Reems Road and Olive Avenue intersection.

Between the 1940's and the 1980's groundwater levels dropped an average of 250' Consequently by 1990, subsidence in the area had reached 18' compared to 1957 USGS elevations. However, since active management of the aquifer began in the 1980's, water levels have recovered and only about 0.8 to 0.9 ft of additional subsidence was observed between 1990 and 2003.

Two earth fissure risk zones have been identified within the project area. The first is located at the southem end of the McMicken Dam, where a remediation project realigned the dam and created the 500 -year detention basin. The second is located to the southeast of the Peoria created the 500-year detention basin. The second is located to the southeast of the Peoria was observed at the vertical displacement of the pavement surface of Olive Avenue, just east of the intersection with SR 303L.

Figure 13 - Earth Fissure Map near Reems Road

The report concludes that although additional subsidence is possible, if ground water levels continue to recover then the rate of subsidence is likely to decline.

5.2 McMicken Dam Evaluation

The Earth Fissure Investigation Report of the McMicken Dam area was completed in 2003 by the FCDMC. The investigation was intended to detect and characterize the distribution and nature of earth fissures located in the vicinity of the southemmost six-mile portion of McMicken Dam.

According to the report, 2^{\prime} to 3^{\prime} of ground subsidence caused by groundwater withdrawal was observed in the vicinity of the intersection of the McMicken Dam and the Peoria Avenue section line for the period between 1947 and 1981. Less than 1' of additional subsidence has occurred since 1981.
Ground subsidence may have contributed to the development of earth fissures in the area. The report documents the investigation of earth fissures (the Fenne Knoll fissures) around the southem end of the McMicken Dam. The Fenne Knoll fissures are near-vertical discontinuities with uneroded widths of about $1 / 4$ to $1 / 2$, extending to about 20 in depth. The fissure complex cther cracks gut fissures under the southem end of the McMicken Dam foundation that prompted its reconstruction in 2006. The location of the Fenne Knoll fissures is shown in Figure 14.

Figure 14 - Fenne Knoll Fissures Map

6.0 PROPOSED DRAINAGE IMPROVEMENTS

The proposed ultimate roadway section for Peoria Avenue within the study limits includes three lanes of travel in each direction, raised median, exterior curb and gutter, and sidewalks. Tum lanes and frontage roads are proposed for traffic flow and access control reasons. Widening of the existing Peoria Avenue would be symmetrical about the section line, or to the north or south as required to address physical, development and right-of-way constraints. The roadway right-of-way width would be 120^{\prime} or greater as needed to accommodate tum lanes and frontage roads.

Maricopa County Drainage Policies and Standards for an arterial roadway require a drainage system with the capacity to:

- Maintain one 12 -foot dry driving lane in each direction, and flow depths not to exceed curb height for the 10-year storm event.
- Convey the 50-year frequency flow in adjacent channels, with a maximum allowed depth of 6 " over the pavement surface for the 100-year frequency flow.
- Keep the headwater elevation at culvert crossings below the lowest adjacent road subgrade for the 50 -year frequency flow, with a maximum allowed depth of 6 " over the pavement surface for the 100-year frequency flow.
- Maintain a minimum of 2^{\prime} freeboard below the low chord of bridges for the 100 -year frequency flow.

Offsite and onsite drainage improvements are recommended in order to meet the aforementioned requirements.

6.1 Offsite Drainage Improvements

Several new improvements are required along the corridor, some of which are already planned by agencies and developers, in order to complete the offsite system.

Starting at the west end, mitigation of impacts to the FCDMC's 500-year retention basin located south of the McMicken Dam will need to be implemented as a result of Peoria Avenue's crossing of the facility. Reconfiguration of the basin and/or addition of pool leveling culverts would be needed to retain safety, function, operation and capacity requirements. Management of outflows from the basin to Waterfall Wash and the presence of earth fissures and monitoring devices should also be addressed. A bridge crossing of Waterfall Wash would be required should the roadway alignment be shifted to the south of the basin.

Culvert crossings of Peoria Avenue are proposed to implement a pass-through concept for the small washes downstream of the dam in the segment between the basin and the Beardsley Canal. Future development plans may eliminate the need for offsite improvements as a result of onsite retention requirements that would intercept flows upstream of Peoria Avenue.

Onsite retention for Zanjero Trails east of the Beardsley Canal to Perryville Road will prevent offsite flows from reaching Peoria Avenue. The existing channel along the north side of Peoria Avenue at Shadow Ridge High School is planned to be extended east in the development plans of Zanjero Trails and Prasada. The channel would convey flows east to Cotton Lane, where box culverts across Cotton Lane to the east and Peoria Avenue to the south would split flows in order to maintain historic patterns, according to Prasada's concept. A new channel would need to be constructed along the north side of Peoria Avenue from Cotton Lane to the SR 303L channel in order to provide an ultimate outfall. The latter channel is not in any developers plans at this time and will need to be coordinated with FCDMC and ADOT for compliance with SR 303 L design parameters. A culvert crossing of Peoria Avenue is proposed in order to discharge into the SR 303L channel downstream of the freeway channel's box culvert.

Onsite retention will also prevent offsite flows from reaching Peoria Avenue in the segment between SR 303L and Sarival Avenue. A culvert crossing of Sarival Avenue and a channel extension to the east is proposed along the north side of Peoria Avenue to allow the conveyance of flows from the Sarival Avenue Channel to the Greer Ranch Channel, eliminating current flooding problems at the Sarival Avenue intersection. The existing Greer Ranch channel conveys flows to the Reems Road Channel.

No additional facilities are proposed for the segment between Reems Road and Litchfield Road, as onsite retention and the existing Copper Canyon channel already address offsite requirements. A culvert crossing of the intersection of Litchfield Road and Peoria Avenue and a new channel along the south side of Peoria Avenue are proposed to convey flows from the Copper Canyon channel to the future BNSF Railroad (Enis) spur channel. The south side of Peoria Avenue is proposed for the channel because of conflicts with existing development and private retention basins on the north side.

Additional offsite facilities are not required east of the BNSF railroad spur as a result of onsite retention north of Peoria Avenue. A pipe culvert that crosses the intersection of Dysart Road and Peoria Avenue will need to be extended as a result of the Peoria Avenue widening. Consequently, a roadside channel along the west side of Dysart Road would need to be relocated to make way for the widened intersection.

Figure 15 shows off-site drainage crossings along the corridor centerline. 100-year and 50-year peak flows are shown at 10 drainage crossings.

Table 4 is a summary of existing, planned by third parties, and proposed (in this study) culvert crossings of Peoria Avenue and crossroads. Table 5 is a summary of existing, planned and proposed channels.

The proposed culvert and channel improvements at the intersections of Peoria Avenue with Sarival Avenue and Litchfield Road could be completed ahead of the ultimate roadway widening in order to resolve recurrent flooding problems. The opportunity to include these improvements in the ongoing development efforts by ADOT and FCDMC of the SR 303L and BNSF Railroad
spur regional drainage facilities could be explored and coordinated with the benefit of providing relief much earlier than if left to future private development to complete. Additional design will be required in order to establish parameters and determine capacity of culverts and channels needed to convey runoff from the intersections to the flood control channels.

Table 4 - Existing, Planned and Proposed and Culverts

Size and Type	Location Relative To Peoria Avenue	Crossroad	Status	Owner (Blank if Undefined)
$48^{\prime \prime} \times 150^{\prime} \mathrm{RCP}$	Crossing	n/a	Proposed	
$48^{\prime \prime} \times 210^{\circ} \mathrm{RCP}$	Crossing	n/a	Proposed	
$48^{\prime \prime} \times 140^{\prime} \mathrm{RCP}$	Crossing	n/a	Proposed	
$10^{\prime} \times 6^{\prime} \times 160^{\prime} \mathrm{CBC}$	Crossing	n/a	Proposed	
$48^{\prime \prime} \times 135^{\prime}$ CMP	North	Perrville Road	Existing	Municipal
5-36"×60' CMP	North	Shadow Ridge HS	Existing	Municipal
$5-36^{\prime \prime} \times 60^{\circ}$ CMP	North	$183{ }^{\text {tid }}$ Avenue	Planned	Zanjero Trails
$3-12^{\prime} \times 4^{\prime} \times 150^{\prime}$ CBC	North	Citrus Road	Planned	Prasada
$3-12^{\prime} \times 4^{\prime} \times 65^{\prime} \mathrm{CBC}$	North	$175^{\text {h }}$ Avenue	Planned	Prasada
$4-8^{\prime} \times 4^{\prime} \times 190^{\prime}$ CBC	Crossing	Cotton Lane	Planned	Prasada
$3-10^{\prime} \times 4^{\prime} \times 135^{\prime} \mathrm{CBC}$	North	Cotton Lane	Planned	Prasada
2-72"×330' CMP	Crossing	SR 303L	Proposed	
$3-10^{\prime} \times 6^{\prime} \times 221^{\prime} \mathrm{CBC}$	Crossing	SR 303L	Planned	ADOT
$3-8^{\prime} \times 6^{\prime} \times 130^{\prime} \mathrm{CBC}$	North	Sarival Avenue	Proposed	
$3-10^{\prime} \times 4^{\prime} \times 90^{\prime}$ CBC	North	Greer Ranch Pkwy	Existing	Greer Ranch
$3-10^{\prime} \times 6^{\prime} \times 90^{\prime} \mathrm{CBC}$	South	Greer Ranch Pkwy	Existing	Twelve Oaks Estates
$6-10^{\prime} \times 4 \times 142^{\prime}$ CBC	Crossing	Reems Road	Existing	FCDMC
2 2-6' $^{\prime} \times 3^{\prime} \times 122^{\prime}$ CBC	North	Bullard Avenue	Existing	Municipal
$3-10^{\prime} \times 3^{\prime} \times 66^{\prime}$ CBC	North	$143{ }^{\text {rad }}$ Avenue	Existing	Copper Canyon
$3-10^{\prime} \times 6^{\prime} \times 226^{\prime}$ CBC	Crossing	Litchfield Road	Proposed	
Ennis Spur RCP	Crossing	BNSF RR Spur	Planned	FCDMC
$36^{\prime \prime} \times 40^{\prime} \mathrm{RCP}$	Crossing Extension	Dysart Road	Proposed	

Table 5 - Existing, Planned and Proposed Channels

Top Width	Location Relative To Peoria Avenue And Termini	Length	Status	Owner (Blank if Undefined)
27^{\prime}	Noth Perrville Rd. to HS Entrance	$1,420^{\prime}$	Existing	Shadow Ridge High School
32^{\prime}	North HS Entrance to $183^{\text {rd }}$ Ave.	$1,060^{\prime}$	Planned	Zanjero Trails
80^{\prime}	North $183^{\text {rd }}$ Ave. to Citrus Road	$2,540^{\prime}$	Planned	Prasada
83^{\prime}	Noth Citrus Road to Cotton Lane	$5,100^{\prime}$	Planned	Prasada
28^{\prime} (Est)	North Cotton Lane to SR 303L	$2,145^{\prime}$	Proposed	

Table 5 - Existing, Planned and Proposed Channels (Continued)

Top Width	Location Relative To Peoria Avenue And Termini	Length	Status	Owner (Blank if Undefined)
28' (Est)	North Sarival Ave. to $161^{\text {st }}$ Lane	665'	Proposed	
$34{ }^{\prime}$	North $161^{\text {st }}$ Lane to Reems Rd.	3,865'	Existing	Greer Ranch
30^{\prime}	South Sarival Ave. to $167^{\text {th }} \mathrm{Dr}$.	3,300'	Existing	Twelve Oaks Estates
30^{\prime}	Bullard Ave. to Litchfield Rd.	5,075'	Existing	Copper Canyon
30' (Est)	South Litchfeld Rd. to BNSF RR Spur	2,420'	Proposed	

6.2 Onsite Drainage Improvements

With the exemptions described below, onsite pavement runoff can be collected in catch basins and scuppers along Peoria Avenue, and where needed, conveyed through storm drain laterals to the nearest offsite channel or culvert. Differences in frequency and time of concentration between offsite and onsite design events, added to the excess capacity of the offsite channels related to the future reduction of offsite peak flows resulting from build-out of the watershed make viable the use of offsite facilities as outfall for onsite runoff. First-flush requirements would need to be addressed during design in order to satisfy water quality policies.

Segments of Peoria Avenue where there are no offsite channels along the roadway require storm drain trunk lines to collect flows from laterals and convey them to the nearest outfall. Such is the case in the segments between the Beardsley Canal and Perryville Road, SR 303L and Sarival Avenue, Reems Road and Bullard Avenue, and between the BNSF Railroad spur and Dysart Road. However, future development on either side of Peoria Avenue may be able to accommodate pavement runoff within their onsite retention and therefore eliminate the need for trunk lines. The onsite retention alternative is more viable where parcels of land on both sides of the roadway are undeveloped, as opposed to segments where existing private retention basins on one side may have insufficient capacity to accept larger volumes from a wider-thanexisting half of Peoria Avenue.

7.0 REFERENCES

- Loop 303 Corridor / White Tanks Area Drainage Master Plan Update Existing Condition Hydrology
URS for FCDMC
November 2002
- Loop 303 Corridor / White Tanks Area Drainage Master Plan Update Final Volume IV - Level III Area Drainage Master Plan Update Report URS for FCDMC
February 2005
- Preliminary Ground Subsidence and Earth Fissure Evaluation Reems Road Channel and Basin - Maricopa County, Arizona AMEC Earth \& Environmental, Inc. for FCDMC
2007
- Earth Fissure Investigation Report - McMicken Dam AMEC Earth \& Environmental, Inc. for FCDMC 2003
- Estrella Freeway, SR 303L - Initial Drainage Report Stage II Design (30\%); Peoria Avenue - Bell Road BB Americas, Inc. for ADOT
2007
- Estrella Freeway, SR 303L - Initial Drainage Report Stage II Design (30\%); Thomas Road - Peoria Avenue PB Americas, Inc. for ADOT 2008
- J ackrabbit Trail Access Control and Corridor Improvement Study Interstate 10 to Bell Road
Conceptual Drainage Report
Andes Engineering for MCDOT
2008
- ADWR Hydrologic Map Series Report No. 12

Maps Showing Groundwater Conditions in the West Salt River, East Salt River, Lake Pleasant, Carefree and Fountain Hills Sub-basins of the Phoenix Active Management Area, Maricopa, Pinal and Yavapai Counties
W. W. Reeter and W.H. Remick

1983

- ADWR Hydrologic Map Series Report No. 35 Maps Showing Groundwater Conditions in the Phoenix Active Management Area, Maricopa, Pinal and Yavapai Counties
S.J. Rascona

2003

- Developer Drainage Reports for: Phase 2 of Zanjero Trails, Prasada, Dysart High School \#4 (Shadow Ridge High School), Sycamore Farms, Rancho Gabriela, Greer Ranch, Mountain Gate, Skyway Business Park and Desert Cove Commercial Park. Included in Appendix VI

APPENDIX I
ORIGINAL HYDROLOGY DATA

this program replaces ali previous verstons of hec-1 known as hec1 (Jan 73), hecics, hecide, and hecikn.

[^2]

	DD20rE		18.33		${ }_{\text {our }}$.											
hy̌Rograph									Routed to	23024	29.	14.17	11.	5.	2.	5.64
	${ }^{0} 111$	564.	12.50	44.	12.	4.	. 66		Hyorograp at	${ }^{024}$	538.	12.42	${ }^{1}$.	21.	\%.	. 49
Roorteo fo	${ }^{011020}$	292.	12.92	42.	12.	4.	. 66		diverston to	R224	538.	12.42	71.	21.	7.	. 49
2 combined at	cpp20	291.	12.92	42.	14.	5.	1.16		hyorograph at							
rourre to	D2022	210.	13.42	40.	14.				mypograpen at	DD24RE	4.	21.	2.	1.	0.	. 49
mosemat ar	${ }^{\text {D2002I }}$		13.42		14.		1.16		hmorogapa at	D0132	48.	13.50	8.	2.	1.	${ }^{65}$
motarit	${ }^{211}$	565.	12.33	72.	22.	7.	. 50		Routre to	${ }^{\text {D13324 }}$	40.	13.92	8.	2.	1.	3.65
diversion to	R221	565.	12.33	72.	20.	7.	. 50		3 combined at	cr24	64.	14.00	18.	\%	2	6.13
hydrograpa at	DD21RE	9.	15.92	6.	2.	1.	. 50		Roured fo							
hy>rograph at	D0112	45.	12.50	6.	2.	1.	. 66		hyorograph at	02025	62.		10.			${ }^{6.13}$
Rouried fo										${ }^{25}$	574.	12.33	72.	22.	7.	. 50
	${ }^{\text {D11021 }}$	20.	13.33	5.	2.	1.	. 66		Diverston Io	R225	54.	12.3	69.	19.	6.	. 50
hyorogatar at	00121	111.	12.67	10.	3.	1.	1.01		hyorograph at	D25se	21.	13.58	9,	3.	1	
Routed to	${ }^{122021}$	76.	12.83	9.	3.	1.	1.01		2 conbineo at						-	
4 combined at	cep21	244.	13.33	57.	20.	7	2.00		meute To	cp225	69.	14.25	25.	9.	3.	${ }^{6.63}$
diversson to				.	20.	.	2.00		Rooteb fo	${ }^{\text {D25039 }}$	67.	14.42	25.	9.	3.	6.63
	D02115	172.	13.33	${ }^{43}$.	15.	5.	2.00		hy>rograph at	${ }^{\text {D39 }}$	354.	12.08	30.	9.	3.	. 18
horoorap	211	72.	13.33	15.	5.	2.	2.00		diverston mo	${ }^{\text {R039 }}$	354.	12.08	30.	9.	3.	. 18
diversion to	D0212s	44.	13.33	11.	4.	1.	2.00		HYDRograp at	8	。	0	.	O	。	
нууrograph at	${ }^{0} 212$	28.	13.33	4.	1.	0.	2.00		2 combined at		0.	. 00	.	.	.	18
Rouried fo										${ }^{\text {cpD39 }}$	67.	14.	25.	9.	${ }^{3}$	${ }^{6.81}$
нуरвоgraph at	${ }^{\text {D21022 }}$	18.	13.75	3.	1.	0.	2.00		Routre to	D39042	52.	15.42	24.	9.	3.	6.81
vastor 70	${ }^{1} 22$	562	12.33	${ }^{67}$.	21.	7.	. 45		Hyprograph at	D42	1338.	12.25	155.	48.	16.	. 99
	RD22	562.	12.33	67.	9.	6.	. 45		Diverston to	R042	1338.	12.25	142.	${ }^{38}$.	13.	. 99
hyorograph at	DD22RE	8.	16.75	5.	2.	1.	. 45		hyorograpa at							
нубrograph at	10122	6.	12.67	9	3.	1.	1.01		3 conetred at				28.	9.	3.	
rourred то									s comaned at	cppa2	345.	12.5	143.	52.	17.	9.87
	${ }^{\text {D12022 }}$	35.	13.25	8.	3.	1.	1.01	+	Routre to	sprat	178.	12.83	118.	44.	15.	9.87
3 combined at	cpp22	37.	13.67	14.	5.	2.	2.46		routed fo							
routred to	${ }^{\text {D22023 }}$	35.	13.83	14.	5.	2.	2.46		myorocra		174.	13.08	117.	44.	15.	9.87
нурвоgвррн ат								+	hyorograpr at	${ }^{253}$	195.	12.17	16.	5.	2.	. 12
	${ }^{\text {223 }}$	549	12.33	${ }^{82}$.	25.	8.	. 54		DTyERSToN To	${ }_{\text {R053 }}$	195.	12.17	16.	5.	2.	. 12
diverson io	23	649.	12.33	82.	25.	8.	. 54		нуовоgвар ат							
нуrograph at	${ }^{\text {DD23 }}$ EE	5.	23.08	2.	0.	0.	. 54		2 combuep at	DD53RE	0.	.00	0.	0.	0.	.12
hyorograpa at										CPD53	174.	13.08	117.	44.	15.	9.99
	${ }^{0} 131$	8.	13.50	${ }^{1}$.	0.	0.	3.65		routed to	SRD53	54.	21.08	36.	10.	${ }^{3}$	9.99
Rouried to	3023	6.	14.08	1.	0.	0.	. 65		rourte to	54	46.	21.67	${ }^{35}$	10	3	
3 combined at	${ }^{\text {cpp23 }}$	38.	13.92	14.	6.	2.	5.64		Hy>pograph at							
diversion ro										${ }^{\text {043 }}$	651.	12.3	77.	24.	8.	. 50
	20315	4.	13.92	1.	1.	0.	5.64		Diversion To	k043	651.	12.33	72.	19.	6.	. 50
	231	34.	13.92	13.	5.	2.	5.64		Hyorograp at	Pr		13.08	13.	5.	2.	
diverston to	D0232s	4.	13.92	2.	1.	0.	5.64		Reoured fo							
hyorograpa at	DD232	30.	13.92	11.	5.	2.	5.64		hyorograph at		27.	14.25	13.	5.	${ }^{2}$. 50
								+		${ }^{\text {D54 }}$	369.	${ }^{12.25}$	34.	10.	3.	. 27

diversion to	332 S	wilicoor.out					
		34.	13.67	11.	${ }^{4 .}$	1.	.
hyprograph at	DD332	39.	13.67	11.	4.	1.	3.00
Routed to	D33834	34.	14.08	11.	4.	1.	3.00
нуdrograph at				75		\%	
duvestow 70	¢	6.	12.25	15.	${ }^{24 .}$	8.	. 50
Diversson ${ }^{\text {To }}$	R034	697.	12.25	75.	24.	8.	. 50
hyorograph at	DD34	0.	. 00	0.	0.	0.	. 50
hy>rograph at	${ }^{\text {D212 }}$	44.	13.33	11.	4.	1.	2.00
Roured to	${ }^{\text {D21034 }}$	38.	13.75	11.	4.	1.	2.00
3 combined at	${ }^{\text {CPD34 }}$	67.	13.92	22.	8.	3.	3.50
Routre ro							
bogrrap at	${ }^{\text {D34036 }}$	62.	14.33	${ }^{21}$.	8.	${ }^{3}$	3.50
morogaph at	D36	404.	12.17	38.	12.	4.	. 25
drverston to	R036	404.	12.17	35.	9.	3.	25
ну>rograph at	DD368E	22.	12.75	7.	2.	1.	. 25
ну>rograpr at	DD355E	1.	14.50	0.	0.	0.	5.90
Routed to	${ }^{\text {D.55036 }}$	0.	15.25	0.	0.	0.	5.90
3 congined at							
	${ }^{\text {cPD36 }}$	63.	14.42	24.	9.	3.	7.64
diversion to	DD3615	58.	14.42	22.	9.	3.	7.64
нууrograpr at	${ }_{00361}$	5.	14.42	2.	1.	0.	7.64
drverston to	DD362S	5.	14.42	2.	1.	0.	7.64
hy>rograph at	${ }_{0} 0362$	0.	. 00	0.	0.	0.	7.64
Roured to	D36640	0.	. 00	0.	0.	0.	7.64
нуdrograph at	${ }^{\text {D } 40}$	${ }^{451 .}$	12.17	40.	12.	4.	. 24
diverston to					12	4.	. 24
hyorograph at							
	DPAORE	0.	.00	0.	0.	0.	. 24
3 conbsned at	cpp40	5.	${ }^{16.33}$	2.	1.	0.	8.20
Routeo to	D9099a	4.	16.83	2.	1.	0.	8.20
Routre to	D40998	4.	17.25	2.	1.	0.	8.20
hydrograph at				152	47.	16	1
			12.42		4.		
diverson ro	R047	1066.	12.42	152.	${ }^{47}$.	16.	1.00
Hy>rograph at	DD978E	0.	. 00	0.	0.	0.	1.00
hy>rograph at	DD325E	0.	. 00	0.	0.	0.	. 25
Rourze тo	D3247A	0.	.00	0.	0.	0.	. 25
Rouried тo $^{\text {d }}$		。	0	0.	。	0	25
hy>rograph at							
	${ }^{\text {D0331 }}$	${ }^{87}$.	13.67	${ }^{26 .}$	9.	3.	3.00
Roureb to	D3397A	78.	14.00	26.	9.	${ }^{3}$	3.00

	R063		12.08				. 22		Diversfon to	RD78A	wriecoz.our					
нугвоgraph at	R063										307.	12.2	${ }^{6}$.	10.	3.	. 18
Hyoroobraph	DD63RE	47.	12.58	14.	5.	2.	. 22		Hyprograph at	DD78ar	45.	12.75	12.	4.	1.	18
	${ }^{\text {D0482 }}$	3.	15.08	1.	0.	0.	. 63		2 combined at	CPD78A	117.	17.92	106.	66.	23.	12.58
	D88063	2.	19.42	1.	0.	0.	9.63		Rourid to							
	${ }^{\text {cpp } 63}$	519.	12.3	128.	46.	15.	11.		Pogre	$\mathrm{D}_{\text {d8acp }}$	117.	18.00	106.	65.	23.	12.58
$\begin{aligned} & \text { ROUTED TO } \\ & \text { ROUTED TO } \end{aligned}$									ar	${ }^{041}$	557.	12.08	47.	14.	5.	. 25
	SR063	105.	13.50	85.	45.	15.	${ }^{11.31}$		diverston fo	RD91	557.	12.08	${ }^{47}$.	14.	5.	. 25
	${ }^{\text {D63064 }}$	104.	13.92	${ }^{84}$.	45.	15.	11.31		ну>rograp ат	Dpaler	4	19.25	2	1.	0	. 25
нурвоgraph at	D62	492.	12.17	54.	18.	6.	25		Rourze тo							
DIVERSION TO HYDROGRAPH AT										${ }^{\text {d41250 }}$	3.	21.42	2.	${ }^{1 .}$	\bigcirc.	. 25
	${ }^{\text {R06 } 62}$	492.	12.17	45.	13.	4.	. 25		HYDROGRRPH AT	D50	77.	12.25	92.	29.	10.	. 50
	DD62RE	82.	12.42	17.	6.	2.	. 25		diverston to	RD50	774.	12.25	92.	26.	9.	. 50
Diverston to	D0621s	60.	12.42	13.	4.	1.	. 25		hyprograph at	00908	11.	16	8.	3.	1.	50
diverston to	${ }^{\text {D0621 }}$	22.	12.42	4.	1.	0.	. 25		2 combined at		11.	16.00	8.	3.	1.	. 50
	DD622S	9.	12.42	2.	1.	0.	. 25		Routre to	CPDSO	11.	16.00	9.	3.	1.	. 76
нуroograph at										${ }^{\text {D5664A }}$	10.	17.75	8.	3.	1.	. 76
	${ }^{00622}$	${ }^{13}$.	12.42	2.	${ }^{1 .}$	0.	. 25		hy>rograph at	${ }^{\text {D64A }}$	748.	12.25	80.	26.	9.	${ }^{50}$
	${ }^{\text {D62064 }}$	5.	13.42	2.	1.	0.	. 25		Diverston to	RD64A	748.	12.25	80.	26.	9.	. 50
	${ }^{6} 4$	534.	12.17	59.	20.	7.	. 27		Hyprograp at	,	。	0	,	O	-	5
diversion to	R064	534.	12.17	48.	13.	4.	. 27		2 combined at					-	.	
hydrograph at	${ }_{\text {DD64RE }}$	133.	12.42	21.	7.	2.	. 27			${ }^{\text {cPpb } 64}$	10.	17.75	8.	3.	1.	1.25
									Routeo to	64A74A	10.	18.42	8.	3.	1.	1.25
3 conbinea	${ }^{\text {cP064 }}$	127.	75	98.	51.	17.	8		Hyproga	A	775.	12.25	91.	${ }^{30}$	10.	. 49
ROUTED TO HYDROGRAPH AT	D64074	125.	14.33	98.	51.	17.	11.84		drverston to	${ }^{\text {RD7 } 7 \mathrm{~A}}$	775.	12.25	${ }^{3}$.	20.	7.	49
	D73a	89.	12.17	40.	13.	4.	. 24		hyprogrrpa at	Do7un	258	12.50	${ }^{31 .}$	10.	3.	. 49
DIVERSION TO HYDROGRAPH AT	R073A	389.	12.17	24.	7.	2.	. 24		2 combined at							
										${ }_{\text {cpD74A }}$	257.	12.50	32.	13.	4.	1.75
	DD73aR	${ }^{303 .}$	12.25	21.	6.	2.	. 24		Routre to	D74478	200.	12.58	31.	13.	4.	1.75
Hyprograph at	${ }^{00621}$	60.	12.42	13.	4.	1.	. 25		2 combined at	cp7874	128.	12.67	114.	${ }^{74}$	${ }^{26}$	14.32
ROUTED TO 2 COMBINED AT	D6273A	37.	12.92	12.	4.	1.	. 25		Routro to	788788	125.	18.17	114	73	26	14.32
	73a	303.	12.25	33.	10.	3.	9		hyprograp at	D06	5	123	77	23,	.	. 46
Roured to	$\mathrm{D}^{\text {3a774 }}$	145.	12.42	31.	10.	3.	. 49		diverston тo $^{\text {d }}$							
нудвоgraph ат										${ }^{\text {RDO } 6}$	616.	${ }^{12.33}$	60.	16.	5.	46
	P74	538.	12.25	70.	24.	${ }^{8 .}$.31		Hyoroorrap at	DD068E	252.	12.67	24.	7.	2.	. 46
diverston to	R874	538.	12.25	${ }^{61}$.	17.	6.	${ }^{31}$		diversion to	${ }^{\text {D06s }}$	0.	-	0	0	0	${ }^{46}$
grapa ат	DD748E	7.	12.67	21.	7.	2.	${ }^{31}$		hydrograph at	Dogse	25.	12.67	24.	7	2	. 46
hydrograp at	52	9.	12.42	2.	1.	0.	. 25		Routre to	0068	52	12.75	23.	.	.	
routed to	D62074	5.	14.50	2.	1.	0.	. 25		ну>bograph at							
4 conbined at	CPD74	174.	14.17	130.	66.	22.	12.39		durbstov	or	19.	12.50	134.	40.	13.	. 89
Routred ro										R007	919.	12.50	${ }^{116 .}$	31.	10.	. 89
	sRD	11.	18.08	101.	62.	22.	12.39		HYDrograph	D0078E	250.	13.00	29.	9.	3.	89
	D78A	307.	12.25	41.	14.	5.	. 18		2 combined at	crpor	348.	13.00	51.	16.	5.	1.35

ured ro	D7598	102.	14．83	70.	27.	9.	2.04			D8442	177.	12.50	59.	19.	6.	1.29
нуовоgraph at									Routred ${ }^{\text {fo }}$	в44845	167.	13.42	58.	19.	6.	1.29
diverston to	D798	538.	12.17	64.	21.	${ }^{2}$.	． 32		нугbogrrpa at							
Diversion to	798	538.	12.17	51.	14.	5.	． 32		Diymestow	${ }^{845}$	1129.	12．33	157.	${ }^{53}$.	18.	． 81
hy＞rograpa at	D0798R	203.	12．42	23.	7.	2.	． 32		－rensor ro	8845	1129.	${ }^{12.33}$	113.	32.	11.	． 81
3 combined at									hyprograpar at	D8498E	744.	12.50	67．	${ }^{21 .}$	7.	． 81
	СРр798	491.	12.58	${ }^{341 .}$	234.	87.	34.44									
Rouried ro	D79880	499.	12.58	341.	234.	87.	34.44			DB402	79.	12．33	13.	4.	1.	． 77
нугrograph at	880		12.8	22.	7	2	13	＋	Rour	${ }^{840845}$	46.	12.83	12.	4.	1.	． 77
diversion ro									hydrograpa at	D84158	987.	12．50	98.	28.	9.	2.18
	R880	257.	12.08	17.	5.	2.	． 13		Routed to							
hyorogarap at	D880re	124.	12.25	8.	3.	1.	． 13			${ }^{\text {841144 }}$	555.	13.17	93.	28.	9.	2.18
2 congined at	${ }^{\text {cpp80 }}$	514.	12.58	${ }^{343}$.	236.	87.	34.57		5 conbined at	cpB45	855.	13.17	265.	${ }^{85}$.	28.	4.05
hyorograph at									Routred to	${ }^{845447}$	764.	13.75	256.	85.	28.	4.05
	${ }^{801}$	194.	12.08	${ }^{16 .}$	5.	2.	． 10		ну＞rogrppa at							
3 congened at	dommy	8751.	12.58	1944.	705.	254.	69.06			${ }^{101}$	268.	${ }^{12.17}$	25.	8.	3.	${ }^{16}$
hy＞rograpa at	${ }^{\text {в03 }}$	581.	12.17	61.	20.	7.	． 34		druersion to	RL01	268.	12.17	18.	5.	2.	${ }^{16}$
diverston to	${ }_{\text {rво }}$	581.	12.17	56.	15.	5.	． 34		Hyprograp at	DLoire	157.	12．33	9.	3.	1.	16
ну＞rograpa at									Roured to	L01103	58.	12.75	8.	3.	1.	． 16
mever	${ }^{\text {DBO3RE }}$	40.	12．83	13.	5.	2.	． 34									
noteo fo	${ }^{\text {B03B05 }}$	${ }^{33}$.	13.25	13.	5.	2.	． 34		Deverstow	${ }^{103}$	958.	12．33	116.	${ }^{35}$.	12.	． 79
hyorograph at	805	610.	12.25	74.	25.	8.	． 40	＋		${ }^{\text {RLL }} 3$	958.	${ }^{12.33}$	${ }^{116 .}$	${ }^{34}$.	11.	． 79
diversion to	R805	588.	12.25	47.	13.	4.	． 40		Hyprograp at	DLo38E	1.	19.83	1.	0.	0.	79
нуrograph at	DB058E	539.	12.33	38.	11.	${ }^{4 .}$	． 40		Hyprograph at	${ }^{120}$	39.	12.42	47.	14.	5.	． 35
2 combined at	cepes	537	12.33	50	．			＋	drversion to	RL20	390.	12.42	${ }^{41}$.	11.	4.	． 35
Rouried to	${ }^{\text {CPbo5 }}$		12	50.	16.	5.	． 3		hyprograpr at	DL208E	88.	12．83	9.	3.	1.	． 35
	${ }^{\text {B05B06 }}$	281.	12.58	48.	16.	5.	． 73		Routed to							
hyorograpa at	в06	622.	12.17	64.	20.	7.	． 40			${ }^{\text {L20203 }}$	46.	${ }^{13.25}$	9.	3.	1.	． 35
diversion to	RB06	135.	11.92	16.	5.	2.	． 40		3 conbined at	CPILO	60.	13.25	17.	5.	2.	1.29
hy＞rograph at	D806	62.	12.17	56.	15.	5.	． 40		Diversion ${ }^{\text {fo }}$	סLo3s	37.	12.67	15.	5.	2.	1.29
2 combined at									hyprograp at	DLo3sE	23.	13.25	2.	0.	0.	1.29
routre fo	¢806		12．17	102.	${ }^{31}$.	10.	1.13		Routed to	Lo3304	18.	13.58	2.	0.	0.	1.29
	${ }^{\text {B06815 }}$	${ }_{423}{ }^{4}$	12.67	100.	${ }^{31 .}$	10.	${ }^{1.13}$		нугrograp ат							
hyorograph at	в07	309.	12．33	32.	9.	3.	． 25			L04	663.	${ }^{12.42}$	82.	${ }^{24 .}$	8.	． 63
diversion to	R807	309.	12．33	32.	9.	3.	． 25			RL04	663.	12.	${ }^{81}$.	22.	7.	． 63
нууrograp at	Dв078E	0.	． 00	0.	0.	0.	． 25		HYprograp at	SDOARE	8.	15.	6.	2.	1.	． 63
reutre тo								＋	2 conbined at	crıo4	17.	${ }^{13.58}$	6.	2.	1.	1.93
нурpogrzpa at	в07809		．00	0.	0.	0.	． 25		drverston to	Doos	。	0	0	。	。	1.93
otyesston to	B08	50.	12.08	43.	${ }^{14 .}$	5.	． 23		hyprograpa at	ss	17		6.	2		
	вв08	500.	2．08	43.	13.	4.	．23		Roured fo							
hyorograph at	${ }^{\text {DBO8RE }}$	7.	15.9	5.	2.	${ }^{1 .}$	．23			L04L05	6.	17.25	5.	2.	1.	1.93
Routre to	во8809	7.	16.58	5.	2.	1.	． 23			${ }^{102}$	${ }^{1737}$	12.	279.	85.	28.	${ }^{1.88}$
нудвоgraph at								＋	Diverston to	${ }_{\text {RLL } 2}$	1737.	${ }^{12.58}$	219.	59.	20.	1.88

								+		DLo7s	7.	13.83			0.	2.62
	${ }^{\text {DLo2re }}$	89.	12.92	88.	26.	9.	1.88		нугоовдар ат	Diopse	29	13.83	11.	4		2, 6
Routed to	L02205	584.	13.08	${ }^{87}$.	26.	9.	1.88		poureo							
ну>rogrrpa at									romo	${ }^{\text {L07LJ8 }}$	29.	19.00	11.	4.	1.	2.62
	505	660.	2.33	84.	27.	9.	49		ну>bograpa at	${ }^{\text {L08 }}$	647.	12.	${ }^{87}$.			${ }^{49}$
drverston to	R.05	660.	12.33	61.	17.	6.	. 49		DTVERsfon to							
ну>rogrrph at									DIversfon	RLD 8	647.	12.33	${ }^{86}$.	23.	8.	49
	${ }_{\text {duoske }}$	406.	12.50	${ }^{3}$.	10.	3.	. 49	+	hyprograpa at	DLOORE	15.	14.50	8.	3.	1.	49
3 Combined at	cpros	636.	13.08	121.	38.	13.	4.30		нуроовврри ат							
Routre fo										${ }^{\text {d.oase }}$	0.	. 00	0.	0.	0.	${ }^{1.93}$
	${ }^{\text {LOSLO9 }}$	574.	13.17	119.	${ }^{38}$.	${ }^{13 .}$	4.30	+	Routed to	L04508	0.	. 00	0.	0.	0.	1.93
hyorograp at	د09	657.	${ }_{12.33}$	85.	27.	9.	49	+	3 combined at	crios	36.	7.50	19.	7.	2.	3.74
diverston to	RL09	657.	12.33	85.	26.	9.	. 49		Routred ${ }^{\text {fo }}$							
нугооввррн at										108812	29.	15.50	18.	7.	2.	3.74
	${ }^{\text {DLO ORE }}$	6.	20.92	4.	1.	0.	. 49	+	hyprograp at	${ }_{\text {L10 }}$	845.	12.42	103.	30.	10.	84
2 Combined at	cpios	574.	13.17	119.	39.	13.	78		diverston to	8r10	845.	12.42	${ }^{65}$	17	6.	84
Routred to	د09138	540.	13.25	18.	39.	13.	4.78		нугоовrapa at							
drverston to	${ }_{\text {Drin }}$ 38R	314.	13.25	49.	14.	5.	4.78		pourep ${ }^{\text {To }}$	${ }_{\text {DLIORE }}$	647.	12.58	46.	13.	4.	84
ну>воовдрн ат								+		${ }^{110.111}$	441.	12.83	45.	13.	4.	${ }^{84}$
morosar	DL138N	225.	13.25	69.	24.	8.	4.78		Hyprograph AT	DLo6sE	0.	. 00	0.	0.	0.	. 70
H	${ }_{\text {dLI 38, }}$	314.	13.25	49.	14.	5.	4.78	+	routre to	106611	0.	. 00	0.	0.	0.	. 70
Roured to	SRIL 38	22.	15.25	21.	14.	5.	4.78		нурвоввррн ат							
2 combined at	CPII 38	245.	13.25	89.	39.	13.	4.78		Diverssor To	LII	744.	12.33	94.	29.	10.	${ }^{62}$
rourted to										RL11	744.	12.33	89.	24.	8.	${ }^{62}$
	${ }^{113813}$	244.	13.33	89.	39.	13.	4.78	+	hyprograpa at	${ }_{\text {DL1 } 1 \text { RE }}$	46.	13.25	15.	5.	2.	. 62
hyprograph at	3	860.	12.17	109.	${ }^{38}$.	13.	8		hyprograp at	Diopse	7	${ }^{13.83}$	3.	1	.	2.62
diversion to	RL13	860.	12.17	91.	26.	9.	. 48		Routed fo							
нугrogrrea at										L07211	6.	15.25	3.	1.	0.	2.62
mepocopar at	DL13RE	190.	12.50	36.	12.	4.	. 48		4 combined at	crıL1	439	12.83	${ }^{61}$.	19.	6.	4.09
morapat	د06	914.	12.33	107.	${ }^{3}$.	11.	. 70	+	diverston to	Di115	3.	12.83	0.	0.	0.	4.09
dryersion To	Ru06	914.	12.33	107.	${ }^{3}$.	11.	. 70		Hyprogrpa at							
ну>bograpa at	$\mathrm{DLO}_{68 \mathrm{E}}$	0.	. 00	0.	0.	0.	. 70		roured to	DL11se	434.	12.83	60.	18.	6.	4.09
drverston to								+		${ }_{111512}$	354.	13.00	60.	18.	6.	4.09
	Lo6s	0.	. 00	0.	0.	0.	. 70	+	hydrograph at	${ }_{512}$	586.	12.25	68.	${ }^{22}$.	7.	. 36
HYprograp at	DLooss	0.	. 00	0.	0.	0.	. 70		diverston fo							
Routre fo										RL12	586.	12.25	60.	16.	5.	. 36
-	P0ELOT	0.	.00	0.	0.	0.	. 70	+	hyroograp at	DL12RE	90.	12.67	16.	5.	2.	. 36
corapa	L07	816.	12.33	101.	31.	10.	${ }^{63}$		3 constried at	cpri2	385.	13.00	89.	30.	10.	5.56
diversion To	${ }_{\text {RLL }} 7$	816.	12.33	101.	${ }^{31}$.	10.	. 63		diversfon to							
hyprograp at	Dropre	0.	.00	0.	0.	0.	63		mypocrapa at	${ }^{\text {DIL121s }}$	68.	13.00	16.	5.	2.	5.56
ну>bogrren at										${ }^{\text {du121 }}$	${ }^{318 .}$	13.00	73.	25.	8.	5.56
	03sE	${ }^{37}$.	12.67	15.	5.	2.	1.29		diversion to	DL122S	4.	13.00	1.	0.	0.	5.56
Rouris To	Lo307A	37.	13.58	14.	5.	2.	\bigcirc	+	hyprograp at	122	314	.	72.	${ }^{24}$	8.	5.56
roured to	L03078	37.	13.83	14.	5.	2.	1.29		Routed fo							
3 cometned at										${ }^{122513}$	28.	13.0	71.	24.	8.	5.56
drverston to	CPIOT	${ }^{37 .}$	13.83	14.	5.	2.	2.62	+	3 combined at	${ }_{\text {cprL }} 3$	502.	13.25	176.	${ }^{67}$.	22.	8.90

	RL27	906.	12.17	vripcoz.our ${ }_{26}$.		9.	. 51
hyprograph at	DL27RE	250.	12.42	41.	13.	4.	${ }_{51}$
ну>rograpr at							
	${ }^{\text {DL1 }} 82$	2.	${ }^{13.58}$	1.	0.	0.	. 67
Routed to	${ }^{118527}$	2.	14.75	1.	0.	0.	.67
4 conemined at	${ }^{\text {cpL27 }}$	518.	13.58	225.	87.	29.	14.41
routro to							
	$\mathrm{L}_{27 \mathrm{~T} \text { [34 }}$	510.	13.67	224.	${ }^{87}$.	29.	${ }_{41}$
DIverston to	DL348R	58.	13.67	4.	1.	0.	${ }_{4} 4$
hyprograph at	Dİ348N	45.	13.67	22.	${ }^{86}$.	29.	41
hy>rograph at	DL348N	58.	13.67	4.	1.	0.	41
Routed to	sRı34B	11.	14.00	4.	1.	0.	14.41
2 combined at							
2 combined ar	${ }_{\text {CPLJ }} 4$	458.	13.67	224.	${ }^{87}$.	29.	. 41
Routed to	${ }^{134834}$	456.	13.75	224.	87.	29.	41
hyroograph at	${ }_{\text {L33 }}$	627.	12.42	65.	17.	6.	. 5
diverston to	RL33	435.	12.25	21.	5.	2.	. 5
hy>rograph at	DL33RE	627.	12.42	46.	12.	4.	${ }^{65}$
diverston to	${ }_{\text {dLu 35 }}$	1.	12.42	0.	0.	0.	. 65
hyorograph at	dr33s8	625		46	12	4	
Roured тo							
	L33L34	539.	12.58	46.	12.	4.	${ }^{65}$
hyrogeraph at	${ }^{134}$	917.	12.17	115	40.	13.	51
diverstow to	RL34	917.	12.17	97.	27.	9.	${ }_{51}$
hyprograph at	DL348E	181.	12.58	38.	12.	4.	. 51
ну>rograph at						0	
	${ }^{\text {DL2 } 2685}$	0.	. 00	0.	0.	0.	10.07
Roured to	${ }^{\text {L26L34 }}$	0.	. 00	0.	0.	0.	07
4 conbined at	${ }_{\text {cris }}$ 4 ${ }^{\text {B }}$	517.	12.58	283.	107	36.	. 58
rouris to	348511	514.	12.67	282.	107.	36.	15.58
Reured тo	139	510	12.75	28.	107.	36.	15.58
hyprograph at							
		545.	12.08	57.	20.	7.	
2 Conbineb at	crisan	549.	12.75	311.	123.	42.	15.84
drversion to	DL398R	63.	12.75	10.	3.	1.	15.84
ну>rograph at	DL398N	486.	12.75	301.	121.	${ }_{4} 1$.	15.84
hyprograph at	${ }^{128}$	406.	12.25	42.	13.	4.	. 31
diverston to	${ }^{\text {ste }} 2$	406	12.2	41	11	4	31
				4.	11.		
hydrograph at	DL288E	12.	13.58	5.	2.	1.	${ }^{31}$
Routeo to	L28L29	10.	14.33	5.	2.	1.	. 31
hy>rograph at	L29	303.	12.33	35.	11.	4.	${ }^{25}$

$$
\begin{aligned}
& \text { RuN date oeseron time 19:08:35 }
\end{aligned}
$$

this program rebtaces aid previous verstons of hec-1 known as hec1 (Jan 73), hecics, hecide, and hecikn.

				${ }_{72 \text { Fectr }}^{\text {Her }}$	${ }_{\text {MR2 } 2 \text { out }}^{16.58-\mathrm{HR}}$										b2.out		
		628.	628.	628.	$166.58-\mathrm{HR}$ 571.				+	DIVERSION TO	Dwo2	544.	${ }^{2.3}$	39.	10.	3.	0.39
prak stage time		- HR	$\underbrace{\text { at }}_{\text {maximum }}$		166.58-HR				+	Hyprograph at	DW02RE	335.	12.50	20.	6.	2.	0.39
		042.82	2042.81	1042.81	1042.36				+	2 conbined at	cruo2	454.	12.50	41.	11.	4.	1.47
	comularive	AREA $=$	20.31 se m							Routb to	no2wo	343.	${ }^{12.58}$	40.	11.	4.	1.47
*** **	**	**		**	**					hyprograph at							
	$\underset{\substack{\text { Hyprograp } \\ \text { Transposit }}}{\text { che }}$		$\mathrm{mon}_{60.0}^{\text {SRS6 }} \mathrm{Sq}$							Routed fo	w03	1998.	12.33	${ }^{273}$.	${ }^{83}$.	28.	1.97
peak ourfiow is	0. at time	0.00 Hous									no3w04	1629.	${ }^{12.58}$	27.	${ }^{83}$.	28.	1.97
										hrorograp at	wo4	2200.	12.33	312.	94.	${ }^{31}$.	2.03
		${ }^{6 \text {-НR }}$	${ }_{\text {NAXXMOMM }}^{\text {a }}$		166.58-HR					diversion to							
	(cFs)										Dwo4	${ }^{21 .}$	11.08	${ }^{33}$.	${ }^{11 .}$	4.	2.0
0.0 .00	$\begin{array}{r} \text { (INCHES) } \\ (\mathrm{AC}-\mathrm{FT}) \end{array}$	$\begin{gathered} 0.0000 \\ 0.0 \end{gathered}$	0.000.	0.000	0.000.				+	hyorograph at	Dwoure	2200.	12.33	307.	${ }^{83}$.	28.	2.03
peak storage tine		6 -HR		ERGE storace	166.58-HR				+	2 combined at	crvo4	3313.	12.42	577.	165.	55.	4.01
		574.	574.	75.	${ }_{522}$.				+	Routed to	wo4wos	3103.	2.58	576.	165.	55.	4.01
peak stage tine		6 -HR			166.58-HR				+	hyprograph at	wos	422.	${ }^{12.33}$	42.	12.	4.	0.32
		041.83	1041.81	1041.81	1041.41					diverston to							
	cumuarive	area $=$	20.31 sq m								Dwos	422.	12.33	37.	10.	3.	0.32
*** **	**	**		**	***					morobaph at	Dnosre	108.	12.67	7.	2.	1.	0.32
										3 conbined at	crwos	3406.	12.58	616.	176.	59.	5.79
prak flow time	merolat	-	maxitum							diversoon to	nwoss	1808	12.58	320	102		5.79
+ (CFs) (GR)		${ }^{6-\mathrm{HR}}$	${ }^{24-4 \mathrm{R}}$	${ }_{\text {cher }}$	166.58-HR					Hypro						${ }^{34}$.	5.79
0. 0.00	s)										Dwosse	1598.	${ }^{12.58}$	296.	74.	25.	5.79
		.ooo	0.000		0.000 0.					Routed to	w0512A	1426.	12.75	296.	74.	25.	5.79
	comularive	AREA $=$	20.31 se m							hyorograph at	${ }^{106}$	1115.	12.17	99.	30.	10.	0.71
										нурвоgraph at							
			${ }_{\text {ritue in in }}^{\text {IN }}$	IN CUBTC PEET Hous, AREA							w07	751.	12.08	75.	26.	9.	0.3
oprbation	starion	$\underset{\substack{\text { prak } \\ \text { FTow }}}{ }$	$\underset{\substack{\text { TIME } \\ \text { ERAK }}}{\text { OF }}$	average fia	on for maximum period	${ }_{\substack{\text { Bastin } \\ \text { ArEA }}}$	$\underbrace{\text { STAGE }}_{\text {maximum }}$	${ }_{\substack{\text { Trux } \\ \text { Max } \\ \text { STRGE }}}^{\text {deg }}$			Dw07	399.	2.00	${ }^{36}$.	11.	4.	0.3
+				${ }^{6-H \mathrm{HOR}}$	${ }^{24-\text {-iour }}$ 72-HOUR					hyorograph at	DNOTRE	751.	12.08	52.	15.	5.	0.31
horoogap at	521	273.	13.25	70.	20.	0.52				2 combined at		179					
diversion to	${ }_{\text {RL21 }}$	273.	13.25	70.	20.	0.52				Routre to			12.17	147.			${ }^{1.02}$
нуовоgraph at											no7vo 8	1521.	${ }^{12.25}$	147.	44.	15.	1.02
	${ }^{\text {DLL21RE }}$	0.	0.00	0.	0.0	0.52				hyorograph at	wо	917.	12.08	12.	21.	7.	0.45
Roured ro	L21122	0.	0.00	0.	0.0	0.52				2 combined at	cruos	2276	12.17	217.	66		1.47
hyorograph at	L22	87.	23.67	32.	$8 . \quad 3$.	0.36				hyprograph at	-	748	12.08	54.	16.	5	
diversson to	${ }_{\text {RL22 }}$	87.	13.67	32.	$8 . \quad 3$.	0.36				diverstov to							
нуरrograph at											Dw09	86.	11.75	9.	3.	1.	0.34
IT	DL22RE	0.	0.00	0.	0.0	0.36				hyprogrrap at	DNoore	748.	12.08	50.	13.	4.	0.34
2 conbined at	cepr_{22}	0.	0.00	0.	0.0	¢.89				2 combined at	cwos	2952	12.	26.	79		
Routed ro	${ }_{\text {L22001 }}$	0.	0.00	0.	0.0	0.89				Rouren to							
нуовоgraph at											nown10	2382.	12.2	266.	79.	${ }^{26}$.	1.80
	w01	151.	12.50	21.	5.	0.19				hyprograph at	10	2114.	12.17	217.	64.	21.	1.34
2 combined at	cewo 1	150	12.50	21.	$5 . \quad 2$.	1.08				2 combined at	cepro	4343.	12.25	480.	142.	${ }^{48}$	
Routred to	n01wo2	141.	12.67	21.	$5 . \quad 2$.	1.08				hyprograph at							
hyorogaraph at	voz	544	12.33	${ }_{55}$	${ }^{16}$. 5	0.39					w11	1334.	12.17	132.	39.	13.	0.81
									+		cew11	5537.	12.2	610.	181.	60.	3.9

PEORIA AVENUE CORRIDOR IMPROVEMENT STUDY
Jackrabbit Trail Parkway to Dysart Road

Peoria Avenue Watershed

on FCDMC's NOAA 14 Map No. 62
Not to Scale
Legend
White Tanks ADMPU Major Sub-basin Boundary
——eoria Ave. / Dysart Road Boundary
\checkmark Andes
Engineering Source: FCDMC

Maricopa County Department of Transporation Drainage Design Management System RAINFALL DATA Project Reference: 1001D - PEORIA AVE								
Page 1								8/2010
ID	Method	Duration	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year
default	NOAA14	5 MIN	0.235	0.320	0.386	0.474	0.543	0.615
	NOAA14	10 MIN	0.358	0.488	0.587	0.722	0.826	0.935
	NOAA14	15 MIN	0.444	0.604	0.728	0.895	1.025	1.160
	NOAA14	30 MIN	0.598	0.814	0.980	1.205	1.380	1.562
	NOAA14	1 HOUR	0.740	1.007	1.213	1.492	1.708	1.933
	NOAA14	2 Hour	0.845	1.133	1.355	1.656	1.889	2.132
	NOAA14	3 Hour	0.878	1.161	1.385	1.691	1.938	2.201
	NoAA14	6 Hour	1.011	1.302	1.534	1.853	2.104	365
	NOAA14	12 HOUR	1.132	1.437	1.678	2.002	2.249	2.507
	NOAA14	24 HOUR	1.435	1.854	2.182	2.637	2.996	3.372

this progran replaces all previous versions of hec-1 known as heci (Jan 73), hecias, heciob, and hecikw.

hyorogaph at	WT1FC02_B. out												WT1FC02_B.out			
	N24	325.	12.17	31.	10.	3.	. 25	+	ROUTED TO	011012	22.	12.83	3.	1.	0.	. 66
diversion to								+	hrorograph at	012	365.	12.42	52.	17.	6.	${ }^{35}$
hyorograph at2 conbined at	RN24	325.	12.17	23.	6.	2.	. 25		DIVERSION TO HYDROGRAPH A	8012	365	12.42	47.			35
	24 RE	184.	12.33	12.	4.	1.	. 25	+		R012	365.	12.42	47.	13.	4.	. 35
	CPN24	677.	12.33	81.	23.	8.	. 77	+		D012RE	41.	13.08	11.	4.	1.	35
HYDROGRAPH AT DIVERSION TO								+	diversion to	${ }^{\text {CPO12 }}$	54.	13.08	14.	5.	2.	1.01
	${ }^{\text {N27 }}$	143.	12.17	14.	5.	${ }^{2}$.13	+		D01215	16.	13.08	4.	1.	0.	1.01
	${ }^{\text {RN27 }}$	143.	12.17	14.	5.	2.	. 13		hyorograph at							
hyorograph at4 combined at	DN27RE	0.	. 00	0.	0.	0.	. 13	+	diversion to	00121	39.	13.08	10.	3.	1.	1.01
	oummr	1155.	12.42	210.	62.	21.	2.21	+		001225	19.	13.08	5.	2.	1.	1.01
4 combined at	dummr	6526.	12.58	1252.	379.	127.	15.78	+	Routed to	00122	19.	13.0	5.	2.	1.	1.01
HYDROGRAPH AT DIVERSION TO	003	783.	12.25	90.	28.	9	. 72	+		012013	10.	14.50	5.	2.	1.	1.01
				\%			\%	+	hyorograph at	013	1093.	12.33	129.	41.	14.	1.03
hyorograph at	R003	783.	12.25	90.	26.	9.	. 72		DIVERSION TO HYDROGRAPH AT	R013	1093.	12.33	129.	${ }^{41}$.	14.	1.03
	Do03RE	10.	17.42	7.	2.	1.	. 72									
HYDROGRAPH AT	D03004	9.	18.25	7.	2.	1.	. 72	+		D013RE	0.	. 00	0.	0.	0.	1.03
	004	949.	12.33	117.	37.	12.	. 89	+	Hyprograph at	do04SE	244.	12.5	10.	2.	1.	1.6
diversion to	R004	949.	12.33	86.	24.	8.	. 89	+	3 conbined at	4013	55.	13.83	10.	2.	1.	1.61
hyorograph at	DDOARE	88.	12.58	44.	13.	4	89	+		${ }^{\text {cp013 }}$	54.	13.92	14.	4.	1.	3.65
2 combined at								+	diversion to	D01315	2.	13.92	1.	0.	0.	3.65
	${ }^{\text {cP004 }}$	487.	12.58	45.	15.	5.	1.61	+	hyorograph at	00131	52.	13.92	13.	4.		3.65
diversion to	poo4s	244.	12.58	10.	2.	1.	1.61	+			52.	13.92	13.	4.	1.	3.65
	do04SE	243.	12.58	35.	13.	4.	1.61	+	diversion	D01325	12.	13.92	3.	1.	0.	3.65
routed to	D04005	177.	12.75	34.	13.	4.	1.61	+	Routed to	00132	40.	13.92	10.	3.	1.	3.65
HYDROGRAPH AT DIVERSION TO	D05	277.	12.17	30.	10.	3.	. 16	+		013014	32.	14.67	10.	3.	1.	3.65
	2005	177	12.00	14.	.	,	${ }^{6}$	+	hyorograph at	014	932.	12.42	131.	42.	14.	. 94
hyorograph at		17.	12.	14.	4.	1.	.16	+	diversion to	R014	932.	12.42	131.	41.	14.	. 94
2 combined at	doosre	277.	12.17	21.	6.	2.	. 16		hrorograph at							
	CP005	274.	12.17	53.	18.	6.	1.78	+	hrorograph at	Doi4RE	9.	23.00	3.	1.	0.	. 94
routed to	005014	170.	12.33	52.	18.	6.	1.78	+		${ }^{00141}$	48.	${ }^{12.33}$	3.	1.	0.	1.78
diversion to	D01415	48.	12.33	3.	1.	0.	1.78	+	Routed	dos14A	25.	13.2	3.	1.	0.	1.78
Hyorograph atRouted to								+	3 combined at	${ }_{\text {cp014 }}$	33.	14.67	12.	4.	1.	4.76
		122	12.25	49.	18.	6.	1.78		diversion to	D01425	30.	14.67	11.			4.76
	D05015	122.	13.25	48.	18.	6.	1.78	+				14.67			1.	4.6
hyorograph	${ }^{011}$	667.	12.42	89.	28.	9.	. 66	+	ROUTED TO	D0142	3.	14.67	1.	0.	0.	4.76
orversion to	p011	667	12.42	65.	18.	6.	66	+		014015	3.	15.08	1.	0.	0.	4.76
hyorograph at	Ron				18.	6.	. 66	+	hyorograph at	015	359.	12.17	37.	12.	4.	. 22
diversion to	DOD11RE	429.	12.58	34.	10.	3.	. 66		diversion to							
	do111s	356.	12.58	27.	8.	3.	. 66	+		R015	3.	1.00	1.	0.	0.	. 22
hyorograph at	00111	73.	12.58	7.	2.	1.	. 66	+	Hat	D015RE	359.	12.17	37.	12.	4.	. 22
otrversion to								+	3 Combined at	CPD15	355.	12.17	81.	29.	10.	4.98
hyorograph at	Do1125		12.58	4.	1.	0.	. 66		routed to							
	00112	40.	12.58	3.	1.	0.	. 66	+	Route to	015026	288.	12.42	81.	29.	10.	4.98

hyorograph at	015028	258.	12.58			10.	4.98
	028	353.	12.17	32.	.	3.	
	${ }^{28}$		12.17	32.			25
diversion to	R028	3.	4.50	2.	0.	0.	. 25
hyorograph at	D028RE	353.	12.17	32.	10.	3.	. 25
2 combined at	CP028	388.	12.17	110.	39.	13.	5.23
routed to		373	12.25	109	39.	13.	5.23
hyorograph at							
	026	919.	12.17	8.	28.	9.	. 64
diversion to	R026	919.	12.17	88.	28.	9.	. 64
Hyorograph at	D0268E	0.	. 00	0.	0.	0.	. 64
hrorograph at							
routed to	D0142	30.	14.67	${ }^{11 .}$	4.	1.	4.76
	014026	25.	5.33	11.	4.	1.	76
2 Combined at	CP026	24.	15.33	11.	4.	1.	5.40
routeo to	026027	23.	15.58	11.	4.	1.	5.40
Hyorograph at	127	414.	12.25	${ }^{43}$	14.	5	32
drverston							
	R027	142.	2.00	13.	4.	1.	32
hyorograph at	D027RE	414.	12.25	35.	10.	3.	. 32
2 Combined atRouted to	${ }^{\text {cPP27 }}$	407.	12.25	44.	13.	4.	5.72
	S8027	406.	12.17	44.	13.	4.	5.72
ted to	D27042	242.	12.67	42.	13.	4.	5.72
hyorograph at	020	484.	12.33	59.	18.	6.	. 50
diverston to	R020	484.	12.33	59.	18.	6.	. 50
hyorograph at	Do20re	0.	. 00	0.	0.	0.	. 50
hyorograph at	11	356	12.58	27.	8.	3	6
routed to							
	011020	122.	13.17	25.	8.	3.	. 66
2 combined at	CP220	120.	13.17	25.	8.	3.	1.16
routeo to	D20021	85.	13.83	23.	8.	3.	1.16
rograph at	021	460.	12.42	59.	18.	6.	. 50
diversion to	R221	460.	12.42	59.	18.	6.	50
rograph at		0		0.	0.	O	
hyorograph at	00112	33.	12.58	4.	1.	0.	. 66
routed to	011021	10.	13.75	4.	1.	0.	. 66
hyorograph at	00121	16.	13.08	4.	1.	0.	1.01
Routed to	${ }^{12021}$	13.	13.25	4.	1.	0.	1.01
4 combined at							
	CPO21	101.	13.83	30.	10.	3.	2.00
dryersion to	D02115	76.	13.83	23.	8.	3.	2.00
HYOROGRAPH AT	00211	25.	13.83			1.	2.00

DIVERSION TO	po212	20.	13.83	wr1Fc02_B. out		1.	2.00
				6.	2.		
ted to	00212	5.	13.83	2.	1.	0.	2.00
	021022	3.	14.67	1.	1.	0.	2.00
hyorograph at	022	459.	12.33	55.	17.	6.	. 45
diversion to	R022	459.	12.33	55.	17.	6.	. 45
HYDROGRAPH AT HYDROGRAPH AT	D022RE	0.	. 00	0.	0.	0.	. 45
	00122	19.	13.08	5.	2.	1.	1.01
routed to	012022	12.	13.83	5.	2.	1.	1.01
3 combined at	CP022	13.	13.83	6.	2.	1.	2.46
ted to							
	${ }^{22023}$	11.	14.33	6.	2.	1.	2.46
hrorograph at	23	531.	12.33	68.	21.	7.	. 54
diverston to	R023	531.	12.33	68.	21.	7.	. 54
hrorograph at	D023RE	0.	. 00	0.	0.	0.	. 54
hyorograph at	00131	2.	13.92	1.	0.	0.	3.65
routed to	013023	2.	14.83	0.	0.	0.	3.65
3 coneined at	CPD23	12.	14.67	6.	2.		
	${ }^{\text {CPO23 }}$	12.		6.	2.	1.	5.64
HYDROGRAPH AT	D02315	1.	14.58	1.	0.	0.	5. 64
	00231	11.	14.67	6.	2.	1.	5.64
RSTON to	002325	1.	14.58	1.	0.	0.	5.64
hrorograph at	D0232	9.	14.67	5.	2.	1.	5.64
routed to							
	${ }^{023024}$	9.	15.00	5.	2.	1.	5.64
Ersion to	024	438.	12.42	58.	18.	6.	. 49
	R024	438.	12.42	58.	18.	6.	. 49
hrorograph at	D0248E	0.	. 00	0.	0.	0.	. 49
HYDROGRAPH AT	00132	12.	13.92	3.	1.	0.	3.65
routed to	013024	10.	14.42	3.	1.	0.	3.65
3 combined at	CPP24	16.	14.75	7.	3.	1.	6.13
routeo to	024025	15.	15.17	7.	3.	1.	6.13
hrorograph at							
	025	466.	12.42	59.	18.	6.	. 50
ERSIon to	R025	466.	12.42	59.	18.	6.	. 50
graph at	D025RE	0.	. 00	0.	0.	0.	. 50
2 Combine	CP225	15.	15.17	7.	3.	1.	6.63
routed to	025039	14.	15.50	7.	3.	1.	6.63
DIVERSION TO	${ }^{0} 39$	296.	12.08	25.	8.	3.	. 18
	R039	296.	12.08	25.	8.	3.	. 18

hyorograph at					в. out			+		R052	16.	11.25		-8.out.	1.	. 59
2 conbined at	Do39RE	0.	. 00	0.	0.	0.	18		Hyorograph at		536.					. 59
2 combined at	${ }^{\text {CPO39 }}$	14.	15.50	7.	3.	1.	6.81		routed to	D052RE	536.	12.42	65.	17.	6.	. 59
routed to	D39042	13.	16.42	7.	2.	1.	6.81			052066	382.	13.00	65.	17.	6.	. 59
hyorograph at								+	hrorograph at	066	364.	12.25	40.	13.	4.	. 30
otrvessov to	042	1107.	12.33	128.	40.	13.	.99		diterston to	R066						
orversion to	R042	107.	${ }^{12.33}$	128.	38.	13.	. 99		Hyprograph at	R066	364.	12.25	40.	13.	4.	. 30
hrorograph at	D042RE	3.	20.75	6.	1.	0.	. 99		Hor	${ }^{\text {D0668E }}$	0.	. 00	0.	0.	0.	. 30
3 combined at	CP042	242.	12.67	47.	17.	6.	9.87		2 Combined at	${ }^{\text {P666 }}$	382.	13.00	65.	17.	6.	. 89
Routed to	Sr042	136.	12.92	40.	14.	5.	9.87		Routed to	066067	375.	13.08	64.	17.	6.	. 89
routed to								+	hrorograph at	067	386.	12.25	43.	14.	5.	. 32
hyorograph at	${ }^{\text {d42053 }}$	128.	13.17	39.	14.	5.	9.87		ditersion to	R067	359.	12.17	25.	7.	2.	. 32
diversion to	${ }^{0} 3$	159.	12.17	13.	4.	1.	. 12		hyroograph at	D0678E	350.	12.33				
orverson to	R053	159.	12.17	13.	4.	1.	. 12		2 conetied at	$\mathrm{Dob67RE}^{\text {a }}$	350.	12.33	24.	7.	2.	32
hyorograph at	DD53RE	0.	. 00	0.	0.	0.	. 12		2 comineo at	${ }^{\text {cP067 }}$	425.	12.33	88.	24.	8.	1.20
2 combined at	CPD53	128.	13.17	39.	14.	5.	9.99	+	Hrorograph at	076	143.	12.25	16.	5.	2.	.11
routed to	SRO53	0.	.00	0.	0.	0.	9.99	+	diversion to	R076	140.	12.17	10.	3.	1.	.11
routed to	${ }^{5} 5354$.	-	.	.	.	999	+	hrorograph at	D076RE	117.	12.3	8.	2.	1.	. 11
HYorograph at	D53054	0.	. 00	0.	0.	0.	9.99		routeo to	D76077	89	12.42	8.	2.	1.	11
dryestrov to	043	536.	12.33	63.	20.	7.	. 50		hyroograph at			12.17				
diversion to	k043	536.	12.33	63.	19.	6.	. 50			077	526.	12.17	55.	18.	6.	. 36
hrorograph at	D043RE	4.	22.83	2.	0.	0.	. 50	+	2 combined at	CPD77	526.	12.17	62.	20.	7.	. 47
Routeo to	043054	4.	25.08	2.	0.	0.	. 50		Sined	dumur	6913.	12.58	1415.	434.	146.	34.40
hrorgaraph at	54	298.	12.25	28.	8.	3.	. 27	+	at	${ }^{035}$	367.	12.17	32.	10.	3.	. 25
diversion to	R054	278.	12.17	17.	5.	2.	. 27	+	diversion to	R035	367.	12.17	32.	10.	3.	. 25
hyorograph at	Do54RE	259.	12.33	14.	4	.	. 27		hyorograph at	D035RE	0.	. 00	0.	0.	0.	. 25
3 combined at	CPD54	233				1		+	Hyorograph at	p0231	1.	14.58	1.	0.	0.	5.64
hrorograph at	CPO54	233.	12.33	12.	3.	1.	10.76		routed to	023035	1.	15.25	1.	0.	0.	5.64
otyerston to	044	508.	12.33	64.	20.	7.	. 54		2 combined at		1					
diversion to	R044	508.	12.33	60.	16.	5.	. 54			${ }^{\text {CPO35 }}$	1.	15.25	1.	0.	0.	5.90
hrorograph at	Do44RE	34.	13.17	11.	4.	1.	. 54	+		p035s	0.	15.25	0.	0.	0.	5.90
hyorograph at	055	201	12.25	19.		2.			HYorograph at	D0355E	1.	15.25	0.	0.	0.	5.90
diversion to			12.25	19.	6.		. 19		Routeo to	D35038	1.	16.17	0.	0	0	5.90
	R055	201.	12.25	19.	5.	2.	. 19		hrorograph at							
hrorograph at	Do55RE	3.	14.58	2.	1.	0.	. 19			${ }^{038}$	368.	12.25	43.	14.	5.	. 32
hyorograph at	056	22.	12.33	24.	7.	2.	. 22			R038	368.	12.25	43.	14.	5.	. 32
orversion to		121.	12.08	8.	2.	1.	. 22		HYorograph at	D038RE	0.	. 00	0.	0.	0.	32
hyorograph at		121.	12.08	${ }^{8 .}$	2.	1.	. 22		hrorograph at	D0232	1.	14.58	1.	0.	0.	5.64
	Dos6re	222.	12.33	18.	5.	2.	. 22		routeo to	${ }^{223038}$						
4 combined at	ounmr	434.	12.33	35.	11.	4.	11.71			${ }^{023038}$	1.	16.33	1.	0.	0.	5.64
3 combined at	dummr	6526.	12.58	1303.	400.	134.	32.72			${ }^{\text {cP038 }}$	2.	16.33	1.	0.	0.	6.22
hyorograph at									routeo to	038040	2.	17.75	1.	0.	0.	6.22
diversion to		536.	12.42	67.	20.	7.	. 59	+	Hyorograph at	032	297.	12.25		$225{ }^{10}$	${ }^{3}$. 25

routed to	D0482	3.	16.50	${ }_{1 .}^{\text {wTIFCO2_B.out }}$ 1.		0.	9.63
	048049	3.	17.00	1.	1.	0.	9.63
hyroograph at							
	049	598.	12.25	62.	20.	7.	49
drversion to	R049	32.	11.67	11.	4.	1.	49
hyorograph at	do49re	598.	12.25	58.	16.	5.	. 49
rograph at	${ }^{0} 362$	2.	15.50	1.	0.	0.	7.64
routed to	${ }^{\text {D36049 }}$	1.	17.08	1.	o.	0	7. 64
4 conbined at							
	CP049	598.	12.25	60.	17.	6.	10.69
ROUTED To	${ }^{299063}$	402.	12.42	54.	16.	5.	10.69
hyroograph at	060	601.	12.17	74.	25.	8.	40
diverston to	R060	601.	12.17	70.	20.	7.	. 40
hrorograph at	D060RE	35.	13.42	15.	5.	2.	. 40
Hyorograph	D0481	21.	16.50	11.	5.	2.	9.63
routed to	048060	21.	16.83	11.	5.	2.	9.63
2 Combined at	CPP60	36.	16.67	23.	9.	3.	10.04
routed to	06063	33.	16.92	22.	9	3.	
pograp							
	${ }^{663}$	386.	12.08	42.	15.	5.	. 22
diversion to	R063	386.	12.08	42.	12.	4.	. 22
hrorggraph at	D063RE	11.	14.67	7.	2.	1.	. 22
drograph at	D0482	1.	16.50	0.	0.	0.	9.63
routed to	048063	1.	21.75	0.	0.	0.	9.63
4 combined at	${ }^{\text {cp063 }}$	402.	12.42	71.	27.	9.	11.31
Route	63	52.	13.33	48.	27.	9	1.31
routeo to							
	063064	52.	13.83	48.	27.	9.	11.31
HYDROGRAPH AT DIVERSION TO	062	418.	12.17	46.	16.	5.	. 25
	R062	418.	12.17	44.	13.	4.	. 25
hyorograph at	D062RE	15.	14.00	8.	3.	1.	. 25
ston to							
	D06215	${ }^{11}$.	14.00	6.	2.	1.	. 25
hrorograph at	00621	4.	14.00	2.	1.	0.	. 25
diversion to	D06225	2.	14.00	1.	0.	0.	. 25
hyroograph at	D0622	2.	14.00	1.	0.	0.	. 25
routed to							
	062064	1.	15.58	1.	0.	0.	. 25
hrorograph at	064	453.	12.17	50.	17.	6.	. 27
otversion to	${ }^{\text {R064 }}$	453.	12.17	47.	13.	4.	. 27
hrorograph at	D0668E	25.	13.33	11.	4.	1.	. 27
3 Combined at						10.	11.84
						10.	11.84

do		.out					
	064	63.	14.83	56.	30.	10.	11.84
HYDROGRAPH AT DIVERSION TO	D73A	321.	12.17	33.	11.	4.	. 24
	R073A	321.	12.17	25.	7.	2.	. 24
HYDROGRAPH AT HYDROGRAPH AT	do73ar	135.	12.42	13.	4.	1.	. 24
	${ }^{00621}$	11.	14.00	6.	2.	1.	.25
ROUTED TO 2 COMBINED AT		9.		s.	.	1.	. 25
	0623a	9.	14.83	6.	2.		
	cpo73A	135	12.42	17.	6.	2.	49
HYDROGRAPH AT	D73a74	57.	1.58	16.	6.	2.	. 49
	074	458.	12.25	60.	21.	7.	31
diversion to	R074	458.	12.25	59.	17.	6.	31
HYDROGRAPH AT	D074RE	15.	14.75	10.	3.	1.	. 31
	00622	2.	14.00	1.	0.	0.	. 25
routed to	062074	1.	16.08	1.	0.	0.	. 25
4 combined							
routeo to	${ }^{\text {CPO74 }}$	78.	16.67	72.	37.	13.	${ }^{12.39}$
	SR074	53.	24.00	50.	36.	13.	12.39
Hyorograph at	D78A	261.	12.25	35.	12.	4.	. 18
diversion	R078A	261.	12.25	35.	10.	3.	18
hyorograph at	do78AR	8.	14.92	6.	2.	1.	. 18
2 conbined at	CP078A	56	23.83	52.			
	d78acp	56.	23.92	52.	${ }^{37}$.	13.	12.58
hyorograph at	${ }^{041}$	474.	12.08	39.	12.	4.	. 25
drversion	R041	474.	12.08	39.	12.	4.	25
hrorgaraph at	D041RE	0.	. 00	0.	0.	0.	. 25
routeo to	041050	0.	. 00	0.	0.	0.	. 25
hyorogaph at	050			77.			
diversion to							
	${ }^{\text {Ro50 }}$	653.	12.25	77.	24.	8.	. 50
hrorograph at	D050RE	0.	00	0.	0.	0.	50
2 combined	CP550	0.	. 00	0.	0.	0.	. 76
routed to	D5064A	0.	. 00	0.	0.	0.	. 76
hyorograph at	064A	619.	12.25	66.	${ }^{21}$	7	50
diversion to							
	${ }^{\text {R064A }}$	619.	${ }^{12.25}$	66.	21.	7.	. 50
hyorograph at	do64AR	0.	. 00	0.	0.	0.	. 50
2 combined at	CP664A	0.	. 00	0.	0.	0.	1.25
routed to	$64 A 74$	0.	. 00	0.	0.	0.	1.25
hyorograph at	D74A	648.	12.25	76.	25.	8.	. 49

diversion to					.out			+		CP010	54.	12.75			6.	5.65
hyorograph at	R074A	648.	12.25	72.	20.	7.	. 49		routed to	010019	33.	23.25	29.	15.	5.	5.65
	DD74AR	34.	13.42	14.	5.	2.	. 49		hyorograph at		55	123	\%	5.	5	5.05
2 combined at	CPD74A	34.	13.42	14.	5.	2.	1.75	+	-	008	550.	12.33	76.	24.	8.	. 51
routed to	D74a	28.	13.75	14.	5.	2.	1.75	+	diversion to	R008	550.	12.33	72.	20.	7.	. 51
2 combined at	-7478		13.75		5.		1.75	+	Hrorograph at	D0088E	30.	13.58	13.	4.	1.	. 51
роитep	CP7874	60.	23.92	57.	40.	14.	14.32		routeo to							
Routed to	784788	60.	. 00	57.	40.	14.	14.32	+	HYopoge	D08016	21.	14.50	12.	4.	1.	. 51
hyorograph at	006	513.	${ }^{12.33}$	64.	19.	6.	. 46	+	-	${ }^{16}$	783.	12.17	99.	34.	11.	. 52
diversson to								+	diversion to	R016	783.	12.17	93.	27.	9.	52
mopceary at	R006	513.	12.33	60.	16.	5.	. 46		hyroograph at							
hyorograph at	DDO6RE	29.	. 25	9.	3.	1.	. 46	+		Dol6ke	${ }^{51 .}$	13.33	${ }^{21 .}$	8.	3.	. 52
diversion to	D066	0.	. 00	0.	0.	0.	. 46	+	2 Combined at	cpo16	50.	13.33	33.	12.	4.	1.03
hyorograph at								+	drverston to	D01615	37.	13.33	24.	9.	3.	1.03
	D006SE	29.	13.25	9.	3.	1.	. 46		hrorocraph at							
routed to	D06607	18.	13.58	9.	3.	1.	. 46	+		${ }^{0161}$	13.	${ }^{13.33}$	9.	3.	1.	1.03
hyorograph at	007	251.	12.50	109.	33.	11.	89	+	diversion to	D01625	7.	13.33	5.	2.	1.	1.03
diversion to	R007	751.	12.50	109.	31.	10.	. 89	+	hyorocraph at	62	6.	13.33	4.	1.	0.	1.03
hyorograph at								+	routed to	016018	6.	13.75	4.	1.	0.	1.03
courine	D007	9.	18.17	6.	2.	1.	89		hyroograph at							
2 comineo at	CP07	17.	13.67	11.	5.	2.	1.35	+	diverston to	018	262.	12.17	23.	7.	2.	. 20
routed to	D0702	15.	14.17	11.	5.	2.	1.35	+	-	R018	262.	12.17	23.	7.	2.	. 20
hyorograph at	01	1085	12.58	171.	51	17	1.56	+	hyorograph at	D0188E	0.	. 00	0.	0.	0.	. 20
diversion to	Sor	1085	12.58	171.	.	1.	1.56	+	2 conbined at	cp018	6.	13.75	4.	1.	0.	1.23
Hyorcsea	R001	1085.	12.58	171.	49.	16.	1.56		routeo to	018019						
hyorogapaph at	D001RE	12.	18.92	9.	3.	1.	1.56	+	morocanu at	018019	6.	15.00	4.	1.	0.	1.23
routed to	D01102	10.	22.08	8.	3.	1.	1.56	+	at	${ }^{17}$	266.	12.17	23.	7.	2.	. 20
hyorograph at								+	diversion to	R017	266.	12.17	23.	7.	2.	. 20
otyerston to	002	1422.	12.50	217.	66.	22.	1.84		Hyorograph at							
	R002	1422.	12.50	217.	63.	21.	1.84	+		D017RE	0.	. 00	0.	0.	0.	. 20
hyorograph at	D002RE	16.	19.83	10.	3.	1.	1.84	+	Routed to	017019	0.	. 00	0.	0.	0.	. 20
3 combined at									hrorograph at	019	466.	12.33	57.	18.	6.	. 51
	CPO02	31.	22.08	25.	10.	3.	4.76		diversion to							
Routed to	D02210	30.	22.58	25.	10.	3.	4.76	+		${ }^{\text {R019 }}$	466.	${ }^{12.33}$	57.	18.	6.	. 51
hyorograph at	-9	298.	12.33	35	11.	4	26	+	hrorocraph at	D0198E	0.	. 00	0.	0.	0.	. 51
diversion to			12.33		11.	4.			4 combined at	cro19	35.	15.00	27.	15.	5.	7.58
	R009	298.	12.33	30.	8.	3.	. 26		routed to							
hyorogaph at	doogre	83.	12.67	9.	3.	1.	. 26	+		019030	29.	16.42	25.	13.	4.	7.58
Routed to	D09010	50.	12.75	9.	3.	1.	. 26	+	at	029	773.	12.17	97.	33.	11.	. 51
hyorograph at	D0065E	0.	. 00	0.	0.	0.	. 46		diversion to	R229	773.	12.17	93.	26.	9.	. 51
routed to									hyorograph at	Do298E	43.	13.58	20.	7.	2.	. 51
	006010	0.	. 00	0.	0.	0.	${ }_{4} 4$		hrorocraph at							
,	p10	55.	12.33	86.	27.	9.	. 63			O161	37.	13.33	24.	9.	3.	1.03
otversion to	R010	650.	12.33	83.	23.	8.	${ }^{63}$			016029	34.	5.08	23.	9.	3.	1.03
hyorograph at	D0085	28.	13.67	12.	4		63	+		CPD29	62.	14.25	42.	16.	5.	1.54
4 combinel									Routed to	D29030	57.	14.75			5.	1.54

hrorograph at	D30	wT1FC02_B.out							HYDROGRAPH AT HYDROGRAPH AT	DDS8RE	wT1FC02_B.out					
		1310.	12.25	173.	59.	20.	. 91	+			22.	15.00	14.	5.	2.	. 92
otversion to	8030	1310		170	49	16		+		00452	8.	14.67	5.	2.	1.	. 49
hyorograph at	R030	1310.	12.25	170.	49.	16.	91		routeo to	D45558	6.	16.50	5.	2.	1.	
HYDROGRAPH AT ROUTED TO	do30re	52.	14.33	30.	10.	3.	. 91		4 consine at							. 49
	00162	7.	13.33	5.	2.	1.	1.03	+	4	CPP58	94.	18.42	84.	41.	15.	11.81
	016030	6.	15.67	5.	2.	1.	1.03	+	Route to	D5899a	93.	18.25	83.	41.	15.	11.81
4 Combined at ROUTED TO									hyorograph at	D68A	424.	12.08	37.	13.	4.	. 24
	CP30	107.	15.50	87.	35.	12.	9.01	+	drverston to	D68A	424.	12.08	37.	13.	4.	. 24
	${ }^{\text {D30046 }}$	106.	16.67	86.	35.	12.	9.01	+	Hyorograph at				3.	12.	4.	. 24
hyorograph at	045	654.	12.25	78.	26.	9.	. 49	+		Dob8aR	3.	20.75	2.	1.	0.	. 24
DIVERSION TO HYDROGRAPH AT	R045	654.	12.25	77.	22.	7.	49	+	Routeo to	68а69a	3.	22.75	2.	1.	0.	. 24
								+	hrorograph at	069a	665.	12.17	59.	19.	6.	. 46
	D045RE	18.	14.67	11.	4.	1.	. 49		diversion to							
DIVERSION TO HYDROGRAPH AT	D0851s	3.	14.67	2.	1.	0.	. 49	+	Hyprograph at	R069a	665.	12.17	59.	19.	6.	${ }^{46}$
	D0451	15.	14.67	9.	3.	1.	. 49	+	corabat	dob9ar	1.	21.42	1.	0.	0.	. 46
DIVERSION TO HYDROGRAPH AT								+	3 conbined at	CP699a	92.	18.25	83.	41.	15.	12.52
	2452	8.	14.67	5.	2.	1.	. 49		routed to		89.		80.			
	P0452	8.	14.67	5.	2.	1.	49		Hyopoce	D69a70	89.	19.75	80.	40.	14.	12.52
ROUTED TO HYDROGRAPH AT	045046	6.	16.42	4.	2.	1.	. 49	+	norocaph at	068	429	12.08	46.	16.	5.	. 25
								+	diversion to	R068	429.	12.08	44.	13.	4.	. 25
DIVERSION TO HYDROGRAPH AT	046	801.	12.42	114.	36.	12.	. 92		hyorograph at	Do68RE	22.	13.42	10.	3.	1.	. 25
	R046	801.	12.42	114.	36.	12.	. 92		diversion to	D06815	17.	13.42				
	D046RE	0.	00	0.	0.	0.	. 92	+	Hyprograph at	D06815	17.	13.42	8.	3.	1.	25
3 combined at	CPP46	106.	16.83	88.	35.	12.	10.41	+	nognat at	00681	5.	13.4	2.	1.	0.	. 25
ROUTED TO DIVERSION TO	D46058	102.	17.08	86.	35.	12.	10.41		diversion to	D06825	2.	13.4	1.	0.	0.	. 25
	Sspiu	42	17.08	35	14	5	10.41	+	hyorocraph at	${ }^{00682}$	3.	13.42	1.	0.	0.	. 25
HYDROGRAPH AT HYDROGRAPH AT			17.08		14.			+	routeo to	068069	2.	14.25	1.	0.	0.	. 25
	RNSBSN	60.	17.08	51.	20.	7.	10.41		hyroograph at	69						
	RMSSSN	42.	17.08	35.	14.	5.	10.41		dryestrov to	069	545.	12.25	58.	18.	6.	46
ROUTED TO 2 COMBINED AT	Srrem	15.	25.50	15.	11.	5.	10.41	+	diversion to	R069	545.	12.25	58.	18.	6.	. 46
							10.41		hrorograph at	Do69RE	1.	22.83	0.	0.	0.	46
	CPRNS	66.	17.33	60.	31.	12.	10.41		2 conbined at							
ROUTED TO HYDROGRAPH AT	RRMS	66.	17.92	59.	31.	12.	10.41	+		${ }^{\text {CPO69 }}$	2.	14.25	1.	1.	0.	. 71
	${ }^{5} 7$	773.	12.17	93.	32.	11.	. 48	+	orveston to	D06915	0.	14.25	0.	0.	0.	. 71
diversion to									hrorograph at	${ }^{06991}$	2.	14.25	1.	0.	0.	. 71
	R057	773.	12.17	88.	25.	8.	. 48		diverston to							
Hyorograph at	do57re	9.	13.33	21.	7.	2.	. 48	+		D06925	0.	14.25	0.	0.	0.	. 71
	00451	3.	14.67	2.	1.	0.	. 49		at	${ }^{0692}$	2.	14.25	1.	0.	0.	. 71
routed to									routed to	06970	2.	15.33	1.	0.	0.	. 71
	${ }^{045057}$	2.	16.33	1.	1.	0.	. 49		hrorocraph at							
2 combined at	CPP57	49.	13.33	22.	8.	3.	. 97	+		070	258.	12.17	19.	5.	2.	. 26
ROUTED TO HYDROGRAPH AT	057058	38	14.00	11.					diversion to	Ro70	1.	9.75	1.	0.	0.	. 26
	D57058		14.00	21.	8.	3.	97		hyroograph at	D070	258.	12.17	19	5		
	058	1019.	12.33	123.	\%.	13.	. 92							5.	2.	
diversion to	Ro58	1019.	12.33	122.	35.	12.	. 92	+		D70A	453.	12.17	50.	17.	6.	. 27

hyorograph at	R070A	453.	12.17			5.	27
	do70ar	18.	13.83	9.	3.	1.	. 27
routed to							
	D70a70	14.	15.50	9.	3.	1.	. 27
4 Combined at	CPO70	258.	12.17	128.	61.	23.	13.76
routed to	SRD70	65.	25.75	61.	36.	13.	13.76
routed to							
	D70071	65.	25.83	61.	36.	13.	13.76
hrorograph at	071	402.	12.17	43.	14.	5.	. 24
diversion to	R071	402.	12.17	40.	11.	4.	. 24
Hyorograph at		22	13.25	9.	3.	1.	. 24
nemed							
2 combined at	C071	65.	23.92	62.	36.	14.	14.00
routeo to	D71072	65.	26.00	62.	36.	14.	14.00
hyorograph at	059	1341.	12.25	186.	64.	21.	. 99
diversion to	R059	1341.	12.25	183.	53.	18.	. 99
Hyorograph at	Do598E	55.	14.42	31.	11.	4.	. 99
hyorograph at							
routeo to	D0475E	25.	14.92	10.	4.	1.	3.99
	047059	21.	15.75	10.	4.	1.	3.99
2 Combined at	${ }^{\text {CPP59 }}$	59.	15.58	40.	14.	5.	4.99
diversion to							
	${ }^{\text {00595 }}$	56.	15.58	38.	14.	5.	4.99
hyorograph at	D059sE	3.	15.58	2.	1.	0.	4.99
Routed to	059061	3.	16.17	2.	1.	0.	4.99
hYorograph at	${ }^{061}$	485.	12.25	66.	23.	8.	. 35
son to	R061	485.	12.25	65.	19.	6.	. 35
hyorograph	D061RE	19.	14.50	11.	4.	1.	. 35
2 Combined at	${ }^{\text {cP061 }}$	17.	14.50	12.	4.	1.	5.34
Routed to							
	D6172A	16.	15.58	12.	4.	1.	5.34
нरо	D71A	404.	12.17	45.	16.	5.	. 24
drversion to	R071A	404.	12.17	45.	13.	4.	. 24
hrorograph at	Do71ar	11.	14.75	7.	3.	1.	. 24
hyorograph at		56				5	
	Cosse						
routed to	D5971A	54.	16.08	37.	14.	5.	4.99
2 combined at	CPD71A	62.	16.08	43.	16.	5.	5.22
routed to	71172A	61.	16.33				
	Haza	61.	16.33	43.	16.	5.	
hyorograph at	072A	433.	12.17	48.	17.	6.	. 25
diversion to	R072A	433.	12.17	48.	14.	5.	. 25
hyorograph at	do72ar	11.	14.75	7.	3.	1.	. 25
3 Combined at							
					3342.	7.	5.83

teo to		WT1Fco2_B. out					
	D72a72	84.	16.50	60.	22.	7.	5.83
HYDROGRAPH AT DIVERSION TO	072	446.	12.17	48.	17.	6.	. 26
	R072	446.	12.17	47.	13.	4.	. 26
hyorograph at	D072RE	16.	14.00	9.	3.	1.	${ }^{26}$
3 COMBINED AT ROUTED TO	CP972	94	23.92	78.	48	18.	20.09
				78.	48.	18.	. 09
	072073	94.	24.00	78.	48.	18.	20.09
hYorograph at	D73	375.	12.25	44.	15.	5.	28
DIVERSION TO HYDROGRAPH AT	R073	375.	12.25	43.	12.	4.	28
	D073RE	11.	14.42	6.	2.	1.	. 28
2 Combined at	CP073	96.	23.92	79.	49.	18.	. 37
ROUTED TO HYDROGRAPH AT	D73078	95.	24.08	79.	49.	18.	20.37
	${ }^{802}$	552.	12.33	71.	22.	8.	. 54
ston to	R802	507.	12.25	37.	10.	3.	. 54
hyorograph at	DB02RE	531.	12.42	43.	12.	4.	54
diversion to	DB02LR	0.	. 00	0.	0.	0.	54
hyorograph at	DB0250	531.	12.42	43.	12.	4.	54
hyorograph at	B04	532.	12.08	40.	13.	4.	31
driversion to	R804	444.	12.00	26.	7.	2.	${ }^{31}$
hyroograph at	DB04RE	444.	12.17	19.	6.	2.	${ }^{31}$
routed to	B04802	97.	12.75	19.	6.	2.	${ }^{31}$
hyorograph at	DB0250	0.	. 00	0.	0.	0.	. 54
2 Combined at	${ }^{\text {CPB02 }}$	97.	12.75	19.	6.	2.	${ }^{86}$
diverston to							
	LrozLR	0.	. 00	0.	0.	0.	. 86
hrorocraph at	${ }_{\text {LR02so }}$	96.	12.75	19.	6.	2.	8
ED To	LR2078	52.	13.17	18.	6.	2.	86
OGRaph at	0788	576.	12.42	98.	34.	11.	${ }_{53}$
Rsion to	R0788	576.	12.42	97.	28.	9.	. 53
rograph at							
combined at			15.17				
	${ }^{\text {cP078B }}$	580.	12.42	155.	102.	38.	32.08
routed to	788798	289.	12.58	120.	80.	30.	32.08
ograph at	${ }^{51}$	399.	12.25	38.	11.	4.	. 29
diversion to	Ro51	200.	12.00	11.	3.	1.	. 29
hrorocraph at	Dosire	399.	12.25	29.	8.	3.	29
routeo to				28	8	3	29
		17.	.	\%	8.	3.	. 29
hyorograph at	065	918.	12.17	96.	31.	10.	. 69

Hrorograph atdiverson to	${ }^{14}$	wT1FCO2_B.out					
		374	12.25	40.	13.	4.	. 33
	R814	374.	12.25	40.	12.	4.	. 33
hrorograph at	D814RE	3.	23.42	1.	0.	0.	. 33
3 combined at	CP814	1053.	12.42	130.	41.	14.	3.09
routeo to	${ }^{14815}$	863.	12.58	128.	40.	14.	3.09
hrorograph at	${ }^{15}$	463.	12.25	55.	18.	6.	. 38
3 combined at							
	CP815	1277.	12.50	238.	77.	26.	4.60
hrorograph at	${ }^{816}$	171.	. 08	14.	5.	2.	. 11
diversion to	16	17.	12.08	13.	3.	1.	. 11
hrorograph at	D8168E	18.	12.42	4.	1.	0.	. 11
routeo to	${ }^{816817}$	7.	13.00	4.	1.	0.	.11
hyroograph at							
	${ }^{817}$	445.	12.25	50.	16.	5.	. 33
diversion to	RB17	440.	12.17	34.	9.	3.	. 33
hrorograph at	D8178E	349.	12.33	23.	7.	2.	. 33
2 Combined at	CPB17	348.	12.33	26.	8.	3.	. 45
routeo to	${ }^{177818}$	210.	12.50	26.	8.	3.	. 45
hyorograph at	818	321	12.25	35	11	4	28
otverston to							
Ston to	${ }^{818}$	321.	12.25	35.	10.	3.	. 28
hrorograph at	DB188E	3.	18.83	2.	1.	0.	28
2 Combined at	CP818	210.	12.50	26.	9.	3.	. 73
routed to	818819	126.	12.75	25.	9.	3.	. 73
hrorograph at	${ }^{19}$	200.	12.08	17.	6.	2.	. 12
2 combined at	C8819	199	12.08	${ }^{40}$	14.	5	. 85
hrorograph at	820	347.	12.17	34.	11.	4.	. 23
4 combined at	ur	7658.	12.58	1630.	535.	188.	74.73
hrorograph at	${ }^{821}$	275.	12.25	31.	10.	3.	. 24
otverston to	21	275.	12.25	31.	10.	3.	. 24
hyorograph at							
	D821RE	0.	00	0.	0.	0.	. 24
routed to	B21822	0.	. 00	0.	0.	0.	. 24
hrorograph at	${ }^{822}$	331.	12.17	32.	11.	4.	. 22
otverston to	R822	4.	4.33	3.	1.	0.	. 22
hrorograph at							
	${ }^{\text {D822RE }}$	331.	12.17	32.	10.	3.	. 22
2 Combined at	CP822	330.	12.17	32.	10.	3.	. 46
hrorograph at	${ }^{23}$	299.	12.33	36.	11.	4.	. 27
diversi	${ }_{\text {RB23 }}$	5.	9.17	3.	1.	0.	. 27

hyorograph at routed to diversion to hyorograph at Routed to
 odiversion to
 2 combined at
 hyorograph at
 hyorograph at
 routed to
 hyorograph at
 4 conbined at
 hyorograph at
 hrorograph at
 hyorograph at
 hitersson to
 routed to hyobograph at
 2 comined at
 hyroograph at
 Routed to
 odversion to
 Routeo то

㩊 胥WT1FCO2_B.
36. CO2_B. out
10.

10. 3. 2| 282. | 12.42 | 36. | 10. | 3. | |
| :--- | :--- | :--- | :--- | :--- | :--- |
11. $12.17 \quad 23$27
12. 12
13. 12.42

$$
.19
$$ 19

$$
\begin{aligned}
& .46 \\
& .46
\end{aligned}
$$

$$
.46
$$

$$
\begin{array}{cccccc}
\text { 285. } & 12.17 & 26 . & 8 . & 3 . & .2 \\
285 . & 12.17 & 19 . & 5 . & 2 . & .2
\end{array}
$$

$$
\begin{array}{cccccc}
\text { 285. } & 12.17 & 19 . & 5 . & 2 . & .20 \\
130 . & 12.33 & 10 . & 3 . & 1 . & .20
\end{array}
$$

$$
\begin{array}{cccccc}
\text { 130. } & 12.33 & 10 . & 3 . & 1 . & .20 \\
253 . & 12.67 & 47 . & 14 . & 5 . & .66
\end{array}
$$

$$
\begin{array}{cccccc}
400 . & 12.17 & 39 . & 13 . & 4 . & .31 \\
400 . & 12.17 & 32 . & 9 . & 3 . & .31
\end{array}
$$

$$
\begin{array}{ccc}
400 . & 12.17 & 39 . \\
400 . & 12.17 & 32 . \\
120 . & 12.42 & 12 .
\end{array}
$$

$$
\begin{array}{rrr}
120 . & 12.42 & 12 . \\
63 . & 12.83 & 12 .
\end{array}
$$

$$
\begin{array}{ll}
3 . & .31 \\
1 . & .31
\end{array}
$$

$$
\begin{array}{rlllll}
120 . & 12.42 & 12 . & 4 . & 1 . & .3 \\
63 . & 12.83 & 12 . & 4 . & 1 . & .3
\end{array}
$$

$$
\begin{array}{lll}
\text { 442. } & 12.25 & 6
\end{array}
$$

$$
\begin{array}{rrr}
\text { 442. } & 12.25 & 63 . \\
\text { 7977. } & 12.58 & 1735 .
\end{array}
$$

$$
22 .
$$

$$
\begin{array}{ll}
6 . & .36 \\
7 . & .67
\end{array}
$$

$$
\begin{array}{rrr}
7977 . & 12.58 & 1735 \\
335 . & 12.33 & 37
\end{array}
$$

$$
\begin{array}{ll}
353 . & 12.33 \\
335 . & 12.33
\end{array}
$$

$$
\begin{array}{ll}
0 . & .00 \\
0 . & .00
\end{array}
$$

$$
\begin{array}{ll}
\text { 443. } & 12.25 \\
\text { 443. } & 12.25
\end{array}
$$

$$
\begin{array}{rr}
\text { 443. } & 12.25 \\
0 . & .00
\end{array}
$$

$$
\begin{gathered}
38 . \\
0 .
\end{gathered}
$$

$$
\begin{gathered}
12 . \\
0 .
\end{gathered}
$$

$$
\begin{aligned}
& .42 \\
& .42
\end{aligned}
$$

$$
\begin{array}{llllll}
0 . & .00 & 0 . & 0 . & 0 . & .42 \\
0 . & .00 & 0 . & 0 . & 0 . & .42
\end{array}
$$

$$
\begin{array}{llllll}
342 . & 12.25 & 35 . & 10 . & 3 . & .28 \\
341 . & 12.25 & 35 . & 10 . & 3 . & .70 \\
307 . & 12.33 & 35 . & 10 . & 3 . & .70
\end{array}
$$

$$
\begin{array}{cccccc}
307 . & 12.33 & 35 . & 10 . & 3 . & .70 \\
432 . & 12.17 & 38 . & 12 . & 4 . & .31
\end{array}
$$

$$
\begin{array}{cccccc}
\text { 432. } & 12.17 & 38 . & 12 . & 4 . & .31 \\
622 . & 12.17 & 72 . & 22 . & 7 . & 1.40
\end{array}
$$

$$
\begin{aligned}
& 1.40 \\
& 1.40
\end{aligned}
$$

1.40
.83

	877878	398.	13.08			6.	83
hrorograph at	${ }^{878}$	495.	12.58	85.	27.	9.	. 57
diversion to							
HYDROGRAPH AT	RB78	492.	. 50	8.	14.	5.	. 57
	DB78RE	436.	12.67	47.	14.	5.	. 57
2 COMBINED AT DIVERSION TO	CPB78A	567.	13.00	107.	31.	10.	1.40
	${ }_{\text {R8788N }}$	537.	12.92	${ }^{37}$.	9.	3.	1.40
hyorograph at			138		21		\%
	ов788,	535.	13.08	71.	21.	7.	1.40
2 COMBINED AT ROUTED TO	${ }^{\text {cp8788 }}$	626.	12.17	136.	43.	15.	2.80
	${ }^{878879}$	392.	12.92	134.	43.	15.	2.80
HYDROGRAPH AT DIVERSION TO	${ }^{879}$	904.	12.33	110.	34.	12.	. 85
	R879	904.	3	72.	20.	7.	. 85
rograph	D879RE	621.	12.50	50.	15.	5.	. 85
2 Combined at	CPB79	674.	12.50	183.	57.	19.	3.64
	879880	561.	12.67	182.	57.	19.	3.64
hyorograph at	B80	296.	12.25	32.	10.	3.	. 27
driversion to	888	96	12.25	32	10		
	квво	296.	12.	32.	10.	3.	. 27
OGRaph at	D880RE	0.	. 00	0.	0.	0.	. 27
2 combined at	CP880	561.	12.67	182.	57.	19.	3.91
ed to	SR880	489.	13.00	181.	57.	19.	3.91
Suteo to	${ }^{880881}$	480.	13.25	180.	57.	19.	3.91
hrorograph at	${ }^{881}$	329.	12.25	33.	10.	3.	. 25
on							
	${ }^{\text {R881 }}$	9.	11.25	3.	1.	0.	. 25
hyorograph at	D881RE	329.	12.25	32.	9.	3.	. 25
2	881	489.	13.25	206.	66.	22.	4.16
ED тo	S8881	446.	13.50	205.	66.	22.	4.16
routed to	${ }^{881884}$	438.	13.58	204.	66	22.	4.16
hrorograph at						2.	
	${ }^{882}$	181.	12.25	18.	5.	2.	. 15
sron to	R882	181.	12.25	18.	5.	2.	. 15
hrorograph at	D882RE	0.	. 00	0.	0.	0.	. 15
Routeo to	882883	0.	. 00	0.	0.	0.	. 15
hyorograph at	${ }^{88}$	405.	12.08	38.	13.	4.	. 22
diversion to	R883	21.	11.25	8.	3.	1.	22
hyorograph at	D883RE	405.	12.08	36.	10.	3.	. 22
2 combined at	${ }^{\text {CP883 }}$	404.	12.08	36.	10.	3.	. 37
routed to							
	Sk883	23.	. 92	19.	10.	3.	. 37
Routed to	883884	23.	13.08			3.	. 37

hrorograph at		wT1FC02_B.out					
	${ }^{871}$	1.	12.42	113.	36.	12.	96
diversion to	R871	811.	12.42	113.	36.	12.	96
hyorograph at	D871RE	0.	00	0.	0.	0.	. 6
routed to	${ }^{871872}$	0.	. 00	0.	0.	0.	${ }^{96}$
hrorogaph at	${ }^{872}$	1012.	12.42	136.	42.	14.	1.12
diversion to	R872	1012.	12.42	91.	25.	8.	1.12
hyorograph at	${ }^{\text {DB72RE }}$	730.	12.58	60.	17.	6.	1.12
2 combined at							
	CPB72	728.	12.58	59.	17.	6.	2.08
routed to	872874	545.	12.67	59.	17.	6.	. 08
hyorogaph at	${ }^{873}$	443.	12.17	46.	15.	5.	. 30
otiversion to	R873	443.	12.17	45.	13.	4.	30
hyorograph at	3RE	15.	13.83	8.	3.	1.	30
routed to	SR873	3.	24.08	3.	2.	1.	. 30
routed to	${ }^{873874}$	3.	25.08	3.	2.	1.	30
hyorogaph at	${ }^{874}$	183.	12.08	18.	6.	2.	11
diversion to							
	${ }^{\text {R874 }}$	81.	12.00	8.	2.	1.	${ }^{11}$
hyorogaph at	D874RE	183.	12.08	13.	4.	1.	11
3 combined at	${ }^{\text {cPB74 }}$	558.	12.67	71.	23.	8.	2.49
Routed to	S8B74	37.	14.33	32.	17.	7.	. 49
Routed to	${ }^{874884}$	37.	14.50	32.	17.	7.	2.49
hyorograph at	${ }^{884}$	352.	12.17	37.	12.	4.	22
diversion to							
	${ }^{\text {R8844 }}$	4.	6.75	3.	1.	0.	. 22
hyorograph at	D844RE	35.	12.17	37.	11.	4.	22
4 combined at	CPB84	479.	13.58	270.	98.	34.	7.24
routed to	SR884	241.	15.67	195.	86.	32.	7.24
hyorograph at	${ }^{828}$	875.	12.42	118.	37.	12.	96
diversion to							
	${ }^{\text {R828 }}$	8.	1.17	1.	0.	0.	. 96
hyorogaph at	O228RE	875.	12.42	118.	37.	12.	96
hrorograph at	${ }^{829}$	256.	12.25	32.	11.	4.	. 18
otversion to	R829	256.	12.25	29.	8.	3.	18
hyorograph at	D829RE	27.	12.75	9.	3.	1.	18
hyorograph at	${ }^{83}$	274.	12.17	33.	11.	4.	17
diversion to							
	${ }^{\text {RB30 }}$	274.	${ }^{12.17}$	22.	6.	2.	. 17
hyorograph at	DB30RE	171.	12.33	16.	5.	2.	. 17
routed to	SRB30	23.	13.00	16.	5.	2.	17

Hyroograph at		wrifcoz_b.out					
	${ }^{83}$	836.	12.25	90.	29.	10.	. 68
orversion	R831	772.	12.17	47.	14.	5.	. 68
HYDROGRAPH AT ROUTED TO	D83118E	807.	12.2	55.	16.	5.	${ }^{68}$
	SRB31	32.	13.58	29.	16.	5.	. 68
2 combined at	dummr	54.	13.17	45.	20.	7.	. 85
	duma	8429	12.58	1929	660.	234.	85.75
	dommr		12.5				
	${ }_{83}$	86.	12.	104.	33.	11.	. 82
	RB32	786.	12.42	91.	25.	8.	. 82
HYDROGRAPH AT ROUTED TO	DB32RE	169.	12.83	26.	8.	3.	. 82
	SRB32	0.	. 00	0.	0.	0.	. 82
routeo to	${ }^{832833}$	0.	. 00	0.	0.	0.	. 82
HYDROGRAPH AT DIVERSION TO	83	484	12.08	43	14.	5	. 28
	R833	484.	12.08	3.	14.	5.	. 28
hyroograph at	DB33RE	0.	. 00	0.	0.	0.	. 28
2 COMBINED AT HYDROGRAPH AT	CPB33	0.	. 00	0.	0.	0.	1.10
	${ }^{83} 4$	208.	12.08	16.	5.	2.	. 13
diversion to	R834	35.	11.75	4.	1.	0.	. 13
HYDROGRAPH AT HYDROGRAPH AT	D8348E	208.	12.08	14.	4.	1.	. 13
	${ }^{\text {B }} 8$	522.	12.17	50.	17.	6.	. 34
diversion to	кв38	522.	12.17	50.	17.	6.	. 34
hyroograph at		,		。	.	0.	
routed to							
	${ }^{838839}$	0.	. 00	0.	0.	0.	. 34
hyorograph at	${ }^{83}$	704.	12.17	72.	24.	8.	. 47
diversion to	RB37	704.	12.17	72.	24.	8.	. 47
hrorograph at	${ }^{\text {DB37RE }}$	0.	. 00	0.	0.	0.	. 47
routed to						-	
saap							
	${ }^{83} 9$	981.	12.25	108.	35.	12.	. 77
diversion to	R839	981.	12.25	108.	35.	12.	. 77
Graph At	DB39RE	0.	. 00	0.	0.	0.	. 77
3 Combined	CP839	0.	. 00	0.	0.	0.	1.58
routed to	S8B39	0.	. 00	0.	0.	0.	1.58
hrorograph at					4.	1.	
		191.	12.17	15.	4.	1.	
diversion to	R835	1.	4.67	1.	0.	0.	. 14
hrorograph at	D835RE	191.	12.17	15.	4.	1.	. 14
Hyprocraph at	${ }^{\text {B36 }}$	105.	12.08	6.	2.	1.	. 06
orversion to							

Orgaraph at	R336	29.	11.75	${ }_{1}^{\text {wTIFC02_B.out }}$.		0.	. 06
	DB36RE	105.	12.08	6.	1.	0.	. 06
4 Combined at	dumur	482.	12.08	${ }^{34}$.	9.	3.	91
3 combined at							
	oummr	8429.	12.58	1951.	666.	235.	88.76
hyorocraph at	840	72.	12.25	89.	30.	10.	. 51
drverston to	R840	72.	12.25	67.	19.	6.	. 51
hyorograph at	D840RE	364.	12.42	36.	11.	4.	. 51
hyorograph at	00681	17.	13.42	8.	3.	1.	. 25
routed to	068840	14.	14.00	8.	3.	1.	. 25
2 conbined at	CP840	364.	. 42	43.	14.	5.	. 77
drverston to	D84015	215.	12.42	24.	8.	3.	. 77
hyroograph at	08401	149.	12.42	19.	6.	2.	. 77
drversion to	D84025	57.	12.42	9.	3.	1.	. 77
Hyorograph at	D8402	92.	12.42	10.	3.	1.	. 77
routed to	${ }^{840841}$	39.	12.75	10.	3.	1.	. 77
Hyorograph at	${ }^{841}$	812.	12.50	118.	37.	12.	. 95
drversion to	R841	809.	12.42	76.	21.	7.	. 95
Hrorograph at	D841RE	652.	12.58	56.	16.	5.	. 95
hrorograph at	00682	2.	13.42	1.	0.	0.	. 25
routed to	068841	1.	16.33	1.	0.	0.	. 25
Hyorocraph at	p0691	0.	14.25	0.	0.	0.	. 71
routed to	069841	0.	15.92	0.	0.	0.	. 71
4 Combined at	${ }^{\text {CP841 }}$	657.	12.58	65.	20.	7.	2.18
diversion to	${ }^{\text {D8415 }}$	624.	12.58	62.	19	6.	2.18
hyorograph at							
	D8415E	33.	12.58	3.	1.	0.	2.18
ROUTED To	${ }_{841843}$	24.	12.83	3.	1.	0.	2.18
hyorograph at	${ }^{84} 3$	594.	12.42	101.	35.	12.	. 54
diverston to	R843	594.	12.42	99.	28.	9.	. 54
hrorograph at	D843RE	32.	14.42	17.	6.	2.	. 54
hyorograph at	00692	0.	14.25	0.	0.	0.	. 71
routed to	069843	0.	16.92	0.	0.	0.	. 71
3 combined at	${ }^{\text {cp843 }}$	34.	14.42	18.	7.	2.	2.72
routed to							
hyorocraph at							
	${ }^{844}$	728.	12.25	90.	31.	10.	. 52
diversion to	R844	728.	12.25	87.	25.	8.	. 52
HYorocraph at	D844RE	34.	13.83		243.	2.	. 52

hyorograph at	D8401	215.	wT1FC02_B.out					+	2 COMBINED AT		wT1FC02_B.out					
			12.42	24.	8.	3.	. 77			${ }^{\text {CPLO4 }}$	0.	. 00	0.	0.	0.	1.93
routed to								+		DL045	0.	. 00	0.	0.	0.	1.93
2 combined at	${ }^{\text {B40844 }}$	78.	13.42	23.	8.	3.	77		hyorograph at	do04SE	0.	. 00	0.	0.	0.	1.93
DIVERSION TO	CP844	85.	13.42	38.	14.	5.	1.29		routed to							
	D84415	10.	13.42	5.	2.	1.	1.29	+		L04L05	0.	. 00	0.	0.	0.	1.93
HYDROGRAPH AT DIVERSION TO	08441	74.	13.42	33.	12.	4.	1.29	+	hrorograph at	-02	1416.	12.58	228.	70.	23.	1.88
									diversion to	R102	1416.	12.58	218.	59.	20.	1.88
	D84425	6.	13.42	3.	1.	0.	1.29		hyroograph at		146.	12.58	${ }^{18}$	S.	${ }^{20}$	1.88
hyorograph at	42	68.	13.42	30.	11.	4.	1.29	+	Revte to	DLO2RE	110.	13.75	33.	11.	4.	1.88
routed to	${ }^{844845}$	62.	13.50	30.	11.	4.	1.29	+	routeo to	L02L05	71.	14.00	32.	11.	4.	1.88
				,		,	1.29	+	Hrorograph at	L05	549.	${ }^{12.33}$	70.	22.	7.	. 49
	${ }^{845}$	948.	12.33	132.	45.	15.	81		diversion to	R05	549.	12.33				
DIVERSION TO HYDROGRAPH AT	1845	948.	12.33	114.	32.	11.	. 81	+	HYoro	RLO5	549.	12.33	61.	17.	6.	49
	D845RE	184.	12.75	38.	13.	4.	${ }^{81}$	+	,orat at	dLO5RE	91.	12.75	17.	6.	2.	. 49
hyroograph at	D8402	57.	12.42	9.	3.	1.	. 77	+	3 combined at	CPL05	88.	14.00	45.	16.	5.	4.30
HYDROGRAPH AT)	24.	13.00	8.	,	,	.77	+	routed to	L05L09	82.	14.25	44.	16.	5.	4.30
	84085	${ }^{4}$	12.58	${ }^{\text {c }}$.	.	\%	+	Hrorograph at	L09	547.	12.3	71.	23.	8.	. 49
routed to	D8415E	624.	12.58	62.	19.	6.	2.18		diverston to	RL09	547.	${ }^{12.33}$	71.	23.	8.	. 49
	${ }^{841845}$	287.	13.33	58.	19.	6.	2.18		Hyroograph at		547.	12.33	71.	23.	8.	. 49
5 Combined at	CP845	427.	13.33	145.	51.	17.	4.05	+	cooratat	dLO9RE	0.	. 00	0.	0.	0.	. 49
routed to	${ }^{845847}$	343.	14.08	140.	51.	17.	4.05	+	2 conbined at	CPLO9	82.	14.2	44.	16.	5.	4.78
hyorograph at	L01	221.	12.17	20.	6.	2.	. 16	+	Routeo to	L09138	79.	14.42	44.	16.	5.	4.78
diversion to		1	12.17	,		,	6	+	drverston to	dL138R	28.	14.42	13.	4.	1.	4.78
hyorograph at	${ }^{\text {R201 }}$	22.	12.17	19.	5.	.	. 16	+	hrorograph at	dL138n	51.	14.42	30.	12.	4.	4.78
	DLO1RE	15.	12.67	4.	1.	0.	. 16		hrorograph at							
routed to	L0103	8.	13.50	4.	1.	0.	16	+	воute то	${ }^{\text {dLİbN }}$	28.	14.42	13.	4.	1.	4.78
	${ }^{03}$	785.	12.33	95.	28.	10.	. 79	+		SRL138	16.	15.50	12.	4.	1.	4.78
diversion to	L03	78.	12.33	95.	${ }^{28}$	10.	.79		2 conbined at	CPL138	62.	14.50	42.	16.	5.	4.78
hyorograph at	RLO3	785.	12.33	95.	28.	10.	. 79		routed to							
	dLO3RE	0.	. 00	0.	0.	0.	79	+	hyorograph at	${ }^{\text {L13813 }}$	62.	${ }^{14.58}$	42.	16.	5.	4.78
hrorogapaph at	L20	317.	12.42	38.	11.	4.	. 35		diversion to			12.17				48
diversion to	RL20	317.	12.42	38.	11.	4.	35	+		${ }^{\text {RL13 }}$	731.	12.17	90.	26.	9.	. 48
hyorograph at	DL20RE	2.	22.08	1.	0	0.	. 35	+	Hyorocraph at	dL13RE	38.	13.75	18.	6.	2.	. 48
								+	hyorograph at	${ }^{106}$	754.	12.33	88.	28.	9.	70
3 COMBINED AT	L2003	1.	24.75	1.	0.	0.	35		diverston to							
	CPLO3	8.	13.58	4.	2.	1.	1.29		a	R.06	754.	${ }^{12.33}$	88.	28.	9.	70
diversion to	01035	7.	13.67	4.	1.	0.	1.29	+	,	dLO6RE	0.	. 00	0.	0.	0.	. 70
hyorograph at									diversion to	dLo6s	0.	. 00	0.	0.	0.	. 70
	DL03SE	0.	. 00	0.	0.	0.	1.29		hyorograph at							
routed to ${ }_{\text {hyorograph at }}$	L03L04	0.	. 00	0.	0.	0.	1.29			dLO65E	0.	. 00	0.	0.	0.	70
		534.	12.42	66.	20.	7.	${ }^{63}$		Eo тo	L0607	0.	. 00	0.	0.	0.	. 70
diversion to									hrorograph at	L07	673.	12.33	83.	26.	9.	. 63
	RLO4	534.	12.42	66.	20.	7.	63		diversion to							
hyorograph at	DLO4RE	0.	. 00	0.	0.	0.	. 63	+		RLO7	673.	12.33	83.	26.	9.	. 63

hrorograph at	dLO7RE	0.	. 00			0.	${ }^{63}$
	dLO3SE	7.	13.67	4.	1.	0.	. 29
routed to	L0307A	7.	14.08	3.	1.	0.	1.29
routed to	L03078	7.	14.42	3.	1.	0.	1.29
3 COMBINED AT DIVERSION TO	${ }_{\text {ce }}$	7		3.	1.	0.	. 62
					1.		2.62
	DL075	1.	14.42	1.	0.	0.	2.62
hyorograph at	dL07sE	5.	14.42	3.	1.	0.	. 62
routed to	L07L08	5.	14.83	3.	1.	0.	2.62
hyorograph	108	544	12.33	73.	22.	7.	49
diversion to	RL08	544.	12.33	${ }_{3}$.	22.	7.	49
hrorocraph at	DLO8RE	0.	. 00	0.	0.	0.	. 49
hrorograph at	dL04SE	0.	. 00	0.	0.	0.	1.93
routed to	L0408	0.	. 00	0.	0.	0.	. 93
3 combined at	CPL08	5.	14.83	3.	1.	0.	.74
	L08L12	5.	15.75	2.	1.	0.	. 74
hyorograph at	L10	672.	12.42	82.	24.	8.	. 84
diversion to	0	672	12.42	65.	17.	6.	. 84
drograph at	dLIORE	293.	12.75	23.	7.	2.	${ }^{84}$
routed to	L1011	156.	13.00	22.	7.	2.	. 84
hrorograph at	dLo6se	0.	. 00	0.	0.	0.	. 70
routeo	L06611	0.	. 00	0.	0.	0.	70
hrorograph at	${ }^{111}$	607.	12.33	77.	24.	8.	62
diverston to	11	607	12.33	77.	24.	8.	. 62
hyorograph at	DL11RE	1.	20.75	1.	0.	0.	. 62
hyorograph at	dL075E	1.	14.42	1.	0.	0.	2.62
routed to	L07411	1.	17.33	1.	0.	0.	2.62
4 combined at							
	CPL11	156.	13.00	22.	7.	2.	4.09
version to	du115	0.	. 00	0.	0.	0.	4.09
Hrorocraph at	ol11sE	147	13.00	22.	7.	2.	4.09
routeo to	L11112	109.	13.33	22.	7.	2.	. 09
graph	${ }^{1} 12$	494.	12.25	57.	18.	6.	. 36
diverston to	RL12	494.	12.25	57.	16.	5.	. 36
hrorograph at	DL12RE	8.	16.25	6.	2.	1.	. 36
3 combined at	CP12	109.	13.33	27.	10.	3.	5.56
DIVERSION TO HYDROGRAPH AT	011215	18.	13.33	4.	2.	1.	5.56
	p121	85.	13.33		8.	3.	5.56

DIVERSION TO	dı12	1.	wT1FCO2_B.out				
			13.33	0.	0.	0.	5. 56
hyroograph at	${ }^{12122}$	84.	13.33	21.	8.	3.	5.56
routed to	${ }^{121213}$	73.	13.	20.	8.	3.	. 56
3 combined at	CPL13	87.	13.75	64.	26.	9.	8.90
routed to	${ }^{13055}$	84.	13.83	64.	26.	9.	8.90
routeo to	${ }^{\text {DS5L19 }}$	79.	14.00	64.	26.	9.	8.90
hyroograph at							
	14	211.	12.25	19.	6.	2.	. 23
drversion to	RL14	211.	12.25	19.	6.	2.	. 23
hyroograph at	DL148E	0.	. 00	0.	0.	0.	. 23
routed to	${ }^{14415}$	0.	. 00	0.	0.	0.	. 23
hyorocraph at	L15	347.	12.33	31.	9.	3.	. 37
diversion to	RL15	347.	12.33	31.	9.	3.	. 37
hrorograph at	DLISRE	0.	. 00	0.	0.	0.	. 37
2 combined at	CP15	0.	. 00	0.	o.	o.	. 60
routeo to	L15L16	0.	. 00	0.	0.	0.	. 60
hyroograph at	116	463.	12.33	${ }_{46}$	14.	5.	. 50
diverston to							
diversion to	RL16	463.	12.33	46.	14.	5.	. 50
hrorograph at	DL16RE	0.	. 00	0.	0.	0.	. 50
2 combined at	CP116	0.	. 00	0.	0.	0.	1.10
routed to	${ }^{16617}$	0.	. 00	0.	0.	0.	1.10
hyorograph at	${ }^{117}$	473.	12.33	59.	19.	6.	. 50
drverston to	R117	473.	12.33	59.	19.	6.	. 50
hyroograph at	D1178E	0.		0.	0.	0.	. 50
2 conbined at							
	cP17	0.	. 00	0.	0.	0.	1.61
drverston to	oL175	0.	. 00	0.	0.	0.	1.61
hrorograph at	dL175E	0.	. 00	0.	0.	0.	1.61
routeo to	L17118	0.	. 00	0.	0.	0.	1.61
hyroograph at	18	84	12.33	46.	13.	4.	. 50
diversion to							
	RL18	484.	${ }^{12.33}$	46.	13.	4.	. 50
HYorograph at	DL188E	0.	. 00	0.	0.	0.	. 50
Hrorograph at	dL11sE	0.	. 00	0.	0.	0.	4.09
routed to	L11118	0.	. 00	0.	0.	0.	4.09
hyorograph at	0121	18.		4	2	1	5.56
routeo to	11218			4	2	,	5.56
4 combined at							
	CPL18	10.	14.25	4.	2.	1.	7.67


```
M
```

fhis program refiaces aid previous versions of hec-1 known as hec1 (uan 73), hecics, hecide, and hecikn.

APPENDIX III

FLOOD INSURANCE RATE MAPS

GWSI Hydrograph

GWSI Hydrograph

GWSI Hydrograph

GWSI Hydrograph

APPENDIX V

GEOTECHNICAL INFORMATION

PRELIMINARY GROUND SUBSIDENCE AND
EARTH FISSURE EVALUATION
REEMS ROAD CHANNEL AND BASIN
MARICOPA COUNTY, ARIZONA

Submitted to:
Flood Control District of Maricopa County Phoenix, Arizona

Submitted by:
AMEC Earth \& Environmental, Inc.
Tempe, Arizona

November 30, 2007
AMEC Job No. 7-117-001074 Contract FCD 2006C020 Work Assignment 1

November 30, 2007
AMEC Job No. 7-117-001074

Flood Control District of Maricopa County
2801 West Durango Street
Phoenix, Arizona 85009-6399

Attn: Bobbie Ohler, P.E.
Re: Preliminary Ground Subsidence and Earth Fissure Evaluation Reems Road Channel and Basin
Contract FCD 2006C020
Work Assignment 1
Maricopa County, Arizona
Transmitted herewith is the final version of our report for the referenced project. This report presents the findings of a preliminary assessment of the potential impact of earth fissuring and ground subsidence on the future design and operation of the, Reems Road Channel and Basin.

Please feel free to contact the undersigned should you have any questions.

Respectfully submitted,

AMEC Earth \& Environmental, Inc.

Winats

Kristi Diller, G.I.T.

Geologist

Reviewed by:

Ralph E. Weeks, P.G. Senior Geologist

Lawrence A. Hansen, Rh B? NP. Principal Geotechnical Engineer

Addressee (4)

[^3]Contract FCD 2006CO20
Work Assignment 1
Maricopa County, Arizona
AMEC Job No. 7-117-001074
November 30, 2007

EXECUTIVE SUMMARY

The investigation detailed in the following report was completed to evaluate the potential impac of earth fissuring and ground subsidence on the future design and operation of the Reems Road Channel and Basin (Project). The Project, as planned by the Flood Control District of Maricopa County (District), includes a channel and basin system for storm water conveyance along Reems Road between Peoria Avenue and Falcon Dunes Golf Course, a half mile north of Northern Avenue. The investigative approach included four basic components: 1) compilation and review of existing data; 2) acquisition and analysis of synthetic aperture rada interferometry; 3) analysis of project-specific high resolution aerial digital imagery; and 4) ground reconnaissance of the project site.

Available subsidence data indicates that the Reems Road Channel and Basin are located in an area that has seen significant subsidence due to groundwater withdrawal, with approximately 19 feet of subsidence occurring since the 1950s. No known earth fissures are present along the alignment of the proposed channel or basin and the closest documented earth fissure is located approximately 1 mile to the northeast and east. No new earth fissures were documented as part of this investigation. The proposed channel and basin are located in an area where subsidence has likely created compressional stresses in the ground; therefore, the formation of earth fissures in the past or future is unlikely.

The potential for future differential subsidence to affect future grades of the proposed channe does exist and may pose a risk for the proposed structures. Subsidence profiles indicate tha past subsidence north of the proposed basin declines to the north. If future subsidence were to occur, it is anticipated that this trend would continue, indicating that grades along this portion of the proposed channel would likely be steepened by future subsidence. Subsidence profiles to the south of the proposed basin show that the magnitude of past subsidence declines south of Olive Avenue. If future subsidence were to occur in the project area, it is anticipated that this trend would also continue, indicating that grades along this portion of the proposed channe would likely be lessened by future subsidence

The groundwater history of the study area indicates that in the past 30 years, groundwater levels have increased by 50 to 150 feet. As this has occurred, subsidence rates have significantly decreased from their maximum rates of at least 0.5 ftyr between 1957 and 1992 to about 0.03 ftyr from 1992 to 2007. If current groundwater trends extend into the future, it is anticipated that subsidence rates will continue to decline. If groundwater trends reverse and groundwater levels begin to fall in the future, it is anticipated that subsidence rates would increase, possibly significantly if groundwater withdrawal is equally significant.

It is recommended that the District monitor groundwater trends in the area of the proposed Reems Road Basin and Channel. It is also recommended that the District directly monitor subsidence trends through the use of periodic surveys of the channel and basin profiles, and the use of InSAR. Recommendations are provided for the conceptual design of a monitoring system and design considerations for the proposed channel.

Flood Control District of Maricopa County
Preliminary Ground Subsidence and Earth Fissure Evaluation
eems Road Channel and Basin
Work Assignment 1
Maricopa County, Arizona
AMEC Job No. 7-117-001074
November 30, 2007
1.0 INTRODUCTION
2.0 PROJECT DESCRIPTION
3.0 INVESTIGATIVE APPROACH
3.1 Review of Existing Data
3.2 Synthetic Aperture Radar Interferometry (InSAR)
3.3 High Resolution Aerial Photography
3.4 Ground Reconnaissance

GEOLOGICAL SETTING
4.1 Geologic Overview
4.2 Regional Alluvial Stratigraphy
4.3 Sufficial Geology GROUND SUBSIDENCE AND EARTH FISSURING DUE TO GROUNDWATER WITHDRAWAL
6.1 Overview of Subsidence Process
6.2 Overview of Earth Fissure Development
6.3 Subsidence and Earth Fissuring History of Study Area

- DISCUSSION
- RECOMMENDATIONS
. 0 REFERENCES

Figure 1 - Vicinity Map
Figure 2 - Project Location
Figure 3 - Surficial Geology
Figure 4 - Gravity Data, Depth to Bedrock, and Depth to the Luke Salt Deposit
Figure 5 - ADWR Well Locations
Figure 6 - Water Level Data Trends
Figure 7 - Subsidence Data for Reems Road
Figure 8 - Subsidence Data for Peoria Avenue
Figure 9 - Subsidence Data for Olive Avenue
Figure 10 - Subsidence Data for Northern Avenue
Figure 11 - Water Level Data Trends near Sarival Avenue and Northern Avenue with
Measured Subsidence along Reems Road at Peoria Avenue and Olive Avenue

LIST OF APPENDICIES

Appendix A - ADWR Well Report
Appendix B-InSAR

Contract FCD 2006CO20
Work Assignment 1
Maricopa County, Arizona
AMEC Job No. 7-117-001074
AMEC Job No. $7-117$
November 30, 2007

1.0 INTRODUCTION

The investigation detailed herein was completed to evaluate the potential impact of earth fissuring and ground subsidence on the future design and operation of the Reems Road Channel and Basin (Project). The Project, as planned by the Flood Control District of Maricopa County (District), includes a channel and basin system for storm water conveyance along Reems Road between Peoria Avenue and Falcon Dunes Golf Course, a half mile north of Northern Avenue. This location is an area of known ground subsidence due to pas groundwater level declines resulting from agricultural and municipal groundwater pumping. This subsidence is also responsible for the formation of earth fissures located along the fringe of the Luke Salt Body, located approximately 1 mile east and northeast of the project area.

This report contains a detailed assessment of the potential impact of earth fissuring and ground subsidence on the future design and operation of the Project components. This investigation involved research, compilation, and interpretation of existing technical data, including aeria photography and satellite-based synthetic aperture radar interferometric (InSAR) data, and a limited ground reconnaissance of the project area.

This study was authorized by the District in August of 2007 under the terms and conditions of Contract FCD 2006C0020, with the scope defined as Work Assignment No. 1. This work was performed by AMEC Earth \& Environmental, Inc. (AMEC) for the sole use of the District in evaluating ground subsidence and earth fissure risks for the Reems Road Channel and Basin AMEC is not responsible for any peripheral use of this information, or of the interpretations presented herein, by parties other than the District.

2.0 PROJECT DESCRIPTION

The extent of the study area covered in this investigation is shown on Figure 1. The local project site is presented on Figure 2. This region is located on a broad alluvial basin to the eas of the White Tanks Mountains. This surface appears to be comprised of distal alluvial fan surfaces coalescing towards the Agua Fria River to the east. The terrain gently slopes to the southeast, ranging in elevation from about 1400 to 1000 feet above MSL. The Project area is immediately surrounded by agricultural farmland. Numerous residential developments are present in the region and the area immediately west of the planned basin is currently being developed.

The Project consists of the construction of a channel along Reems Road and a basin located a quarter mile north of Olive Avenue, which will convey stormwater drainage for the 100-yea event to the Falcon Dunes golf course/detention basin on the northeast corner of Reems Road and Northern Avenue. The Falcon Dunes golf course/detention basin drains into the Dysar Drain, which ultimately drains into the Agua Fria River. The earthen Reems Road channel will connect with an existing channel at Peoria Avenue and then convey flows southward along the west side of Reems Road for a mile and a half, where it will connect with the Falcon Dunes
detention basin. The Reems Road basin will be located on the west side of Reems Road between Peoria Ave. and Olive Ave. The primary objective of this study is to evaluate the potential impact of earth fissuring and subsidence upon the future design and operation of the Project components.

3.0 INVESTIGATIVE APPROACH

The following discussion summarizes the investigative methods and data sets compiled for this evaluation. The approach includes four basic components: 1) compilation and review of existing data; 2) acquisition and analysis of synthetic aperture radar interferometry; 3) analysis of project-specific high resolution aerial digital imagery; and 4) ground reconnaissance of the project site.

3.1 Review of Existing Data

Existing data was compiled from a variety of sources, including published technical literature, regulatory agency databases, District files, and Maricopa County Department of Transportation (MCDOT) files. The published resources include regional geological and geohydrological studies from the U.S. Geological Survey, the Arizona Geological Survey, and the U.S. Bureau of Reclamation. The use of regulatory agency databases was restricted to Arizona Department of Water Resources (ADWR) well information, including both well construction reports for ADWR registered wells and historical water level data from the Groundwater Site Inventory (GWSI) data base. The District's library of reports was utilized to search for historical subsidence information concerning the local area, specifically the Dysart Drain project. Survey data for 1990 was extracted from the White Tanks/Agua Fria Area Drainage Master Study WLB Group, 1992). Recent survey data, from 2003 for the project area, was obtained from the GDACS USPLSS Cadastral Corners spreadsheet available on the MCDOT Land Survey Section's website. The public records database at the MCDOT offices was searched for historical as-built drawings for roads near the project site, in order to obtain additional historical elevation information for the area.

To a large extent, the information described above has been compiled, digitized and presented in tabular form or in plan and profile. Relevant data is summarized in the following figures:

- Figure 3 - Surficial Geology
- Figure 4 - Gravity Data, Depth to Bedrock, and Depth to the Luke Salt Deposit
- Figure 5-ADWR Well Locations
- Figure 6 - Water Level Data Trends
- Figures 7 through 11 - Subsidence Data for Reems Rd., Peoria Ave., Olive Ave., and Northern Ave.
- Appendix A - ADWR Well Report

3.2 Synthetic Aperture Radar Interferometry (InSAR)

The application of repeat-pass synthetic aperture radar interferometry (InSAR) to characterize the distribution and rate of ground subsidence in the study area is of profound significance in managing the risks associated with ground subsidence and earth fissuring. Interferometry has the capacity to detect and quantify minute changes in terrain elevation by comparing phas variances of satellite-based, side-looking radar data between orbits of a similar trajectory.
ADWR is currently applying InSAR as part of a long-range study of basin subsidence in Arizona Recent interferograms developed by ADWR on the basis of 2000-2006 SAR data were compiled and analyzed for the project area. In addition, InSAR images previously provided by ADWR were also utilized. Five InSAR images, spanning the time from December 1996 to August 2006, are presented in Appendix B. InSAR data from 1996 to 2000 originated from the ERS-1 or ERS-2 satellites, and three interferograms are presented from this time period. An additional two interferograms from 2004 to 2006 are presented, with data from the RADARSAT or ENVISAT satellites.

InSAR is a highly processed product and represents an interpretive analysis of raw satellite data from no less than two individual data sets. It suffers from both atmospheric and terrain influences that affect the quality of the image. Procedures used in the processing of the data by ADWR reduce the impact of these atmospheric and terrain influences. The remaining constrain is decorrelation due to rapid changes in the ground surface. This phenomenon can be caused by plowing and crop changes in agricultural areas, or urban development. One complete color cycle (e.g., red to red or blue to blue) on the interferograms represents about 2.8 centimeters of elevation change between the two orbital observations. The initial pixel size is 30 meters though processing can reduce this to 10 meters.

3.3 High Resolution Aerial Photography

High resolution color aerial photography of the entire project area was provided by the District Aerial coverage was obtained on October 28, 2006, at a resolution of 0.32 feet. The imagery provided to AMEC had been exported as a high image quality portable document format (.PDF file, and therefore the exact resolution of the analyzed imagery is unknown. The imagery was evaluated for the purpose of identifying features indicative of the presence of earth fissures These features include elongated fissure gullies, alignments of potholes and other smal depressions, lineations in the vegetative cover, and subtle linear ground features caused by shading. However, nearly all of the native features of the ground surface have been altered and obscured by agricultural use or residential construction. The analysis of the aerial photography yielded no features indicative of earth fissures.

3.4 Ground Reconnaissance

A ground reconnaissance site visit was performed to inspect the project alignment for subsidence or earth fissure-related features that would affect the integrity of the planned channel and basin. The farmland and graded dirt roads along the fields revealed no features indicative of earth fissures. There were no noticeable changes in grade along Reems Road between Peoria Avenue and Northern Avenue. No earth fissures or features indicative of possible earth fissures were found at the project site.

4.0 GEOLOGICAL SETTING

4.1 Geologic Overview

The Reems Road Channel and Basin project site lies within the western portion of the Salt River Valley atop a broad, flat alluvial basin called the Luke Basin. As depicted on Figure 1, the region is bounded by the Agua Fria River to the east and the flanks of the White Tank Mountains to the west. The Western Salt River Valley (WSRV) is a typical component of the Sonoran region of the Basin and Range physiographic province. The Sonoran region contains many broad, deeply founded, alluvium-filled basins, separated by structural highlands composed of competent bedrock. The White Tank Mountains are one of these uplifted highlands, composed of both metamorphic and granitoid bedrock (Reynolds and others, 2002) The Luke sub-basin contains basin fill deposits of the Salt River Valley that can be subdivided into three units: Lower Alluvial Unit (LAU), Middle Fine-Grained Unit (MFGU) and Upper Alluvia Unit (UAU) (Prokopovich, 1983; BurRec, 1976)

As indicated by the depth to bedrock contours presented by Richard and others (2007), the Luke basin is deepest approximately 3 miles east-southeast of the south end of the Reems Road Channel. The prominent negative gravity feature shown by the Bouguer gravity data by Sweeney and Hill (2001) is in part an expression of a large salt body, containing some 5 cubic miles of halite (Eaton and others, 1972). The contours on Figure 3 showing the lateral extent and depth to the top of the Luke Salt Deposit (Rauzi, 2002) indicate that the salt body pinches out to zero near the project site. The salt body was likely formed in a non-marine environment in the center of a closed clastic sedimentary basin that was bounded by the active White Tank detachment fault along its west side (Spencer and Rauzi, 2005). The geophysical data developed by Peterson (1968) indicates that the salt may extend to a depth from 6,900 to 9,000 feet.

November 30, 2007

4.2 Regional Alluvial Stratigraphy

The Luke salt body is surrounded by unconsolidated and slightly indurated sediments composed of laterally discontinuous beds of clay, silt, sand, and gravel, with subordinate deposits of calcrete and evaporites (Stulik and Twenter, 1964). Stulik and Twenter (1964) further describe the WSRV basin fill as being of unknown maximum thickness, with 2,784 feet o sediments penetrated without reaching bedrock at a location some three miles south of the project site near Litchfield Park.

The characteristics of the WSRV basin fill and the distribution of fine-grained sediments with the basin were first evaluated by Stulik and Twenter (1964), based on well driller's logs of irrigation wells. This study revealed the presence of a predominantly fine-grained profile in several wells located near the project site, down to a datum of about 700 feet above MSL, or a depth of about 400 feet in the referenced area. Additional well logs across the Luke Basin are graphically depicted in U.S. Bureau of Reclamation (BurRec) studies for the Central Arizona Project (BurRec, 1976). These logs display the presence of fine-grained fill to depths up to 2000 feet

As discussed by Prokopovich (1983) and the BurRec (1976), the basin fill deposits of the Salt River Valley are comprised of unconsolidated to weakly indurated sediments deposited on an irregular bedrock surface. From a geotechnical perspective, the upper basin sediments likely classify as stiff soils to soft rock, with the deep Tertiary deposits in the realm of soft to moderately indurated rock. The basin deposits are quite variable, ranging from fine-grained clay and silt deposits of lacustrine or playa origins, to coarse clastics derived from the adjacent upland. The BurRec (1976) appears to be the first to define the basin fill into three lithologic units, all of which are likely present in the alluvial profile of the regional study area. The following describes the characteristics of the three alluvial units, from oldest to youngest, largely as described by Laney and Hahn (1986) and the BurRec (1976):

- Lower Alluvial Unit (LAU) - These Middle to Late Tertiary deposits are in fault and erosional contact with the competent bedrock floor and buried flank of the basin, and are comprised of what is often referred to as conglomerate. The conglomerates are often interbedded with anhydrite, gypsiferous mudstone and basalt. The coarser fraction is often poorly sorted with faint bedding, consisting of sand- to cobble-sized particles in silty to clayey matrix. Significant calcium carbonate content is common in the matrix, to the extent that the porosity of the unit is affected. The LAU may be absent where the俍 extent that the porosity of the unit is affected. The LAU may be absent where lime-stratigran than 400 feet from the surface. However, these units are not defined as deposits nomic divisions, and investigators commonly include the shalow, BurRec (1976) indicates well intercepts of the LAU at depths of about 1,100 to 1,200 feet, but wells up to 2000 feet in the center of the basin did not reach the LAU.
- Middle Fine-Grained Unit (MFGU) - This unit is often restricted to the center of the alluvial basin of Central Arizona. Regionally, this lithology of the unit is described as intercalated playa, alluvial fan and fluvial deposits of silt, soft siltstone, and silty sand and gravel. Compared to the LAU, the MFGU likely contains a higher fraction of clay and silt, with a comparable concentration of calcium carbonate. Prokopovich (1983) notes that the MFGU contains clay and silt beds deposited in internally drained basins, resulting from damming due to tectonic movement and volcanism. The BurRec (1976) depicts a considerable thickness of the MFGU in the Luke basin, in the range of about 450 to more than 800 feet, with the top of the unit from about 700 feet deep to 1200 feet deep in the basin center.
- Upper Alluvial Unit (UAU) - The UAU is comprised of Late Tertiary and Quaternary clastic material, derived locally from the surrounding bedrock terrain and deposited as a mantle over the older basin fill deposits. In contrast to the MFGU, the UAU was deposited by an externally drained stream system. BurRec (1976) graphical logs of wells located in the Luke basin depict a thickness of UAU from 700 feet to 1200 feet deep in the basin center.

4.3 Surficial Geology

The local surficial geologic units (Figure 3) in the study area, as broadly described by Reynolds and Grubensky (1993), Reynolds and Skotnicki (1993), Field and Pearthree (1991) and Demsey (1988) are comprised of an assemblage of unconsolidated Quaternary alluvial fan deposits and stream deposits associated with the Agua Fria River system. Blissenback (1954) and Harvey (1992) describe alluvial fans as being composed of a complex assemblage of stream channe deposits, sheet flow deposits from larger floods (which cause avulsion of the small watercourses across the fan surface), and thick debris flow and/or mudflow deposits from large infrequen floods. The fans likely include a minor component of aeolian deposits. Alluvial terrace deposits associated with the Agua Fria River are found along the eastern margin of the study area General descriptions of the surficial units found in the Project area are presented below and are taken from Field and Pearthree (1991), Reynolds and Grubensky (1993), and Eaton and others (1972):

- Young Alluvium in Modern Stream Channels (Qyc) - Deposits are dominated by lastic sediments of sand and gravel, with some cobbles and rare boulders. The age of nit Qyc is less than 3,000 years before present (ybp). Within the study area, this unit is limited to the active channels associated with the Agua Fria River drainage system.
- Young Alluvium (Qy) - Outside the active braided channels, this unit is locally comprised of a limited thickness of silty to clayey sand and sandy silt, overlain by a thin mantle of aeolian silty sand. Little soil development is present and Stage I carbonate cementation development is common in the lower sands, with the upper loess largely uncemented. Moderate to strong rubification (reddening) is common in this unit. Within the ephemeral channels, the upper aeolian deposits are absent, with larger amounts of gravel and cobbles present. Nearer the mountain front, the unit contains coarse sediments, including silt, sand and gravel mixtures. The age of unit Qy ranges from about 10,000 to $>3,000$ ybp. This unit is widespread throughout the project area.
- Younger Middle Alluvium (Qm2) - This unit is locally comprised of moderately cemented (Stage I to II) clayey to silty sands, occasionally interbedded with silty to sandy gravels. These deposits usually display poor soil development and some rubification. The age of unit Qm2 ranges from 10,000 to 150,000 ybp. Qm2 deposits are widespread throughout the study area, with the greatest concentrations occurring in the northwestern corner of the area
- Older Middle Alluvium (Qm1) - This unit consists of a poorly sorted, angular to sub-angular mixture of silt, sand and gravel deposits. The surfaces are moderately dis-angular mixture of sit, sand and gravel deposits. The surfaces are moderately in pormphy opography. Desert pavement is moderately to well developed and is found over 50 to 75 percent of the surface. Underlying soils are characterized by weakly developed argillic horizons with Stage II to III calcification. The age of unit Qm1 ranges from 300,000 to 1,000,000 ybp. Qm1 deposits are widespread throughout the study area, with the greatest concentrations occurring in the northwestern corner of the area
- Older Alluvium (Qo) - Unit Qo is composed of early Pleistocene to late Pliocene alluvial fan deposits greater than $1,000,000$ years in age. The unit generally consists of poorly sorted subangular gravels containing minor amounts of finer material, ranging in thickness from a thin veneer over bedrock pediments to tens of feet thick. The surfaces of unit Qo are deeply dissected up to 50 feet within interfluvial areas and have well-rounded ridges with intervening swales or ravines. Soils are generally eroded away, exposing remnants of Stage IV to VI petrocalcic horizons. Unit Qo is found as terrace deposits associated with the Agua Fria River.
- Tertiary Alluvium (Tsy) - This unit consists of Pliocene chiefly fluvial deposits. This unit is locally comprised of moderately cemented silt, sands, and gravels. A few low hills fsy deposits are located to the southeast of Luke Air Force Base, where the Luke Salt Deposit is the shallowest. These Tertiary age deposits are thought to be the result of doming of the salt body, which exhumes the older alluvial deposits.

5.0 HYDROGEOLOGICAL CONDITIONS

Groundwater in the basin fill deposits of the WSRV is a significant and highly exploited resource used for domestic, municipal, industrial, and agricultural purposes. As depicted in Figure 5 over 30 wells registered with the ADWR are present within the area directly adjacent to the Project. Within the regional study area, there are an additional 30 wells with historical water level data from the Groundwater Site Inventory (GWSI) data base. These wells range from small domestic installations of limited yield, to large irrigation wells capable of discharging several thousand gallons per minute.

Groundwater withdrawn from the basin deposits near the Project area largely originates from the UAU, with its thickness estimated by the BurRec (1976) to be locally about 800 to 1200 feet, and current groundwater levels at depths from approximately 400 to 500 feet. Figure 6 shows hydrographs for GWSI wells in the vicinity of the Project. Groundwater in the study area has declined significantly due to well withdrawals far exceeding recharge. This decline commenced in the 1940s as agricultural development began in earnest in the west valley. By the early 1980s groundwater levels had declined up to 350 feet in the region. Since the 1980s, local groundwater has recharged, and levels have increased about 50 to 150 feet.

G.0 GROUND SUBSIDENCE AND EARTH FISSURING DUE TO GROUNDWATER WITHDRAWAL

O.1 Overview of Subsidence Process

Ground subsidence due to groundwater withdrawal in alluvial basins in the Southwest is a process of differential compaction of deep sediments. Through geologic time, groundwater levels in the alluvial basin material were at or near the ground surface, or at elevations controlled by the rivers and drainage systems traversing the basins. Activities of man have changed and are continuing to affect groundwater levels in many of these basins. Damming of ivers in mountainous reaches of the upland watersheds has reduced available recharge Groundwater pumping, primarily for agricultural, industrial and municipal use, has significantly mpacted stored groundwater in many areas. In modern times, groundwater level declines o 100 feet to several hundred feet due to pumping have occurred in many basins in Arizona and hroughout the Southwest.

Lowering the groundwater elevation in a column of alluvial basin material increases the effective stress. This change in effective stress is an increase in loading on the material column. If that column consists of granular materials, typically sands and gravels, compression of the material below the initial water level takes place rapidly. Until granular particle contact points are changed by compression, at least some of the compression can be recovered elastically if water evels rise and effective stress decreases. Compression that results from particle slipping or crushing will tend to have much less elastic rebound. If the material column contains a significant fraction of fine-grained materials, typically clays, consolidation of the material below the initial water level takes place slowly. The time frame of the consolidation is a function of the Reems Road Channel and Basin
Work Assignment 1
Maricopa County, Arizona
AMEC Job No 7-117-00107
AMEC Job No. 7-117
November 30, 2007
permeability of the material, where lower permeability increases consolidation time. Consolidation is further a function of the distance to higher permeability zones which can relieve the excess pore pressure by draining water from clay-rich materials. Greater distances to such permeable drainage zones increase consolidation time. Although consolidation increases can be modeled as an elastic phenomenon, rebound of the consolidation is typically not recoverable with a decrease in loading

Soils are much less compressible when reloaded up to the preconsolidation pressure than when loaded above the preconsolidation pressure (Lambe and Whitman, 1969). In many basins, the ground surface has been higher (relative to the underlying bedrock) than at the present time due to erosion. The eroded alluvium preconsolidated the basin profile. Increases in effective stress less than the preconsolidation stress represented by the now eroded alluvium would result in minor subsidence. Once increases in effective stress due to a declining groundwater table exceed the preconsolidation stress, further subsidence will occur at a much greater rate representing normal consolidation of the alluvial basin materials.

Where differential rates and magnitudes of subsidence occur over relatively short distances, horizontal strains can become sufficient to cause earth fissuring. Jachens and Holze (1979, 1982) evaluated the threshold tensile strains for fissuring based on studies of the Eloy-Casa Grande area of central Arizona. These studies included precise leveling and geophysical surveys, and comparisons with other cases of fissuring due to groundwater withdrawal. Jachens and Holzer (1982) concluded that most fissuring occurred at horizonta tensile strains in the range of 0.02 to 0.06 percent. This compares with the threshold strains fo cracking of compacted clays zones in dam embankments (or compacted clay liners) of about 0.1 to 0.3 percent (Leonards and Narain, 1963; Covarrubais, 1969).

6.2 Overview of Earth Fissure Development

The first recorded observance of earth fissuring in Arizona was in 1927 near the town of Picacho, well southeast of the study area (Leonard, 1929). Since that time, eleven subsiding Central Arizona regions within the Basin and Range province have been identified, all with suspected or verified earth fissures (Fellows, 1999; Poland 1981; Holzer and Davis, 1981) Subsequent benchmark studies were undertaken to evaluate the distribution and mechanisms of fissuring (Holzer, 1978 and 1980; Jachens and Holzer, 1979; Laney, Raymond and Winikkar 1978; Larson and Péwé, 1986).

Earth fissures in areas of large groundwater decline in alluvial aquifers are likely associated with a process termed generalized differential compaction by Carpenter (1994). Three mechanisms are likely at play to ultimately form fissures, including bending of a plate above a horizontal discontinuity in compressibility (Lee and Shen, 1969), dislocation theory representing a tensile crack (Carpenter, 1994), and vertical propagation of tensile strain caused by draping of the alluvium over a horizontal discontinuity in compressibility (Haneberg, 1992). Due to these probable mechanisms, fissures commonly develop along the perimeter of subsiding basins,

Work Assignment 1
Maricopa County Arizona
AMEC Job No 7-117-00107
AMEC Job No. 7-117-0.
November 30, 2007
often in apparent association with buried or protruding bedrock highs, suspected mountain-front faults, or distinct facies changes in the alluvial section.

Fissures often first manifest at the surface as subtle hairline cracks, or as alignments of small potholes, modified by burrowing animals. Overland flow is then intercepted, and the surface manifestation of the fissure grows as piping and caving occur during runoff events.

6.3 Subsidence and Earth Fissuring History of Study Area

The Project area has undergone significant subsidence due to groundwater withdrawal since significant groundwater mining commenced in the West Salt River Valley. Figures 7 through 10 show a series of profiles showing known subsidence from 1957 to 2003. Figure 11 shows groundwater trends and subsidence at the corner of Reems Road and Peoria Avenue and the corner of Reems Road and Olive Avenue
'Earth cracks' mapped to the southeast of Luke Air Force Base and east of Dysart Road above Glendale Avenue by Stulik and Twenter (1964) provided early documentation of earth fissuring in the project vicinity (Figure 3). By 1973, the US Army Corps of Engineers had documented an earth fissure in the vicinity of Cottonwood Lane and Olive Avenue that trended generally to the northeast (SHB, 1982) that was also documented by Schumann (1992). Vertical displacement in this fissure zone can be observed on the Olive Avenue road surface and in a lined irrigation canal on the south side of Olive Avenue just east of the interim Loop 303 highway (AMEC, 2007). Further to the west, the Fenne Knoll Fissure system near the south end of McMicken Dam was reported by SHB (1982). Earth fissures east of Dysart Road and north of Glendale Avenue continue to show measurable movement (AMEC, 2007).

In addition to earth fissures, early indications of subsidence in the area included collapsed well casings as reported in Eaton and others (1972). Existing ground line profiles for roadway improvements to Reems Road from Northern to Peoria Avenues in 1965 had elevation discrepancies from 1957 USGS topographic quadrangle map elevations of about 2 feet at Northern Ave to about 4 feet at Peoria Avenue (MCHD, 1965). By 1990, during survey work for the White Tanks/Agua Fria Area Drainage Master Study (WLB Group, 1992), subsidence in the project area had reached about 17 to 18 feet compared to the 1957 USGS elevations (Figures 7 through 11). Furthermore, the local area encompassing the project was identified to be at the center and maximum elevation drop of a major subsidence depression. The overall depression extends from the vicinity of the White Tank Mountains to the west, to the Luke Salt Body to the southeast, and to Surprise to the north.

The reversal of flow in the Dysart Drain, which caused flooding around Luke Air Force Base in 1992 (Schumann, 1992), was further confirmation of this subsidence depression, and earth fissures in the area mark regions of maximum horizontal strain along the depression margins. Earth fissures are not expected in the center of the subsidence depression where ground strains would tend to be in compression and not tensile in nature. Given the 2003 data from the MCDOT Land Survey Section, recent continued but much reduced subsidence has been
documented through the subsidence depression region. Between about 1990 and 2003, only about 0.8 to 0.9 feet of additional subsidence has been documented across the project area InSAR results to the southeast of the Project indicate a maximum subsidence rate of about 0.3 feet over a 3 year period from 1997 to 2000 (Appendix B).

The groundwater level and limited subsidence history around the project area is summarized in Figure 11. Between the 1940's to the 1980's, groundwater levels dropped about 250 feet, and a maximum of 17 to 18 feet of subsidence occurred between about 1957 and 1990. Since the late 1980's, the groundwater level has recovered about 50 to 70 feet while another 0.8 to 0.9 feet of subsidence has occurred. Apparent differential elevation changes quantified by InSAR interferometry results for 1997 to 2000 in the vicinity are consistent with this recent subsidence trend.

BurRec (1972) data for the basin includes an electric resistivity log for a deep well (B-03-01 32dda) in the project vicinity. Electrical resistivities measured in the well below a depth of about 400 feet were less than 10 ohm-meters. Low resistivities continue through the 2,000 -foot depth of the well, and became very low in the middle alluvial unit interpreted to begin at a depth of about 1,200 feet. Both the low resistivities and the apparent time-delayed consolidation of basin materials, as indicated by repeat survey and InSAR interferometry resulting in continued but reduced subsidence are consistent with clay-rich basin material underlying the project site.

In contrast, the considerably reduced subsidence at the western edge of the basin is consisten with a much shallower low resistivity profile at a deep well near Glendale Avenue and Cotton Lane ($\mathrm{B}-03-0234 \mathrm{bbb}$). There the lower alluvial unit, logged as conglomerate, begins at a depth of about 1,100 feet, the initial pre-development groundwater level was deeper, and the historic water level decline was less than at the project site. Similarly, older, much less compressible alluvium to the southeast of the project site was probably uplifted by the action of doming in the Luke Salt Body, so that groundwater declines in that area have not resulted in significan subsidence.
7.0 DISCUSSION

Available subsidence data indicates that the Reems Road Channel and Basin are located in an area that has seen significant subsidence due to groundwater withdrawal. No known earth fissures are present along the alignment of the proposed channel or basin and the closes documented earth fissure is located approximately 1 mile to the northeast and east. No new earth fissures were documented as part of this investigation. The proposed channel and basin are located in an area where subsidence has likely created compressional stresses in the ground, therefore, the formation of earth fissures in the past or future is unlikely.

The potential for future differential subsidence to affect future grades of the proposed channel does exist and may pose a risk for the proposed structures. Subsidence profiles (Figures 7 through 10) indicate that past subsidence north of the proposed basin declines to the

Maricopa County, Arizona
AMEC Job No. 7-117-001074
November 30, 2007
north. If future subsidence were to occur, it is anticipated that this trend would continue indicating that grades along this portion of the proposed channel would likely be steepened by future subsidence.

Subsidence profiles (Figures 7 through 10) to the south of the proposed basin show that past subsidence declines to the south of Olive Avenue. If future subsidence were to occur, it is anticipated that this trend would also continue, indicating that grades along this portion of the proposed channel would likely be lessened by future subsidence. The planned basin drains to the south along this segment of the channel If future subsidence were to occur, it could impac the ability of the basin to drain as designed. It is unlikely that future subsidence would impad the capacity of the basin itself; however increased grade in an unlined channel above could increase the sediment load reaching the basin.

The occurrence of subsidence is intimately connected to groundwater withdrawal. The groundwater history of the study area (Figures 6 and 11) indicates that in the past 30 years, groundwater levels have increased by 50 to 150 feet. As this has occurred, subsidence rates have significantly decreased from their maximum rates of at least $0.5 \mathrm{ft} / \mathrm{yr}$ between 1957 and 1992 to about $0.03 \mathrm{ft} / \mathrm{yr}$ from 1992 to 2007. Since 1992, about 0.5 feet of subsidence has been observed. If current groundwater trends extend into the future, in is anticipated that subsidence rates will continue to decline. If groundwater trends reverse and groundwater levels begin to fal in the future, it is anticipated that subsidence rates would increase, possibly significantly i groundwater withdrawal is equally significant.

InSAR results in the study area were variable due to significant decorrelation from agricultural activity. Useful data in the vicinity of Luke Air Force Base was utilized for general subsidence trends. As agricultural land in the study area is converted to residential or other municipal uses decorrelation is decreasing with time. The most recent scene dated from July 2005 to August 2006 provides some useful date near the north end of Project and it is anticipated that future development will reduce decorrelation

8.0 RECOMMENDATIONS

It is recommended that the District monitor groundwater trends of key wells in the area of the proposed Reems Road Basin and Channel for a radius extending five miles from the proposed basin location. The groundwater monitoring can be achieved through the use of on-line resources provided by ADWR. Well B-03-01 29BCC (Figure 5) is located in the vicinity of the planned basin and the District should develop and evaluate groundwater trends annually for the life of the project as well as other wells within the 5 -mile radius.

In addition to monitoring groundwater elevations, it is recommended that the District directly monitor subsidence trends through the use of periodic surveys of the channel and basin profiles, and the use of InSAR. As discussed in Section 7.0, it is anticipated that as development in the study area continues decorrelation issues with the InSAR data will be reduced
Contract FCD 2006C
Maricoopa County, Arizona
AMEC Job No 7-117-001074

Subsidence monitoring through surveying techniques can be achieved through the use of dedicated Global Positioning System (GPS) monuments installed at half-mile centers along profile of the channel and basin. The GPS monuments should be designed to be permanent and vandal-resistant. Initially, a baseline for the data should be established by monitoring annually for three years. After the initial baseline is established the frequency of monitoring can be adjusted to best match the data trends.

Consideration of ability of the planned channel to accommodate future subsidence should be given. Generally, earthen channels are more easily adjusted in the event that the channel grade changes due to subsidence, though drop structures could be added as needed for a lined channel. If channel grade is increased, the resulting increase in flow velocity may indicate that a lined channel will function better. In areas where channel grade could decrease, consideration of additional freeboard should be given to accommodate any reduction in capacity of the channel and the ability of the basin to drain.

 Reems Road Chanel and Bas

Figure 6
Water Level Data Trends

AMEC Job No. .7.117-001074

Figure 11

Water Level Data Trends near Sarival Ave. and Northern Ave
With Measured Subsidence along Reems Road at Peoria Ave. and Olive Ave.

EARTH FISSURE INVESTIGATION REPORT
MCMICKEN DAM
WORK ASSIGNMENT NOS. 4 \& 5
CONTRACT FCD 2000C006 MARICOPA COUNTY, ARIZONA

SUBMITTED TO:

FLOOD CONTROL DISTRICT OF MARICOPA COUNTY MARICOPA COUNTY, ARIZONA

SUBMITTED BY:
AMEC EARTH \& ENVIRONMENTAL, INC. PHOENIX, ARIZONA

11 APRIL, 2003
AMEC JOB NO. 0-117-001122
Maricopa County, Arizona
AMEC Job No. $0-117-001122$
11 April, 2003

TABLE OF CONTENTS

Earth Fissure Investigation Report

McMicken Dam
ment Nos. 4 \& 5
Contract FCD 2000C006
Maricopa County, Arizona

Submitted to:

Flood Control District of Maricopa County Maricopa County, Arizona

AMEC Earth \& Environmental, Inc.
Phoenix, Arizona

11 April, 2003

AMEC Job No. 0-117-001122

Page
1.0 INTRODUCTION
 2.1 Study Areas.
.
. 2. Historical Perspective
3.0 INVESTIGATIVE APPROACH
3.1 Review and Compilation of Existing Data
3.2 Evaluation of Selected Conventional Aerial Photography

Avaluation of Selected Conventional Aerial Photography
3.4 Synthetic-Aperture Radar Interferometry (InSAR) Ground Reconnaissance ... 6 Test Pit Investigation of Fissure Complex Seismic Refraction Surveys
3.8 Test Trenching Program
... 7
Basin Geophysical Characterization
3.9.1 Relative Gravity Surveys
3.9.2 Resistivity Soundings.
3.9.2 Resistivity Soundings .. 10

Refraction Microtremor (ReMi) Shear Wave (S-wave) Seismic Surveys
(S..................................... 11
4.0 GEOLOGICAL SETTING

GEOHYDROLOGICAL CHARACTERISICS .. 15
6.0 GROUND SUBSIDENCE DUE TO GROUNDWATER WITHDRAWAL 16 6.1 Overview of Subsidence Process ... 16
7.0 SUBSIDENCE-INDUCED EARTH FISSURING
7.1 Overview of Fissuring Phenomenon

72 Earth Fissures in Western Salt River Valley .. 21
73 Discovery of the Fenne Knoll Fissures .. 22
7.4 Surface Observations
7.5 Seismic Refraction Signature of Discontinuities

7.7 Characteristics of Fissures and Discontinuities near Upstream Dam Toe 26
8.0 INTERPRETATION OF GEOLOGICAL CHARACTERISTICS
8.1 Geophysical Results
.1. Results of Gravity Surveys.....
.1.2 Resuls of 1-Dimension Shear Wave Profling
(Refraction Microtremor)
. 28
2 Geological Interpretation and Coundings ... 29
9.0 LOCAL GEOTECHNICAL PROFILE.. 30

Work Assignment Nos. 4 \& 5
Contract FCD 2000 C006
Maricopa County, Arizona
AMEC Job No. 0-117-001122
11 April, 2003

ABLE OF CONTENTS

,
10.0 EARTH FISSURING HAZARD AND RISK .. 34 $\begin{array}{r}34 \\ . \\ \hline 6\end{array}$
11.0 CONCLUSIONS AND RECOMMENDATIONS ... 36
11.1 Monitoring ... 38

11.4 Geotechnical Considerations .39
. .39
REFERENCES ... 41

LIST OF FIGURES

Figure 1 - Vicinity Map
Regional Geology
Bouguer Gravity Anomalies
Wells Registered with ADWR
Selected Wells near Southern Terminus of McMicken Dam
Figure 6- Hydrographs of Wells near the Southern Terminus of McMicken Dam
Figure 7- Hydrographs of Wells near the Southern Terminus of McMicken Dam
Subsidence Data for 1947 to 2002
Annual Subsidence Rates
McMicken Dam Crest Settlement
Annual Subsidence Rates Along McMicken Dam Crest
Interferogram - December 30, 1996 - November 30, 1998
Figure 14 - Interferogram
Figure 15 - Interferaram - March 10, 1997 - Oct
Figure 16 - South Study Area Conceptual Geologic Profile (Perpendicular to Sta. $55+00$
Figure 17 - South Study Area Conceptual Geologic Profile (Sta. $45+00$ to 120+00)
Figure 18 - Subsufface Seismic Velocity Profile Downstream at Dam Stations $49+00$ to $54+00$
Subsurface Seismic Velocity Profile Upstream at Dam Stations 54+00 to 61+00
Subsurface Seismic Velocity Profile Upstream at Dam Stations 60+00 to 66+00
Subsurface Seismic Velocity Profile Downstream at Dam Stations $65+00$ to $71+00$
Residual Gravity Contours \& Interferogram (12/30/96-12/20/99)
Residual Gravit Contours \& interferogram (12/30/96-1/30/98)
Figure 24 - Residual Gravity Contours \& Interferogram (3/10/97-10/30/00)
Figure 25 - Residual Gravity Contours \& Interferogram (6/8/98-5/8/00)

Flood Control District of Maricopa County
Farth Fissure Investigation Report

McMicken Dam

Work Assignment Nos. 4 \&
Contract FCD 2000C006
Maricopa County, Arizona
AMEC Job No. 0-117-001122
11 April, 2003

TABLE OF CONTENTS

LIST OF FIGURES (CONT.)

Figure 26 - Photogeologic Interpretation of North Study Area
Figure 27 - \quad Residual Gravity Contours \& Interferogram (12/30/96-12/20/99) Figure 28. North Study Area Conceptual Geologic Profile (Sta. 268+00 to 305+00) Earth Fissure Risk Zones

LIST OF TABLES
Table 1- ADWR Well Data

LIST OF APPENDICES

Appendix A - Site Plans (Sheets 1 through 4)
Appendix B - Selected Photographs
Appendix C - Seismic Refraction Results \& Soil Discontinuity Interpretation
D - Test Pit Log
Appendix E - Test Trench Logs (Sheets 5 through 11)
Appendix F - Test Trench Backfill Compaction Test Data
Appendix G - SHB Drill Logs
Appendix H - South Study Area Gravity Data
Appendix I - South Study Area Resistivity Results
Appendix J - South Study Area Microtremor Result
Appendix K - North Study Area Geophysical Results (Sheet 12)

1.0 INTRODUCTION

This report presents the findings of an investigation designed to detect and characterize the distribution and nature of earth fissures located in the vicinity of the southernmost six-mile portion of McMicken Dam. McMicken Dam is operated and maintained by the Flood Control District of Maricopa Count, herein referred to as the District. The District has implemented a Structures Assessment Program as a means of evaluating and subsequently managing the various risks associated with the operation of flood control facilities under their jurisdiction Phase II of this process is an outgrowth of an initial stage involving both problem identification and risk assessment. The overall goal of Phase II, of which this investigation is a part, is to gain a further understanding of those site conditions that could influence facility performance, and subsequently formulate corrective actions through focused analysis and design development.

Earlier studies at McMicken Dam in 1982 detected the presence of earth fissures about 600 feet east of Station 63+50 (SHB, 1982). As indicated by the subsidence history of the McMicken embankment crest and other lines of evidence, these fissures are the result of horizontal strains in the alluvial basin sediments induced by the large-scale ground subsidence caused by the consolidation of the alluvial groundwater aquifer upon dewatering. This mining of the alluvia aquifer began in the early $20^{\text {th }}$ century with agricultural development of the West Valley. This development included the installation and use of many high-capacity irrigation wells. These fissures, named the Fenne Knoll Fissures in 1982, are typical of many earth fissures known to occur in several locations throughout south-central Arizona. They are at the fringe of the basin and associated with nearby protrusions of competent bedrock extending through what is likely a relatively thin mantle of unconsolidated sediments.

This evaluation was designed to supplement and update previous investigations performed by the District regarding the risk of earth fissures affecting the integrity of McMicken Dam. The work occurred in three phases. The initial phase synthesized pertinent remote sensing geodetic, geological, geophysical and geohydrological data related to ground subsidence and earth fissuring in the vicinity of the Fenne Knoll Fissures. This information then became the basis for acquiring additional field data related to the nature and extent of the fissure complex. The first phase culminated with the acquisition and interpretation of newly acquired low-sunangle (LSA) aerial photography, ground mapping of the fissure traces, and the excavation of test pits across the identified features. After confirming the near proximity of earth fissures to the McMicken Dam embankment, the investigation was extended to include the use of shallow seismic refraction surveys to search for hidden discontinuities, and trenching to expose and

References are listed at the end of this report

Flood Control District of Maricopa County
Earth Fissure Investigation Report
McMicken Dam
Work Assignment Nos. 4 \&
Contract FCD 2000C006
Maricopa County, Arizona
AMEC Job No 0.117-00112 11 April. 2003
characterize suspected fissures approaching the embankment. The first two phases of this investigation were initiated on August 20, 2001 after receipt of authorization from the District to proceed on Work Assignment 4 of Contract No. 2000C006

It was recognized at the completion of the first two tasks summarized above that the investigation would benefit significantly from the acquisition of additional remote sensing and subsurface data. A surface geophysical approach was selected as an efficient means of acquiring data regarding the variable thickness of the underlying alluvial materials, and the general properties of these unconsolidated deposits. In addition, a review of remote sensing data (interferograms) indicated the occurrence of significant differential subsidence, and in turn a possible fissuring risk, in the vicinity of Station 290+00. This region was included as the North Study Area in the surface geophysical field program, which included micro-gravity surveys, onedimensional shear wave profiling (refraction microtremor), and resistivity soundings. Additional LSA aerial photography of the North Study Area also was acquired and analyzed. This final phase of the evaluation was authorized by the District on October 1, 2002 as Assignment 5 of the contract.
2.0 REGIONS OF INVESTIGATION AND PROJECT COMPONENTS

2.1 Study Areas

Regarding the issue of ground subsidence, dam safety concerns relate to the potential for detrimental changes in reservoir capacity and dam freeboard. Earth fissures through the dam cross sections and dam foundation soil profiles create the risk of piping failures of the embankment. Coupled with the hydrogeological characteristics of the region, these issues dictated the extent of the study areas, the types of data deemed relevant, and the nature of supporting site-specific investigations.

In consideration of the contrast between the scale of available regional information and the extent of project-specific investigative activities completed for this evaluation, three study areas were delineated. The first of these areas is regional in scale, encompassing the entire alignment of McMicken Dam, and covering about 50 square miles east and northeast of the White Tank Mountains (Figure 1). Small-scale data, such as the location of registered wells and Bouger gravity data, were acquired and synthesized within this regional study area. A second, smaller study area was established for the site-specific investigations that followed the initial compilation of available data. The South Study Area is approximately one mile wide, straddling the McMicken Dam embankment, and extending from the dam's southern terminus north to Station $120+00$. A vast majority of the geophysical and subsurface exploration completed for this study occurred within this smaller study area. The third study area (North Study Area)

11 April, 2003

- Alluvial Unit A-2: Latest to Late Pleistocene Alluvial Deposits (M2) - This unit is locally comprised of moderately cemented (Stage II) clayey to silty sands, interbedded with silty to sandy gravels. These deposits usually display poor soil development and some rubification, with a granular texture. In trench exposures, the unit extended to the full depth of investigation (10 feet) at three locations
- Alluvial Unit A-1: Mid Pleistocene Alluvial Deposits (M1b) - A vast majority of shallow exposures of this unit are comprised of strongly cemented (Stage II+ to IV) clastic deposits of sand, gravel and cobbles, often containing boulders of considerable size. Paleo-soil horizons can be observed at the top of the unit, and excavated exposures often reveal horizons that are most appropriately described as soft rock. In contrast, unconsolidated sandy beds are present, some with relatively high concentrations of calcium carbonate, but poor cementation. The coarser deposits of the unit are generally clast-supported and slightly imbricated
5.0 GEOHYDROLOGICAL CHARACTERISTICS

Groundwater contained within the basin fill deposits east and north of McMicken Dam is a significant and highly exploited resource, used for domestic, municipal, industrial and agricultural purposes. As depicted in Figure 4, over 350 wells registered with the ADWR are present within the regional study area. These wells range from small domestic installations of limited yield, to large irrigation wells capable of discharging several thousand gallons per minute. Of 40 registered wells in the vicinity of the southern half of McMicken Dam (Figure 5), 30 have reported depths between 534 and 1,533 feet, with an average penetration about 995 feet (Table 1).

Groundwater withdrawn from the basin deposits near McMicken Dam largely originates from the UAU, with its thickness estimated by the BurRec (1976) to be locally about 600 to 650 feet, and current groundwater levels at depths from approximately 400 to 500 feet. Prior to development in 1923, nearby groundwater levels were likely at elevations of about 1060 to 1100 feet above MSL, translating to depths of about 200 to 250 feet (BurRec, 1976). This decay in groundwater levels has prompted the deepening of many wells to depths in excess of 1000 feet to tap the resources of the LAU. As with most of the WSRV, the LAU appears to be separated from the UAU by fine-grained, low-permeability deposits within the MFU, although the BurRec (1976) maps the westward, lateral limit of the MFU in the near vicinity of McMicken Dam

Flood Control District of Maricopa County
Flood Control District of Maricopa
McMicken Dam
Work Assignment Nos. 4 \& 5
Work Assignment Nos. 4
Contract FCD 2000 C06
Maricopa County, Arizona
AMEC Job No. 0-117-001122
11 April، 2003
As depicted in Figures 6 and 7, recorded groundwater levels in the vicinity of McMicken Dam have significantly declined since the late 1930's. Of the 10 records selected, water levels in five have been measured since the 1940's or earlier. Within these five wells, the average rate of groundwater decline is about 4.5 feet per year. However, a large portion of this decline occurred before the mid-1960's, with most levels currently static or in slight recovery

As discussed in more detail in Section 6.0, a significant influence upon the distribution and magnitude of ground subsidence along the western fringe of the WSRV is the lithology of the basin sediments. Both the geohydrological and compaction responses to dewatering are largely controlled by the particle-size distribution of the sediments, which in turn dictates the permeability and consolidation characteristics of the material. Stulik and Twenter (1964) identified the existence of fine-grained sediments in the basin profile about 1 to $11 / 2$ miles east of the southern three miles of the McMicken embankment. Their interpretation was based on well logs to a datum of about 700 feet above MSL, or about 600 feet below ground in the local area. This region is offset about 1 mile to the east of an area of pronounced subsidence, as indicated by recent interferometric coverage.
6.0 GROUND SUBSIDENCE DUE TO GROUNDWATER WITHDRAWAL
6.1 Overview of Subsidence Process

Ground subsidence due to groundwater withdrawal in alluvial basins of the Southwest is a process of compression and consolidation of the deep sediments. Through geologic time, groundwater levels in the alluvial basin aquifer were at or near the ground surface, often at elevations controlled by the drainages traversing the valley floors. Activities of man have changed and are continuing to affect groundwater levels in many of these basins. Damming of rivers in mountainous portions of watersheds has reduced available recharge. Groundwater pumping, primarily for agricultural, industrial and municipal use, has significantly mined groundwater in many areas. In modern times, groundwater level declines up to several hundred feet due to pumping have occurred in many basins in Arizona and the Southwest.

Lowering the groundwater elevation in alluvial basin sediments results in an increase in effective stress. This change in effective stress is an increase in loading on the material column. If that column consists of granular materials, typically sands and gravels, compression of the material below the initial water level takes place rapidly. Until granular particle contact points are changed by the compression, at least some of the compression can be recovered elastically if water levels rise and effective stresses fall. Compression that results from particle slipping or crushing will have much less elastic rebound. If the material column contains a significant fraction of fine-grained materials, typically clays, consolidation of the material below the initial water level takes place slowly. The time frame of the consolidation is a function of the
permeability of the material, with lower permeability increasing consolidation time. Consolidation rate is also a function of the distance to higher permeability zones that can relieve the excess pore pressure by draining water from the clayey materials. Greater distances to such permeable drainage zones increase consolidation time.

Soils are much less compressible when reloaded up to the preconsolidation pressure than when loaded above the preconsolidation pressure (Lambe and Whitman, 1969). In many basins, the ground surface has been higher (relative to underlying bedrock) than at the present time due to erosion. The eroded alluvium preconsolidated the basin profile. Increases in effective stress less than the preconsolidation stress represented by the now eroded alluvium would result in minor subsidence. Once increases in effective stress due to a declining groundwater table exceed the preconsolidation stress, further subsidence will occur at a much greater rate, representing normal consolidation of the alluvial basin materials.

Where differential rates and magnitudes of subsidence occur over relatively short distances, horizontal strains can become sufficient to cause earth fissuring. Jachens and Holzer (1979, 1982) evaluated the threshold tensile strains for fissuring based on studies of the Eloy-Casa Grande area of central Arizona. These studies included precise leveling and geophysical surveys, and comparison with other cases of fissuring due to groundwater withdrawal. Jachens and Holzer (1982) concluded that most fissuring occurred at horizontal tensile strains in the range of 0.02 to 0.06 percent. This compares with the threshold strains for cracking of compacted clay zones in dam embankments (or compacted clay liners) of about 0.1 to 0.3 percent (Leonards and Narain, 1963; Covarrubais, 1969).

Case studies of other areas of the Southwest can provide insight into the issues of subsidence and earth fissuring relevant to McMicken Dam. Holzer (1981) calculated values of subsidence per unit water level decline for six areas, including the Eloy-Picacho area in Arizona. He found subsidence per unit water level declines of 0.037 to 0.053 for groundwater declines that exceeded the preconsolidation stress of the aquifer formation. Some of these areas involve alluvium of great depth.

Subsidence in the WSRV in the vicinity of Luke Air Force Base has been as great as 15 feet or more in response to overpumping of groundwater and lowering of the groundwater table several hundred feet where the alluvial basin is thousands of feet deep (Schumann, 1992). Subsidence up to 7 feet has been documented in Paradise Valley, Arizona in response to groundwater pumping in that area. An earth fissure associated with that subsidence and the presence of relatively shallow bedrock (depth less than 1,000 feet) buried within the alluvium has been identified (Larson and Péwé, 1986).

An earth fissure and subsidence monitoring program is in place at the Apache Generating Station near Cochise, Arizona (AMEC, 2001). Subsidence typically ranging to in excess of 2 to 3 feet at the facility in the last 25 years has been documented (AGRA, 1999). An earth fissure was discovered on facility property in 1993, and has been subsequently monitored using tape extensometer, optical leveling and precise geodetic measurements. The generating station is located near the southwest margin of the Willcox Playa. It is a closed alluvial basin with no through-flowing drainages and no significant erosion of the basin alluvial material thickness. Groundwater elevations have dropped more than 100 feet, and are presently dropping at a rate of about 4 to 5 feet per year. Depth to bedrock under the facility is about 1,000 to 1,100 feet as verified by geophysical logs of deep exploration wells for water production (SHB AGRA, 1993).

Helm (1984) presents a simplified computational technique applicable to estimation of settlement due to groundwater withdrawal. The method considers the depth of compressible alluvium over bedrock, amount of groundwater decline and consequent increases in effective stress, and the average Young's modulus (E) of the compressible layers. The E value represents both the shor-term, essentially elastic component of settlement and the long-term component of settlement due to slow drainage and consolidation of the more plastic clays. Data on evaluation of case histories of subsidence in similar basins is available to assist in estimating E values (Bell, 1981; Holzer, 1981; Helm, 1984).

The Helm method was used to analyze subsidence at the Apache Generating Station (SHB AGRA, 1993). In estimating average values, a value of E of 6 kips per square inch (ksi) was estimated for clay layers based on data for settlement of upper lakebed clays in the Las Vegas Basin (Bell, 1981). A value of E of 24 ksi was estimated for granular layers. The relative amount of silt and clay, and sand and gravel, in each area around the generating station was estimated, with average E values of about 20 ksi in the more coarser grained alluvium, and average E values of about 10 ksi in the more clayey part of the alluvium. This method was then applied for the approximate depth to bedrock of 1,000 feet. The analysis indicated settlement of 2 feet for an approximate E value of 10 ksi and a total groundwater decline of 120 feet. Consolidation testing of shallow clays at the site indicated that the alluvium was normally consolidated.

6.2 Subsidence History in Study Area

Survey elevation data sets documenting subsidence in the study area include NGS data along the roughly north-south oriented Beardsley Canal and along the crest of McMicken Dam. NGS leveling data were collected in 1947-48, 1967 and 1981. Some points have been reoccupied more recently, including elevation measurements in autumn 2002. Elevation surveys of the crest of McMicken Dam were performed in 1955 following construction, in 1981 before reconstruction, and in 1985, 1998 and 2001. InSAR interferometry imagery has also
documented relative elevation changes throughout the study area for several recent time periods. The InSAR interferogram for the period December 1996 through December 1999 (Figure 13) is especially useful.

Subsidence and annual subsidence rates on a south to north profile from Camelback Road to about Union Hills Road along the Beardsley Canal are summarized in Figures 8 and 9. NGS survey monuments are present at typical 1 -mile intervals along the canal alignment. Comparison of elevation measurements in 1947-48, 1967 and 1981 indicates that the total subsidence between 1947-48 and 1981 ranged from about 2 to 3 feet from Camelback Road to Suive Avenue and bout 3 to 4 feet from Peoria Avenue to Bell Road. Where McMick Road to Olive Avenue, and about 3 to 4 feet from Peora Avenue to Bell Road. Where McMicken Dam and 1982 ranged from about 2.5 to 4 feet, and was typically about 3 to 3.5 feet. Elevations of three of the NGS points resurveyed by ADWR in 2002 indicate that less than 1 foot of subsidence has occurred at those points since 1981.

Subsidence rates between 1947 and 1967 ranged from about 1.5 to 3 cm per year ($\mathrm{cm} / \mathrm{yr}$), and were greatest at Camelback Road (about $2.9 \mathrm{~cm} / \mathrm{yr}$) and Glendale Avenue (about $2.7 \mathrm{~cm} / \mathrm{yr}$). Subsidence rates between 1967 to 1981 were significantly reduced to less than $1.3 \mathrm{~cm} / \mathrm{yr}$ or less along the southern portion of the profile. Between Peoria Avenue and Bell Road, subsidence rates were about 1.3 to $2.0 \mathrm{~cm} / \mathrm{yr}$. From 1981 to 2002, subsidence rates at measured monuments north of Olive Avenue varied from about 0.5 to $1 \mathrm{~cm} / \mathrm{yr}$. InSAR interferometry between 1996 and 1999 indicates that subsidence during that time may have largely ceased south of Bethany Home Road, and was about $0.5 \mathrm{~cm} / \mathrm{yr}$ at Glendale Avenue, and about $0.8 \mathrm{~cm} / \mathrm{yr}$ at Peoria Avenue. Subsidence rates along other parts of the profile were about 0.3 to $0.5 \mathrm{~cm} / \mathrm{yr}$.

Subsidence and annual subsidence rates, based on District surveys along the McMicken Dam crest between Stations $40+00$ and $240+00$ are summarized in Figures 10 and 11. Crest elevations were measured in 1955, in 1981 before reconstruction, and in 1985, 1998 and 2001. Comparison of elevation measurements between 1955 and 1982 indicates settlements of about 2.5 to 3.5 feet north of Station $100+00$ with a maximum 4.0 feet of settlement at about Station $118+00$. Settlement decrese south of Station $100+00$ and became about zero Station $70+00$. The rise of the crest by about 1 foot at Station $60+00$ is unlikely and may be related to a survey error or placement of aggregate base along the crest of the dam by District maintenance personnel. Settlement between 1985 and 2001 ranged from about 0.4 feet at the southern end of the dam, to 0.9 feet at about Station 110+00

Settlement rates between 1955 and 1982 ranged from about $0 \mathrm{~cm} / \mathrm{yr}$ to about 3 to $4 \mathrm{~cm} / \mathrm{yr}$ north of Station $100+00$. Subsidence rates had substantially decreased by the 1980's. Between 1985 and 1991, the relative subsidence rate across the dam ranged from about $0 \mathrm{~cm} / \mathrm{yr}$ at Station $40+00$ up to about $1.2 \mathrm{~cm} / \mathrm{yr}$ at Station $105+00$. North of Station $105+00$, the subsidence rate ranged from about 0.8 to $1.1 \mathrm{~cm} / \mathrm{yr}$. The subsidence rate between 1991 and 1998 dropped to about half of the 1985 to 1991 rate. InSAR interferometry results for 1996 to 1999 were slightly smaller but closely matched the 1991 to 1998 subsidence rates. Recent subsidence rates between 1998 and 2001 are generally similar to the 1990's rates but appear erratic.

Several observations can be made from the available subsidence survey and groundwater elevation data. Groundwater withdrawal and falling water levels in the study area are believed to be the cause of the documented subsidence. Groundwater declines in the study area between about 1940 and 1982 were typically in excess of 200 feet. Subsidence rates in the study were at a maximum at that time. Water levels have been generally stable since the 1980's. Subsidence rates have decayed in that time, and in some areas, appear to have nearly stopped. Reliable subsidence data has not been identified for time periods before the NGS surveys beginning in the 1940's. It does appear that groundwater elevations dropped significantly before that time.

Preconsolidation conditions, if they existed within the basin alluvium along the mountain front, would have minimized subsidence in the early years of groundwater withdrawal. The current largest magnitude subsidence activity indicated by InSAR interferometry appears to occur in fairly narrow zones or cones. These zones are consistent with the larger subsidence rates documented at Monuments H265 at Glendale Avenue and L265 at Peoria Avenue along the Beardsley Canal. The subsidence in these locales does not appear to be related to pumping wells in the area. Furthermore, based on the available interferometry subsidence data, the zones of enhanced subsidence appear to have typical radiuses of about one-half mile.

Characterization of the deeper alluvium in which compression and consolidation induced subsidence occurs is limited primarily to regional gravity surveys and (questionable quality) well driller's logs at some wells in the area. Results from gravity surveys, along with the limited number of deep exploration wells, have been used to characterize general bedrock elevations in the alluvial basin (Cooley, 1973; Oppenheimer and Sumner, 1980). This generalized mapping indicates that alluvium is greater than 1,200 feet thick along the Beardsley Canal, may be about 400 to 800 feet deep at the southern terminus of McMicken Dam, and rapidly increases in thickness to the south. It does not provide interpreted detail of probable bedrock profiles along McMicken Dam relatively close to the mountain front.

7.0 SUBSIDENCE-INDUCED EARTH FISSURING

7.1 Overview of Fissuring Phenomenon

The first recorded observance of earth fissuring in Arizona was in 1927 near the town of Picacho well south of the study area (Leonard, 1929). Since that time, eleven subsiding Central Arizona regions within the Basin and Range province have been identified, all with suspected or verified earth fissures (Fellows, 1999; Poland 1981; Holzer and Davis, 1981). Subsequent benchmark studies were undertaken to evaluate the distribution and mechanisms of fissuring (Holzer, 1978 and 1980; Jachens and Holzer, 1979; Laney, Raymond and Winikkar, 1978; Larson and Péwé, 1986).

Earth fissures in areas of large groundwater decline in alluvial aquifers are probably associated with a process termed generalized differential compaction by Carpenter (1993). Three mechanisms are likely at play to ultimately form fissures. These mechanisims include bending of a plate above a horizontal discontinuity in compressibility (Lee and Shen, 1969), dislocation theory representing a tensile crack (Carpenter, 1993), and vertical propagation of tensile strain caused by draping of the alluvium over a horizontal discontinuity in compressibility (Haneberg, 1992). Due to these probable mechanisms, fissures commonly develop along the perimeter of subsiding basins, often in apparent association with buried or protruding bedrock highs, suspected mountain-front faults, or distinct facies changes in the alluvial section.

Fissures often manifest at the surface as subtle hairline cracks, or as alignments of small potholes, modified by burrowing animals. Overland flow is then intercepted, and the surface manifestation of the fissure grows as piping and caving occur during runoff events. The shallow, weakly cemented Holocene surface soils often erode quickly, providing ample sediments to the fissure during precipitation events and ensuing runoff capture. The underlying Late Pleistocene soils are often more cemented and resistant to erosion, with ledges formed at the Holocene/Late Pleistocene contact

Due to the potential detrimental effects of fissuring upon safe operation of the Central Arizona Project (CAP), several studies of the fissuring process were performed as a joint effort by the U.S. Bureau of Reclamation and the U.S. Geological Survey (USGS). The results of these investigations are largely presented in a series of unpublished, draft documents retrieved from CAP archives. The Hawk Rock area near Apache Junction was the focus of considerable study during the CAP program. The effort included mapping of the fissure traces present, a ponding test to measure inflows and fissure erosion, surface and borehole geophysics, exploratory drilling of the basin alluvium and a two-year geodetic monitoring program (Raymond, 1985). The CAP also conducted fissure inflow testing adjacent to the Picacho Pumping Plant near

Flood Control District of Maricopa County
Earth Fissure Investigation Report
McMicken Dam
Work Assignment Nos. 4 \& 5
Contract FCD 2000 C.
Maricopa County. Arizo
AMEC Job No. 0.-117-001122
11 April, 2003

Eloy, Arizona during April of 1988. Detailed summaries of the findings of these field programs are presented in a recent report prepared as part of the District's ongoing Structures Assessment Program (AMEC, 2002)

7.2 Earth Fissures in Western Salt River Valley

Robinson and Peterson (1962) were the first to publish any reference to earth cracks within the WSRV. They conjectured that the cracks found around what was later identified as the Luke salt body may have been caused by dewatering and subsequent compaction of the basin deposits. They further associated the resulting subsidence as the probable cause for the collapse of casings in nearby wells. Eaton and others (1972) identified more fissures around the salt body, and presented an alternate concept in regards to their origin. They postulated that the buoyant rise of the salt body could have also contributed to development of fissures. The occurrence of fissures in the vicinity of Luke Air Force Base was further documented by Laney and others (1978), and by Schumann (1992). These fissures around the flank and northwest of the salt body are well removed from McMicken Dam, being some 4 to 8 miles southeast of the southern terminus of the structure

7.3 Discovery of the Fenne Knoll Fissures

For the purpose of evaluating the cause of embankment cracking, the District performed extensive geotechnical evaluations of McMicken Dam in 1981-82. These investigations culminated in a July 28, 1982 report by Sergent, Hauskins and Beckwith Consulting Geotechnical Engineers (SHB, 1982). This report summarizes the original methods employed to search for earth fissures in the vicinity of McMicken Dam, and characterizes fissures discovered near the southern terminus of the McMicken embankment. These fissures were named the Fenne Knoll Fissures by the authors of the SHB report.

The initial earth fissure studies at McMicken Dam employed both low-sun-angle aerial reconnaissance and photography to search for fissures. Subsequent to a photogeologic interpretation of the imagery, trenching of several features was performed. What is now known as the Fenne Knoll Fissures were confirmed by this trenching. As depicted on Sheet 1 (Appendix A), two fissure segments were defined, each segment being about 750 feet long. The closest distance between the surficial expression of the fissures and the downstream toe of McMicken Dam in 1982 was about 650 feet, due east of Station 63+50.

The original trenching of the Fenne Knoll Fissures revealed near-vertical discontinuities with an uneroded width of about $1 / 4$ to $1 / 2$ inch. Some of these trenches extended to a depth of 20 feet, with the fissures often observable throughout the excavated interval. Considerable fissure erosion, rodent effects and infilling with dark soil were also observed.

7.4 Surface Observations

The recent year-2001 LSA photography revealed the presence of surface features indicative of earth fissuring at locations north and west of the old traces of the Fenne Knoll Fissures. The closest approach of these features (aligned potholes and small depressions) to the embankment was about 125 feet, east of Station $58+00$ near Test Pit TP-1. The pattern of the recent features indicates the presence of three newly discovered, near-parallel fissures, spaced about 200 to 250 feet apart and west of the fissures discovered in 1981-82

In observing the erosional features of the Fenne Knoll Fissures in comparison with thei appearance 20 years ago, the lack of large fissure gullies is pronounced. Segments of the old fissures clearly visible both on the original LSA photography, and previously on the ground are currently concealed, with almost no surficial evidence of the fissure now present. Other portions of the fissure complex that contained small gullies have changed little over the 20 -year period (see photos in Appendix B). McMicken Dam intercepts all the small arroyos that cross the fissure complex. The lack of appreciable runoff may be responsible for the slow erosiona development of the fissures.

In addition to the distinctive alignment of features in the LSA imagery indicative of earth fissures at the surface, other more subtle lineaments are discernable in the aerial photography. As depicted on Sheets 1 through 3, these linear features are caused by the alignment and contrasting health of the desert vegetation, tonal contrasts in the desert floor likely due to the effects of burrowing animals, and the orientation of tributary arroyos. The drainage alignments are discordant to the dendritic pattern in the alluvial fan surface. All these features are probable indicators of discontinuities in the subsurface, and many have been observed extending along the projection of known fissures. It is possible that the discordant drainages are expressions of prehistoric fissures, previously eroded into fissure gullies and subsequently plugged, with the external drainage then reestablished

As depicted on Sheet 4, the orientations of the vegetation lineaments appear to be related to the configuration of local ground subsidence, and the distribution of known earth fissures. As discussed in more detail in the report sections to follow, these lineaments may be an expression of subtle discontinuities in the shallow cemented soil profile. The genesis of these discontinuities is not fully understood, but the apparent relationship between their distribution and that of ground subsidence offers some insight into their origin. Whether tectonically induced or the result of prehistoric differential consolidation of the basin alluvium, it appears that the lineaments are an expression of ancient horizontal strain of sufficient magnitude to produce brittle fracture in the cemented soil horizon. These discontinuities likely enhance root

Flood Control District of Maricopa County
Flood Control District of Maricopa
Earth Fissure Investigation Report
McMicken Dam
Work Assignment Nos. 4 \&
Contract FCD 2000 CO 06
Maricopa dounty, Arizona
AME Job No. $0-117-001122$
11 April, 2003
The interpreted underlying horizon throughout the seismic profile consists of materials with pwave velocities greater than $2,500 \mathrm{f} / \mathrm{s}$, and more typically in the range of 3,000 to $4,600 \mathrm{f} / \mathrm{s}$, Material p-wave velocities in this range are consistent with strongly cemented Mid-Pleistocene alluvial deposits (Alluvial Unit A-1). The interpreted top of this horizon ranges in depth from a few feet, such as in parts of Lines 25,36,39,47 and 56, up to about 15 to 20 feet in parts of Lines 37 and 44 .

10.0 EARTH FISSURING HAZARD AND RISK

Based on the findings of this investigation, there exists a high probability that earth fissures are present within the shallow foundation soils under McMicken Dam between Stations $58+00$ and $65+00$. Two fissures zones are well defined, one encountered in Test Trench TT-102 and Test Pits TP-6, -9 and -10 , and one in Test Trench TT-102 and Test Pits TP-1, -2 and 3. Additional surface indications of more fissuring have recently been detected near the downstream toe of the dam on the north-south projection of the fissure encountered in Test Pits TP-4 and -5, between the two aforementioned fissure trends.

For purposes of this discussion, the following are offered as definitions of the hazard classifications applied below

High Hazard - Distinct possibility that earth fissures are present in the alluvial foundation soils under the dam. Multiple lines of evidence are present, including close proximity of documented fissures trending towards the embankment. Indications also include significant density of seismic refraction anomalies and photo-lineaments, some of which are coincidental or parallel to trends of known fissures. The occurrence of fissures also correlates with the suspected region of considerable horizontal strain, as indicated by the settlement profile along the dam crest and interferometry. The region of high hazard is further defined by subsurface conditions that are conducive to the development of fissures, including shallow and variable alluvial thickness and proximity to the suspected boundary between more rigid clastic sediments to the west, and finegrained, more compressible deposits to the east

Moderate Hazard - Region where moderate density of photo-lineaments and reduced number of seismic anomalies have been detected. Settlement profiles and interferometry indicate the possibility of tensile strains. The probability of open fissures present in close proximity to the base of the embankment is low, but continued strain could produce future fissuring to the surface along photo-lineaments

Low Hazard - Portion of dam alignment lacking in significant numbers of intersecting photolineaments and seismic anomalies, coupled with interferometric and crest settlement profile data indicating the lack of appreciable horizontal strain.

Flood Control District of Maricopa Count
Earth Fissure Investigation Repor
Work Assignmen
Contract FCD 200 Nos. 4 \& 5
Maricopa County, Arizo
AMEC Job No. 0-117-001122
11 April, 2003
In view of the photo lineaments present, the frequency and pattern of seismic anomalies, direct field evidence regarding the location of known fissures, and the geodetic, geophysical and interferometric data, the earth fissuring risk for that portion of the embankment corridor under study can be zoned. The following summarizes a recommended hazard zonation for the study region, with that portion within the South Study Area depicted on Figure 29

South Study Area

- 40+00-56+00 (hazard - low)

1. Short segments of arroyos located east and south of dam are skewed to normal dendritic pattern, indicating presence of ancient fissures.
2. Low density of photo lineaments.
3. Could be region now dormant, in closer proximity to exposed bedrock to the west, with dewatered, shallow sediments in the alluvial profile.
4. Occurrence of seismic anomalies limited, with 4 detected within a distance of 800 feet along Occurrence of seismic anomalies
5. No interferometric indication of local differential profile of ground subsidence.

- 56+00-75+00 (hazard - high)

1. Close proximity of known fissures.
2. High density of photo-lineaments and seismic anomalies
3. Dam alignment curves to north, creating additional uncertainty between Stations $63+00$ and $66+00$.
4. Region of contrasting differential subsidence, with subsidence bowl to the east and south of known fissures, likely created by consolidation of fine-grained sediments in the alluvial profile.
5. Probable shallow buried bedrock ridge immediately west of zone

- 75+00-105+00 (hazard - moderate)

1. Transition of alignment towards region of pronounced subsidence to north, as indicated by interferogram.
2. Geophysical indications regarding the presence of basin-bounding fault crossing under the embankment in the vicinity of Station $85+00$, creating possible rapid contrast in alluvial thickness.
3. Increased density of photo-lineaments, with some weak seismic anomalies detected.

Flood Control District of Maricopa County
Earth Fissure Investigation Report
McMicken Dam
McMicken Dam
Work Assignme
Contrast FCD 2000C006
Maricopa County, Arizona
AMEC Job No 0.
11 April, 2003
4. Region between Stations $90+00$ and $100+00$ contains several strong lineaments whose trend is largely transverse to dam and coincident with other lineaments upstream above the retention pool

- 105+00-125+00 (hazard - low)

1. Pattern of photo-lineaments and interferometry indicates presence of stable ground.
2. Crest settlement history indicates transition to region of long-term lateral compression.

North Study Area

The diffuse zone of photo-lineaments detected within the North Study Area (Figure 26) may represent a focus of past strain, with some differential subsidence now occurring in the region due to modern declines in the groundwater table. The recent geophysical surveys do not identify a possible cause for the subtle contrast in subsidence rates detectable in the interferometry of this area. Although largely conjectural, it is possible that lateral and vertical variations in the distribution of fine-grained sediments within the deep alluvium may be responsible for the subsidence contrast.

Due to the limited nature of the investigation within the North Study Area, it is conservatively recommended that the McMicken embankment between Stations $275+00$ and $285+00$ receive special consideration during the development of protracted surveillance, monitoring and characterization strategies. This region is not considered to be comparable to the $75+00 / 105+00$ moderate hazard zone of the South Study Area, considering the lack of shallow, variable depth to bedrock and distinct, linear contrasts in the rate of subsidence.

11.0 CONCLUSIONS AND RECOMMENDATIONS

Due to the limited displacements observed, it is unlikely that the earth fissures detected upstream of the embankment currently pose a risk of a piping failure of the embankment during periods of floodwater detention. Upon experiencing further horizontal strain, these fissures will likely widen, thereby creating a future hazard to the safe operation of the facility. Additional strain in segments of the embankment between Station 56+00 and 105+00 may also cause other fissures to develop.

11.1 Monitoring

In light of the current understanding of fissure development near McMicken Dam, monitoring should play a pivotal role in the District's ability to anticipate and detect fissuring. Such monitoring could reduce the extent of initial corrective actions, while assuring adequate dam
safety and directing future protective efforts. It may be possible to tailor future corrective efforts on those areas experiencing strain to a degree deemed sufficient to produce horizontal fissure displacements of a magnitude necessary to produce a piping threat to the embankment.

Options exist regarding the technologies capable of detecting damaging subsidence and Options exist regarding the technologies capable of detecting damaging subsidence and
fissures, and measuring horizontal strain as a precursor and alert mechanism to fissure fissures, and measuring horizontal strain as a precursor and alert mechanism to fissure
formation across the McMicken Dam embankment. A monitoring design should be formulated upon completion of the recommended geophysical data collection and interpretation, and land subsidence/strain modeling. The approach should be designed to be of sufficient accuracy and durability, while providing rapid information in a cost-effective manner. The most viable monitoring system is likely one that assimilates and processes data from several sources, some conventional and some involving rapidly evolving, advanced technologies. The District should evaluate a spectrum of monitoring technologies, then develop, cost and construct a prototype system.

There are at three evolving technological categories with the capacity to monitor ground movements: 1) terrestrial time-domain reflectometry (TDR), 2) remote sensing techniques, and 3) global positioning. These technologies are in rapid change, with improvements in instrumentation, technique and data reduction a common occurrence. Each technology may have an application. It is imperative that each be assessed for its potential to augment or eliminate more conventional methods of measuring strain and geodetic position.

TDR is a technology that has a proven track record as applied to the measurement of minute strains in rigid structures, such as bridges and buildings. Recent developments in instrumentation, detection capacity and data reduction are making the technology a costeffective approach to monitoring movements in earthen fills and natural ground. The most revolutionary development in TDR technology is in the use of a single optical fiber as a sensor capable of measuring strain at high accuracy. Costs for the instrumentation are moderating, and manufacturers are developing complete systems, with integrated sensors and detectors. Recent optical fiber systems employ Brillouin scattered light, with vendor claims of high accuracy, and lower cost.

The application of aircraft-based remote sensing as a means of detecting earth fissures is greatly enhanced by acquiring project-specific data. Once the terrain and geologic setting are appraised, flight mission altitude and related mission criteria can be selected to optimize the sensitivity of the imagery in the detection of fissures. As applied during this study, the preferred method is the use of low-sun-angle, vertical, black-and-white photography. This approach has proven highly successful in detecting surface discontinuities in the semiarid terrain surrounding McMicken Dam. Periodic acquisition of remote sensing data of the risk zone should be part of a long-term monitoring program for McMicken Dam.

Flood Control District of Maricopa County
Earth Fissure Investigation Report
McMicken Dam
Work Assignment Nos. 4 \&
Maricoct FCD Co 2000C006
Maricopa County, Arizona
AMEC Job No. 0-117-001122
11 April, 2003
Certain attributes of the McMicken fissure risk zone make the continued application of InSAR attractive. The rate of subsidence is compatible with the ability of the INSAR data to detect change. InSAR is currently fraught with the problem of decorrelation caused by rapid surface variations, such as agricultural crops. The south end of McMicken Dam is removed from areas of potential decorrelation. Data processing techniques are currently under study by the US Geological Survey and the Center for Space Research to make interferometry useful in previously decorrelated terrain. Use of dedicated radar reflectors is also being studied, and prototype testing is underway. All these factors need consideration in evaluating the usefulness of the technology.

The US Department of Defense (DOD) Global Positioning System (GPS) has revolutionized the acquisition of geodetic data. Its application has and will continue to replace more conventional means of acquiring horizontal and vertical position. GPS has application to the monitoring of local quadrilaterals positioned to straddle earth fissures, and periodic elevation sweeps of more regional extent along embankment corridors and crests.

Development of an effective monitoring strategy should give equal consideration to more conventional means of measuring elevation change and horizontal strain, and detecting earth fissures. These techniques include the use of tape extensometers, shallow seismic refraction to detect fissures, trenching and pit logging to verify the presence of fissures, and groundwater level recordings. Some of these applications bridge the gap between investigation and operational monitoring, providing the basis for designing a site-specific system.

11.2 Characterization of North Study Area

Further investigation of the characteristics of a diffuse zone of northwest-trending photolineaments within the North Study Area should be considered. The three basic methods of investigation proven to be highly effective in detecting earth fissures in the South Study Area should be applied. The first of these methods is shallow seismic refraction profiling. Approximately four, 900 -foot long, northeast-trending coupled traverses should be completed, one in each of the quadrants formed by the intersection of the McMicken embankment and Bell Road. In conjunction with the geophysics, additional ground reconnaissance should be performed, utilizing the recent 2002 LSA aerial photography to ground truth all lineaments within performed of interest. Once the reconaissance and the seismic investigation is within the zone of interest. Once the reconnaissance and the seismic investigation is complete, shallow trenching should be performed to expose the subsurface profile at anomalies detected field program proceeds, about 400 linear feet of trenching, in the same configuration completed for the "TT" series trenches in the South Study Area, will likely be required to characterize for the "TT" series trenches in the So
discontinuities in the shallow soil profile.

11.3 Geotechnical Considerations

It is understood that the District will rapidly commence an evaluation to select a remedial approach to mitigate the earth fissure risk. Under consideration will be structural modifications to the embankment, with the goal of preventing piping failure should an earth fissure widen sufficiently to provi, with conduit through the foundation soils and the embankment. The dominant inflence selecting the physical attributes, cross-sectional geometry and latera extent of these modification options will be the local geotechnical conditions. Some of these conditions have been sufficiently characterized, where some should be further investigated to refine the design of a selected alternative.

Of significance in regards to properly designing and constructing any physical intercept to prevent piping is the nature of the shallow alluvial fan deposits under the dam. These recent investigations have revealed a highly erratic distribution of relatively permeable sand/gravel/cobble deposits, some of which extend beyond the depth of the test trenches. The hollow-stem cober borinss som (1982) in the general area indicate the presence of similar materials at depths to at least 30 feet. These units contain permeable presence coarse sand and fine gravel, with the bulk of the unit containing coarser, clast-supported and imbricated alluvial channel deposits.

In most locations the permeable, caving deposits described above are underlain by MidPleistocene alluvium, often with mature soil development. The upper calcrete of these deposits is rock-like, with the capacity to resist the seepage-induced erosion along an earth fissure, These calcretes are often underlain by more friable sand/gravel/cobble deposits, some with boulders to 24 inches. The calcretes are often truncated laterally, likely due to subsequent episodes of channel cutting across the ancient alluvial fan surface. Should the District select a modification to the dam to prevent piping as the preferred defensive strategy, the shallow foundation soils need subsequent detailed study, so as to assure proper vertical barrier penetration or extent of other preventative configurations
11.4 Protective Land Use Strategy

Consideration should be given to the possibility of establishing a zone of no further development for the region within 1,500 to 2,000 feet of the McMicken Dam embankment south of Station $115+00$. Having this zone would prevent the obscuring of present and future fissures by further development, thereby enhancing the effectiveness of photogeologic and ground monitoring efforts.

Flood Control District of Maricopa County
Earth Fissure Investigation Report Earth Fissure Investigation Report

Contract FCD 2000 . 4 \&
Contract FCD 2000C006
Maricopa County, Arizona
AMEC Job No 0.117-00112
11 April, 2003

Although not quantified, one factor revealed by regional interferometry is the extent of the bowls of ground subsidence surrounding large-capacity groundwater wells. Distinct subsidence often radiates out from these pumping centers for a distance of $3 / 4$ to 1 mile. Whether such centers will grow in lateral extent through time is an open question. However, this discovery reveals the possibility of preventing or lessening the occurrence of earth fissures by restricting the siting of new wells in regions of distinct fissuring risk. Consideration should be given to limiting the future siting and operation of large-capacity wells within a protective fringe near the southern portion of McMicken Dam. The extent of this buffer zone should be determined by further study of the hydrogeologic conditions of the local area and the proposed location, yield, depth and anticipated drawdown of any well(s) proposed

amec ${ }^{\text {a }}$

PRELIMINARY DRAINAGE REPORT

FOR

PHASE 2 OF ZANJERO TRALLSRECEIVED

SURPRISE, ARIZONA

Prepared For:
MARICOPA WATER DISTRIC
P. O. Box 900

Waddell, AZ 85355
Phone: (623) 546-8266
Fax: (623) 584-2536
and

APPENDIX VI
DEVELOPER DRAINAGE REPORTS (EXCERPTS)
CACTUS, LLC
9800 N. $91^{\text {st }}$ Avenue, Suite 122
Peoria, AZ 85345
Phone: (623) 412-335

Fax: (623) 412-3366
Prepared By
CMX
7740 N. $16^{\text {th }}$ St. Suite 100 Phoenix, AZ 85020 Phone: (602) 567-190
Fax: (602) 567-1901

February 2008 Project No. 6714.06

11 PURPOSE

This report has been submitted in support of the preliminary plat for the second phase of the overall Zanjero Trails development. The preliminary drainage report described herein has been prepared to meet the standards for storm water management as described in the City of Surprise Drainage Standards, and the Drainage Design Manuals for Maricopa County, Volume I, Hydrology and Volume II. Hydraulics, January 1996.
1.1.1 Project Name, Location and Topography

Phase 2 of Zanjero Trails is located in Maricopa County and consists of approximately 411 acres in portions of Sections 21 and 22 of Township 3 North, Range 2 West. The property is generally bound by Cactus Road on the north and Peoria Avenue on the south, the mid-section line of Section 22 on the east and the Beardsley Canal on the west. The property is located within the planning area for the City of Surprise. The site, as well as the surrounding area, generally slopes to the southeast at approximately 0.7 percent.
1.1.2 Existing and Ongoing Studies

Drainage related facilities for Phase 2 of Zanjero Trails will be designed in accordance with the Master Drainage Study for Phase 2 of Zanjero Trails submitted to the City of Surprise in May 2007. Drainage related facilities for Parcel SC1 will be designed in accordance with the Final Drainage Report for 'Dysart High School', subm Department in November 2007

1.1.3 Regional Drainage Plan

The baseline hydrologic data for evaluation of drainage facilities in this region of Maricopa County is the Loop 303 Corridor / White Tanks Area Drainage Master Plan (WT ADMP, URS, June 2001).
1.1.4 Site Location Relative to Known FEMA Flood Hazard Zones

The property is located entirely within Flood Hazard Zone X (Other Flood Areas) as delineated on FEMA Flood Insurance Rate Map (FIRM) number 04013C1580H revised September 30, 2005 (Figure 3).
Zone X (Other Flood Areas) is defined as follows
"The flood insurance rate zone that corresponds to areas outside the 100-year floodplains, area of 100 -year sheet flow flooding where average depths are less than 1 foot, areas of 100 -yea stream flooding where the contributing drainage area is less than 1 square mile, or areas protected from the 100 -year flood by levees. No base flood elevations or depths are show within this zone."

2.1 OFF-SITE HYDROLOGY AND IMPACTS TO PROPOSED PROJECT SITE

In general, historic offsite drainage areas for Phase 2 of Zanjero Trails originated from the White Tanks Mountains west of the project. Today, the McMicken Dam and Beardsley Canal obstruct these flows from discharging to Phase 2. Flows generated in the small sub-basin located immediately noth of Phase 2 of Zanjero Trails, and east of the Beardsley Canal are directed east along Cactus Road. Areas east and south of Phase 2 drain away from the study area. Figure 4 in Appendix A, Figure 4 in Appendix A gives an overview of the regional drainage patterns surrounding the site.

2.1.1 Existing Landuse

The site as well as the surrounding area is currently undeveloped with native desert vegetation

22 ON-SITE HYDROLOGY

2.2.1 Methodology and Criteria

Under existing conditions, flows produced by the Phase 2 site have been directed in a southeastward direction. As shown in the Figure 4 in Appendix A, runoff generated by the site (ADMP Sub-basin 159 and 160) is directed to a point roughly 0.5 miles east of the intersection of Peoria Avenue and Perryville Road.

The proposed conditions for Phase 2 of Zanjero Trails will largely mimic the existing conditions outlined in the ADMP. Flows generated west of Perryville will be conveyed to the intersection of Peoria and Perryville. This flow will be conveyed beneath the roadway intersection via a pipe culvert A proposed channel, to be constructed parallel to Peoria Avenue, will route the flow eastward toward the historic outfall. Flows produced by Phase 2 development east of Perryville Road will also be collected in the channel and routed to the east.
On-site rainfall runoff will be routed to retention ponds via in-street flow and, when necessary, storm drain pipe. The Preliminary Drainage Exhibit (Figure 5) shows proposed street routings through onsite drainage sub-basin network. The specific locations or sizes of storm drain pipe within the local roadways of Zanjero Trails are not shown in this report. These lines will be designed at the time of Maricopa County for such facilities where roadway elevation and slopes are defined

Parcels 11D, 12D, 14 and 15 will be developed as commercial parcels in future. Developed Parcels 11D, 12D, 14 and 15 will be developed as commercial parcels in future. Developed these parcels and depicts full 100-year, 2-hour retention volumes provided for these parcels.

Retention basins for Zanjero Trails have been designed with storage volume for the entire developed conditions runoff produced by the 100 -year, 2 -hour rainfall event. The retention basins will be drained within 36 hours, either through natural infiltration, controlled bleed-off to adjacent channels or washes, orvia percolation through drywells.

Retention basin bleed-off, major roadway runoff, and retention basin overflow will be conveyed through Zanjero Trails within local and collector streets, and landscaped open channels. The proposed locations of the landscaped open channels are represented as routing channels in the Preliminary Drainage Exhibit (Figure 5). These drainage ways will discharge storm water to the south into a proposed drainage channel along Perryville Avenue and then towards the east in a proposed
channel along Peoria Avenue. This system maintains the historic drainage patterns documented in the ADMP

Developed conditions HEC-1 models, which include provision of retention basins, have been produced for 100 -year, 24 -hour and 100-year, 6 -hour storm events. Comparison of peak flow rates from both the models shows that 100-year, 6-hour storm event is the controlling storm event for this site. Output of these models can be found in Appendix C. The post development flow rates discharge points are lower than their respective existing conditions discharge listed in the ADMP.

3.0 PROPOSED DRAINAGE INFRASTRUCTURE

31 CONVEYANCE OF RUNOFF THROUGH PROJECT SITE

As stated above, the on-site rainfall runoff from Phase 2 of Zanjero Trails will be routed via in-street flow and, where necessary, storm drain pipes to retention basins. The volume of runoff created by the 100 -year, 2 -hour storm will be retained. Although full 100-year, 2 -hour retention volume requirement will be satisfied for entire site at individual Parcel level, some intra-parcel retention basins do not have enough retention volume Overflow from these retention basins will be routed via in-street flow, and where necessary storm drain pipes, to another retention basin with excess volum available.
3.2 ONSITE RETENTION REQUIREMENTS

Under developed conditions, imperviousness of onsite watersheds is increased, which in turn increases the amount of runoff generated from the same drainage sub-basins in existing conditions. Developed areas within Maricopa County are required to regulate stormwater discharge such that net flow rates discharged from the site are equal to or less than the pre-development rate. This is often controlled through the construction of retention basins. Provision of full 100-year, 2 -hour onsit retention volume, demonstrated developed conditions flow rates to be less than pre-development flow rates

3.2.1 Required Retention Volume

The runoff analyses for the on-site drainage areas has been performed according to the Drainage Design Manual for Maricopa County, Arizona, Volume II, Hydraulics, January 1996, using the rationa method. The total runoff volumes have been calculated according to the following equation

$$
V=C(P / 12) A
$$

Where:
is the total runoff volume (acre-ft)
C is the runoff coefficient
P is the 100-year, 2-hour rainfall depth (2.8 inches)
A is the drainage area (acres).
For calculating runoff volume, Maricopa County uses Figure 8-1, the 100-year, 2-hour Precipitation Isopluvial Map. The runoff coefficients for the sub-basins has been taken from Table 3.2 in the Drainage Design Manual for Maricopa County, Arizona, Volume I, Hydrology, January 1995. For the developed conditions calculations, land use in Table 3.2 of the Drainage Design Manual for Maricopa County, Arizona, Volume Hydrology, January 1995.

The base values used to compute weighted runoff coefficients were as follows
Asphalt - 0.95
Landscaping - 0.31
single Family Residential - 0.69
commercial - 0.88
Multi-Family Residential - 0.75
Table 2.1 in Appendix B shows computation of Weighted Runoff Coefficient for 100-year storm event Table 2.2 in Appendix B shows the required retention volumes.

Parcel SC1 is a proposed high school site for Dysart High School. Required retention volume for this parcel was calculated as 9.90 ac-ft. Drainage related facilities for Dysart High School will be designed in accordance with the Final Drainage Report, submitted to Maricopa County Planning and Development Department (December 2007). Based on this report, full 100-year, 2 -hour provided retention volume for the entire site is 10.182 ac-ft. This volume was used for Parcel SC1 while computing 100-year, 6 -hour and 100 -year, 24 -hour peak flow rates using HEC-1 analysis (Appendix C).
arcels 11.D and 12D will be developed as multi-family parcels in future. Parcels 14 and 15 will be developed as commercial parcels in future. In the interim conditions, retention volume will be provided for these parcels using a runoff coefficient of 0.50 for "Undeveloped Desert". Table 2.3 in Appendx B shows med fore the full 100 year, 2 hour retention volu, listed in ill be provided for these parcels.

Retention basin outlet facilities will generally consist of 6 -inch pipes or larger with throttling devices for controlled bled-off of retained water and low-water discharge, For high-water discharge, riprap ined overflow structures or other types of structures may be used to discharge water downstream. Where retention basins cannot be bled off through discharge pipes, drywells will be utilized fo percolation. Dry well percolation test results will be provided with the Final Parcel Drainage Report to support dewatering calculations. Basins will be designed such that retained water is bled off or drained within 36 hours of each storm event by these methods.

The bleed-off pipes will be designed using Haestad Methods CulvertMaster, Version 3.0. The maximum discharge rate for the bleed-off pipes is 1 cfs. Riprap aprons, or other means of erosion control, will be placed downstream of all storm drain pipe outlets to protect against scour around the outlets, provide uniform spreading of the flows, and decrease the flow velocities. These structures will be designed in accordane with riprap nomographs contained in the Municipal Stormwater
 reports. The high-water outlet structures for the retention basins will also be designed as part of inal parcel grading and drainage reports.

For storm events greater than the 100 -year 2 -hour, flows will convey through the site remaining a minimum of 1 -foot below finish floors and will meet street capacity requirements.

DYSART HIGH SCHOOL \#4

NEC PERRYVILLE ROAD AND PEORIA AVENUE MARICOPA COUNTY

Prepared for:
DYSART UNIFIED SCHOOL DISTRICT NO. 89
11405 N Dysart Road
EL MIRAGE, AZ 85335
Phone: (623) 876-7028
Fax: (623) 876-7036

Prepared by:
CMX, L.L.C.
7740 North $16^{\text {th }}$ Street, Suite 100
Phoenix, Arizona 85020
602-567-1900

December, 2007
CMX Project No. 7436

Under existing conditions offsite flows approach the site from the north and west. Contributing sub-basins originate below the McMicken Dam and Beardsley Canal and extend in a southeasternly direction toward Perryville Road. These flows overtop Perryville Road at two primary locations. The first crossing, situated just north of Peoria Avenue, has historically conveyed flows directly into the site in essentially a shallow sheet-flow condition. The second crossing, located roughly $1 / 2$ mile north of Peoria Avenue, conveys flow across the roadway and into a shallow wash corridor herein referred to as the North Wash. The North Wash, which is the only wash that crosses the site, continues beyond Perryville Road in a southeastern direction and passes across the extreme northeastern portion of the site which for this project will remain undeveloped.

An offsite drainage management system has been designed for the site. A HEC 1 model was created to represent this system. The model combines undeveloped offsite drainage areas with the developed onsite area. The aforementioned HEC-1 model and corresponding hydrology exhibit can be found in Appendices B3 and C.

The following describes how offsite drainage will be handled based on existing conditions:

Flows approaching the site from the northwest will continue to do so. In this manner the estimated 100 -year peak flow of 261 cfs will flow across Perryville at the historic crossing location and enter the North Wash. An offsite channel will be constructed north of the site to capture any offsite flows from the northwest and route them to the North Wash. A HEC-RAS analysis was performed in order o delineate the floodplain and floodway limits of the North Wash (See Appendix C for the results of this analysis). As shown on Figure 5, the floodplain limits of the North Wash do extend into the northeastern corner of the site within an area that will remain undeveloped for this project. All finished floor locations adjacent to the North Wash have been set a minimum 12 inches above the corresponding high water surface elevation.

The second provision of the offsite drainage management system will be the construction of a collector channel along the west side of Perryille Road between the southern boundary of the North Wash watershed and Peoria Avenue. This channel will collect those offsite flows approaching the site from the west and route them south to the intersection of Perryville Road and Peoria Avenue (See Appendix C5 for channel calculations) These flows (a 100 oria peak flow of 309 cfs) will enter an offsite detention basin that will be constructed at the northwest corner of the intersection of Perrville Road and Peoria Avenue This detention basin will be used to attenuate the peak flow crossing Perryill Avenue and entering the onsite drainage channel just noth of Peoria Avryvile 80 cfs. See Appendix B2 for detention basin calculations.

Those flows contained in the offsite detention basin will be metered out under Perryville Road via a single 48 -inch pipe culvert. This culvert will discharge to a triangular, grass-lined channel that will be constructed along the southern triangular, grass-lined channel that will be constructed along the southern boundary of the site just north of Peoria Avenue. This channel serves as a means of conveying these offsite flows to the historic outfall, an emergency outfall for onsite retention basins, and a discharge point for Peoria Avenue storm drain (See Appendix C5 for channel calculations). The onsite channel will continue along the southern boundary of the site and will exit under the southeast roadway entrance via $5-36^{\prime \prime}$ pipe culverts (See Appendix C6 for culvert calculations). As the downstream invert of these culverts is substantially below the natural grade east of the site, an offsite channel will continue to route flows ast of the site until the channel is able to daylight to existing approximately , 100 feet east of the site where the flows will outlet and continue on their historical path.

The methodology employed for the hydrologic and hydraulic design used to manage the offsite flows impacting the site is in accordance with the Flood Control District of Maricopa County design standards. The drainage patterns maintained through this management mirror those provided in the Zanjero Trails Master Drainage Study (see Reference \#4), and the Loop 303 Corridor White Tanks Area Drainage Master Plan Update (See reference \#5).
4.0 ONSITE DRAINAGE

INFRASTRUCTURE:
Desert Cove Road
Desert Cove Road has been designed so that the majority of the runoff generated by the half street improvements adjacent to the site will be conveyed to the northeast end, where a catch basin located on a sump condition has been placed. The $100-\mathrm{yr} 2-\mathrm{hr}$ runoff volume for this street will be retained by onsite basin B1.

Perryville Road
A small portion of runoff generated by Desert Cove Road will discharge to Perryville Road half street improvements. Perryville Rd has been designed to convey flows to the south, where two 24 -feet wide scuppers, on a flow by condition, have been placed to remove most of the flow generated by the half street. The first scupper will capture 6.5 cfs , generated by a $100-\mathrm{yr}$ storm, and will convey such runoff to the onsite retention basin E9. The second supper will capture 3.9 cfs and will convey the corresponding runoff volume to the onsite retention basin E11.

MASTER DRAINAGE REPORT

FOR

PRASADA

Peoria Avenue and Cotton Lane
 Surprise, AZ

Prepared For:
FULTON HOMES
c/o Norm Nichols
9140 S. Kyrene, Suite 202
Tempe, AZ 85284
Phone: (602) 753-7506

Prepared By:
7740 North $16^{\text {th }}$ Street, Suite 100
Phoenix, AZ 85020
Phone: (602) 567-1900

Third Submittal: June 2006
Second Submittal: May 2006
First Submittal: December 2005
Project No. 6889
the Salt/Gila Rivers to the south. This report was an update to an Area Drainage Master Plan prepared for the Flood Control District of Maricopa County by the WLB Group, Inc. (WLB, 1995). Figure 4 in Appendix A shows the entire ADMP watershed with the Prasada project boundary overlay.

Data from the model developed by URS to predict 100-year 24-hour flow rates for the region were used in the evaluation of offsite stormwater flows to the project area. Figure 5 (Appendix A) shows the local sub-watershed boundary areas, flow routing directions and location of peak flows for the HEC-1 Model at the critical confluence points. The watershed up-gradient of the Prasada project area extends north of Union Hills Drive and northwest through a portion of the White Tank Mountains. The east-west arterial roadways convey storm runoff to the Agua Fria River. The specific east-west roadways relative to the project area are Greenway Road, Waddell Road, Cactus Road, Peoria Avenue and Olive Avenue. Flow splits or diversions occur at some of the arteria roadway intersections within the project watershed. This will not occur in the drainage area for developed or future conditions. The Existing Conditions HEC-1 Model (with projects such as regional channel systems in place) is located in Appendix C on a CD ROM.

3.0 DEVELOPED DRAINAGE CONDITIONS

The site does not contain any US Army Corps of Engineers (USACE) Section 404 washes or Section 401 wetlands.

Drainage reports for each parcel will provide detailed information regarding compliance by that parcel with the National Pollutant Discharge Elimination System (NPDES) for construction and post-construction conditions. Prior to construction, the developer or contractor will provide the City with a site-specific Storm Water Pollution Prevention Plan (SWPPP).

3.1 Off-Site Drainage

The Draft, Volume IV, Level III ADMP Update Report (URS, August 2004) provides alternative drainage solutions, and recommends the alternative that incorporates regional drainage solutions to control storm flow under postdevelopment conditions. The selected alternative includes drainage channels and regional detention basins that are designed to mitigate flooding in the area. This drainage report utilized the post-development HEC-1 model with ultimate drainage control systems in place, including modifications to the off-line detention basin and the channels in the Loop 303 flood control system. Within this hydrologic model, the surrounding sub-basins have been modified to reflect postdeveloped conditions. 100-year, 2 -hour retention volume was used, but the rention systems were assumed to be 80% effective to account for several hydrologic factors, including poor basin design and construction, sedimentation, poor maintenance, retention volume reduction variances in the overall watershed and as a safety factor.

The future primary drainage system that will reroute existing condition flows upstream of the Prasada development is associated with the Loop 303 Freeway, Part of this freeway includes a parallel drainage channel system, which will divert all flows generated west of the Loop 303 south to the Camelback channel, then east to the Bullard Wash channel, and finally to the Gila River. Figure 5 in Appendix A illustrates flows from both models (existing and developed). The November 2004 election resulted in the passage of Proposition 400, which provides funding for the Loop 303 freeway and drainage improvements. This study therefore assumes that the freeway drainage improvements will be in place. This assumption reduces the sizes of drainage structures required for Prasada.

The FCDMC draft Level III Conceptual Design Plans (URS, November 2004) placed a regional detention basin at the corner of Cactus Road and the Loop 303 Freeway. This location is impractical for the proposed development of the northeastern portion of the Prasada project. The value of the proposed commercial land adjacent to this portion of the freeway necessitated formulation of an alternate plan. Therefore, this Drainage Master Report proposes to modify this detention basin and channel system for the 4-mile reach of the Loop 303 contained between the northern and southern boundaries of the project between Greenway Road and Olive Avenue. The intent is to replace the proposed single detention basin at Cactus Road with two detention basins: one basin $1 / 2$ mile north of Waddell Road, and the other $1 / 2$ mile south of Peoria Avenue. The future conditions HEC-1 model was modified to incorporate the changes to the regional channel system. The goal of this model is to maintain the current design flow channel system. The goal of this model is to maintain the current design flow
rates at the exit point along Olive Avenue, which in turn will not place any rates at the exit point along Olive Avenue, which in turn will not place any additional burden on the downstream lestion of the revision to the hydrologic model, and the results of the revisions.

CMX and the Prasada development team met with representatives from FCDMC, ADOT, MCDOT, and the City of Surprise on Wednesday, the $29^{\text {th }}$ of June of 2005, to present the plans to rearrange the regional detention basin location(s), modify to present the plans to rearrange the regional detention basin location(s), modify the supporting channel geometric configurations, and incorporate first flush basin metifications to the existing west of FCDMC plan are addressed in detail in modifications to the existing regional FCDMC plan are addressed in detail in hydrology appendix (Appendix C) of this report. The general outcome from this meeting was that moving the singular regional detention basin, from the intersection of Cactus Road and the Loop 303, into two regional basins, one in Sections 12 and the other in Section 25, is an acceptable alternative to the present plan proposed by the FCDMC. Further coordination and planning create the final designs of the Loop 303 Channel System that meet the needs of create the final designs of the Loop 303 Channel System that meet the needs of all the concerned parties. Pursuant to these discussions, it was agreed that the infre

The ADMP also proposes the future Cotton Lane Wash improvements. The Cotton Lane Wash is primarily created by the elevation difference between Cotton Lane and the intercepted stormwater runoff. The FIRM illustration of the Cotton Lane Wash Zone A Flood Hazard (Figure 3 Appendix A) is presented primarily west of the section line for the portions of the wash adjacent and in the Prasada project. This concept is planned to be maintained for the sections of Cotton Lane Wash that are adjacent to, but not through, the project area (Sections 12, 13, and 25). The eastern half-street improvements will be designed with the elevation necessary to prevent overtopping of the roadway centerline. A temporary channel may be constructed in the western half-street right-of-way. This channel would not convey the entire flow from the Cotton Lane Wash, but would provide additional protection to the new street improvements. The remainder of the flows would be conveyed on the property west of the western half-street right-of-way, similar to the present conditions. For the section of the Cotton Lane Wash internal to the Prasada project (the area where Prasada is Cotton Lane Wash into a west of the centerline of Cotton Lane), It is intended to place mose future proposed modifications to Cotton Lane Wash would require approval by the City and the FCDMC, and would have to be addressed through the CLOMR/LOMR process with FEMA.

The ADMP also proposes a drainage system at the eastern edge of the site near Section 18, to alleviate the existing FEMA floodplain of the Reems Road Wash. The FCDMC has an ongoing project that is channelizing this floodplain on the west side of Reems Road. The extension of this channel has been accounted for in the preliminary design presented in this Master Drainage Study. The primary difference between the Loop 303 Channel and the Reems Road Wash is that the latter is an earthen/grass lined channel corridor, and the Loop 303 Channel is concrete. Appendix D contains the proposed channel design for the Reems Road Channel. This portion of the Prasada will also require approval by the City and the FCDMC, and would have to be addressed through the CLOMR/LOMR process with FEMA.

The basis of this off-site drainage plan, as well as others in this region of the County is that the east-west and north-south roadways direct flows from the surrounding drainage areas. In their existing configuration, these roadways are typically elevated with a swale on both sides of the road. For the developed or future conditions it is assumed that the flows from rainfall events up to, but not exceeding the 100 -year storm event, will be contained on the north side of the half-street of east-west roadways, and on the west side of the half-street ofthe north-south roadways. This assumption is based on the desire to avoid upstream sheet flows from having to cross arterial roads, whe would require multiple culvert crossings and/ or allowing flows to overtop the roads. Neither option is for for 10 a the 10-year storm wil to the FDMC and the Maricopa County Department of presented this (MCDOT) for FCDMC and in Marion The consensus was that Transportation (MCDOT) for other projects in the region. The consensus was that
this was a feasible approach as long as significant impacts on the adjacent
property owners are not created, and that the finished floor elevations are protected from the 100-year storm water elevation without the Loop 303 channel system in place.

Existing or future developments north and west of Prasada that have roadways on their south or east side of their project with arterial roadway improvements, and have not incorporated roadside channels for the flows presented in FCDMC AMDP, could force runoff onto the Prasada project. This potential exists at multiple locations on four arterial roadways. The first roadway is Waddell Road, and the impacted area is from Perryville Road to Citrus Road and Sarival Avenue to Reems Road. The second roadway is Cactus Road, from Citrus Road to Cotton Lane. The third roadway is Peoria Avenue, from Cotton Lane to $1 / 2$ mile east of Sarival Avenue. The last roadway is Cotton Lane, and the impacted area is approximately $1 / 2$ mile south of Greenway Road to Cactus Road, and from Peoria Avenue to Olive Ave. To prevent this from occurring, and placing a burden on Prasada, the adjacent portions of the Prasada development will be elevated to prevent flows from entering the site from the north and/or the west.

This Drainage Master Study was prepared in support of the proposed Development Master Plan for Prasada. Assumptions for developed conditions were made based on the associated unit densities for each parcel. As landplanning progresses for the project, revisions to this study may be appropriate to represent modifications in flow rates, internal and external flow paths (channels, swales, overland flow, etc.), offsite drainage conditions, and retention basin location and volumes. In addition, as individual parcels are developed (i.e. preliminary plat or site plans are prepared), each parcel will be required to submit individual drainage plans and studies, as necessary, to indicate conformance with the assumptions and guidelines reflected in this Study. The concepts and design guidelines provided within this Study may be amended in the future with the approval of the City of Surprise and the FCDMC when the improvements are within their jurisdiction.

3.2 On-Site Drainage

 The on-site drainage systems for the Prasada project, including retention/detention/first-flush basins, dry wells, channels, culverts and stormdrain pipe systems are effective only if properly maintained. If debris and drain pipe systems are effective only if properly maintained. If debris and sediment are not regularly removed, these drainage systems may not operate as designed. The create a maintenance plan for these systems. This plan must be reviewed and approved by the City.

3.2.1 Storm Water Control

As required by the City of Surprise and Maricopa County Standards, peak storm water flow resulting from a 100 -year storm shall be safely conveyed through the development for both offsite and onsite flows. The
5.3.4.3 of the Drainage Design Manual for Maricopa County, Arizona, Volume II, Hydraulics, January 28, 1996, as part of final subdivision grading and drainage reports. The high-water outlet structures for the retention basins will also be designed as part of final subdivision grading and drainage reports.

3.2.7 Maintenance Requirements

Drainage infrastructure provided for interim and completed design shall be maintained by the Developer during construction and the Home Owners Association once construction is completed. Annual inspections shall be performed to identify excessive sedimentation of drainage ways, basins and culverts. Additional inspections shall be administered following significant storm events (greater than 1 -inch rainfall in a 24 hour period). Inspections shall also document blockages as a result of hour period). Inspections shall also document blockages as a result of debris (tree limbs, excessive trash, etc.) to the drainage courses through removed within 36 hours of identification of maintenance condition

Guidelines shall be prepared and approved by the City of Surprise to characterize the extent of sediment removal required for the property. Guidelines shall be submitted with the SWPPP prior to construction of the property.

4.0 DRAINAGE IMPACTS ON PROPOSED DEVELOPMENT

The most significant drainage constraint for this project area is the peak flows from the 100 -year, 24 -hour rainfall event. These flows are routed along the site boundaries and are adjacent to the arterial roadways. The drainage channels needed to convey the offsite flows will be located in the area between the road right-of-way (ROW) and the development. To maintain the historic flow patterns that are presented in the Loop 303 Corridor/White Tanks ADMP Update (URS, 2001), flows will follow the same patterns. Entrances to the site will cross the channels, and will require culvert crossings. These hydraulic structures will have to convey peak flows from the 100 -year storm. The previous section addresses the design parameters associated with these channels and culverts. The tables presented below identify the approximate width of the channel corridors and culvert sizes.

TABLE D PRELIMINARY CHANNEL WIDTHS	
Channel Label	Approximate Channel Top Width (ft)
Loop 303 North/South Channels	
!LP (Loop 303 @ Greenway)	32
!LP1 (Loop 303 @ Waddell)	34
! LP@ (Loop 303 @ Cactus)	45
!LP3 (Loop 303 @ Peoria)	57
!LP4 (Loop 303 @ Olive)	49
East/West Channels	
Waddell - 1	50
Cactus -1	49
Cactus - 2	52
Cactus - 3A	35
Cactus-3B	55
Peoria - 1	80
Peoria - 2	83
Olive - 1	35
Olive - 2 A	28
Olive $-2 B$	35
Olive - 3 A	35
Olive - 3 B	44
North/South Channels	
Reems -1	78
Sarival - 1 A	39
Sarival - 2A	39
Cotton-1A	28
Cotton-1B	33
Roadside Temporary Channels	
P/O Collector - 1	22
P/O Collector - 2	30
Cotton-1*	107
Cotton-2A*	78
Cotton-2B*	99
Cotton-3*	110
Offsite Boundary Temporary Channels	
Perryville-1	32
Perryville-2	65
Perryville-3	30
Perryville-4	52
Perryville-5	54
Perryville-6	57
Perryville-7	55
Perryville-8	66
* NOTE: Temporary channels with V-ditch configurations (side slopes are $4: 1$ roadside \& $20: 1$ west side of roadway). Additionally, the Existing Conditions are the control flows for temporary channel calculations for Channel Top Widths.	

TABLE E

PRELIMINARY CULVERT SIZES

$\begin{aligned} & \text { Culvert } \\ & \hline \end{aligned} \text { Label }$	Culvert Location	Channel Label	$\begin{gathered} \text { Culvert } \\ \text { Size } \end{gathered}$	Quantity
W-1	Waddell \& Cotton	Waddell - 1	8×4	3
W-2	Waddell - West Entry to Prasada	Waddell - 1	8×4	3
W-3	Waddell - East Entry to Prasada	Waddell - 2	8×4	2
W-4	Waddell \& Sarival	Waddell - 2	8×4	2
C-1	Cactus - West Entry to CLR	Cactus - 1	10×4	2
C-2	Cactus \& Citrus	Cactus - 2	10×4	2
C-3	Cactus \& Cotton	Cactus - 3	10×4	3
C-4	Cactus - West Entry to Prasada	Cactus-3	10×4	3
C-5	Cactus - East Entry to Prasada	Cactus - 4	6×4	2
C-6	Cactus \& Sarival	Cactus - 4	6×4	2
P-1	Peoria \& Citrus	Peoria - 1	12×4	3
P-2	Peoria \& Collector	Peoria - 2	10×4	3
P-3	Peoria \& Cotton	Peoria - 2	10×4	3
0-1	Olive \& Cotton	Olive - 1	6×4	2
0-2	Olive \& Collector-1	Olive - 1	6×4	2
0-3	Olive \& Sarival	Olive -2	8×4	2
O-4	Olive \& Collector-2	Olive - 3	8×4	3
R-1	Reems \& Waddell	Reems-1	12×4	3
$\mathrm{CL}-1$	Cotton Lane \& Cactus	Cotton-1	10×4	4
$\mathrm{CL}-2$	Cotton Lane \& Peoria	Cotton-1	8×4	4
R-2	Reems \& Collector	Reems -1	12×4	3
R-3	Reems \& Cactus	Reems - 1	12×4	3
S-1	Sarival \& Collector	Sarival - 1	8×4	2

The designs of the channel geometry and culvert sizes are related. The channel headwater and tailwater conditions are directly impacted by the culvert sizes, and the culvert is impacted by the channel slope. The options presented here are preliminary, and will be revisited in final drainage reports for the adjacent parcels and roadways.

Another significant drainage constraint is the location and size of the proposed regional detention basins for the Loop 303 Channel. These regional off-line detention basins are located on the west side of the channel and divert large volumes of storm water runoff into the basin to attenuate the peak flows from the 100 -year, 24 -hour storm event. Table 5 presents the approximate size of these basins for Alternatives 1 and 2 .

4. "PRE OECTS IN PLACE,"

3.1. Off-Site Hydrology

FINAL DRAINAGE REPORT
 FOR
 - SYCAMORE FARMS PARCEL 13 SURPRISE, ARIZONA

February 25, 2005
$1^{\text {st }}$ Revision: May 25, 2005
$2^{\text {nd }}$ Revision: June 28, 2005

Prepared for:
Taylor Woodrow/Arizona Inc. 6720 N. Scottsdale Road, Suite \#390 Scottsdale, AZ 85253 (480) 314-5700

Prepared by:

Coe \& Van Loo Consultants, Inc.
4550 North 12th Street
Phoenix, AZ 85014 (602) 264-6831
model was developed to determine the conveyance capacity of the channel and culverts. The flow is subcritical with varying velocities. The channel is lined with decomposed granite per the landscape plans. The FCDMC manual states the maximum permissible velocity for fine gravel is 5 -feet per second. Erosion protection has been provided at the downstream ends of culverts and drop structure where velocities exceed 5 -feet per second. 1-foot of freeboard has been provided for the 100 -year storm event within the channel to ensure that adjacent finish floors are at least 18 " above the water surface elevation. Refer to Appendix G for the proposed condition HEC-RAS model and station exhibit.

The channel will discharge flow south within the inundation limits. An existing conditions HECRAS model was created to determine the natural boundaries of flooding within Sarival Avenue using 862 cfs specified in the 100 -year, 6 -hour ADMP model. Results from the existing conditions HEC-RAS model were plotted to ensure the proposed drainage improvements did not increase the natural floodplain limits. Refer to Appendix H for the existing conditions HEC-RAS model and exhibit.

Temporary earthen berms have been designed to protect the site from off-site sheet flows that approach the site from north and west. The berm on the north will direct flows east to the Sarival channel. The berm on the west will direct flow south and ultimately discharge the flow to the east where flow is returned to the natural drainage path. A letter of agreement between adjacent land owners will be presented to the City of Surprise that addresses the temporary berm and possible upstream flooding.

- Drannae area bou

1D165 HEC-1 1DENTIFCATON
---- FEMA FLOODPLLAN LIMY
-

FINAL DRAINAGE REPORT FOR

RANCHO GABRIELA PHASE 4

PREPARED FOR

BIG RED LAND INVESTMENT, INC. 6730 N. SCOTTSDALE ROAD, SUITE 230 SCOTTSDALE, ARIZONA 85253
 (480) 607-5800

PREPARED BY

GEOFFREY S. BROWNELL, E.IT DAVID EVANS AND ASSOCIATES, INC 7878 NORTH $16^{\text {TH }}$ STREET, SUITE 250 (602) 678-5151

REVISED MARCH 2002 REVISED DECEMBER 2001 AUGUST 2001 DEA PROJECT NO. STAR0000-0089

Hydraulic analyses using the U.S. Army Corps of Engineer's HEC-2 computer model (Reference 3) determined that the majority of flow routed east on Cactus Road towards the intersection with Reems Road would actually weir into the field south of Cactus before reaching the intersection. Of the 955 cfs routed from Sarival along Cactus, approximately 869 cfs weirs into the field with only 86 cfs remaining in the road section. This decreases the concentrated flow at the intersection of Reems and Cactus to 727 cfs . Because of the decreased concentrate flow, only 249 cfs of the 727 cfs is now diverted to the southeast towards the proposed project site. See Exhibit B, located in the back pocket, for a graphical representation of the results of the hydraulic and hydrologic analyses performed.

Because the slope of the fields is to the south/southeast, the runoff weiring from Cactus Road does, however, impact Reems Road at several points south of Cactus Road. Based on field observations and aerial topographic information, it was determined that runoff concentrates approximately $1 / 4$ mile and a $1 / 2$ mile south of Cactus Road. At these locations, flow routed through the fields west of Reems Road combines with flow routed south along Reems Road. The concentrated flow then continues south to the intersection of Reems and Peoria.

The capacity of Reems Road was analyzed based on hydraulic modeling using the HEC-2 computer program. It was determined that as the flows in Reems Road increase, some runoff may spill over the berms and flow to the southeast towards Rancho Gabriela Phase 4. The results indicate that a total of approximately 675 cfs may weir over the berms along the east side of Reems. This is in addition to the approximately 249 cfs diverted to the southeast at the intersection of Reems and Cactus.

The current FEMA Flood Insurance Rate Map (FIRM) for the Rancho Gabriela project site map number 04013C1585 F (Effective date September 30, 1995) shows that Phase 4 of the Rancho Gabriela project site is in flood hazard Zone X. Zone X is defined as, "Areas of 500 year flood; areas of 100 -year flood with average depths of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from 100-year flood." Reems Road between Cactus Road and Peoria Avenue is within flood hazard Zone A. Zone A is defined as, "Special flood hazard areas inundated by 100 -year flood. No base flood elevations determined." A copy of the current FIRM panel is provided in Appendix B.

3.0 PROPOSED DRAINAGE CONCEPT

The proposed drainage concept is presented in three parts: on-site drainage conveyance, offsite drainage and on-site storm water retention. On-site storm water retention calculations ar summarized in section 3.3. The hydrologic analyses are summarized in section 4.0 and the hydraulic analyses are summarized in section 5.0

3.1 On-site Drainage Conveyance

On-site storm water runoff is conveyed through the site by the paved roadway sections with normal crowns and either 4-inch roll or 6-inch vertical curb. Figure 2, located in Appendix A illustrates the proposed roadway cross-sections. The land plan provides drainage tracts to comply with the on-site drainage concept as shown on Exhibit A. Lots have been graded to drain into the roadway on which they front. The roadways convey on-site runoff towards the retention facilities. Catch basins or depressed curb and sidewalk are used to direct the flows from the streets into the retention basins.

The roadway sections are designed to convey the 10 -year peak flows between the curbs and 50 -year peak flows within the cross section between buildings (front yards and streets). The lowest finish floor elevation of each lot is designed to be free from inundation from the 100 -year storm event.

3.2 Off-site Drainage Conveyance

It is anticipated that Rancho Gabriela Phase 3 and Phase 4A will be mass graded at one time. If this occurs, off-site flows impacting Rancho Gabriela Phase 4's northem boundary will be eliminated with the mass grading of Phase 3 . If the Phase 3 site is not graded in concurrence with Phase 4A, temporary retention basins will be provided to eliminate off-site flows generated in the field north of the project from impacting the project's northern boundary.

After discussions with the City of Surprise, it was agreed that off-site runoff routed along Reems Road would be contained within the roadway section. This will be accomplished by ensuring pad elevations and entry road elevations along Reems are sufficiently above the calculated 100 -year water surface elevation. This puts the pad elevations above the elevation of the existing berm along the east side of Reems Road.

The impetus for this decision is that the Flood Control District of Maricopa County and the City of Surprise are discussing regional solutions to flooding problems in the area. Currently, a regional drainage channel extends from Bell Road to approximatley $3 / 4$ miles south of Greenway Road along the west side of Reems Road. All alternatives proposed by the Flood Control District, as part of the Loop 303 Corridor/White Tanks ADMP update, extend the Reems Channel south past the project site. When and if the regional channel is built, all off-site flows impacting the Rancho Gabriela Phase 4 project site will be eliminated.

- No Channel on Cactus - Temp. Levee Berm - No Channel on Sarival - Raisel Entrances
 - Nothing written about Dissipation withis 36 Morrs
 - Volume Provided Calculations

 $\overrightarrow{1639}$

MANAGEMENT OF OFF-SITE RUNOFF

3.1. Off-Site Hydrology

The site is impacted by off-site flows approaching each boundary surrounding the site. These flows are determined in the White Tanks ADMS (Appendix A) for the 100-year, 24hour storm event. See Plate 1 for flow locations and quantities.

Under existing conditions, as determined by the White Tanks ADMS, off-site flows are split at the intersection of Cactus Road and Sarival Avenue. 788 cfs is directed southerly along the west side of Sarival Avenue to the intersection of Peoria Avenue and Sarival Avenue. 746 cfs is directed southeasterly toward the site and 955 cfs is directed easterly on the north side of Cactus Road. According to the revised ADMS study by DEA \& Associates, 775 cfs weirs over Cactus Road between Sarival Road and Reems Road and is directed southeasterly through the site toward Reems Road. An additional 78 cfs weirs over Cactus Road near the intersection of Cactus Road and Reems Road and is directed southeasterly toward Reems Road. Flows that weir over Cactus Road eventually combine with flows directed southerly within Reems Road from CP146 located at the intersection of Cactus Road and Reems Road. The site is also impacted by off-site flows split at the intersection of Sarival Avenue and Peoria Avenue. 1639 cfs is directed easterly within Peoria Avenue and converges with the flows from Reems Road at the intersection of Peoria Avenue and Reems Road (CP-165),

As a result of the proposed development, the revised HEC-1 model by DEA \& Associates was modified to reflect the new hydrologic conditions. According to the DEA HEC1 model, two diversion points route flows east into the Rancho Gabriela subdivision. These diversions were removed so that these flows would be incorporated into the flows within the channel west of Reems Road. CP165, which represents the square mile surrounding the site, has been divided into two concentration points, CP165A and CP165B. Runoff generated from 165A is diverted east by a temporary berm and combines with CP2D165. Flows from 2D165 are then routed to CP165 and combines with CP165B at the intersection of Reems Road and Peoria Avenue. See Appendix A for the HEC-1 model revised for this project.
3.2. Off-Site Storm Water Management Plan

In order to safely mitigate off-site flows impacting the site, drainage channels and temporary levee berms are proposed to protect the site from the peak off-site flow during the 100 -year frequency storm event.

To protect the site from off-site flows approaching from the north, a temporary levee berm will be constructed along the northern boundary of the site and will direct flows easterly toward Reems Road. A channel is proposed adjacent to Reems Road on the west side to convey flows from the north and northwest. The channel will be constructed from Cactus Road to Peoria Avenue

For flows impacting the site along the southern boundary, a channel will be constructed adjacent to Peoria Avenue to convey flows easterly toward the intersection of Peoria Avenue and Reems Road. The channel will be constructed adjacent to the lots being developed.

Off-site flows approaching the site from the west within Sarival Avenue will be directed southerly. Flows will be prevented from entering the development with raised entrances. In addition, finish floors will be designed a minimum of 1 foot above the 100 year water surface elevation within Sarival Avenue.

- DRANAE AREA BOUNDARY
\longleftarrow DRECTON OF OFF-STIE FLOW
HEC-1 IDENTIFCATON

The purpose of this final drainage report is to present a drainage plan for phase 1 and 2 of the development known as Mountain Gate. This report addresses the offsite and onsite drainage and storm water storage requirements for the subject portion of the project site.

This report was prepared in accordance with the City of Surprise Comprehensive Development Guide (Ref. 1) and as supplemented by the drainage design manuals for the Flood Control District of Maricopa County "FCDMC" (Ref. 2 \& 3).

2.0 Location

Mountain Gate, approximately 440 acres, (Fig. 1) is located within the City of Surprise, Arizona. It is bounded partly by Cactus Road on the north, Peoria Avenue on the south, partly by Litchfield Road on the east, and Bullard Avenue on the west.

The project is located within Section 21, Township 3 North, Range 1 West, Gila and Salt River Base and Meridian, Maricopa County, Arizona.
Fairway Farms, L.L.C.
In care of William Lyon Homes, Inc.
25 S. 48 Street, Suite
(602) 893-1000

Prepared by:

Stantec Consulting, Inc. 8211 South $48^{\text {in }}$ Street hoenix, Arizona 85044 (602) 438-2200

March 25, 2002
Revised September 26, 2002
81500806

3.0 Classification by the FIRM

The Maricopa County, Arizona and Incorporated Area Flood Insurance Rate Map (FIRM), map numbers 0413 C 1585 G , panel 1585 of 4350 and map number 04013 C 1605 H , panel 1605 of 4350 , both dated July 19,2001 , show that the project site falls within flood hazard zone "X" (shaded), (Fig. 2). Zone X (shaded) is defined by FEMA as:

Areas of 500 -year flood; areas of 100 -year flood with average depth of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from 100 -year flood.

The project site, like the majority of the surrounding areas, is currently an agricultural field. The existing terrain slopes from the northwest to the southeast at about 0.5%. The bordering roads, except for Bullard Avenue on the west, are paved streets with one traffic lane in each direction. These streets do not have curb and gutter improvements. Bullard Avenue is a dirt road.

Phase 1 and 2 of the project site, approximately 187 acres, is proposed to be developed into a single-family residential and open space that includes a recreation area.

5.0 Offsite Drainage

BACKGROUND

The proposed Mountain Gate project falls within the Dysart Drain Watershed of the White Tanks/Agua Fria Area Drainage Master Study "ADMS". The ADMS was prepared by WLB Group, Inc. for the Flood Control District of Maricopa County (FCDMC) and was completed in 1994. The ADMS covers 220 square miles west of Agua Fria River, east of White Tanks Mountains, north of Gila River, and south of Deer Valley Road. The ultimate drainage outfalls of this area are the Agua Fria River on the east and the Gila River on the South.

Currently, the ADMS is being revised by URS for the FCDMC. The new study is titled "Loop 303 Corridor/White Tanks Area Drainage Master Plan Update." A draft report has been submitted to the FCDMC (Ref. 5). The City of Surprise has requested to utilize this latest draft of the revised White Tanks Master Study in addressing offsite drainage for the project site. Material from the revised master study that includes a partial copy of the HEC-1 key map (existing conditions) and HEC-1 data were included in Appendix A.

The hydrology of the White Tanks Master Study was prepared using the U.S. Army corps of Engineers Computer Program HEC-1. The storm frequency selected was the 100 -year, 24 -hour. The majority of the areas within the study limits, including the
vicinity of the project site, are composed of agricultural fields with surrounding berms and irrigation ditches. The natural terrain slopes from the northwest to the southeast at about 0.5%. The general drainage pattern is characterized by sheet flows from one agricultural field to the next where storm runoff concentrates at the southeast corner of the field and then split into two or three directions. There are few significant drainage collection systems within the ADMS limits. Storm runoff can sheet flows several miles before it reaches a drainage outlet.

It was estimated from the revised White Tanks Master Study (App. A) that the 100 year peak flows along the perimeters of the Mountain Gate project site are approximately 44 cfs on the north side of Cactus Road, 246 cfs along the west side of Bullard Avenue, 487 cfs along the north side of Peoria Avenue and 191 cfs along the west side of Litchfield Road. Additionally, the adjacent field located in the immediate southwest corner of Litchfield Road and Cactus Road (App A), which is a part of subbasin 167 of the revised White Tanks Master Study and which is labeled as subbasin 167A for the purpose of this report, drains southeasterly toward Litchfield Road. This flow, estimated to be approximately 154 cfs using the Rational Method (App A), will be added to the 191 cfs offsite flow along the west side of Litchfield Road for a total flow of approximately 345 cfs .

The original ADMS included an Area Drainage Master Plan (ADMP) in which several major drainage collection systems were proposed to collect the storm runoff from the study area and convey it to the ultimate drainage outfalls at the Agua Fria River on the east or the Gila River on the South. Two ADMP elements significant to this project are the Reems Road Channel, one mile east of the project and the Waddell Road Channel, one mile north of the project. These channels, if implemented can potentially reduce the offsite drainage area impact to the project site. However, these future elements will not be considered in this drainage analysis for the project site. The area within the ADMS limits, in the mean time, is already experiencing significant growth. All new developments are required to retain the onsite storm runoff volume from the 100 -year 1 -hour or 2 -hour storm, depending on the jurisdictional entity, within the development boundaries. As the developments increase, the offsite flows for the downstream properties will be reduced to rare frequencies in excess of the retained storm.

PROPOSED OFFSITE FLOW MANAGEMENT

The normal depth method was applied on several cross sections taken across Cactus Road and Bullard Avenue, using the ADMS topography, to evaluate the peak flows estimated in the revised White Tanks Master Study (Appendix A). These calculations indicate that the peak flow of 44 cfs will be fully contained on the north side of Cactus Road, and the 246 cfs peak flow will be fully contained on the west side of Bullard Avenue.

It is proposed to convey the estimated current offsite peak flows along the north side of Peoria Avenue and the west side of Litchfield Road through the ultimate half street sections and adjacent drainage channels. The channels will be located within drainage easements. The proposed drainage easements along the Mountain Gate subdivision are 45 feet along Peoria Avenue and 40 feet along Litchfield Road. It is anticipated that similar sections will be provided along the commercial sites. As these offsite flows approach the southeast corner of the project site, and until potential extension of the channel by future developments, they will overtop the adjacent roads disperse to sheet flow into the downstream fields. Culvert crossings will be provided at the entrances for the project site off Peoria Avenue and Litchfield Road.

6.0 Onsite Drainage

ONSITE DRAINAGE PLAN

Onsite storm water runoff is proposed to be collected in local streets and conveyed into several proposed retention basins throughout the project site via catch basins (Fig. 3).

METHODOLOGY

Local streets were designed to contain the 10 -year flow between the curbs, the fifty year between the buildings front yards, and the 100-year flow 1.0 feet below finished floors. Street capacity calculations are included in Appendix B.

The Rational method was used to estimate the onsite storm runoff peak flows in accordance with the Drainage Design Manual for Maricopa County, Volume I, Hydrology (Ref. 2) and consistent with the City of Surprise Comprehensive

Development Guide (Ref. 1). According to the Comprehensive Development Guide, a maximum time concentration of fifteen minutes may be used for the runoff across the lots. Peak flow calculations are included in Appendix C.

Hydraulic calculations, such as storm drainage inlets and storm drain pipes, were performed in accordance with the Drainage Design Manual for Maricopa County, volume II, Hydraulics (Ref. 3) and are included in Appendix D.

7.0 Retention Requirements

Onsite retention will be provided for the storm runoff volume of the 100 -year, 2 -hour storm, which falls within the area being developed. The corresponding rainfall intensity used in the Master Drainage Report for Mountain Gate (Ref. 6) was 2.65 inches, per the FCDMC charts. The City of Surprise however requested to use a rainfall intensity of 2.8 inches to reflect a revision to its drainage guidelines currently being undertaken. The retention basins were designed per the City of Surprise Comprehensive Development Guide. The retention basins will drain through dry wells within a maximum time of 36 hours. Retention and dry well calculations are included in Appendix E.

A temporary basin has been designed to intercept the interim flow from the northern section of the project site which will be developed in future phases (Fig. 3).
8.0 Finished Floor Elevations

All finished floor elevations were set at a minimum of 14 inches above the low outfall of the site. In addition, all finished floors were a minimum of 1.0 foot higher than the estimated 100-year water surface elevations at the project site.

9.0 References

1. City of Surprise, Arizona, Surprise Municipal Code, Title 16 Subdivision, Surprise Comprehensive Development Guide, 1/97.
2. Flood Control District of Maricopa County, Drainage Design Manual, Volume I, Hydrology, January 1, 1995.
3. Flood Control District of Maricopa County, Drainage Design Manual. Volume II, Hydraulics, January 28, 1996.
4. The WLB Group, Inc., White Tanks/ Agua Fria Area Drainage Master Study, prepared for the Flood Control District of Maricopa County, December 1994.
5. URS, Loop 303 Corridor/White Tanks Area Drainage Master Plan Update, Contract FCD 99-40, Draft, Existing Condition, Hydrology, June 2001.
6. Stantec Consulting Inc., Master Drainage Report for Mountain Gate, January 31, 2000.

PEORIA AVENUE/CHANNEL SECTION

Cross Section
Cross Section for Irregular Channel
Channel Cross Section@ Peoria Entrance $P-1$ (See Figure 4)

Pearia Channel Phase $1 \&:$
Irregular Channel
Method Discharge

Section Data

Mannings Coefficient 0.025
$\begin{array}{ll}\text { Slope } & 0.025 \\ & 0.003000\end{array}$
Elevation Range $\begin{array}{ll} & \left.\begin{array}{r}10.00 \\ 6.00\end{array}\right) 10.00\end{array}$
Elevation Range
Discharge
10.00
6.00 to 10.00
479.82
479.82 cfs 2 Channel Capacity \forall

* $Q_{100}=487$ cts

Qi100 $=487 \mathrm{cts}$
The balance of the flow (487-480-7cfs) will be conveyed in the adjacent street section which has a capacity as shown on sheet $3 / 6$

Worksheet

 Worksheet for Irregular ChannelChannel Cross
Section@Peoria Entrance $P-1$ (See Figure 4)

Project Description	
Worksheet	Pearia Chan
Flow Element	Irregular Ch
Method	Manning's F
Solve For	Discharge
Input Data	
Slope	$0.003000 \mathrm{ft/f}$
Water Surface Elevation	10.00 ft
Options	
Current Roughness Method ImprovOpen Channel Weighting Metholmprover	
Closed Channel Weighting Meth	
Results	
Mannings Coeefficient	0.025
Elevation Range 6.	6.00 to 10.00
Discharge	479.82 cfs
Flow Area	$84.0 \mathrm{ft}^{2}$
Wetted Perimeter	36.14 ft
Top Width	35.00 ft
Actual Depth	4.00 ft
Critical Elevation	9.25 ft
Critical Slope	0.007522 f/r
Velocity	5.71 ft
Velocity Head	0.51 ft
Specific Energy	10.51 ft
Froude Number	0.65
Flow Type	Subcritical
Roughness Segments	
$\begin{array}{cc} \hline \text { Start } & \text { End } \\ \text { Station } & \text { Station } \end{array}$	Mannings Coefficient
0+00.0 $0+35.0$	0.025
Natural Channel Points	
Station $(\mathrm{tt})$$\underset{(\mathrm{ft})}{\text { Elevation }}$	
0+00.0 10.0	0.00
0+16.0 6.0	6.00
0+23.0 6.0	6.00
0+35.0 10.0	0.00

* Not actual elevations

	Cross Section Cross Section for Irregular Channel	Street Cross Section@Peoria
Project Description		Entrance P_{-1}
Worksheet Flow Element	Pearia Ave with out channel Irregular Channel	(See Figure 4)
Method	Manning's Formula	
Solve For	Discharge	
Section Data		
Mannings Coefficient	0.014	
Slope	$0.003000 \mathrm{ff/ft}$	
Water Surface Elevation	10.00 ft	
Elevation Range	9.21 to 10.00	
Discharge	49.22 cis -2 - 5 treet Capacity	

[^4]| | Culvert at |
| :---: | :---: |
| BOX CULVERT ANALYSIS
 COMPUTATION OF CULVERT PERFORMANCE CURVE | Culver |
| March 25, 2002 $3-10^{\prime} \times 3^{1}$ | |
| DESCRIPTION PROGRAM INPUT DATA | VAL |
| Culvert Span (ft) | 10.0 |
| Culvert Rise (ft) | 3.0 |
| FHwA Chart Number. | |
| FHWA Scale Number (Type of Culvert Entrance) | 1 |
| Manning's Roughness Coefficient (n -value) | 0.012 |
| Entrance Loss Coefficient of Culvert Opening................ | 0.5 |
| Culvert Length (ft) | 64.0 |
| Invert Elevation at Downstream end of Culvert ($f t$). | 0.0 |
| Invert Elevation at Upstream end of Culvert (ft). | 0.19 |
| Culvert Slope (ft/ft) | 0.003 |
| Starting Flow Rate (cfs) | 162.3 |
| Incremental Flow Rate (cfs) | 0.0 |
| Ending Flow Rate (cfs) | 162.3 |
| Starting Tailwater Depth (ft) | 4.0 |
| Incremental Tailwater Depth (ft) | 0.0 |
| Ending Tailwater Depth (ft) | 4.0 |

COMPUTATION RESULTS

$\begin{aligned} & \text { Flow } \\ & \text { Rate } \\ & \text { (cfs) } \end{aligned}$	Tailwater Depth (ft)	Headwater Inlet Control	$\begin{aligned} & \text { (ft) } \\ & \text { Outlet } \\ & \text { Control } \end{aligned}$	$\begin{gathered} \text { Normal } \\ \text { Depth } \\ \text { (ft) } \end{gathered}$	$\begin{gathered} \text { Critical } \\ \text { Depth } \\ (\mathrm{ft}) \end{gathered}$	Depth at Outlet (ft)	$\begin{array}{r} \text { Outlet } \\ \text { velocity } \\ (\mathrm{fps}) \end{array}$
162.3	4.0	3.26	4.59	1.93	2.02	3.0	5.41
HYDROCALC Hydraulics for Windows, Version 1.2a Copyright (c) 1996 Dodson \& Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069 Phone: (281)440-3787, Fax: (281)440-4742, Email:software@dodson-hydro.com All Rights Reserved.							
$Q_{100}=487$ CFS							

Channel Cross
Section@
Litchfield Entrance
L-1
(See Figure 4)

* Not actual elevations


```
    Slope }0.002500\textrm{ff/f
Water Surface Elevation 10.00 ft
M Elischarge 
```


Worksheet

Worksheet for Irregular Channel

Project Description		
Worksheet		Litchfield Road with out channel
Flow Element		Iregular Channel
Method		Manning's Formula
Solve For		Discharge
Input Data		
Slope		$0.002500 \mathrm{ft/ft}$
Water Surface Elevation		10.00 ft
Options		
Current Roughness Method Improved Lotter's Method Open Channel Weighting Methor Improved Lotter's Method		
Closed Channel Weighting Meth \quad Horton's Method		
Results		
Mannings Coefficient		0.014
Elevation Range 9		. 21 to 10.00
Discharge		44.93 cfs
Flow Area		$18.4 \mathrm{ft}^{\text {2 }}$
Wetted Perimeter		59.51 ft
Top Width		59.00 ft
Actual Depth		0.79 ft
Critical Slope		9.93 ft
		0.004363 fuft
Velocity		$2.44 \mathrm{ft/s}$
Velocity Head		0.09 ft
Specific Energy		10.09 ft
		0.77
Flow Type		Subcritical
Roughness Segments		
Start Station	End Station	Mannings Coefficient
0+00.0	0+39.5	0.015
0+39.5	0+45.0	0.025
0+45.0	0+51.0	0.012
0+51.0	0+59.0	0.025
Natural Channel Points		
Station (ft)	Elevation (ft)	*
0+00.0	10.0	
0+39.5		21
0+39.5		71
0+45.0		79
0+51.0	9.8	88
0+55.0	9.9	94
0+59.0	10.0	

Street Cross
Section@
Litchfield Entrance L-1
(See Figure 4) off of Litchfield Road

BOX CULVERT ANALYSIS
COMPUTATION OF CULVERT PERFORMANCE CURVE

$$
\text { March 25, } 2002
$$

Colvert\#2

DESCRIPTION PROGRAM INPUT DATA	VALUE
Culvert Span (ft)	8.0
Culvert Rise (ft)	3.0
FHWA Chart Number	8
FHWA Scale Number (Type of Culvert Entrance)	1
Manning's Roughness Coefficient (n -value)	0.012
Entrance Loss Coefficient of Culvert Opening.	0.5
Culvert Length (ft)	66.0
Invert Elevation at Downstream end of Culvert (ft)	0.0
Invert Elevation at Upstream end of Culvert (ft)	0.17
Culvert slope ($\mathrm{ft} / \mathrm{ft}$).	0.0026
Starting Flow Rate (cfs)	115.0
Incremental Flow Rate (cís)	0.0
Ending Flow Rate (cfs).	115.0
Starting Tailwater Depth (ft).	3.7
Incremental Tailwater Depth (ft)	0.0
Ending Tailwater Depth (ft).	3.7

computation results

* Not Actual elevations
\qquad

$$
\frac{\text { Culvert } \# 2}{\left(3-8^{\prime} \times 3^{\prime} C B C\right)}
$$

$$
0.6^{\prime}
$$

Drop

In order to develop an adequate description of hydrologic conditions affecting the site, research conducted for this project included site visits, review of topographic mapping, and review regional hydrologic analysis conducted for the Flood Control District of Maricopa County (FCDMC).

Visual reconnaissance was conducted for the site and surrounding area in order to observe and record information concerning present use and conditions for the site and surrounding area. The reconnaissance was conducted on September 8, 2004 by Mr. Robert E. McGee, E.I.T. of V3, with additional site visits conducted in February 2007 by Ms. Lisa M. Nelson, P.E. also of V3.
2.1.1 Impact(s) to Proposed Project Site

Offsitestorm water discharges directed to the site will not adversely impact the site,
2.1.2 Development of Off-Site Peak Discharges

Off-site peak discharges were developed for this site in the Loop 303 Corridor/White Tanks Area Drainage Master Plan (ADMP) Update (Reference 5). Excerpts from the ADMP can be founding APPENDIX A. A review of the ADMP indicates that a 100 -year, 24 -hour peak flow of 41 cfs is directed to the site from the west in Peoria Avenue. A 100-year, 24-hour peak flow of 184 cfs is directed to the site from the north in Litchfield Road. Additionally a 100 -year, 24 -hour peak discharge of 170 cfs is intercepted at the intersection of Cactus Road and Litchfield Road to the north and is conveyed across the site towards the southeast via sheet flow.

2.1.3 Conveyance of Off-Site Discharge

A review of the Final Drainage Report for Mountain Gate (Reference 9) prepared by Stantec Consulting, Inc. indicates that a 100 -year peak flow of 191 cfs is directed to the south along the west side of Litchfield Road. This 100-year flow is the peak flow for identifier 2D151 of the Loop 303 Corridor/White Tanks Area Drainage Master Plan (ADMP) Update (Reference 5). The HEC 1 model indicates that this flow is routed to the south along Litchfild Road (HEC-1 identifier R151) and has a peak flow of 184 cfs. However, the Final Drainage Report for Mountain Gate (Reference 9) assumes that all 191 cfs is directed towards the south in Litchfield Roantain Gate taken this 191 cfs , in addition to the 100-year runoff from the field adjacent to Litchifed Cactus Road, and combined them for a 100 -year peak flow of 345 cfs . This flow is the in the Mountain Gate report as flowing on the west side of Litchfield Read is is then described of an engineered channel running parallel to Litchfield Road towards Peri done so by means intersection of Litchfield Road and Peoria Avenue this aische. At the Mountain Gate site and will flow towards the Avenue this discharge will sheet flow out of the intersection, 41 cfs will be directed to Park (Reference 4). Excerpts fred to the east in Peoria Avenue past the Desert Cove Commercial which include the HEC-1 how the flow is conveyed ber fiscussion of Map for this subdivision is included Map for this subdivision is included as EXHIBIT 3 and shows the location of the channel.

The 41 cfs that is directed toward Desert Cove Commercial Park in Peoria Avenue is contained within the roadway and will continue to flow to the east as it has historically done. The flow will not be collected and conveyed on site for several reasons. The first reason is that Peoria Avenue has the ability to convey this 100 -year peak flow within the roadway cross section. The second reason is that the flow does not have a positive outlet at the east boundary of the site. This discharge would create an adverse impact on the property owner to the east, unless it is returned to Peoria Avenue. From the site reconnaissance, it was evident that this adjacent parcel is flood irrigated and contains earthen berms along the parcel boundaries to contain the irrigation water and does not receive storm water generated on Peoria Avenue. This would not only change the current flow path of the storm water in Peoria Avenue, but would greatly increase the potential for flooding and would change the current flow path of storm water directed to this residential parcel. Therefore, the 41 cfs will be allowed to be conveyed to the east within Peoria Avenue. However, it should be noted that some of this flow will be intercepted by the proposed inlets that are located along Peoria Avenue, and will be taken into the proposed retention basins. It is the responsibility of the Desert Cove development to retain the storm water generated by the half-street Peoria Avenue

From a review of the ADMP (Reference 5) it was determined that a 100 -year peak flow of 170 cfs is directed to the southeast at the intersection of Litchfield Road and Cactus Road, which is located to the north of the site. This flow is conveyed towards the southeast by way overland sheet flow. Since the improvements to the site only encompass Peoria Avenue and Litchfield Road at this time, this off-site discharge will continue to sheet flow across Desert Cove Commercial Park as it has done. Upon final engineering of the site, this off-site sheet flow will be captured and conveyed in accordance with the Preliminary Drainage Report for Desert Cove Commercial Park (Reference 10) so as to not adversely impact this development and the downstream developments.

Only the localized flows generated on the Peoria Avenue and Litchfield Road directly adjacent to the site are intercepted into the site via scuppers. The volume of storm water that is generated on the adjacent half-streets of Peoria Avenue and Litchfield Road during the 100 -year, 2-hour storm is taken into the site and stored in retention basins in accordance with the Preliminary Drainage Report for Desert Cove Commercial Park (Reference 10).
2.1.4 Discharge at the entrance and exit points

The entrances to the site are elevated in order to keep the off-site flows within Litchfield Road and Peoria Avenue. However, scuppers have been incorporated along the roadway to intercept the storm water generated on these roads immediately adjacent to the site for retention purposes during the 100 -year, 2 -hour storm event.

2.1.5 Existing Land Use

General land use in the vicinity of the site is agricultural with increasing low-density residential and commercial developments (FIGURE 2). The site is currently not developed.
2.2 On-Site Hydrology

Proposed site configuration and grading design indicates that the Rational Method of hydrology as described in the Drainage Design Manual for Maricopa County, Volume I (Reference 2) is applicable. Distinct drainage sub-basins were delineated for Peoria Avenue and Litchfield Road based on the final grading plan and site layout. The delineated sub-basins were given a unique
Desert Cove Commercial Park
Final Drainage Report
Page 8
V3 Project No.: 04233

MASTER DRAINAGE REPORT
FOR

SKYWAY BUSINESS PARK
Surprise, Arizona

Prepared for:
Skyway Business Park, L.L.C.
4301 N. $75^{\text {th }}$ Street, Suite 105
Scottsdale, Arizona 85251
Contact: Mr. Jim McDowell
Prepared by:
Project Design Consultants 3200 East Camelback Road, Suite 275

Phoenix, Arizona 85018
Job No. 2976.10
AUGUST 29, 2005
Revised October 31, 2005
Revised December 29, 2005

PROJECT DESIGN CONSULTANTS
Planning Landsccape Acchitecture | Environmenalal Engineering I Survey

2.0 HYDROLOGIC ANALVSIS
2.1 OFF-SITE HYDROLOGY
2.1.1 Impacts To Proposed Project Site and
2.1.2 Development of Off-Site Peak Discharges

The study site (Skyway Business Park) is isolated from low intensity offsite storms, since the area to the north is irrigated farmland. During larger storm events (e.g. the 100year, 24-hour storm), offsite storm water flows are estimated to arrive from the northeast to the study site. Figure 2 shows an excerpt from the Loop 303/ White Tanks Area Drainage Master Plan (ADMP) (Reference 4) affecting the proposed Skyway Business Park.
. Several HEC-1 models were created in the ADMP, of which the following two are discussed in this report:
Existing Conditions: HEC-1 File: L303M1L.DAT
Future Case With Retention Volume Diverts: HEC-1 File: L303F8B.DAT

EXISTING CONDITIONS HEC-1 MODEL
The Burlington Northern and Sante Fe Railroad (BNSFRR) tracks along the west side of the Milgard site are raised up approximately 2.5 -feet above adjacent ground to the west, which creates a barrier to low flows from the west. Based on field measurements of the railroad embankment and the channel west of the tracks, flow capacity estimates were made using Flow master normal-depth hydraulic software for Sections C-C and D-D (shown on Exhibit 1) with calculations in Appendix A. Based on these calculations, the initial 130 cfs of storm water from the northwest is conveyed south past the Milgard parcel facilities.
The HEC-1 model (File: L303M1L1.OUT) shows potential existing condition offsite drainage approaching the site. At the northwest corner of the site, the peak flow is estimated as 356.5 cfs , or the average of HEC-1 \# 11168 (289 cfs) and HEC-1 \# CP168 (424 cfs). Removing the 130 cfs channel capacity south along the tracks leaves 226.5 cfs that could weir over the tracks and enter the Milgard facilities.
The HEC-1 Model does not have a specific concentration point at the northeast corner of the site, however the peak flow is estimated as 358 cfs at HEC-1 \#11169, which includes all of Sub area \#169 and R155 at the southeast corner of the site.
At the southwest corner of the site, the peak flow is estimated as 108 cfs (HEC-1 \# 2D169 or D168) entering the site along Peoria Avenue.
The total flow exiting the site along Peoria Avenue is estimated as 463 cfs (HEC-1 \#CP169), which involves the combination of the above two HEC-1 ID's.
FUTURE CASE WITH RETENTION VOLUME DIVERTS HEC-1 MODEL
Another HEC-1 model (File: L303F8B.OUT) was developed as part of the Loop

The above HEC-1 model L303M1L1 was copied and renamed L303M1L5, and the only change was to model the 10 -year 24 -hour storm event with precipitation value of 2.50 inches. This HEC-1 model was performed to use in design of swales along both sides of 132^{ND} Avenue and the east side of Milgard Way to convey the approximate 10 -year 24 hour storm (from the north only, HEC-1 ID 11169A), south to the retention basin along hour storm (fro

The following Table 1 summarizes the offsite discharges discussed above, with Figure 2 Offsite Drainage Map showing the sub areas from the ADMP. Pertinent excerpts of this HEC-1 model input and output are included in Appendix B

Table 1-
Summary of Offsite Drainage Discharges

Location	HEC-1 ID's Used In Peak Flow Estimate	Existing Q100 (cfs)	Future W/Diverts Q100 (cfs)	Mod. Exist. Q100 (cfs)	Mod. Exist. Q10 (cfs)
HEC-1 Model File No.	L303M1L	L303F8B	L303M1L1	L303M1L5	
 BNSFRR	$($ (\#11168+ (Note 2)	226.5	119	226.5	45.5
N.E. Corner	1I169 (Note 4)	358	271	$(11169 \mathrm{~A})$	$(11169 \mathrm{~A})$
S.W. Corner	2D169 or D168 (Note 3)	108	52	108	40
Total Exiting @)	CP169	463	270	351	154
Peoria Ave.				305	162

Explanation: Q100 $=100$-Year Peak Discharge in cubic feet per second (cfs).
Notes: 1.) No drainage areas shown for these flows, since there are numerous diversions of flow in the HEC-1 model, making this an uncertain value.
2.) The average of HEC-1 \# 11168 + CP168, minus the estimated 130 cfs south along the BNSFRR, was used to estimate overflow into the study site. (See Appendix B for HEC-1 model input/output).
3.) The ADMP exhibit shows the diverted ID as \#2D169, but when it is retrieved for later routing in HEC-1 it is renamed \#D168, but is same flow.
4.) The revised HEC-1 models created the new HEC-1 ID \# (11169A) for the specific concentration point at the Varney Road alignment along the north side of the site.

2.1.3 Conveyance of Off-Site Discharge

The following Section 2.1.4 discusses how offsite storm water discharges will be conveyed through the site.

2.1.4 Discharge of Entrance and Exit Points

The modified existing condition HEC-1 model (File: L303M1L1) results will be used for the 100 -year 24 -hour storm offsite flow conditions.
As shown on Exhibit 1, 2 and 3, the100-year storm event offsite flow of 226.5 cfs (average of HEC-1 \# 11168 \& \# C168, minus the conveyance of 130 cfs along the west side of the railroad) is assumed to enter near the northwest corner of the Milgard site (Lot 27) but could enter as shallow flow all along the west side over the railroad tracks. The Milgard facilities, which are currently under design, will occupy approximately $2 / 3$ of the northern portion of Lot 27. The Milgard facilities will install two spur railroad tracks within and along the west side of Lot 27 . The offsite drainage entering the Milgard facility will be conveyed in paved driveway swales and/or earthen channels to the southeast corner of the Lot 27, where the flow will be conveyed in Milgard Way to the retention basin (ID. "A") along Peoria Avenue. See Exhibit 2 and 3 for typical street and channel sections. Excess offsite flow in the retention basin will weir over Peoria Avenue, matching historic flow patterns.
At the north side of the site, the existing 10-and 100-year event offsite flows of 162 and 305 cfs , respectively (HEC-1 \# 1I169A) enter the site. Swales are proposed along both sides of $132^{\text {nd }}$ Avenue and the east side of Milgard Way within 30-foot drainage easements. The swales will supplement the streets ($132^{\text {nd }}$ Avenue and Milgard Way in conveying the offsite drainage entering along the north side of the site to the retention basin along Peoria Avenue. Excess offsite flow in the retention basin will weir over Peoria Avenue, matching historic flow patterns.
At the southwest corner of the site, a 100 -year flow of 108 cfs is estimated to enter the site along the north side of Peoria Avenue. Of this flow, approximately 27 cfs currently is conveyed in an existing 30 -inch ID storm drain, that outlets into the site. The remaining flow is conveyed by the either the north half street of Peoria Avenue or frontage retention areas of the existing business into the Skyway site. Per input from the City, the 30 -inch storm drain will be extended (as part of the Skyway project improvements) to Dysart Road and connected to the existing 24 -inch ID irrigation pipe.
At the Peoria and Dysart Road intersection, the total combined 100-year flow leaving the property is estimated as 351 cfs at the HEC-1 \#CP169. Of the flow exiting the site, currently the existing 24 -inch ID irrigation pipe conveys approximately 20 cfs under Peoria Avenue, where it flows south in an unlined private irrigation ditch along the west side of Dysart Road. Any excess flow will weir over Peoria Avenue, matching historic flow patterns and flowing south across active irrigated farmland.

2.1.5 Existing Land Use

PROJECT DESIGN CONSULTANTS

The existing land use of the proposed site is agricultural farmland. The irrigation system is private. The site receives most of its water from a well north of Cactus Road and east of the BNSF railroad, which is delivered by concrete supply ditch along the east side of the the BNSF railroad, which is delivered by concrete supply ditch along the east side site intercepts some of its own tail water flows into an irrigation pond along the north side of intercepts some of its own tail water flows into an irrigation pond along fhem the private
Peoria Avenue. The site also intercepts some tail water irrigation flow from unlined tail water irrigation ditch which proceeds south along the west side of Dysart Road from north of Cactus Road to south of Peoria Avenue. The intercepted irrigation water in the pond along Peoria is pumped from the pond up to the northwest corner of the site and into the supply concrete ditches, where the well water supply also enters.
The existing private lined and unlined irrigation ditches on this land will be removed to facilitate the proposed site construction. The private unlined tail water flow irrigation canal along the west side of Dysart Road, between Peoria and Varney Roads, will be tiled to intercept irrigation waste water flow from the farmland to the north and convey them south across Peoria Avenue, thereby maintaining this existing private irrigation tail water ditch capacity.

2 ON-SITE HYDROLOGY

2.2.1 METHODOLOGY AND CRITERIA

The onsite hydrology will utilize the Rational Method based on the Flood Control District of Maricopa County (FCDMC), where necessary to size drainage facilities. Onsite of Maricopa County (FCDMC), where necessary to sill also utilize the FCDMC procedures determine the 100-year 2-hour precipitation values, runoff "C" coefficients.

2.2.2 EXISTING CONDITION DISCHARGES

The existing condition onsite peak discharges for this 142 -acre site were estimated by the Rational For Windows Software, Flood Control District of Maricopa County Method. The Rational For Windows Software, Flood Control District of Maricopa County Method. The
$10-, 50$-, and 100 - year peak discharges were estimated as 45,85 and 104 cfs , respectively as shown by the calculations in Appendix "C".

2.2.3 PROPOSED CONDITION DISCHARGES

Onsite proposed condition peak discharge calculations are summarized in the Table 2 below at pertinent locations of interest in evaluating scupper sizing and street capacity. Exhibit 2 shows the onsite drainage sub area boundaries and identification (ID) letters associated with each scupper location analyzed.

Appendix D

Technical Memorandum No. 4: Candidate Alternative Alignments and Evaluation

Peoria Avenue Corridor Improvement Study: Jackrabbit Trail Parkway to Dysart Road

Technical Memorandum \#4: Candidate Alternative Alignments and Evaluation

April 2011

Table of Contents
1.0 INTRODUCTION .. 1
2.0 EVALUATION FRAMEWORK .. 3
3.0 DESCRIPTION OF ALTERNATIVE ALIGNMENTS..
4.0 EVALUATION OF ALTERNATIVE ALIGNMENTS ... 7

List of Figures

Figure 1 - Vicinity Map

Figure 2 - West Peoria Avenue Alignment Options
\ldots

List of Tables

Table 1 - Evaluation Criteria and Performance Measures ... 3
Table 2 - Alternative Alignment Descriptions ... 5
Table 3 - Segment 4 Evaluation Matrix ... 13
Table 4 - Segment 6 Evaluation Matrix ... 14

Table 6 - Segment 3 Evaluation Matrix ... 16
Table 6 - Segment 3 Evaluation Matrix.. 16 Table 7 - Segment 5 Evaluation Matrix 17 Table 8 - Segment 7 Evaluation Matrix... 18 Table 9 - Segment 9 Evaluation Matrix

Table 11 - Recommended Alignment... 21

Appendices
Appendix A - Alternative Plan Sheets
Appendix B - Correspondence from Maricopa Water District

1.0 INTRODUCTION

The Maricopa Association of Governments (MAG) prepared the Interstate 10/Hassayampa Valley Roadway Framework Study (Hassayampa Framework Study) that identified a comprehensive roadway network to meet traffic demands for the buildout of the area west of State Route 303 (SR 303L). This long-range regional transportation study identified the need for a roadway network consisting of freeways, parkways, and major arterial roads.

The Hassayampa Framework Study recommended an extension of Peoria Avenue west from Perryville Road to the future Jackrabbit Trail Parkway, and identified Peoria Avenue as a major arterial from the future Jackrabbit Trail Parkway to Sarival Avenue. The study area for this project includes Peoria Avenue from the future Jackrabbit Trail Parkway alignment to Dysart Road (Peoria Avenue Corridor). The study area generally encompasses a two-mile wide corridor centered on the existing Peoria Avenue. The study area is shown in Figure 1.

This study will establish the facility type, number of lanes, right-of-way needs, and general alignment for the Peoria Avenue Corridor that will be required to accommodate projected traffic growth and enhance safety. In cooperation with the City of Surprise, the City of Glendale, and the City of El Mirage, the study will also develop access management guidelines, determine design standards based upon which jurisdiction anticipates annexing the roadway, and develop an implementation plan. In general, the purpose of this Corridor Improvement Study is to provide the Maricopa County Department of Transportation (MCDOT) and other jurisdictions with a future "footprint" of the Peoria Avenue Corridor and a timeframe for the implementation of the recommended future roadway improvements.

The key objectives of this Corridor Improvement Study are to

- Define and assess strategic issues within the project study area
- Develop and evaluate conceptual alternative alignments within the corridor study area;
- Recommend a preferred alignment;
- Develop consensus for the preferred alignment;
- Develop consensus for the preferred alignment;
- Define the characteristics of the p

This technical memorandum presents the evaluation framework, including the evaluation criteria and performance objectives, and the description of corridor alternatives. The corridor is subdivided into nine segments, allowing for more detailed evaluation and analysis of each alternative. The evaluation of each alternative alignment and subsequent recommendations by project segment are presented last.

2.0 EVALUATION FRAMEWORK

Evaluation Criteria and Performance Objectives

After completion of the inventory of existing conditions and traffic forecasts, the study team conducted a single-tiered process of developing and evaluating alternatives. Table 1 lists the evaluation criteria, a short description, and performance measures associated with each. The number of performance measures varies for each criterion, reflecting the inherent complexity and amount of data available for each element. The performance measures are intended to minimize or maximize an outcome that reflects fulfillment of the criterion. Some of the measures are evaluated numerically; others are based on a qualitative assessment.

Table 1 - Evaluation Criteria and Performance Measures

Criteria Title	Criteria Description	Criteria Performance Measure
Right-of-Way Considerations	An assessment of the amount and value of the right-of-way that would need to be acquired for corridor alternatives in relation to other alternatives under consideration for the segment.	Quantitative assessment of acres or square feet of acquisition
		Qualitative assessment of potential cost
$\begin{array}{\|l\|} \hline \text { Compatibility with } \\ \text { Existing Developments } \end{array}$	An estimate of the potential effect of proposed corridor alternatives on the existing developments most directly affected. Key considerations include the proximity to existing developments and potential displacements.	Qualitative assessment of compatibility
Compatibility with Planned Future Developments	An estimate of the potential effect of the corridor alternatives on planned developments and/or land that is currently under the jurisdiction of the Arizona State Land Department. Key considerations include compatibility with approved master plans and/or preliminary and final plats.	Qualitative assessment of compatibility
Compatibility with Existing and Planned Roadway Improvements	An assessment of the compatibility of the corridor alternatives with the existing and planned roadway improvements.	Qualitative assessment of compatibility
Engineering Complexity and Constructability	A general assessment of engineering complications, exclusive of cost considerations, which could arise from construction of the roadway. Key considerations include roadway geometry, permitting requirements, construction staging, etc.	Qualitative assessment of complexity and constructability

Criteria Title	Criteria Description	Criteria Performance Measure
Public Acceptability	Estimated community support for and acceptance of the corridor alternative, based on input from municipal staff, stakeholders, homeowner associations, and the public.	Qualitative assessment of acceptability
Local Agency Support	Estimated local agency (city) support for and acceptance of the corridor alternative, based on input from municipal staff.	Qualitative assessment of acceptability
Drainage/Flood Control Considerations	An estimate of potential impacts from the proposed corridor alternatives to both existing FCDMC facilities as well as to future improvements.	Qualitative assessment of potential impacts
Environmental Considerations	An assessment of social, ecological, and cultural environment in the study area.	Qualitative assessment of potential impacts to socioeconomic environment
Qualitative assensment of potential impacts to physical and natural environment		
	Qualitative assessment of potential impacts to cultural resources	
Utility Considerations	Estimate of potential impacts from the proposed corridor alternative to both existing and planned future utility facilities such as the MWD canals, wels, reclaimed water delivery headers, and overhead lines.	Quantitative assessment of potential impacts

Source: Project Team, October 2010

3.0 DESCRIPTION OF ALTERNATIVE ALIGNMENTS

A series of three alternative alignments was considered for Peoria Avenue. For planning purposes, a 140 -foot wide (minimum) corridor was used for each alternative. Alternative 1 includes widening the corridor symmetric about the section line. Alternative 2 includes widening the corridor to the south, maintaining the northern right-of-way (R/W) boundary. Alternative 3 includes widening the corridor to the north, maintaining the southern R/W boundary. Because the existing R/W throughout the corridor differs due to varying dedications of land, the degree of shifting to the north or south changes. For example, in some areas a shift may represent a difference of only five feet; in others, a shift could represent a change of 55 feet. To help in the analysis, the Peoria Avenue corridor was divided into nine segments for the evaluation process Table 2 describes the alignment of each alternative within each segment. Because Peoria Avenue does not yet exist through Segments 1 and 2, and because of other constraints, fewer alternatives were considered for these segments than elsewhere. Appendix A contains plan sheets showing the various alternatives.

Table 2 - Alternative Alignment Descriptions

Segment	Alternative	Alternative Description	Additional Information
Segment 1: Future Jackrabbit Trail Parkway to Beardsley Canal	1	Centered on section line	Goes through basin and floodpool
	2	South of reconstructed McMicken Dam	Goes south of floodpool
Segment 2: Beardsley Canal to Perryville Road	1	Centered on section line	Matches Zanjero Trails Preliminary Plat
Segment 3: Perryville Road to Citrus Road	1	Centered on section line	140-foot wide corridor requires acquisition on both sides
	2	Centerline shifted 5 feet south of section line	Holds planned dedicated R/W along north side
	3	Centerline shifted 15 feet north of section line	Holds existing south R/W line
Segment 4: Citrus Road to Cotton Lane	1	Centered on section line	140-foot wide corridor requires acquisition on both sides
	2	Centerline shifted 5 feet south of section line	Holds planned dedicated R/W along north side
	3	Centerline shifted 37 feet north of section line	Places south R/W line approximately 10 feet south of irrigation ditch and allows room for potential frontage road
Segment 5: Cotton Lane to Sarival Road	1	Centered on section line	176-foot wide corridor requires acquisition on both sides; wider corridor adjacent to SR 303L/Peoria Avenue traffic interchange
	2	Centerline shifted 55 feet south of section line	Holds existing north R/W line
	3	Centerline shifted 55 feet north of section line	Holds existing south R/W line

Segment	Alternative	Alternative Description	Additional Information
Segment 6: Sarival Road to Reems Road	1	Centered on section line	140-foot wide corridor requires acquisition on both sides
	2	Centerline shifted 15 feet south of section line	Holds existing R/W line along developed areas
	3	Centerline shifted 5 feet north of section line	Holds existing R/W line along developed areas
Segment 7: Reems Road to Bullard Avenue	1	Centered on section line	140-foot wide corridor requires acquisition on both sides
	2	Centerline shifted 5 feet south of section line	Holds existing R/W line along developed areas
	3	Centerline shifted 30 feet north of section line	Holds existing south R/W line
Segment 8: Bullard Avenue to Litchfield Road	1	Centered on section line	140 -foot wide corridor requires acquisition on both sides
	2	Centerline shifted 15 feet south of section line	Holds existing north R/W line
	3	Centerline shifted 30 feet north of section line	Holds existing south R/W line
Segment 9: Litchfield Road to Dysart Road	1	Centered on section line	140-foot wide corridor requires acquisition on both sides
	2	Centerline shifted south of section line (varies from 2 feet [west end], to 37 feet [middle], to 2 feet [east end])	Holds existing north R/W line
	3	Centerline shifted north of section line (varies from 30 feet [east end] to 37 feet [west end])	Holds existing south R/W line

Source: Project Team, November 2010

4.0 EVALUATION OF ALTERNATIVE ALIGNMENTS

Each alternative was evaluated with respect to each segment, and each segment was evaluated independently of the others. Tables 3 through 10 show the results of the evaluation The left column of each table lists the evaluation criteria, subdivided into more specific measures where appropriate. For example, environmental considerations is a very comprehensive criterion, so it was divided into socioeconomics, physical and natural features and cultural resources. Each alternative in each segment was rated with respect to each of the evaluation criteria. The rating system consisted of a simple three-point scale, with e representing the worst possible rating, \bullet an intermediate rating, and \circ the best possible rating. The rating scale is strictly relative - alternatives were considered in relationship to each other for each segment. Just because an alternative receives the highest rating does not mean that it faces no issues or obstacles with respect to that criterion. An evaluation matrix for Segment 2 is not presented because that segment included only one alternative

The evaluation was conducted by a multidisciplinary consultant team, with input from various sources, including the Technical Advisory Committee during December 2010 and January 2011 (for the Local Agency Support criterion), as well as the public at an open house meeting held on January 18, 2011

Results and Recommendations

Through the evaluation process, some segments (2, 4, 6 and 8) contained constraints and/or opportunities that clearly favored one alternative. Once their alignment recommendations were established, these segments assisted in determining the recommended alternative for the adjacent segments ($3,5,7$ and 9). To show this process, the following evaluation highlights are presented out of numerical order.

Segment 2: Beardsley Canal to Perryville Road

The Zanjero Trails master planned community is planned on both sides of Peoria Avenue. The preliminary plat dedicates 136 feet of R/W for Peoria Avenue, centered on the section line Because Zanjero Trails is expected to move forward with this plat configuration in the future, the section line option (Alternative 1) was decided to be the only practical alternative. Because this segment has only one alternative, no evaluation was necessary

Segment 4: Citrus Road to Cotton Lane
Maricopa County does not have any R/W recorded in this segment, so the full width, regardless of alternative, will require R/W negotiations. Key factors for this segment include existing and planned land uses. To the north, the Prasada community is planned, although no preliminary plat yet exists. To the south, Peoria Avenue is lined with existing large-lot, single-family house that front the roadway corridor and often have driveways that access Peoria Avenue. In addition, two irrigation canals run parallel to Peoria Avenue to the south. Because of the more imminent constraint that the existing land uses pose, the recommendation favors Alternative 3
shifting the roadway north to minimize impacts on existing land uses to the south (Table 3). Alternative 3 also provides the opportunity to construct a frontage road along the south side of Peoria Avenue so the existing access locations do not have direct access to Peoria Avenue

In addition to the alignments developed by the Project Team (shown in Table 2), other realignment alternatives were suggested at the January 18, 2011 public open house, as illustrated on Figure 2. The proposed alignment options for Peoria Avenue, west of Cotton Lane, share the alignment shift illustrated in white, relocating the corridor approximately one-half mile to the north (within the Prasada community), west of Cotton Lane and extending west to Perryville Road. This alignment option would disrupt existing plans for the Prasada and Zanjero Trails communities. Options, and any issues they may present, to provide a connection to Jackrabbit Trail Parkway include:

- Option A (blue): Peoria Avenue would be realigned to the north, as shown in white in Figure 2. Option A would continue to the west on the half-mile alignment (as shown in blue in Figure 2). This alignment change could have significant impacts on the Zanjero Trails development, which already has a preliminary plat on file. This alignment requires crossing McMicken Dam to provide the through connection to Jackrabbit Trail Parkway, which may be seen as a fatal flaw by the Flood Control District of Maricopa County (FCDMC) when other options are available.
- Option B (green): Peoria Avenue would be realigned to the north, as shown in white in Figure 2. Option B would continue to the west, but swing to the south to connect back to the Peoria Avenue section line (as shown in green in Figure 2) to provide a connection to Jackrabbit Trail Parkway. This alignment change could have significant impacts on the Zanjero Trails development, which already has a preliminary plat on file.
- Option C (yellow): Peoria Avenue would be realigned to the north, as shown in white in Figure 2. Option C would provide a continuation of the existing Peoria Avenue to the west along the Peoria Avenue section line (as shown in yellow in Figure 2). This option would result in offset intersections being located $1 / 2$ mile apart. This option does not provide a continuous east-west facility, and will require the half-mile segment of Perryville Road north of Peoria Avenue to serve as a connector between the two facilities.
- Option D (red + yellow): Peoria Avenue would be realigned to the north, as shown in Option D (red + yellow): Peoria Avenue would be realigned to the north, as shown in
white to provide a connection from the new Peoria Avenue to the old Peoria Avenue through the Prasada community. This option, like Option C, does not provide a continuous eastwest facility, although it requires fewer intersection turn movements. In the future, however, the operational capacity at the intersection (where red meets white) may not be sufficient. Additionally, this option could impact Prasada, by routing Peoria Avenue through the middle, instead of the periphery, of the community

Any of the realignment options would not maximize use of the existing Peoria Avenue improvements between Perryville and Citrus Roads, and would have significant impacts to the Zanjero Trails and Prasada communities. In addition, maintaining the roadway grid system allows for adequate spacing of intersections.

PEORIA AVENUE CORRIDOR IMPROVEMENT STUDY
Jackrabbit Trail Parkway to Dysart Road

Legend

Proposed Parkway	Alignment Options	- Option B	NOTE: Alignment illustrated in white,
			eginning at Peoria Avenue/Cotton
eam/Wash	West Peoria Avenue Alignment Change*	on C	Lane, is common to all subsequent

Technical Memorandum \#4 Peoria Aanait Trail Parkway to Dysart Road

Therefore, Alternative 3 is recommended to be further refined to minimize impacts to the south and north, while providing route continuity and a connection to Jackrabbit Trail Parkway.

Segment 6: Sarival Road to Reems Road

Existing residential development and related drainage facilities are located on both sides of Peoria Avenue through Segment 6. As these criteria potentially impact the corridor the greatest an effort was made to balance the impacts to both sides of the corridor. Therefore, Alternative 1 (symmetric on section line) is recommended (Table 4).

Segment 8: Bullard Avenue to Litchfield Road
Like Segment 6, Segment 8 contains existing residential development on both sides of the corridor. To the north, a newer residential subdivision has a small landscaped buffer between the R/W and property lines. To the south, individual large-lot, single-family homes front Peoria Avenue but are offset approximately 100 feet from the roadway. Recommending Alternative 1 (symmetric on section line) best balances the impacts to existing development (Table 5).

Segments $2,4,6$, and 8 provided the context that influenced the recommendation for the oddnumbered segments. Often, two or three alternatives in these segments achieved similar scores, with no alternative presenting a clear advantage. In these cases, connectivity with the adjacent segments helped determine the most practical solution. Likewise, transitional subsegments were strategically placed to avoid constraints or take advantage of opportunities to seamlessly connect segments. Because of the relative equality of the impacts of the differen alternatives, if conditions change in the future (e.g., wells removed, advanced development plats, etc.), the recommendations for the following segments could be reviewed and changed to reflect current conditions.

Segment 3: Perryville Road to Citrus Road

Existing and planned developments, as well as existing and planned roadway improvements were the key factors for Segment 3. To the north, Shadow Ridge High School has been built at the west end. A portion of the remaining land is platted through Zanjero Trails and preliminarily planned as part of the Prasada community. To the south, the Cortessa subdivision has been constructed, as well as several irrigation facilities and wells. On the west end, between Cortessa and the high school, is the corridor's only street section constructed to full width. In an effort to maximize use of this full-width street, which is built symmetric on the section line Alternative 1 is recommended. This supports a connection to Segment 2 to the west, which is also recommended to be located symmetric to the section line. To the east, Segment 4 is recommended to shift north. Because of the constraint that the existing development on the south side of the corridor poses in Segment 4, the transition area from the section line to a northerly shift is recommended to occur in the eastern portion of Segment 3 (Table 6).

Segment 5: Cotton Lane to Sarival Road

The key determinant for Segment 5 is ADOT's final design for SR 303L, which includes a traffic interchange at Peoria Avenue, centered on the section line. Very little development exists today through this segment. As SR 303L requires a section line alignment and such an alignment was also recommended for Segment 6, the recommendation for Segment 5 is to move forward with Alternative 1 (symmetric on section line). Because of the constraint that the existing development on the south side of the corridor poses in Segment 4, the transition area from the section line to a northerly shift is recommended to occur in the western portion of Segment 5 , slightly impacting an existing development to the north, but no structures (Table 7).

Segment 7: Reems Road to Bullard Avenue
Because of the noise contours associated with Luke Air Force Base, the majority of this segment is undeveloped, with the exception of approximately four houses that back up to Peoria Avenue on the west end. However, the presence of these houses skews the evaluation away from an option that impacts the north side of the corridor. The south side of the corridor, however, contains irrigation facilities and well sites. Section line alignments are recommended for the adjacent links, Segments 6 and 8 . In an effort to reduce impact to the drainage facilities and the existing development, and also to connect to the adjacent segments, the recommendation for this segment includes a northerly shift in the center of the segment to avoid the irrigation facilities and well sites, with transition areas back to the section line at the east and west ends, avoiding impact to the existing development (Table 8). If corridor conditions change in the future (e.g., removal of the irrigation facilities on the south side or new development on the north side) this recommendation could be reconsidered to recommend a section line alignment.

Segment 9: Litchfield Road to Dysart Road
Segment 9 contains no existing or platted development to the south. To the north of Peoria Avenue, existing land uses are next to the Ennis Spur of the BNSF Railway in the middle of the corridor. Development is planned and platted to the east and west. Half streets have been constructed on the north side throughout, but with no constant centerline offset. Therefore, the corridor's constructed half-street varies with differing amounts of R/W. To minimize impacts to existing land uses, the recommendation for this segment includes a southerly shift in the alignment, with transition areas to connect back to the section line on the east and west ends alignment, with transition areas to connect back to the section line on the east and west ends
(Table 9). Like Segment 7 , if corridor conditions change in the future (e.g., existing land uses are redeveloped), maintaining a section line alignment may be considered.

Segment 1: Jackrabbit Trail Parkway to Beardsley Cana

Segment 1 is unique because no roadway or existing development is currently present and no development plans are imminent. Only two alternatives are practical for this section Alternative 1, alignment symmetric to the section line, and Alternative 2, which does not follow the other widening guidelines (e.g., maintaining the north or south R/W boundary). Alternative 2 in this segment dips south to miss the flood basin south of the truncated McMicken Dam.

Drainage impacts and local agency support (specifically of FCDMC) are the two key determining factors. After the Project Team's evaluation, Alternative 1, which travels through the flood basin, was seen to have the least drainage impacts, as Alternative 2 would cross numerous washes; Waterfall Wash may require a substantial crossing. The recommendation for Segmen 1 is to move forward with Alternative 1, predicated upon consensus from FCDMC that it is less impactful to cross the basin than to cross a number of natural washes. By recommending a section line alignment, this alternative also maximizes the ability of the Arizona State Land Department (ASLD) to auction larger tracts of developable land in the future. (Currently, ASLD has a general master plan for the land, but no formal planning will be documented until a developer assumes responsibility.) In addition, Alternative 1 would provide better intersection spacing along the future Jackrabbit Trail Parkway (Table 10).

Figure 3 illustrates the recommended alignments, with a description of these recommendations in Table 11.

Future Refinement

These recommendations are based on a 140 -foot R/W corridor. Once the typical section is defined, then further refinement of the centerline location will be required to provide the best-fit alignment.

Table 3 - Segment 4 Evaluation Matrix

Criteria		Segment 4: Citrus Road to Cotton Lane					
		Alternative 1 (on section line)		Alternative 2 (shift 5 feet south)		Alternative 3(shift 37 feet north)	
Right-of-way Considerations	Area	\bigcirc	716,000 square feet	\bigcirc	716,000 square feet	\bigcirc	718,000 square feet
	Cost	\bigcirc			Higher cost likely to south	\bigcirc	
Compatibility with Existing Developments		\bigcirc	Balances impacts		Greatest impact to most properties	\bigcirc	No known impacts
Compatibility with Planned Future Developments		\bigcirc	Balances impacts	\bigcirc	No new planned development to south		All planned development to the north
Compatibility with Existing and Planned Roadway Improvements		\bigcirc	$\underset{\substack{\text { Half-street } \\ \text { constructed at } \\ \text { Citrus } \mathrm{Rd}}}{ }$	\bigcirc		\bigcirc	
Engineering Complexity and Constructability		\bigcirc	Access fronting Peoria Ave	\bigcirc	Access fronting Peoria Ave	\bigcirc	Opportunity for frontage road
Public Acceptability		\bigcirc		\bigcirc		\bigcirc	
Local Agency Support		\bigcirc		\bigcirc		\bigcirc	
Drainage/Flood Control Considerations		\bigcirc	No existing drainage infrastructure constructed; must continue channel from the west	\bigcirc	$\begin{gathered} \text { No existing } \\ \text { drainage } \\ \text { infrastructure } \\ \text { constructed; must } \\ \text { continue channel } \\ \text { from the west } \\ \hline \end{gathered}$	\bigcirc	No existing drainage infrastructure constructed; must continue channel from the west
Environmental Considerations	Socioeconomic		Impacts to private property		Impacts to private property	\bigcirc	No known impacts
	Physical and Natural	\bigcirc	Balances impacts	\bigcirc	Balances impacts		Impacts to farmland
	Cultural	\bigcirc	Impacts to irrigation ditch	\bigcirc	Impacts to irrigation ditch		Impacts to irrigation ditch
Utility Considerations			1 well site; 5200 ft lined irrigation ditch; 20 power poles		1 well site; 5200 ft lined irrigation ditch; 20 power poles		$\begin{aligned} & 5200 \mathrm{ft} \mathrm{lined} \\ & \text { irrigation ditch; } 20 \\ & \text { power poles } \end{aligned}$
Recommendatio							mended Alignment es impacts to existing d uses to south

[^5]Moderate impact
Moderate performance
Highest impact
Worst performance

Table 4 - Segment 6 Evaluation Matrix

Criteria		Segment 6: Sarival Road to Reems Road					
		$\begin{gathered} \text { Alternative } 1 \\ \text { (on section line) } \\ \hline \end{gathered}$		Alternative 2(shift 15 feet south)		Alternative 3(shift 5 feet north)	
Right-of-way Considerations	Area	\bigcirc	$\begin{gathered} 182,000 \text { square } \\ \text { feet } \end{gathered}$	\bigcirc	$\begin{aligned} & 182,000 \text { square } \\ & \text { feet } \end{aligned}$	\bigcirc	182,000 square feet
	Cost	\bigcirc		\bigcirc			Greatest impact to existing and planned developments in right-of-way
Compatibility with Existing Developments		\bigcirc	$\begin{gathered} \text { Balances } \\ \text { impacts to both } \\ \text { sides } \end{gathered}$	\bigcirc	Minor impacts to to south side	\bigcirc	Minor impacts to north
Compatibility with Planned Future Developments		\bigcirc	Minor impact to future development to north	\bigcirc	No known future development to south	\bigcirc	Impacts future development to north
Compatibility with Existing and Planned Roadway Improvements		\bigcirc		\bigcirc	Not compatible with existing street and Reems Rd intersection	\bigcirc	Not compatible with existing street but more compatible than \#2 with Reems Rd intersection
Engineering Complexity and Constructability		\bigcirc		\bigcirc		\bigcirc	
Public Acceptability		\bigcirc		\bigcirc		\bigcirc	
Local Agency Support		\bigcirc		\bigcirc		\bigcirc	
Drainage/Flood Control Considerations		\bigcirc	Least impact to existing drainage facilities	\bigcirc	Minor impacts to existing drainage facilities	\bigcirc	Minor impacts to existing drainage facilities
Environmental Considerations	Socioecono mic	\bigcirc	Minimal impact	\bigcirc	Minimal impact	\bigcirc	Minimal impact
	Physical and Natural	\bigcirc	Minimal impact		Minimal impact	\bigcirc	Minimal impact
	Cultural	\bigcirc	No known impact	\bigcirc	No known impact	\bigcirc	No known impact
Utility Considerations		\bigcirc	No known irrigation or power lines	\bigcirc	$\begin{gathered} \text { Potential } \\ \text { relocation of } \\ \text { underground } \\ \text { irrigation facilities } \end{gathered}$	\bigcirc	No known impacts to irrigation or power lines
Recommendations		Recommended Alignment balances impacts and scores best in drainage and existing development compatibility					
$\begin{array}{ll} \hline \bigcirc & \begin{array}{l} \text { Lowest impact } \\ \text { Best performance } \end{array} \end{array}$			Moderate impact Moderate performance		Highest impact Worst performance		

Table 5 - Segment 8 Evaluation Matrix

Criteria		Segment 8: Bullard Ave to Litchfield Rd					
		$\begin{gathered} \text { Alternative } 1 \\ \text { (on section line) } \end{gathered}$		Alternative 2(shift 15 feet south)		Alternative 3(shift 30 feet north)	
Right-of-way Considerations	Area	\bigcirc	235,000 square feet	\bigcirc	235,000 square feet	\bigcirc	233,000 square feet
	Cost	\bigcirc		-	Highest cost likely to south	\bigcirc	
Compatibility with Existing Developments		\bigcirc	Balances impacts	-	Impacts land uses to south		Impacts land uses to north
Compatibility with Planned Future Developments		\bigcirc	Minor impacts to future development	\bigcirc	No future development to south	\bigcirc	Impacts to future development to north
Compatibility with Existing and Planned Roadway Improvements		\bigcirc	Litchfield and Bullard intersections fully improved; centered on section line	\bigcirc		\bigcirc	
Engineering Complexity and Constructability		\bigcirc		\bigcirc		\bigcirc	
Public Acceptability		\bigcirc		\bigcirc		\bigcirc	
Local Agency Support		\bigcirc		\bigcirc		\bigcirc	
Drainage/Flood Control Considerations		\bigcirc	Minor impacts to existing drainage facilities	\bigcirc	Least impacts to existing drainage facilities	O	Most impacts to existing drainage facilities (channel and box culverts)
Environmental Considerations	Socioeconomic	\bigcirc	Balanced impacts	\bigcirc	Impacts to private property lots	\bigcirc	No known impacts
	Physical and Natural	\bigcirc	Balanced impacts	-	Greatest impact to farmland and potentia habitat areas	\bigcirc	No known impacts
	Cultural	\bigcirc	No known impacts	\bigcirc	No known impacts	\bigcirc	No known impacts
Utility Considerations		\bigcirc	2 well sites	O	4 well sites	\bigcirc	No well sites impacted
Recommendatio		$\begin{aligned} & \text { Rec } \\ & \text { balar } \\ & \text { better } \end{aligned}$	mended Alignment impacts and scores an \#3 in drainage and ting developmen compatibility				

O ${ }^{\text {Lowest impact }}$

- Moderate impact
- $\quad \begin{aligned} & \text { Highest impact } \\ & \text { Worst performance }\end{aligned}$

Table 6 - Segment 3 Evaluation Matrix

Criteria		Segment 3: Perryville Road to Citrus Road					
		Alternative 1 (on section line)		Alternative 2(shift 5 feet south)		Alternative 3(shift 15 feet north)	
Right-of-way Considerations	Area	\bigcirc	295,000 square feet	\bigcirc	293,000 square feet	\bigcirc	309,000 square feet
	Cost	\bigcirc		\bigcirc		\bigcirc	
Compatibility with Existing Developments		\bigcirc	Moderate impact to existing land uses	\bigcirc	Moderate impact to existing land uses	\bigcirc	Least impact to existing land uses
Compatibility with Planned Future Developments		\bigcirc	Moderate impact to planned land uses	\bigcirc	Moderate impact to planned land uses	\bigcirc	Least compatible with future development to north
Compatibility with Existing and Planned Roadway Improvements		\bigcirc	Most compatible with existing street improvements	\bigcirc		\bigcirc	
Engineering Complexity and Constructability		\bigcirc		\bigcirc		\bigcirc	
Public Acceptability		\bigcirc		\bigcirc		\bigcirc	
Local Agency Support		\bigcirc		\bigcirc		\bigcirc	
Drainage/Flood Control Considerations		\bigcirc	Minimal impact	\bigcirc	Minimal impact	\bigcirc	Slight impact to existing drainage channel to the north
Environmental Considerations	Socioeconomic	\bigcirc	Slight impact to land; no impact to public access or structures	\bigcirc	Slight impact to land; no impact to public access or structures	\bigcirc	Slight impact to land; no impact to public access or structures
	Physical and Natural		Some impact to farmland	\bigcirc	Some impact to farmland	\bigcirc	Some impact to farmland
	Cultural	\bigcirc	Impacts to irigation ditch	\bigcirc	Impacts to irrigation ditch	\bigcirc	Impacts to irrigation ditch
Utility Considerations		\bigcirc	1600 ft lined irrigation ditch, 7 power poles, 2 well sites	0	1600 ft lined irrigation ditch, 7 power poles, 2 well sites	\bigcirc	1600 ft lined irrigation ditch, 7 power poles, 2 well sites
Recommendatio			mended Alignment with ition at east end - most mpatible with existing ments and developments				

[^6]- Moderate impact
- $\quad \begin{aligned} & \text { Highest impact } \\ & \text { Worst performanc }\end{aligned}$

Table 7 - Segment 5 Evaluation Matrix

Table 8 - Segment 7 Evaluation Matrix

Criteria		Segment 7: Reems Road to Bullard Ave					
		$\begin{gathered} \text { Alternative } 1 \\ \text { (on section line) } \end{gathered}$		Alternative 2(shift 5 feet south)		Alternative 3(shift 30 feet north)	
Right-of-way Considerations	Area	\bigcirc	227,000 square feet	\bigcirc	227,000 square feet	\bigcirc	224,000 square feet
	Cost	\bigcirc		\bigcirc		-	Higher cost likely to north; encroachment into residential lots
Compatibility with Existing Developments		\bigcirc	Balances impacts	\bigcirc	Balances impacts	\bigcirc	$\begin{gathered} \text { All existing } \\ \text { development to the } \\ \text { north } \end{gathered}$
Compatibility with Planned Future Developments		\bigcirc	Balances impacts to both sides	\bigcirc	No future development plans to the south	\bigcirc	All future development plans to the north
Compatibility with Existing and Planned Roadway Improvements		\bigcirc	Reems Rd improved to full street section; centered on section line	\bigcirc		\bigcirc	
Engineering Complexity and Constructability		\bigcirc		\bigcirc		\bigcirc	
Public Acceptability		\bigcirc		\bigcirc		\bigcirc	
Local Agency Support		\bigcirc		\bigcirc		\bigcirc	
Drainage/Flood Control Considerations		\bigcirc	No known impacts	\bigcirc	No known impacts	\bigcirc	No known impacts
Environmental Considerations	Socioeconomic	\bigcirc	Impacts to agriculture	\bigcirc	Impacts to agriculture	-	Impacts to private property
	Physical and Natural		Potential impact to farms and habitat		Potential impact to farms and habitat	\bigcirc	Potential impact to habitat
	Cultural	\bigcirc	Impacts to irrigation ditch	\bigcirc	Impacts to irrigation ditch	\bigcirc	No known impacts
Utility Considerations			5 well sites; 4500 ft lined irrigation ditch; 16 power poles	\bigcirc	5 well sites; 4500 ft lined irrigation ditch	\bigcirc	3 well sites; 16 power poles
Recommendatio							nended Alignment with at west end and east uld minimize impacts to pacts at west end.

- $\begin{aligned} & \text { Moderate impact } \\ & \text { Moderate performan }\end{aligned}$

Highest impact
Worst performance

Table 9 - Segment 9 Evaluation Matrix

Criteria		Segment 9: Litchfield Rd to Dysart Rd					
			Alternative 1 section line)		Alternative 2 (shift south)		Alternative 3 (shift north)
Right-of-way Considerations	Area	\bigcirc	257,000 square feet	\bigcirc	300,000 square feet	\bigcirc	252,000 square feet
	Cost	\bigcirc	Moderate costs	\bigcirc	$\underset{\substack{\text { Lowest cost likely to } \\ \text { south }}}{ }$	\bigcirc	Highest cost likely to north, including potential building takes
Compatibility with Existing Developments		\bigcirc	Minor impacts to land uses to north	\bigcirc	No known impacts	\bigcirc	Impacts to land uses to north
Compatibility with Planned Future Developments		\bigcirc	No known impacts to future development	\bigcirc	Minor impacts to future development to south	-	Impacts future development to north
Compatibility with Existing and Planned Roadway Improvements		\bigcirc	$\begin{aligned} & \text { Most compatible with } \\ & \text { exisitign half-streets } \\ & \text { and } \text { Litchfold and } \\ & \text { Dysartr d d } \\ & \text { intersections } \end{aligned}$	\bigcirc	Balances impacts	\bigcirc	Least compatible with existing half-streets and Litchfield and Dysart Rd intersections
Engineering Complexity and Constructability		\bigcirc		\bigcirc		\bigcirc	
Public Acceptability		\bigcirc		\bigcirc		\bigcirc	
Local Agency Support		\bigcirc		\bigcirc		\bigcirc	
Drainage/Flood Control Considerations		\bigcirc	Balances impacts	\bigcirc	Least impact to existing drainage facilities	-	Most impact to existing drainage facilities
Environmental Considerations	Socioeconomic	\bigcirc	Balances impacts	\bigcirc	No known impacts	\bigcirc	Impacts to private property to north
	Physical and Natural	\bigcirc	Balances impacts		Greatest impact to farmland	\bigcirc	No known impacts
	Cultural		Impacts to Ennis Spur		Impacts to Ennis Spur	\bigcirc	Impacts to Ennis Spur
Utility Considerations			2 well sites; 2 reclaim taps; 7 power poles		2 well sites; 2 reclaim taps; 7 power poles	\bigcirc	No well sites, reclaim taps or power poles
Recommendations					mmended Alignment with nsitions at both ends mizes impacts to existing land uses		

Moderate impact Moderate performance

Highest impact
Worst performance

Table 10 - Segment 1 Evaluation Matrix

Criteria		Segment 1: Jackrabbit Trail Parkway to Beardsley Canal			
			$\begin{gathered} \text { Alternative } 1 \\ \text { (on section line) } \end{gathered}$		Alternative 2 (shift to south)
Right-of-way Considerations	Area	\bigcirc	779,000 square feet	\bigcirc	825,000 square feet
	Cost	\bigcirc			Higher cost due to additional length
Compatibility with Existing Developments		\bigcirc	No existing development	\bigcirc	No existing development
Compatibility with Planned Future Developments		\bigcirc	Provides higher amount of developable land near intersection	\bigcirc	
Compatibility with Existing and Planned Roadway Improvements		\bigcirc	Facilitates 1-mile intersection spacing along Jackrabbit Parkway	\bigcirc	
Engineering Complexity and Constructability		\bigcirc		-	Numerous wash and floodplain crossing
Public Acceptability		\bigcirc		\bigcirc	
Local Agency Support		\bigcirc		\bigcirc	
Drainage/Flood Control Considerations		\bigcirc		\bigcirc	Numerous wash and floodplain crossing
Environmental Considerations	Socioeconomic	\bigcirc	No known impacts	\bigcirc	No known impacts
	Physical and Natural	\bigcirc		O	Greatest impact to wash corridors and floodplains
	Cultural		Impacts to Beardsley Canal	\bigcirc	Impacts to Beardsley Canal
Utility Considerations		\bigcirc	No known impacts	\bigcirc	No known impacts
Recommendations		Reco $\underset{\text { inter }}{\text { min }}$	mended Alignment-likely lower cost; zes natural wash crossings; better ction spacing along Jackrabbit Trail Parkway		

$\bigcirc \underset{\text { Best performance }}{\text { Lowest impact }}$
Moderate impact
Moderate performanc

- Highest impact

Table 11 - Recommended Alignment

Segment	Recommended Alignment	Comments
Segment 1: Future Jackrabbit Trail Parkway to Beardsley Canal	Alternative 1, centered on section line	Scored higher than second alternative due to shorter corridor length and less disturbance to drainage corridors.
Segment 2: Beardsley Canal to Perryville Road	Alternative 1, centered on section line	Independent evaluation not carried out; alignment is already set in the Zanjero Trails Preliminary Plat.
Segment 3: Perryville Road to Citrus Road	Alternative 1, centered on section line	Scored highest of the three alternatives; most compatible with existing street improvement on Peoria Avenue. Corridor will transition at east end to meet segment 4, shifted north of the section line.
Segment 4: Citrus Road to Cotton Lane	Alternative 3, centerline shifted 37 feet north of section line	Scored highest of the three alternatives; most compatible with existing development; likely to have least R/W cost.
Segment 5: Cotton Lane to Sarival Road	Alternative 1, centered on section line	All three alternatives scored similarly. Alternative 1 chosen due to compatibility with existing development and planned roadway improvements, specifically placement of SR 303L and the Peoria Avenue traffic interchange in this segment. Corridor will transition from Segment 4 north shift to centerline symmetry at the west end of this segment.
Segment 6: Sarival Road to Reems Road	Alternative 1, centered on section line	Scored highest of the three alternatives; balances impacts throughout segment and performs best in key factors, including compatibility with existing development and drainage/flood control considerations.
Segment 7: Reems Road to Bullard Avenue	Alternative 3, centerline shifted 30 feet north of section line for short distance in middle portion of segment	Although scoring the lowest due to impacts to existing development, maintaining section line alignment at west end and transitioning to the north, east of existing development allows alignment to miss well site and balance impacts throughout remainder of segment. Corridor will transition at east end to meet segment 8, centered on the section line.
Segment 8: Bullard Avenue to Litchfield Road	Alternative 1, centered on section line	Scored highest of the three alternatives; balances impacts throughout segment and performs better than Alternative 3 in key factors, including compatibility with existing development and drainage/flood control considerations.
Segment 9: Litchfield Road to Dysart Road	Alternative 2, centerline shifted south of section line	Because of the varying shifts associated with Alternative 2, it best minimizes impacts to existing land uses throughout the segment.

Source: Project Team, December 2010

PEORIA AVENUE CORRIDOR IMPROVEMENT STUDY

Jackrabbit Trail Parkway to Dysart Road

Appendix A

nichard e. bunnham	graot gammage, jr.
${ }_{\text {king }}$	mas ${ }^{\text {a }}$
des A. craft	KEVIN P. MERRIT
joal s. s dalt	KEVIN J . BLA
Wr. dacer	JEFFREY
Cambron c. Atigue	
STEPHEN W. ANDERSON TMMOTHY M MARENS	CHR
OrHY J. MARTENS	
NUUA M. Vaz	
ES F. Polese	patre
Chel r. WEISS	${ }_{6 R}$
THER J. botsel	
athan A. bennett	carourn v. willa
counsel	F. WILLIAM SHEPPARD MARY B. ARTIGUE

Mitch Wagner
Maricopa County Dept. of Transportation
2901 W. Durango St
Phoenix, AZ 85009
Re: Peoria Avenue Corridor Improvement Study
Dear Mr, Wagner:
We represent The Maricopa County Municipal Water Conservation District No. "MWD"). We are writing to provide MCDOT with MWD's comments regarding the current Peoria Avenue Corridor Improvement Study. MWD is an interested party to MCDOT's Study in two different respects.

First, MWD is an irrigation district providing water to its customers through the Beardsley Canal, wells, and a series of laterals throughout our service area. Any proposals that impact rights-of-way tend to almost always impact our water delivery systems as well. In that regard, please find attached a copy of a "water delivery" response previously submitted to you on March 9. This response generally describes the potential impacts of the realignments contemplated in the Study on MWD's water delivery system and its customers. MWD will continue to provide comments of this nature to you through this process.

Second, MWD is a large landowner in this area. Indeed, we believe MWD is the largest landowner in MCDOT's Study Area. As a responsible landowner, MWD has been engaged in an ongoing and highly detailed land use planning effort, detailed below. The balance of this letter s designed to provide MCDOT with MWD's comments on the current Study as the major landowner in the Study area, and specifically to inform you of MWD's opposition to any alignments that would relocate Peoria Avenue onto and through our property.

For a decade now, MWD has been engaged in the planning and development of a project called Zanjero Trails. In the course of these efforts, MWD has secured approvals for a DM and zoning from Maricopa County, and annexation, General Plan Amendment, PAD zoning, and preliminary plats from the City of Surprise. MWD also has development agreements with Maricopa

Mitch Wagner
March 21, 201
Page 2

Mitch Wagner
March 21, 201
Page 3

County, MCDOT, and the City of Surprise, as well as Agreements with the Dysart Unified School District and Litchfield Elementary School District. MWD has invested millions of dollars in flood control improvements under an IGA with the MCFCD, wastewater lines now owned by Liberty Water, and a water wheeling agreement with Arizona American Water to serve their new potable water treatment facility. Perhaps most importantly and of direct relevance to your project, MWD has cooperated continuously with the Dysart Unified School District on the planning and construction of Shadow Ridge High School. Even now, Maricopa County staff continues to review our pending Preliminary Plat for the southernmost portions of Zanjero Trails,

On February 16, you issued an e-mail regarding Technical Memorandum No. 4 of the Peoria Avenue Corridor Study. This e-mail included some proposals that would realign Peoria Avenue from its normal section line alignment onto our land and into our planned project.

We object to any proposal that would relocate Peoria Avenue off the section line alignment and into our property and our project. For a decade, MWD has relied on the current alignment in developing all of the plans and agreements described above. We have gone through an entire planning process from General Plan to Preliminary Plat in reliance on the current alignment. The County has directly approved several of those efforts, and has been consulted on all of them. It is too late for the County to change course now. To proceed in such a manner would punish a responsible landowner who has invested years and hundreds of thousands of dollars in a bona fide planning effort. The County should consider our myriad entitlements before considering any such realignment. Your planning efforts should not take place in a vacuum any more than ours have.

It is worthwhile noting that MWD has accommodated realignments of section line roads at appropriate, earlier stages of our planning process. This has occurred in Maricopa County, with regard to Perryville Road adjacent to Clearwater Farms, and in Surprise, with regard to the linking of Perryville Road into Cactus. This is why we have a planning process: so that roadway alignments can be considered at a time that is fair to all parties. By contrast, any proposed realignment of Peoria simply comes too late.

MWD will oppose any attempt to realign Peoria Avenue, or any road, into our project once we have secured Preliminary Plat approval, as we have here, after years of diligen consideration and effort on our part.

Sincerely,
GAMMAGE \& BURNHAM

By

Stephen W. Anderson

ce. Rodney Bragg (w/encl.) AECOM
 2777 E. Camelback Road, Ste. 200
 Phoenix, AZ 85016

James R. Sweeney, General Manager, MWD (via e-mail and w/encl.) Veronica Valenzuela, MWD (via e-mail and w/encl.)

Appendix E

Technical Memorandum No. 5: Preferred Alignment

Peoria Avenue Corridor Improvement Study: Jackrabbit Trail Parkway to Dysart Road

Technical Memorandum \#5: Preferred Alignment

June 2011

Table of Contents

1.0 INTRODUCTION 1
2.0 DESIGN CRITERIA 3
Typical Section. 3
3.0 FEATURES OF THE PREFERRED ALIGNMENT 8
Geometric 8
Drainage 10
Structures14
Bicycles and Pedestrians 15
Trails 15
Utilities 15
Ennis Spur 17
Corridor Traffic Management/Intelligent Transportation System. 20
Right-of-Way 20
Considerations for Future Study and Design 21
Planning-Level Cost Estimate 22
4.0 ACCESS MANAGEMENT 25
Definition.. 25
Purpose and Need for Access Management 25
Techniques 26
Recommended Techniques for Peoria Avenue 29
5.0IMPLEMENTATION PLAN 30

IMPLEMENTATION PLAN

List of Figures

Figure 1 - Vicinity Map...
Figure 2 - Standard Hybrid Typical Section .. 5
Figure 3 - Narrow Hybrid Typical Section .. 5
Figure 4 - Widened Hybrid Typical Section.. 6
Figure 5 - Standard City of Surprise Typical Section .. 6
Figure 6 - Narrow City of Surprise Typical Section ... 7
Figure 7 - Narrow Hybrid with Frontage Road Typical Section ... 7

Figure 9 - Off-Site Drainage Flow...
Figure 10 - Ennis Spur Grade Separation.. 19
Figure 11 - Implementation Plan... 31

List of Tables

Table 1 - Design Criteria .. 3
Table 2 - Horizontal Curves.. 10

Table 4 - Channel Summary... 14
Table 5 - New Right-of-Way... 21
Table 6 - Full Width Ultimate Facility Planning Level Cost Estimates 23
Table 7 - Full Width Ultimate Facility Planning Level Cost Estimates Adjusted for Inflation 23
Table 8 - Interim Implementation Planning Level Cost Estimates ... 24
Table 9 - Interim Implementation Planning Level Cost Estimates Adjusted for Inflation............ 24

Appendices

Appendix A - Preferred Alignment Plan Sheets
Appendix B - MWD Letter
Appendix C - Cost Estimates

1.0 INTRODUCTION

The Maricopa Association of Govemments (MAG) prepared the Interstate 10/Hassayampa Valley Roadway Framework Study (Hassayampa Framework Study) that identified a comprehensive roadway network to meet traffic demands for the buildout of the area west of State Route 303 (SR 303L). This long-range regional transportation study identified the need for a roadway network consisting of freeways, parkways, and major arterial roads.

The Hassayampa Framework Study recommended an extension of Peoria Avenue west from Pemyville Road to the future J ackrabbit Trail Parkway, and identified Peoria Avenue as a major arterial from the future J ackrabbit Trail Parkway to Sarival Avenue. The study area for this project includes Peoria Avenue from the future J ackrabbit Trail Parkway alignment to Dysart Road (Peoria Avenue Coridor). The study area generally encompasses a two-mile wide corridor centered on the existing Peoria Avenue. The study area is shown in Figure 1.

This study will establish the facility type, number of lanes, right-of-way needs, and general alignment for the Peoria Avenue Corridor that will be required to accommodate projected traffic growth and enhance safety. In cooperation with the City of Surprise, the City of Glendale, and the City of EI Mirage, the study will also develop access management guidelines, determine design standards based upon which jurisdiction anticipates annexing the roadway, and develop an implementation plan. In general, the purpose of this Coridor Improvement Study is to provide the Maricopa County Department of Transportation (MCDOT) and other jurisdictions with a future "footprint" of the Peoria Avenue Corridor and a timeframe for the implementation of the recommended future roadway improvements.

The key objectives of this Corridor Improvement Study are to:

- Define and assess strategic issues within the project study area
- Develop and evaluate conceptual altemative alignments within the corridor study area;
- Recommend a preferred alignment;
- Develop consensus for the preferred alignment;
- Define the characteristics of the preferred alignment; and
- Develop an implementation plan.

This technical memorandum describes the Preferred Alignment, including the typical section, design criteria, drainage features, structures, right-of-way, utilities, access management, cost estimate, and implementation plan.

PEORIA AVENUE CORRIDOR IMPROVEMENT STUDY
Jackrabbit Trail Parkway to Dysart Road

2.0 DESIGN CRITERIA

Table 1 shows the major design features recommended for Peoria Avenue. These design criteria are for urban roadway sections and apply to the envisioned ultimate cross-section of Peoria Avenue. Interim construction may not include all of these elements.

Table 1 - Design Criteria

Description	Criteria
Typical Section	Urban Principal Arterial
Design Year	Design year for future projects should be 20 years after construction completion
Design Vehicle	WB-50
Design Speed	55 mph (urban)
Pavement Design Life	20 years
Number of Lanes	3 through lanes in each direction
Roadway Width	See typical sections (Figures 2-7)
Drainage (Pavement)	10 -year event
Minimum Right-of-Way Requirements	See typical sections (Figures 2-7)
Lane Widths	12 feet
Clear Zone Width	Approx. 25' min. (varies based on side slopes, design speed, and traffic volume)
Median	See typical sections (Figures 2 - 7)
Maximum Superelevation Rate	$\mathrm{e}_{\text {max }}=4 \%$ (urban)
Maximum Gradient	5%
Minimum Radius @ normal crown	$\mathrm{R}=10,000$ feet (approx.)

Typical Section

Between the Beardsley Canal and Dysart Road, the Peoria Avenue section line is the southem boundary of the incorporated limits for the City of Surprise. South of the section line lies within unincorporated Maricopa County, with the exception of a parcel abutting SR 303L and a 10 -foot strip of land along the south side of Peoria Avenue (located either 23 or 30 feet south of the Peoria Avenue section line) from Perryville Road to east of Litchfield Road. This annexation is part of the City of Glendale Strip Annex Area. Maricopa County Planning and Development Department administers the zoning and subdivision ordinances within unincoporated areas and the strip annex area. The Peoria Avenue section line serves as a boundary between two jurisdictional agencies with different design standards - the City of Surprise to the north, and Maricopa County to the south. Without an executed agreement in place, roadway designs and development plans will be reviewed and approved by one of the two different agencies, depending on whether the site is north or south of Peoria Avenue.

Due to the differing design standards for a principal arterial, hybrid typical sections were developed for Peoria Avenue. As shown in Figure 2, the half-street to the north reflects the City
of Surprise standard for a Major Arterial, while the half-street to the south reflects Figure 5.7 from the MCDOT Roadway Design Manual. This Standard Hybrid Typical Section would be utilized in the following areas: Jackrabbit Trail Parkway to Perryville Road; Reems Road to Bullard Avenue; and Litchfield Road to Dysart Road.

In numerous segments along the corridor, existing constraints limit the ultimate right-of-way to 120 feet. In these segments, the Narrow Hybrid Typical Section shown in Figure 3 would be utilized. This reduced-width typical section is similar to the typical section shown in Figure 2 with reduced median widths and buffer distances (offset from curb to right-of-way line). This typical section would be utilized in the following areas: Perryville Road to Citrus Road; Sarival Road to Reems Road; and Bullard Avenue to Litchfield Road.

The segment from Cotton Lane to Sarival Road would utilize the Widened Hybrid Typical Section shown in Figure 4, which is similar to Figure 2 with an expanded right-of-way width to facilitate the addition of tum lanes and/or auxiliary lanes near SR 303L.

If the City of Surprise, City of Glendale, City of EI Mirage, and MCDOT enter into agreements stipulating that the City of Surprise will assume ownership and maintenance of Peoria Avenue, then the corridor's typical sections should conform to the City of Surprise standard, as shown in Figure 5, in areas included in that agreement. Figure 6, which is based upon the City of Surprise standard, with reduced right-of-way, should be utilized in the constrained areas that are included in that agreement.

The segment from Citrus Road to Cotton Lane contains numerous residential properties along the south side of Peoria Avenue that have direct access on to Peoria Avenue. The Narrow Hybrid with Frontage Road Typical Section, as shown in Figure 7, was developed for this segment as an access management strategy.

Since an agreement is not in place at the publication of this technical memorandum, the following typical sections are recommended:

Figure 2 (Standard Hybrid Typical Section)

- J ackrabbit Trail Parkway to Perryville Road
- Reems Road to Bullard Avenue
- Litchfield Road to Dysart Road

Figure 3 (Narrow Hybrid Typical Section):

- Perryville Road to Citrus Road
- Sarival Road to Reems Road
- Bullard Avenue to Litchfield Road

Figure 4 (Widened Hybrid Typical Section):

- Cotton Lane to Sarival Road

Figure 7 (Narrow Hybrid with Frontage Road Typical Section):

- Citrus Road to Cotton Lane

Figure 2 - Standard Hybrid Typical Section

Figure 3 - Narrow Hybrid Typical Section

Figure 4 - Widened Hybrid Typical Section

Figure 5 - Standard City of Surprise Typical Section

Figure 6 - Narrow City of Surprise Typical Section

Figure 7 - Narrow Hybrid with Frontage Road Typical Section

3.0 FEATURES OF THE PREFERRED ALIGNMENT

Appendix A contains plan sheets illustrating the proposed conceptual alignment for Peoria Avenue. The plan sheets show the proposed centerline, pavement widths, and right-of-way widths superimposed on aerial photographs.

Geometrics

The preliminary coridor alignment recommendations were based on a 140 foot wide corridor. The recommended typical sections shown in Section 2 vary in width from 120 feet to 169 feet. The recommended typical sections shown in Section 2 vary in width from 120 feet to 169 feet.
Therefore, in some segments of the corridor, slight adjustments were made to the recommended centerline location to balance the improvements within the existing right-of-way. The resulting corridor horizontal alignment is shown in Figure 8 and described below.

J ackrabbit Parkway to Peryville Road

- Centerline coincident with section line
- 5' shift to north occurs just west of Perryville Road (55:1 taper)

Perryville Road to Citrus Road

- Centerline 5 ' north of and parallel to the section line
- Near Cortessa Parkway, horizontal curvature would shift the centerline to a 38.5^{\prime} offset north of the section line, west of Citus Road

Citrus Road to Cotton Lane

- Centerline 38.5 ' north of and parallel to the section line

Cotton Lane to Sarival Road

- East of Cotton Lane, horizontal curvature would shift the centerline to the south to be coincident with the section line
- Centerline remains coincident with section line to Sarival Road

Sarival Road to Reems Road

- 5' shift to the south occurs east of Sarival Road (55:1 taper)
- Centerline remains 5 ' south of and parallel to the section line
- 5^{\prime} shift to the north (to become coincident with the section line) occurs west of Reems Road (55:1 taper)

Reems Road to Bullard Avenue

- Centerline coincident with section line
- Approximately 3,000 feet east of Reems Road, horizontal curvature would shift the centerline 30^{\prime} to the north, and then transition to a 5 ' offset south of the section line, prior to reaching Bullard Avenue

Figure 8 - Preferred Alignment

Bullard Avenue to Litchfield Road

- Centerline 5^{\prime} south of and parallel to the section line

Litchfield Road to Dysart Road

- East of Litchfield Road, horizontal curvature would shift the centerline to the south to an offset 35' south of the section line
- Centerline would continue to the east, 35 ' south of and parallel to the section line for approximately 2,200 feet
- Horizontal curvature would be introduced to shift the alignment back to the section line west of the Dysart Road

Based on the maximum superelevation rate of 4\%, ten of the eleven curves are flat enough to not require superelevation and can remain at normal crown. The sharpest horizontal curve not require superelevation and can remain at normal crown. The sharpest horizontal curve location has a radius of 4,000 feet which would result in a 2.6% crown. Table 2 contains a list of the horizontal curves planned along the Peoria Avenue centerline.

Table 2 - Horizontal Curves

$\begin{aligned} & \hline \text { Curve } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \hline \text { PI Station } \\ & \text { (approx.) } \end{aligned}$	Direction	Radius	Superelevation	Description
1	120+00	Left	10,000 ${ }^{\prime}$	Normal Crown	Curve set to shift to the north
2	$128+00$	Right	10,000	Normal Crown	
3	193+00	Right	10,000	Normal Crown	Curve set to shift to the south
4	199+00	Left	10,000	Normal Crown	
5	321+00	Left	10,000	Normal Crown	Curve set to shift to the north and back to the south
6	$327+00$	Right	4,000'	2.6\%	
7	334+00	Left	10,000	Normal Crown	
8	$400+00$	Right	10,000	Normal Crown	Curve set to shift to the south
9	$405+00$	Left	10,000	Normal Crown	
10	433+00	Left	10,000	Normal Crown	Curve set to shift to the north
11	439+00	Right	10,000	Normal Crown	

Generally, the vertical alignment would closely follow the existing ground or existing roadway SR 303L will be constructed to go over Peoria Avenue with Peoria Avenue remaining at-grade. According to the MCDOT Roadway Design Manual, the minimum longitudinal grade should be 0.25%, while the City of Surprise standards require a minimum longitudinal grade of 0.30%, Therefore, the minimum longitudinal grade should be 0.30%. In areas where the existing roadway does not meet this requirement, consideration should be given to increasing the longitudinal slope to meet this minimum requirement.

Drainage

For an arterial roadway, Maricopa County Drainage Policies and Standards require a drainage system with the capacity to:

- Maintain one 12 -foot dry driving lane in each direction of travel and flow depths not to exceed the curb height for the 10 -year storm event.
- Convey the 50-year frequency flow in adjacent channels, with a maximum allowed depth of 6 inches over the pavement surface for the 100-year frequency flow.
- Keep the headwater elevation at culvert crossings below the lowest adjacent road subgrade for the 50-year frequency flow, with a maximum allowed depth of 6 inches over the pavement surface for the 100-year frequency flow.
- Maintain a minimum of 2-feet freeboard below the low chord of bridges for the 100 -year frequency flow.

The following off-site and on-site drainage improvements are recommended in order to meet these requirements.

Off-Site Improvements

Several improvements are required along the corridor, some of which are already planned by agencies and developers, to complete the off-site drainage system.

Starting at the west end, mitigation of impacts to the Flood Control District of Maricopa County (FCDMC) 500-year retention basin located south of the McMicken Dam will need to be implemented as a result of Peoria Avenue crossing the basin. Reconfiguration of the basin and/or addition of flood-pool leveling culverts would be needed to retain safety, function, operation, and capacity requirements of the basin. Management of outflows from the basin to addressed. A bridge crossing of Waterfall Wash would be required should the roadway alignment be shifted south of the basin.

Culvert crossings of Peoria Avenue are proposed to implement a pass-through system for the small washes downstream of the dam in the segment between the basin and the Beardsley Canal. Future development plans may reduce the need for off-site improvements as a result of development retention requirements that would intercept flows upstream of Peoria Avenue.

On-site retention for Zanjero Trails, from the Beardsley Canal to Perryville Road, will reduce offsite flows reaching Peoria Avenue. The existing channel along the north side of Peoria Avenue at Shadow Ridge High School is planned to be extended east in the development plans of Zanjero Trails and Prasada. The channel would convey flows east to Cotton Lane where box culverts, across Cotton Lane to the east and Peoria Avenue to the south, would split flows to maintain historic pattems, according to Prasada's concept. A new channel would need to be constructed along the north side of Peoria Avenue from Cotton Lane to the SR 303L channel to provide an ulumate oufall. This Channel is not in any development plans at this time and wir empliance with SR 3031 design paraters. A culvet crossing of Peoria Avenue is proposed to discharge into the SR 303L channel downstream of the freeway channel's box culvert.

Development retention will also reduce off-site flows reaching Peoria Avenue in the segment between SR 3031 and Sarival Road. A culvert crossing of Sarival Road and a channel extension to the east is proposed along the north side of Peoria Avenue to allow the
conveyance of flows from the Sarival Road Channel to the Greer Ranch channel, mitigating conveyance of flows from the Sarival Road Channel to the Greer Ranch channel, mitigating
current flooding problems at the Sarival Road intersection. The existing Greer Ranch channe conveys flows to the Reems Road Channel.
No additional facilities are proposed for the segment between Reems Road and Litchfield Road, as on-site retention and the existing Copper Canyon channel already address off-site requirements. A culvert crossing of the intersection of Litchfield Road and Peoria Avenue, and Copper Canyon channel to the future BNSF Railway (Ennis Spur) Channel, The south side of Peoria Avenue is proposed for the channel because of conflicts with existing development and private retention basins on the noth side.

Additional off-site facilities are not required east of the BNSF Ennis Spur as a result of on-site retention north of Peoria Avenue. A pipe culvert that crosses the intersection of Dysart Road and Peoria Avenue will need to be extended as a result of the Peoria Avenue widening. Consequently, a roadside channel along the west side of Dysart Road would need to be relocated for the widened intersection.

Figure 9 shows off-site drainage crossings along the corridor centerline. 100-year and 50-year peak flows are shown at ten drainage crossings

Table 3 is a summary of existing, planned (by others), and proposed (in this study) culvert crossings of Peoria Avenue and its crossroads. Table 4 is a summary of existing, planned and proposed channels. The proposed culvert and channel improvements at the intersections of roadway widening to resolve curent Lrinage proad could be completed ahead of the utmate intersion 3031 and BNSF Ennis Spur reinal drainage facilities should be explored Additional study is required to establish design parameters and determine capacity of culverts and channels needed to convey runoff from these intersections to the flood control channels.

Implementation of off-site drainage improvements will likely occur in multiple phases with varying interim conditions. Outfalls may not be available during the interim conditions and future designs will need to address this issue. The recommended drainage improvements are consistent with the overall plan for the area and are compatible with the current FCDMC plans.

On-Site Improvements
On-site pavement runoff can be collected in catch basins and scuppers along Peoria Avenue, and where needed, conveyed through storm drain laterals to the nearest off-site channel or culvert. The use of off-site facilities as outfall for on-site runoff is viable due to differences in frequency and time of concentration between off-site and on-site design events, and the excess capacity of the off-site channels due to the future reduction of off-site peak flows resulting from build-out of the watershed. First-flush requirements would need to be addressed during design to satisfy water quality policies.

Table 3 - Culvert Summary

Size and Type	Location	Status	Owner (Blank if Undefined)
$48^{\prime \prime} \times 150{ }^{\prime}$ RCP	Across Peoria Ave, west of $195^{\text {th }}$ Ave	Proposed	
$48^{\prime \prime} \times 210^{\prime}$ RCP	Across Peoria Ave, west of Beardsley Canal	Proposed	
$48^{\prime \prime} \times 140^{\prime} \mathrm{RCP}$	Across Peoria Ave, west of Beardsley Canal	Proposed	
$10^{\prime} \times 6^{\prime} \times 160^{\prime} \mathrm{CBC}$	Across Peoria Ave, west of Beardsley Canal	Proposed	
$48^{\prime \prime} \times 135^{\prime} \mathrm{CMP}$	Across Perryville Road, north of Peoria Ave	Existing	Municipal
5-36"×60' CMP	Across Shadow Ridge High School access road, north of Peoria Ave	Existing	Municipal
5-36"×60' CMP	Across 183 ${ }^{\text {rd }}$ Ave, north of Peoria Ave	Planned	Zanjero Trails
$\begin{gathered} 3-12^{\prime} \times 4^{\prime} \times 150^{\prime} \\ \text { CBC } \end{gathered}$	Across Citrus Rd, north of Peoria Ave	Planned	Prasada
$\begin{gathered} 3-12^{\prime} \times 4^{\prime} \times 65^{\prime} \\ C B C \end{gathered}$	Across $175^{\text {th }}$ Ave, north of Peoria Ave	Planned	Prasada
$\begin{gathered} 4-8^{\prime} \times 4^{\prime} \times 190^{\prime} \\ C B C \end{gathered}$	Across Peoria Ave, west of Cotton Ln	Planned	Prasada
$3-10^{\prime} \times 4^{\prime} \times 65^{\prime}$ CBC	Across Cotton Ln, north of Peoria Ave	Planned	Prasada
2-72"×330' CMP	Across Peoria Ave, west of SR 303L	Proposed	
$\begin{gathered} 3-10^{\prime} \times 6^{\prime} \times 221^{\prime} \\ \text { CBC } \end{gathered}$	Across Peoria Ave, west of SR 303L	Planned	ADOT
$\begin{gathered} 3-8^{\prime} \times 6^{\prime} \times 130^{\prime} \\ \text { CBC } \end{gathered}$	Across Sarival Rd, north of Peoria Ave	Proposed	
$\begin{gathered} 3-10^{\prime} \times 4^{\prime} \times 90^{\prime} \\ C B C \end{gathered}$	Across Greer Ranch Pkwy, north of Peoria Ave	Existing	Greer Ranch
$\begin{gathered} 3-10^{\prime} \times 6^{\prime} \times 90^{\prime} \\ C B C \\ \hline \end{gathered}$	Across $159{ }^{\text {th }}$ Ave, south of Peoria Ave	Existing	Twelve Oaks Estates
$\begin{gathered} 6-10^{\prime} \times 4 \times 142^{\prime} \\ \text { CBC } \\ \hline \end{gathered}$	Across Peoria Ave, west of Reems Rd	Existing	FCDMC
$\begin{gathered} 2-6^{\prime} \times 3^{\prime} \times 122^{\prime} \\ C B C \end{gathered}$	Across Bullard Ave, north of Peoria Ave	Existing	Municipal
$\begin{gathered} 3-10^{\prime} \times 3^{\prime} \times 66^{\prime} \\ \text { CBC } \\ \hline \end{gathered}$	Across 143 ${ }^{\text {rd }}$ Ave, north of Peoria Ave	Existing	Copper Canyon Ranch
$\begin{aligned} & 3-10^{\prime} \times 6^{\prime} \times 226^{\prime} \\ & \text { CBC } \end{aligned}$	Across Peoria Ave, at Litchfield Rd	Proposed	
Ennis Spur RCP	Across Peoria Ave, west of BNSF Ennis Spur	Planned	FCDMC
$36{ }^{\prime \prime} \times 40^{\prime} \mathrm{RCP}$	Across Peoria Ave, at Dysart Rd	Proposed	

RCP - Reinforced Concrete Pip
CBC - Concrete Box Culvert
CMP - Cornugated Metal Pip

Table 4 - Channel Summary

Top Width	Location Relative To Peoria Avenue	Termini	Length	Status	$\begin{aligned} & \text { Owner } \\ & \text { (Blank if } \\ & \text { Undefined) } \end{aligned}$
27'	North	Perryville Rd to HS Entrance	1,420'	Existing	Shadow Ridge High School
32^{\prime}	North	HS Entrance to $183{ }^{\text {ra }}$ Ave	1,060'	Planned	Zanjero Trails
80^{\prime}	North	$183{ }^{\text {rd }}$ Ave to Citrus Rd	2,540'	Planned	Prasada
83'	North	Citrus Rd to Cotton Ln	5,100'	Planned	Prasada
28'(Est.)	North	Cotton Ln to SR 303L	2,145'	Proposed	
28'(Est.)	North	Sarival Ave to $161{ }^{\text {st }} \mathrm{L}$ n	665'	Proposed	
34^{\prime}	North	$161{ }^{\text {st }}$ Ln to Reems Rd	3,865'	Existing	Greer Ranch
30'	South	Sarival Ave to $167^{\text {th }}$ Dr	3,300'	Existing	Twelve Oaks Estates
30'	North	Bullard Ave to Litchfield Rd	5,075'	Existing	Copper Canyon Ranch
30'(Est.)	South	Litchfield Rd to BNSF Ennis Spur	2,420'	Proposed	

Segments of Peoria Avenue where there are no off-site channels along the roadway will require stom drain trunk lines to collect flows from laterals and convey them to the nearest outfall, such as the segments from the Beardsley Canal to Perryville Road, SR 303L to Sarival Road, Reems Road to Bullard Avenue, and the BNSF Ennis Spur to Dysart Road. Future development on either side of Peoria Avenue may be able to accommodate pavement runoff within their on-site retention and therefore eliminate the need for trunk lines. The on-site retention altemative is more viable where the parcels of land on both sides of the roadway are undeveloped, as opposed to segments where existing private retention basins on one side may have insufficient capacity to accept larger flows from a widened Peoria Avenue half-street.

Structures

Immediately west of Reems Road, a 6 -barrel $10^{\prime} \times 4^{\prime} \times 142^{\prime}$ concrete box culvert (CBC) conveys the Reems Road Channel beneath Peoria Avenue. The southem headwall is located 75 feet south of the section line while the northem headwall is located 65 feet north of the section line. Based on the ultimate plan for Peoria Avenue (as shown in Appendix A), this CBC will need to be extended to accommodate the planned tum lanes and future bus bay.

Existing Concrete Box Culvert West of Reems Road

A crossing of the Maricopa Water District's (MWD) Beardsley Canal is planned west of Perryville Road. This crossing could be a CBC or a bridge structure. Coordination will be required with MWD to comply with their crossing requirements and to secure the necessary easements and/or permits to cross their facility.

A future box culvert crossing under Citrus Road is planned north of Peoria Avenue. This crossing will be in conflict with the existing MWD Cross-Cut Canal. Future design and coordination efforts are needed to address this crossing.

ADOT's SR 303L project will construct a new 3-barrel $10^{\prime} \times 6^{\prime} \times 221^{\prime}$ CBC to convey the SR 303L drainage channel beneath Peoria Avenue, and a new 2 -span AASHTO girder bridge to cary SR 303L traffic over Peoria Avenue. It is envisioned that both of these structures will be compatible with the ultimate Peoria Avenue cross-section and that additional improvements will not be necessary.

Multimodal Accommodations

The ultimate typical section includes sidewalks to accommodate pedestrians, and an outside shoulder that can accommodate bicycles. Local bus routes are envisioned along Peoria Avenue, therefore far-side bus bays should be included in future designs, in coordination with Valley Metro/Regional Public Transportation Authority (RPTA)

Trails

A planned Maricopa County trail runs along the west side of the Beardsley Canal. At Peoria Avenue, this trail is planned to turn west and may be adjacent to Peoria Avenue. In addition, Maricopa County Parks and Recreation Department is planning a trailhead staging area at the south end of the McMicken Dam. Future studies and designs should plan for an appropriate interface between pedestrian, equestrian, and vehicular movements.

Utilities

There are numerous existing and planned utilities along Peoria Avenue. A portion of the study area, including the properties between the Beardsley Canal and Reems Road, is within the MWD Conservation District Number On sonsice area boundaries MWD is service area boundaries. MWD is orimarily an imigation water conservation district providing water services to its customers. The District's imigation conveyance and delivery channels and pipelines span the entire length of its service areas along Peoria Avenue.

Many MWD wells and private irrigation wells (active and inactive) are also sited along Peoria Avenue. Under a contract with Arizona Public Service (APS), MWD also delivers power and energy through APS's distribution facilities to wells owned by the District and its customers.

As improvements to Peoria Avenue are constructed, the MWD facilities will be impacted. MWD Lateral 8, which is located along the south side of Peoria Avenue, will need to be relocated outside of the roadway right-of-way in an MWD easement In addition, numerous MWD and private well sites will be impacted and will require new wells to replace those that are removed or abandoned with the roadway improvements. Coordination will be required with MWD to relocate these facilities. Appendix B contains a detailed list of the facilities that would likely be impacted, and also contains MWD Easement Guidelines.

A future box culvert crossing under A future box culvert crossing under Citrus Road is planned north of Peoria Avenue. This crossing will be in
conflict with the existing MWD Crossconflict with the existing MWD CrossCut Canal. Future design and coordination efforts will be needed to address this crossing.

Numerous

 distribution lines run in an east-west direction parallel to Peoria Avenue along both sides of the roadway, and in a north-south direction along several cross-streets: Cotton Lane, Sarival Avenue, Dysart Road, and the BNSF Ennis Spur. Above ground power lines along Peoria Avenue are fragmented, a result of gradual burying of overhead distribution lines in front of new housing developments over the years. The future APS West Valley-North 230 kV power transmission line is scheduled to be in service in 2015, in a corridor west of and parallel to SR 303L from Olive Avenue to Cactus Road where it will then tum west to parallel Cactus Road to the north. Power substation sites are planned on the major arterials adjacent to Peoria Avenue (Olive Avenue and Cactus Road).City utilities along Peoria Avenue include underground water and sewer lines and appurtenances, and a 30 -inch reclaimed water line and reclaimed water delivery headers on the south side of Peoria Avenue across from the Surprise South Water Reclamation Plant. The reclaimed water delivery headers will be impacted and will require relocation.

Other public utilities along Peoria Avenue include Southwest Gas natural gas lines and Qwest overhead and underground communication lines. A majority of the underground utilities will not be directly impacted by the roadway itself. However, future designs will need to verify that sufficient cover is provided with the new roadway. Relocations may be necessary due to the drainage facilities associated with the roadway improvements. Utility companies will be responsible for relocation costs if they cannot prove prior rights.

PEORIA AVENUE CORRIDOR IMPROVEMENT STUDY

 Jackrabbit Trail Parkway to Dysart Road

[^7]

Figure 10 - Ennis Spur Grade Separation

Corridor Traffic Management/Intelligent Transportation System

As traffic volumes and congestion increase throughout the metropolitan area, agencies and jurisdictions seek ways to operate and manage their infrastructure more efficiently. Traffic congestion, road closures and traffic-related incidents can be better managed through application of intelligent transportation systems (ITS). ITS tools such as cameras, traffic detectors, dynamic message signs and traffic signals interconnected by fiber-optic lines all help to provide real-time travel information for both travelers and traffic managers.

As the Peoria Avenue corridor and regional roadway infrastructure is developed, consideration should be given to deploying ITS infrastructure. Partnering agencies will effectively manage the coridor through integration between individual systems, devices and networks it is recommended that the following elements be considered for design and implementation on the Peoria Avenue coridor:

- Develop a centrally controlled signal system management plan for the corridor
- Implement traffic detection and counting capabilities to achieve real-time signa Implement
- Equip the corridor for video camera-based real-time traffic monitoring by the operators at the traffic management center.
- Implement a traveler information system
- Conduct incident response and on-site incident management through Regiona Emergency Action Coordinating Team (REACT).
- Procure all devices, equipment and systems per owning agencies or mutually agreed specifications.
- Develop, implement, and maintain an operations plan for the corridor detailing the roles nd responsibilities of each agency.
- Install ITS systems and equipment compliant with National Transportation Communications ITS Protocol (NTCIP).

Right-of-Way

The minimum right-of-way requirements are shown in Figures 2 through 7. Additional right-ofway and/or easements may be needed for turn lanes, bus bays, drainage facilities, side slopes, utilities, or landscaping. The right-of-way shown in Appendix A accounts for an 80 foot half-width near the major intersections to facilitate additional tum lanes and a far-side bus bay.

Additional right-of-way beyond the standard widths may be needed at the Beardsley Canal crossing, or the retention basin crossing west of the Beardsley Canal. Additional right-of-way will be needed between Citrus Road and Cotton Lane to accommodate the proposed frontage road, whose typical section is illustrated in Figure 7. Additional right-of-way and/or easements will be needed for the drainage channel along Peoria Avenue, and the MWD irrigation facilities along the south side of Peoria Avenue. Building set-backs should be provided near the Ennis Spur, as discussed earlier

Table 5 shows the amount of new right-of-way required for the ultimate corridor and includes all right-of-way shown in Appendix A. Table 5 does not account for impacts outside of the roadway right-of-way such as drainage easements or MWD easements. A parcel-by-parcel assessment was not conducted to determine the size of the remnant parcels or whether total acquisition is warranted. It is envisioned that a majority of the right-of-way will be obtained through dedications as development of the adjacent land occurs, and only a limited amount will be acquired through actual purchases

Table 5 - New Right-of-Way

Segment	New R/W (acres)	New R/W (sq ft)
J ackrabbit Trail Parkway to Perryville Road	25.2	$1,097,100$
Perryville Road to SR 303L	26.0	$1,134,000$
SR 303L to Bullard Avenue	12.0	522,390
Bullard Avenue to Dysart Road	10.6	460,460

Considerations for Future Study and Design

Arizona State Land Department Holding West of Beardsley Canal
The west end of the comidor from J ackrabbit Trail Parkway to Beardsley Canal is owned by the Arizona State Land Department (ASLD). The State Trust Lands held by ASLD will likely be sold or leased to private interests for development. At such time, a detailed land development plan will be developed, including roadway alignments. The Preferred Alignment for Peoria Avenue is coincident with the section line in this segment. However, future development plans could result in a different alignment for Peoria Avenue as long as the connection to J ackrabbit Trail Parkway is maintained and regional connectivity to the east is provided.

The Preferred Alignment crosses a flood retention basin owned by FCDMC. A FCDMC right-ofway use permit would be required for any improvements that are located on FCDMC property. Future coordination will be required with FCDMC on all studies and design efforts pertaining to this proposed roadway alignment. The roadway must not impact the safety and function of the existing FCDMC facilities and associated basin, channel and dam. For example, the proposed roadway must not reduce the existing basin volume or adversely impact existing flow envine, had land environment, and land rights must be met

Citrus Road to Cotton Lane

Between Citrus Road and Cotton Lane, the Preferred Alignment includes a shift to the north and the construction of a frontage road along the south side of Peoria Avenue. The Preferred Alignment would require approximately 100 feet of right-of-way north of the section line. The planned Prasada development within the City of Surprise contained provisions for a landscape buffer along the north side of Peoria Avenue to accommodate a drainage channel. The proposed Peoria Avenue shift to the north would likely affect the planned landscape buffer and drainage channel. Further investigation and coordination is needed to determine the drainage channel and landscape configuration.

This unpaved one-mile segment of the corridor generated the most interest from the public during the open house meetings conducted during this study. The primary feedback was to immediately implement improvements to mitigate dust issues, and to place the ultimate roadway as far north as possible. In addition, concem was expressed regarding vehicle speeds along Peoria Avenue adjacent to the homes along the south side, with a strong desire for a reduced speed limit (below 40 miles per hour) within this segment. In addition, the public requested to limit the number of connections to the frontage road from the south, such that some of the existing north-south streets would not connect to the frontage road.

A future box culvert crossing under Citrus Road is planned north of Peoria Avenue. This crossing will be in conflict with the existing MWD Cross-Cut Canal. Future design and coordination efforts will be needed to address this crossing.

Realignment West of Bullard Avenue
West of Bullard Avenue, the Preferred Alignment includes a northerly shift near the center of the segment to avoid the existing imgation facilities and well sites. If corridor conditions change in the future (e.g., removal of the irigation facilities on the south side or new development on the north side) this recommendation should be reconsidered. For example, if development occurs first on the south side of Peoria Avenue, the existing imigation facilities would likely be relocated as part of the development. If this were the case, then the alignment could stay on the section line and the realignment would not be necessary. However, if development were to occur first on the north side of Peoria Avenue, then the northerly shift should be implemented to avoid relocation of the imigation facilities

Ennis Spur

The existing BNSF Ennis Spur crossing of Peoria Avenue is at-grade and the improvements shown in Appendix A maintain the at-grade crossing. Future development plans near the Ennis Spur should provide building set-backs to allow the future implementation of a grade separated crossing, if deemed necessary in the future. Figure 10 shows a conceptual layout of a grade separation and provides a conceptual footprint.

Planning-Level Cost Estimate

Preliminary planning-level cost estimates for the Preferred Alignment were developed with the following assumptions:

- 6-lane typical section
- Two traffic signals per mile (every $1 / 2$ mile)
- Underground signal equipment provided at $1 / 4$ mile locations
- Traffic signal interconnection system for the entire length
- No street lighting
- 8^{\prime} masonry sound wall adjacent to existing development (actual noise mitigation to be based on future study at time of construction following current noise abatement policy)
- Eight driveways per mile per side
- Minimal earthwork assuming roadway would be at or near existing ground
- Remove and replace existing roadway features
- On-site roadway drainage system includes catch basins spaced approximately every 500^{\prime} that discharge into a drainage channel along the roadway
- \$4 per square foot for right-of-way acquisition

Table 6 summarizes the planning-level cost estimates in 2010 dollars while Table 7 summarizes the costs adjusted for inflation. In addition to construction, several other types of project costs are included in the overall cost estimates:

- Design costs are assumed to be 12% of the construction cost
- Construction management costs are assumed to be 15% of the construction cost
- Administration costs are assumed to be 10% of the construction cost

Table 6 - Full Width Ultimate Facility Planning Level Cost Estimates

Cost Category	2010 Dollars			
	Jackrabbit Trail Pkwy to Perryville Rd (1.5 miles)	Perryville Rd to SR 303L (2.5 miles)	SR 303L to Bullard Ave (2.5 miles)	Bullard Ave to Dysart Rd (2 miles)
Construction	\$7,750,000	\$13,700,000	\$11,830,000	\$10,540,000
Design	\$930,000	\$1,640,000	\$1,420,000	\$1,260,000
Construction Management	\$1,160,000	\$2,050,000	\$1,770,000	\$1,580,000
Right-of-Way	\$4,390,000	\$4,540,000	\$2,090,000	\$1,840,000
Structures	\$310,000	\$1,570,000	\$560,000	\$580,000
Utility Relocation	\$440,000	\$7,380,000	\$6,170,000	\$7,850,000
Administration	\$770,000	\$1,370,000	\$1,180,000	\$1,050,000
Total	\$15,750,000	\$32,250,000	\$25,020,000	\$24,700,000

Table 7 - Full Width Ultimate Facility Planning Level Cost Estimates Adjusted for Inflation

Cost Category	Inflation Adjusted*			
	Jackrabbit Trail Pkwy to Perryville Rd (1.5 miles)	Perryville Rd to SR 303L (2.5 miles)	SR 303L to Bullard Ave (2.5 miles)	Bullard Ave to Dysart Rd (2 miles)
Construction	\$9,200,000	\$16,260,000	\$14,050,000	\$12,520,000
Design	\$1,100,000	\$1,950,000	\$1,680,000	\$1,500,000
Construction Management	\$1,380,000	\$2,440,000	\$2,110,000	\$1,880,000
Right-of-Way	\$5,210,000	\$5,390,000	\$2,480,000	\$2,190,000
Structures	\$360,000	\$1,860,000	\$660,000	\$680,000
Utility Relocation	\$530,000	\$8,760,000	\$7,320,000	\$9,330,000
Administration	\$920,000	\$1,620,000	\$1,400,000	\$1,250,000
Total	\$18,700,000	\$38,280,000	\$29,700,000	\$29,350,000

Tables 6 and 7 are based on implementation of the ultimate facility and include full reconstruction in areas where Peoria Avenue currently exists. However, a majority of this comidor will be built by developers as the adjacent land is developed, as discussed in Section 5
(Implementation Plan). Therefore, additional cost estimates were prepared for the projects that most likely will be implemented by either the city or county, as follows

- Peryville Road to Citrus Road - minor improvements at west end and east end to provide 6 lane roadway
- Citrus Road to Cotton Lane - south $1 / 2$ street including frontage road and realignment west of Citrus Road and east of Cotton Lane
- Bullard Avenue to Litchfield Road - south $1 / 2$ street from approximately Bullard Avenue to $143^{\text {rd }}$ Avenue; and north half-street from approximately Bullard Avenue to $140^{\text {th }}$ Avenue
- Litchfield Road to Dysart Road - full street width from Litchfield Road to Ennis Spur; and north $1 / 2$ street from Ennis Spur to Dysart Road
Table 8 summarizes these planning-level cost estimates in 2010 dollars, while Table 9 summarizes these costs adjusted for inflation. Costs for improvements between Sarival Road and Reems Road which are currently planned the City of Surprise to construct half-street improvements along the north side of Peoria Avenue are not included in Tables 8 and 9. Costs to upgrade this half-street to be compatible with the recommendations of this study are also not included in Tables 8 and 9 . In addition, other minor improvements may be needed which are not described above or included in Tables 8 and 9.

Table 8 - Interim Implementation Planning Level Cost Estimates

Cost Category	2010 Dollars			
	Perryville Rd to Citrus Rd	Citrus Rd to Cotton Ln	Bullard Ave to Litchfield Rd	Litchfield Rd to Dysart Rd
Construction	\$2,990,000	\$6,370,000	\$3,950,000	\$5,400,000
Design	\$360,000	\$760,000	\$470,000	\$650,000
Construction Management	\$450,000	\$960,000	\$590,000	\$810,000
Right-of-Way	\$290,000	\$2,070,000	\$490,000	\$620,000
Structures	\$0	\$520,000	\$130,000	\$580,000
Utility Relocation	\$1,400,000	\$5,600,000	\$3,610,000	\$610,000
Administration	\$300,000	\$640,000	\$390,000	\$540,000
Total	\$5,790,000	\$16,920,000	\$9,630,000	\$9,210,000

Table 9 - Interim Implementation Planning Level Cost Estimates Adjusted for Inflation

Cost Category	Inflation Adjusted*			
	Perryville Rd to Citrus Rd	Citrus Rd to Cotton Ln	Bullard Ave to Litchfield Rd	Litchfield Rd to Dysart Rd
Construction	\$3,560,000	\$7,560,000	\$4,690,000	\$6,410,000
Design	\$430,000	\$910,000	\$560,000	\$770,000
Construction Management	\$530,000	\$1,130,000	\$700,000	\$960,000
Right-of-Way	\$340,000	\$2,460,000	\$580,000	\$740,000
Structures	\$0	\$610,000	\$160,000	\$680,000
Utility Relocation	\$1,660,000	\$6,640,000	\$4,290,000	\$730,000
Administration	\$350,000	\$760,000	\$470,000	\$640,000
Total	\$6,870,000	\$20,070,000	\$11,450,000	\$10,930,000

4.0 ACCESS MANAGEMENT

Definition

Access management consists of the planning, design and implementation of land use and transportation strategies that maintain a safe flow of traffic while accommodating the access needs of adjacent properties. Access is managed through the regulation of vehicular access to public roadways from adjoining properties, and vice versa. Management of access is provided through legal, administrative and technical strategies available to political jurisdictions under their police powers to maintain public health, safety and welfare.

Access management can be categorized as either full or partial access control. Full access Access management can be categorized as either full or partial access control. Full access provided only at grade-separated interchanges. Partial access control allows some at-grade crossing and some private driveway connections, but only at designated points and often for designated movements (e.g., right-in and right-out only). Uncontrolled access means that all abutting properties are allowed direct access to the roadway.

Purpose and Need for Access Management

The purpose of access management is to preserve the capacity and maintain safety of public roadways, while retaining access to private land. Access management is intended to balance a roadway's two main functions: mobility and access. The proper balance between these two functions depends on the classification of the roadway. In general, the higher the functional classification, the more importance is given to through traffic mobility, as opposed to access to adjoining properties. Higher functional classification roadways, such as principal arterials, are designed to satisfy the public need for high mobility over substantial distances. Fast, efficient travel in a safe, uniform manner is the primary objective of these roads, and therefore access is often limited.

It is desirable for major transportation corridors to facilitate the safe and efficient movement of people and goods with minimal delay or interference from conflicting vehicle movements. However, over time, the addition of more traffic signals and/or curb cuts with resulting turning movements degrades the intended function of the transportation corridor. The use of land along a major transportation corridor is heavily dependent upon vehicular access to the corridor. Often, no direct (lateral) access exists between adjacent properties along a corridor, necessitating indirect access via the through roadway. Therefore, uncoordinated intemal circulation systems force more trips onto major roadways. As traffic congestion increases, the level of service provided by the transportation corridor erodes. Crashes along such a comidor generally increase due to the large number of turning vehicles and other conflicts along the route.

As the motoring public experiences increasing travel delays, requests for solutions are made to transportation officials. Typical solutions include adding more travel lanes and constructing raised medians. However, these retrofitting techniques are expensive to implement and disrupt the traveling public as well as adjacent land uses. If demand for the roadway continues to
exceed the supplied roadway capacity, then businesses begin to feel the effects due to a deterioration of access. Potential customers are deterred by delays in leaving and re-entering the main road, or if they perceive a safety risk in making difficult tuming movements. In response, some businesses may relocate to areas that offer better accessibility. Frequently, as economic activity declines in the area with congested traffic, so does the property value and tax base. Ultimately, the roadway is transformed into a low-speed road with a confusing mixture of signs and curb cuts that is no longer useful as a major transportation corridor.

Techniques

Access rights are property rights protected by the U.S. and Arizona constitutions. An owner of a property abutting a public roadway has a private right or easement for the purpose of ingress to and egress from the property. This easement may not be taken or substantially impaired without compensation. Property right of access is not an absolute right, however, and is subject to the public's right of passage. Thus, the right of access is a right of reasonable access and not a private right of direct access. An owner is deemed to have a right to access the public road system in a reasonably convenient manner, but not to any specific street or any specific point of access. The following access management techniques are not an all-inclusive list, but have been found to be among the most effective techniques to enhance traffic safety and mobility along a major arterial, while preserving the basic access to the public roadway system to which every adjacent property is entitled.

Raised Medians at Intersections

Raised medians at intersections (signalized or unsignalized) provide an obstruction to prevent some turming movements from occurring. For example, medians can be constructed to allow for left-tum in only/no left-turn out, which facilitates access to the adjacent property and leaves right tums unrestricted. Right-in/right-out driveways are also commonly used, often in conjunction with raised medians.

Raised medians at signalized intersections are especially desirable because they can prevent left-tums to and from driveways located near the intersection. Such tuming movements create special hazards because of the complexity of traffic operations at many signals, including queuing of vehicles. One disadvantage of this treatment is that motorists entering from driveways may need to make u-turns elsewhere along the roadway.
Full Raised or Non-Traversable Medians
Continuous raised or wide non-traversable medians provide a barier on the main roadway that separates opposing travel lanes and prevents both left tums and cross traffic. Full raised medians reduce conflict points by restricting turn movements to right-in/right-out only, except at full median breaks. Continuous raised medians are an especially effective access management measure on roadways with high traffic volumes and high driveway densities. The main advantage of a raised median is that it limits roadway crossings and left turms to specific locations where adequate sight distance and vehicle storage can be provided. If the median is wide enough, it can also provide a refuge for pedestrians crossing the roadway. By removing left-tuming vehicles from through traffic, continuous raised medians with left-turn lanes at designated breaks help maintain roadway operating speed. Raised medians also provide space
for landscaping and other aesthetic treatments. A disadvantage of providing medians is that by limiting the number of locations where one can cross the roadway, the number of u-turns will most likely increase.

Because raised medians are a restrictive access management technique, building such a median along an arterial often generates controversy among business and property owners. Two-way left-tum lanes are less restrictive, but are also a less effective access management technique because they fail to physically restrict tuming and crossing movements. Businesses and property owners may perceive that installation of raised medians will have a large, negative impact on their customers, sales, and property values.

Driveway Spacing and Consolidation
A critical aspect of access management is maintaining adequate spacing between driveways. The speed differences caused by traffic tuming into and out of driveways can produce conflicts that may lead to broadside and rear-end collisions between vehicles. Spacing requirements may be based on posted speed limits, the classification of the roadway, and the amount of traffic generated by a development along with other design considerations.

Driveways are consolidated to limit the number of access points per mile along a road and provide adequate spacing between driveways in order to reduce the number of conflicts. Driveway consolidation can be achieved by closing driveways, creating altemative access ways, creating shared driveways, relocating entrances to side streets, and promoting cross access (i.e., lateral access between adjacent commercial properties to remove very short trips from the main roadway). These techniques can be applied individually or through projects such as installation of medians, two-way left-tum lanes, and frontage or reverse access roads. This access management technique requires property owners to agree to reduce/combine their access points or share access with adjacent property owners. Reducing the number of driveways can benefit owners of commercial property both directly (by freeing up space for parking or other use) and indirectly (by making access safer and less confusing to drivers on the main road; this is especially important to merchants who rely on drive-by traffic). In some cases, consolidation of driveways senving a major retail center can justify installation of a righttum deceleration lane.

Joint Driveways/Cross Access
Joint access requirements provide for a unified on-site circulation plan serving several properties on a commercial corridor. This serves as an altemative method of achieving adequate driveway spacing where lot frontage is otherwise inadequate. This method could also be employed to provide a definition of a driveway in an area where driveway/access locations are not well defined. Cross access requirements allow for circulation between sites and may be applied in accordance with a joint access plan, or as a means of connecting major developments to allow such circulation. This method requires establishment of joint-use driveways and cross access easements between properties to provide a logical circulation system. Cross-circulation between adjacent properties and provision for service roads allows movement across adjacent parcels without re-entry to the major roadway.

Corner Clearance

Adequate comer clearance (i.e., the distance from the edge of the intersection to the neares curb cut) is important in maintaining safe and efficient operations at the intersection. Driveways and access points should be located outside the functional intersection area, as drivers on the main roadway are making decisions regarding the intersection and do not expect tuming movements from adjacent driveways. The functional intersection area is defined by AASHTO's Policy on Geometric Design of Highways and Streets (2004), which states that 'the functional area extends both upstream and downstream from the physical intersection area and includes the longitudinal limits of auxiliary lanes." The functional area includes the turm lanes approaching the intersection as well as the perception-reaction distance of the driver approaching the intersection. This functional area is longer on the upstream (approach) side of the intersection than the downstream (departure) side.

Dedicated Left and Right Turn Lanes
One way to accomplish a smooth flow of traffic is to provide dedicated tum lanes to remove tuming vehicles from the through traffic flow at roadway intersections and near busy driveways. Tuming traffic reduces the capacity of lanes to cary through traffic, causing congestion and delay to increase. This is most noticeable in the case of left-turning vehicles, which must await a safe gap in opposing traffic. However, right-tuming vehicles also delay through traffic because of the need to slow down to a safe turming speed. Tuming movements from through lanes result in speed differentials that contribute to crashes, especially rear-end collisions which are often the most common crash type in urban environments. Dedicated tum lanes allow through traffic to keep moving at a steady speed. A combination of medians and turm lanes provides protection for turning movements, thus reducing the crash potential.

Alternative Access Ways

Altemative access ways can be provided to sites adjoining the main road by either frontage or reverse access roads that run parallel to the mainline route. Altemative access may be achieved by using frontage, collector or arterial roads off the major roadway right-of-way Property access is provided along the frontage or reverse access road, which accesses the main roadway from a smaller crossroad. This reduces the number and density of conflict points along the arterial. Frontage roads are typically constructed adjacent to the major roadway providing access to properties fronting the roadway, thereby funneling local traffic to a common point to gain access. Frontage roads can be one-way or two-way, depending on the situation Reverse access or "backage" roads also parlel the main roadway, butare offset from the right Revers to of-way to provide site access ack side" of the the the the Both types of altemative access ways are beneficial in providing convenient access to local
properties, while preserving the safety and capacity of the major roadway. Operational properties, while preserving the safety and capacity of the major roadway. Operational
problems involving queues on the smaller crossroad blocking closely spaced intersections can problems involving queues on the smaller crossroad blocking closely spaced intersections can Therefore, an effective frontage road system requires additional right-of-way.

Recommended Techniques for Peoria Avenue

Recommended access management techniques for Peoria Avenue include:

- A divided cross-section with a raised, physical median
- Full-access median breaks limited to four per mile
- Left turn lanes at all locations where left turns are permitted
- Minimum driveway spacing of 200' on the north side (City of Surprise) and 165'- 330' on the south side (MCDOT)
- Minimum comer clearance at major intersections of 300^{\prime} on the north side (City of Surprise), and 115' (approach) or 230^{\prime} (departure) on the south side (MCDOT)
- A frontage road along the south side from Citrus Road to Cotton Lane
- No on-street parking

Development policies intended to help achieve access management that can be implemented through future development and redevelopment include:

- Encourage altemative access ways that connect to Peoria Avenue at identified major access points
- Encourage on-site circulation or parallel routes that would discourage direct access to Peoria Avenue
- Encourage the use of direct access to minor roadways connecting to the corridor
- Minimize the number of driveways to reduce traffic conflicts

5.0 IMPLEMENTATION PLAN

The recommendations of this study are intended to be used to preserve coridor right-of-way since construction of improvements will not likely be completed in the near-term, but rather as development occurs along the coridor, as shown in Figure 11. All timetables are subject to change, however, depending on circumstances as identification of addional funding new opportunities for cost-sharing with partner jurisdictions, and development of land adjacent to Peoria Avenue.

In the near-term, projects that are already programmed should be completed, such as improvements at the SR 303L/Peoria Avenue interchange to be constructed by ADOT when SR 303L is upgraded to a freeway facility, as well as the City of Surprise planned completion of the north half-street between Sarival and Reems Roads. Other near-term improvements recommended for consideration include

- Acquire right-of-way and construct a two-lane roadway between Citrus Road and Cotton Lane
- Drainage improvements at Litchfield and Sarival Roads

Assuming completion of the segments to be implemented by developers, several additiona improvement projects would be needed in the mid-term timeframe to provide a continuous 4 lane facility by the year 2030, including

- South half-street and frontage road construction between Citrus Road and Cotton Lane

Cotton Lane intersection improvements

- Reems Road intersection improvements

South half-street construction between Bullard Avenue and Litchfield Road

- South half-street construction between Litchfield Road and Ennis Spur

Long-term (likely beyond 2030) improvements will focus on bringing uniformity to the corridor and widening to the ultimate 6 -lane facility. Areas where these improvements would occur include:

- Perryville Road to Citrus Road
- Sarival Road to Reems Road
- Bullard Road to Litchfield Road

Litchfield Road to Dysart Road
The MCDOT Transportation Improvement Program (TIP), updated annually, is based on a 5 year projection of available transportation funding and a countywide prioritization of roadway system needs. No projects (Design Concept Report, design, or construction) along this portion of Peoria Avenue are a part of the current 5-year TIP

PEORIA AVENUE CORRIDOR IMPROVEMENT STUDY

Jackrabbit Trail Parkway to Dysart Road

Source: Flood Control District of Maricopa Countr, ALRIS

Appendix A:
Preferred Alignment Plan Sheets

CITY OF SURPRISE
Curve Date
 $\Delta=30^{\circ} 50^{\circ} 03^{\circ}$
$0=0.34^{\circ} 3^{\circ}$
$T=3343^{\circ}$ $T=334.71^{\prime}$
$L=669.8^{\prime}$
$R=1000.00^{\prime}$
$e=N C$

MWD EASEMENT GUIDELINES

Appendix B:
MWD Letter

MWD EASEMENT GUIDELINES

MWD EASEMENTS - PIPELINES \& RELATED MWD FACILITIES

 WWD requires an exclusive Easement

 WWD requires an exclusive Easement}Size of MWD Easement: MWD Easements must be a minimum width of 20 feet. Depending upon the pipeline size and depth and other design factors, MWD may require an Easement as wide as 40 feet

MWD Easement Location:

The following, in order by MWD preference, are acceptable locations for the MWD Easements:

1. Adjacent to, but outside of the Road Right-Of-Way.
2. If the Public Utility Easement ("PUE") or Municipal Utility Easement ("MUE") is located outside of the Road Right-Of-Way, then adjacent to, but outside of the PUE or MUE and the Road Right-Of-Way.
3. Within, or partially within, the Road Right-Of-Way, but a minimum of 10 feet back of curb. Right turn lanes and bus bays are exempt from this requirement; however, they are subject to the restrictions and other criteria below. (See Attached Examples.)

Restrictions and Other Criteria:

MWD Easements must be placed outside of the pavement section, curb and gutter, where practical.
2. A sidewalk may be placed over an MWD Easement, subject to MWD approval of the plan and to the terms and conditions of the MWD Easement.
3. Drainage channels and retention basins are not allowed within MWD Easements.
4. Cross Slopes within MWD Easements must not exceed 2%.
5. No PUE's or MUE's are allowed within MWD Easements.
6. Utility crossings of MWD Easements are allowed, provided the design for such crossings is approved by MWD and the utility crossings are separately licensed by MWD or, if within the City of Surprise, granted an IGA approval by MWD and all license or IGA fees are paid.
7. Parallel installations of utilities within MWD Easements are not allowed. Parallel installations of landscaping irrigation lateral lines which are not under constant pressure are allowed provided that the plans are approved by MWD and the line installations are subject to the terms and conditions of the MWD Easement.
8. Structures, footings, and facilities, other than structures and facilities owned by MWD, are not allowed within MWD Easements. This includes, but is not limited to, walls, buildings, fences, fixtures, valves, pull boxes, fire hydrants and
assemblies, monuments, manholes, street lights, back flow preventers, and irrigation control boxes.
9. Small shrubs, landscaping ground cover, and landscaping berms up to a maximum of 1 Foot high, may be placed within MND Easements, subject to approval by MWD of the landscaping plan and to the terms and conditions of the MWD Easement. Trees, oleanders, or other plants with aggressive water-seeking root systems are not allowed within MWD Easements. Please reference MWD Standard Detail 106 for recommended planting distances for such plants with aggressive water-seeking root systems.

MWD EASEMENTS - TURNOUT \& OTHER STRUCTURES: MWD requires an exclusive Easement.

Size of MWD Easement: MWD Easements must be a minimum of 40 feet by 40 feet ($40^{\prime} \times 40$). Depending upon the design of the structure or structures, MWD may require a (40×40). Depending uponthe design of the structure or

MWD Easement Location:

The following, in order by MWD preference, are acceptable locations for the MWD Easements:

1. Adjacent to, but outside of the Road Right-Of-Way
2. If the PUE or MUE is outside of the Road Right-Of-Way, then adjacent to, but outside of the PUE or MUE and the Road Right-Of-Way.
3. Within, or partially within, the Road Right-Of-Way, but a minimum of 10 feet back curb with the exception of right turn lanes or bus bays, subject to the restrictions and other criteria below. (See Attached Examples.)

Restrictions and Other Criteria:

1. MWD requires unimpeded vehicular access to and over the MWD Easements. As a result, no structures, improvements or utilities are allowed to be placed within the MWD Structure Easement.
2. MWD will allow ground cover to be placed within the MWD Easement, subject to approval by MWD of the landscaping plan and to the terms and conditions of the TWD Easement. No other landscaping is allowed
3. If the MWD Easement Location Option \#2 above is chosen for the location of the MWD Easement, then MWD requires an Access Easement over the PUE or MUE to provide vehicular access into the MWD Easement.
4. MWD Easements must be placed outside of the pavement section, curb and gutter, where practical.
5. Drainage channels and retention basins are not allowed within MWD Easements.
6. Cross Slopes within MWD Easements must not exceed 2\%.
7. No PUE's or MUE's are allowed within MWD Easements.
8. Parallel installations of utilities within MWD Easements are not allowed. Parallel installations of landscaping irrigation lateral lines which are not under constan pressure are allowed provided that the plans are approved by MWD and the line installations are subject to the terms and conditions of the MWD Easement.
9. Structures, footings, and facilities, other than structures and facilities owned by MWD, are not allowed within MWD Easements. This includes, but is not limited o, walls, buildings, fences, fixtures, valves, pull boxes, fire hydrants and assemblies, monuments, manholes, street lights, back flow preventers, and
irrigation control boxes.

OPTION 1

OPTION 2

OPTION 3

R/W = Right of Way $B / C=$ Back of Curb \quad PUE/MUE $=$ Public Utility Easement/Municipal Utility Easement
MWD Easement Guidelines - Easement Location Options - 11/7/107

MARICOPA WATER DISTRICT IMPROVEMIENT PLAN REVIEW

DATE: 3/9/2011 \qquad EMAIL RESPONSE ONLY
TO: Rodney Bragg, P.E.
AECOM
E-Mail Rodney.Bragg@aecom.com
CC: Mitch Wagner, MCDOT
E-Mail mitchwagner@mail.maricopa.gov
Nick Mascia, City of Surprise
E-Mail engineering.info@surpriseaz.com
FROM: Veronica Valenzuela, Maricopa Water District
RE: MCDOT - PEORIA AVE CORRIDOR IMPROVEMENT STUDY (JACK RABBIT TRAIL TO DYSART ROAD) ALTERNATIVE ALIGNMENTS DRAWING \#: 60181526 DATED: $12 / 14 / 10$

MWD Review: MWD Is Not Impacted.

MWD Approval:
MWD hereby approves
——MWD hereby approves, subject to Comments below.

Additional Drawing Requirements:

X Submit Two (2) Full-Size copies and Four (4) 11×17 copies of the revised drawings to MWD for review \& approval.
Submit One (1) 11×17 copy of the revised drawings to George Cairo Engineering for review. If changes are made to the above-referenced plans after MWD approval, submit One (1) Full-Size copy and Two (2) 11×17 of the finalized drawing to MWD for its records. No further drawings are required.
MWD COMMENTS:
PLEASE SEE ATTACHED MWD COMMENTS.

Should you have any questions or comments, please contact me at MWD at (623) 546-8266.
KKI) GV (OS'/ JLOP $/$ BK/CC/JO/VV/PJH/FILE

MICDOT - PEORIA AVE CORRIDOR IMPROVEMENT STUDY
 JACKRABBIT TRAIL TO REEMS ROAD

ALTERNATIVE ALIGNMENTS
Prepared by MCDOT; Dated 12/14/10; Job No. 60181526
MWD Review Comments - March 9, 2011

GENERAL

MWD has reviewed these plans and has determined that all Alternatives would have a significant impact on MWD Facilities and/or Property Interests along Peoria Ave from the Beardsley Canal to Reems Road. In an effort to help you better understand our comments set forth in the Agency Evaluation Matrix, these comments are MWD's factual and technical comments regarding our MWD wells and irrigations facilities as set forth in:

JACKRABBIT TRAIL TO BEARDSLEY CANAL:
ALTERNATIVE 1

- This Alternative reflects MCDOT acquiring property on the North and South sides of Peoria Ave., which will impact the following MWD Property Interests and Facilities:

MWD's 75^{\prime} Beardsley Canal Fee Title, located in Section $21-3 \mathrm{~N}-2 \mathrm{~W}$ and Section $28-3 \mathrm{~N}-2 \mathrm{~W}$.

ALTERNATIVE 2
a Same comments as given for Alternative 1

BEARDSLEY CANAL TO PERRYVILLE ROAD:
ALTERNATIVE 1

- Along with MCDOT acquiring property on the North and South sides of Peoria Ave. at the Beardsley Canal, this Alternative also reflects the proposed Right of Way alignment impacting the following MWD Property Interests and Facilities:
- MWD's 75' Beardsley Canal and Fee Title Property, located in Section 21$3 \mathrm{~N}-2 \mathrm{~W}$ and Section $28-3 \mathrm{~N}-2 \mathrm{~W}$, and Turnou , in Section $28-3 \mathrm{~N}-2 \mathrm{~W}$
MWD's Lateral 8 and Flow Measuring Structure, Iocated adjacent to the
Beardsley Canal along the South side of Peoria Ave. in Section $28-3 \mathrm{~N}-2 \mathrm{~W}$;

PERRYVILLE ROAD TO CITRUS ROAD.

ALTERNATIVE 1

- This Alternative reflects MCDOT acquiring property on the North and South sides of Peoria Ave., which impacts the following MWD Property Interests and Facilities:
- MWD's Lateral 8 ROW and Concrete Ditch, located along the South side of Peoria Ave;
MWD's Lateral 8 Easement, Turnout Structure and Pipeline, located along the South side of Peoria Ave;
MWD's Lateral 8 Sublateral B ROW, located at the North Quarter Corner of Section $27-3 \mathrm{~N}-2 \mathrm{~W}$
MWD's Well 8-27 and Fee Title property, located in the Northwest Quarter of MWD's Well 8-27E and Fee Title property, located in the Northeast Corner of Section 27-3N-2W;

ALTERNATIVE 2

- Same comments as given for Alternative 1

ALTERNATIVE 3

- This Alternative reflects MCDOT acquiring property on the North and South sides of Peoria Ave., which impacts the following MWD Property Interests and Facilities:
- MWD's Well 8-27 and Fee Title property, located in the Northwest Quarter of the Northeast Quarter of Section 27-3N-2W;
MWD's Well 8-27E and Fee Title property, located in the Northeast Corner of Section $27-3 \mathrm{~N}-2 \mathrm{~W}$

CITRUS ROAD TO COTTON LANE:

ALTERNATIVE 1

* This Alternative reflects MCDOT acquiring property to the North and South sides of Peoria Ave., which impacts the following MWD Property Interests and Facilities.
- MWD's 40' Crosscut Easement and Ditch, located at the Northwest Corner of Citrus Rd \& Peoria Ave
- MWD's Lateral 8 ROW, Ditch and Turnout Structure, located along the South Side of Peoria;
- MWD's Well 8-26 and Fee Title property, located at the North Quarter Corner of Section $26-3 \mathrm{~N}-2 \mathrm{~W}$.
MWD's Lateral 8 Sublateral D ROW and Concrete Ditch, located along the North-South Midsection Line of Section $26-3 \mathrm{~N}-2 \mathrm{~W}$

ALTERNATIVE 2

- Same comments as given for Alternative 1.

ALTERNATIVE 3

- Same comments as given for Alternative 1 \& 2

COTTON LANE TO SARIVAL ROAD

TVE

- This Alternative reflects MCDOT acquiring property on the North and South sides of Peoria Ave., which appears to impact the following MWD Property Interests and Facilities:
- MWD's 20^{\prime} Lateral 8 Sublateral E ROW; located on the East side and running parallel of Cotton Lane
- MWD's 10' Lateral 8 Sublateral E Extension Fee Title, Concrete Ditch and Lane;
- MWD's 20^{\prime} Lateral 8 ROW, Ditch and Turnout Structures, located along the South Side of Peoria;
MWD's Lateral 8 Sublateral D ROW and Concrete Ditch, located along the North-South Midsection Line of Section $25-3 \mathrm{~N}-2 \mathrm{~W}$
MWD's Lateral 8 Sublateral F ROW and Concrete Ditch, located on the East side of the North-South Mid-Section Line in Section 25-3N-2W.
MWD Section $25-3 \mathrm{~N}-2 \mathrm{~W}$. However perty, located at the North Quarter Corner of Section $25-3 \mathrm{~N}-2 \mathrm{~W}$. However, please be advised that this well will be the amount of impacts are not determined at this time.

ALTERNATIVE 2
. Same comments as given for Alternative 1

ALTERNATIVE 3

- While the Right Of Way Acquisition, reflected on this Alternative, does not appear to impact MWD's Facilities and Property Interests, any future road improvements that re within the Existing Right of Way would likely impact MWD's Facilities and Property Interests along the south side of Peoria Ave.

SARIVAL ROAD TO REEMS ROAD:

 ALTERNATIVE- This Alternative reflects MCDOT acquiring property on the North and South sides of Peoria Ave., which may negatively impact the following MWD Property Interests and Facilities:
- MWD's 20' Lateral 8 ROW, located along the South side of Peoria Ave in the Northwest Quarter of Section $30-3 \mathrm{~N}-2 \mathrm{~W}$.
MWD's 33^{\prime} Romola Ltd Fee and lateral 9 Concrete Ditch, located along the South side of Peoria Ave in the Northeast Quarter of Section $30-3 \mathrm{~N}-2 \mathrm{~W}$.
MWD's 12' Easement, Pipeline and Turnout Structures, located along the South side of Peoria Ave.:
MWD's 40^{\prime} Lateral 8 Sublateral H Easement, located along the North-South Mid-Section Line of Section $30-3 \mathrm{~N}-2 \mathrm{~W}$.

ALTERNATIVE 2

- Same comments as given for Alternative 1.

ALTERNATIVE 3
. Same comments as given for Alternative 1 \& 2

Appendix C: Cost Estimates

Project Name: Peoria Ave
Termini: Jackrabbit Trail to Perryville Rd

COST CATEGORIES	Factors	No Build			Alternative 1		ve 2
Construction		\$	-	\$	7,750,951.56	\$	-
Design (10\% TO 15\%)	12\%	\$	-	\$	930,114.19	\$	-
Construction Management	15\%	\$	-	\$	1,162,642.73	\$	-
Right-of-Way		\$	-	\$	4,390,000.00	\$	-
Structures		\$	-	\$	306,170.00	\$	-
Utility Relocation		\$	-	\$	442,329.13	\$	-
Administration (8\% TO 13\%)	10\%	\$.	\$	775,095.16	\$	-
Total		\$	-	\$	15,757,302.77	\$	-

PRELIMINARY SUMMARY COST ESTIMATES (Adjusted for Inflation)
Assumed Annual Inflation Rate $=3.50 \%$
Assumed Number of Years $=5$

Adjusted Construction Cost	$\$$	-	$\$$	$9,205,699.02$	$\$$	-
Design	$\$$	-	$\$$	$1,104,683.88$	$\$$	-
Construction Management	$\$$	-	$\$$	$1,380,854.85$	$\$$	-
Right-of-Way	$\$$	-	$\$$	$5,213,942.88$	$\$$	-
Structures	$\$$	-	$\$$	$363,633.92$	$\$$	-
Utility Relocation	$\$$	-	$\$$	$525,348.25$	$\$$	-
Administration	$\$$	-	$\$$	$920,569.90$	$\$$	-
Adjusted Total	$\$$	-	$\$$	$18,714,732.71$	$\$$	-

Project Name: Peoria Ave Termini Jackrabbit Trail to Perryville R

box CuLvert cost calculations

TYPE OF ROAD	BOXLENGTH (t)	Box DESCRIPTION	Box WIDTH (t)	TOP SFC AREA	${ }^{*}$ UNIT	Cost*	Iotal cos
URban minor arterial or Less	0			.00	SQ FT	85.00	\$0.00
urban minor arterial w/bike lanes	160	$H=6$	10	1.60.00	SQ FT	\$ 85.00	\$136,000.00
URBAN MA OR ARTERIAL	${ }^{143}$	$H=6$	14	2,002.00	SQ Ft	85.00	\$170,170.00
SPELIAL LOW Volume road condition**				0.00	so	\$52.00	\$0.00

TTop surface area of box
4nctur
Incus costo standard wing walls and bridge barrier. For special construction review unitit cost with MCDOT bridge section.

bridge cost calculations

TYPE OF ROAD	BRIDGE LENGTH (t)	DESCRIPTION	BRIDGE WIDTH (t)	TOP SFC AREA*	UNIT	CosT*	fotal cost
URBAN MINOR ARTERIAL OR LESS (27 m or 88.58^{\prime} for 5 lanes \& 2 sidewalks)	0		89.58	0	SQ FT	190.0	9.00
URBAN MINOR ARTERIAL W/ BIKE LANES (28.8 m or 94.49' for 5 lanes, 2 B/L's \& 2 S/W's)	0		94.49	0		190.00	\$0.00
URBAN MAJ OR ARTERIAL (31.8 m or 104.33' for 7 lanes \& 2 S/W's)	0		104.33	。		\$ 190.00	\$0.00
SPECIAL LOW VOLUME ROAD CONDITION*** (16 m or 52.49 for 2 lanes with shoulders)	0		52.49	0	SQ FT	190.00	50.00
Top sur						$<100 '$ Long $>=100$ ' Long	50.00 $\$ 0.00$ 5000

5s, bamiers, approach slabs, piers, and other items used in bidide constuction

Utility Relocation

Project Name: Peoria Ave

ermini: Jackrabbit Trail to Perryville Rd

Alternative:				
Item Description	Unit	Quantity	Unit Cost	Total
Relocate 12 kv Wood Pole (Tangent)	EA		\$5,000.00	
Relocate 12 kv Wood Pole (Dead-End)	EA		\$7,000.00	
Relocate 69 kv Wood Pole (Tangent)	EA		\$18,000.00	
Relocate 69 kv Steel Pole (Tangent)	EA		\$20,000.00	
Relocate 69 kv Wood Pole (Dead-End)	EA		\$38,000.00	
Relocate 69 kv Steel Pole (Dead-End)	EA		\$40,000.00	
Other Poles associated $\mathrm{w} / 69 \mathrm{kv}$ Power Line	EA		\$8,400.00	
Railroad Crossing	EA		\$650,000.00	
Irigation (See Irrigation sheet)			\$368,607.61	\$368,607.61
	struction			\$368,607.61
	tingency		20\%	\$73,721.52
				\$442,329.13

Project Name: Peoria Ave
ermini: Jackrabbit Trail to Perryville Rd

Alternative:				
Item Description	Unit	Quantity	Unit Cost	Total
Mobilization	Ls	1	\$5,398.49	\$5,398.49
Clearing, Grubbing and Site Clean Up	EA	1	\$5,398.49	\$5,398.49
Irigation Stucture w/ Gates, Medium	EA	0	\$70,911.55	\$0.00
Irigation Stucture w/Gates, Large	EA		\$129,596.98	
24" RGRCP	LF		\$95.00	\$0.00
30" \& 36" RGRCP	LF	2,600	\$105.00	\$273,000.00
$42^{\prime \prime} \& 48$ " RGRCP	LF		\$154.00	\$0.00
$54 " \& 600$ RGRCP	LF		\$230.00	\$0.00
Headwall w/ Trash Rack	EA	1	\$14,426.83	\$14,426.83
Headwall	EA		\$10,025.43	\$0.00
Manhole	EA	5	\$7,091.16	\$36,874.01
Remove Existing Stuctures	${ }^{\text {Ls }}$		\$30,809.85	\$0.00
Concrete Lined Ditch	LF		\$106.37	\$0.00
Well Site Relocation	EA	0	\$750,000.00	\$0.00
Catch Basin	EA			\$0.00
				\$335,097.83
Irrigation System Design Total SRP Relocation Estimate			10\%	\$33,509.78
				\$368,607.61
*Note: English units used per SRP standards				

Summary

Project Name: Peoria Ave

Termini: Perryville Rd to SR 303L

COST CATEGORIES	Factors	No Build			Alternative 1		ve 2
Construction		\$	-	\$	13,694,691.31	\$	-
Design (10\% TO 15\%)	12\%	\$	-	\$	1,643,362.96	\$	-
Construction Management	15\%	\$	-	\$	2,054,203.70	\$	-
Right-of-Way		\$	-	\$	4,540,000.00	\$	-
Structures		\$	-	\$	1,567,825.00	\$	-
Utility Relocation		\$	-	\$	7,378,699.75	\$	-
Administration (8\% TO 13\%)	10\%	\$	-	\$	1,369,469.13	\$	-
Total		\$	-	\$	32,248,251.85	\$	-

PRELIMINARY SUMMARY COST ESTIMATES (Adjusted for Inflation)
Assumed Annual Inflation Rate $=3.50 \%$
Assumed Number of Years $=5$

Adjusted Construction Cost	$\$$	-	$\$$	$16,264,997.33$	$\$$	-
Design	$\$$	-	$\$$	$1,951,799.68$	$\$$	-
Construction Management	$\$$	-	$\$$	$2,439,749.60$	$\$$	-
Right-of-Way	$\$$	-	$\$$	$5,392,095.83$	$\$$	-
Structures	$\$$	-	$\$$	$1,862,084.28$	$\$$	-
Utility Relocation	$\$$	-	$\$$	$8,763,580.65$	$\$$	-
Administration	$\$$	-	$\$$	$1,626,499.73$	$\$$	-
Adjusted Total	$\$$	-	$\$$	$38,300,807.10$	$\$$	-

6/18/2011

Project Name: Peoria Ave
Termini: Perryville Rd to SR 303L

Alternative:				
Item Description	Unit	Quantity	Unit Cost	Total
N.P. .E.E.S.	Lump Sum	1	31.858.71	31, 38.71
Community Reations	Allowance	1	12,790.30	12,790.30
Engineers Field office	Lumpsum	1	\$ 139,708.51	139,708.51
Roadway Excavation	crd	96,019		409,131.22
Borow Excavation (ff ancicipated)	Cro	90,421	8.37	757,001.60
Chamel $\&$ Retenion Basin Exavation	cro	47,223	2.88	136,050.29
subgrade Preparation	Soyd	138,533	1.59	220,978.65
New Asphat Concrete Pavement (se Pavements sheet)	SQrd	0	13.85	\$ -
New Rubberized Asphalt Pavement (see Pavement sheet)	SQrd	138,553	19.45	2,694,853.69
Asphalt Rubber Overay (see Pavement sheet)	sor	0	7.70	\$ -
Chip Seal on AC Pavement (see Pavementsheet)	SQrd	0	2.65	\$
Double Chip Seal on Aggregate Ease (see Pavement sheet)	SQYD	0	4.90	5
Concrete Single Cut	LF	24,995	14.42	357,533.92
Concrete Curb $\&$ Guter	LF	34,635	12.36	428,044.27
Concrete Sidewalk Ramp Sta deet 231, Type "A"	EA	40	1.522.65	60,905.94
Concrete Sidewalk Std Det 230	Sord	17,212	50.41	867,627.09
Concrete Diveway with 5 'W ings, 5 trd det 250	SQrd	722	27.28	19,703.49
Trafic Signing \& Stiping - 2 lanes	LF	0		\$
Trafic S Signing \& Stiping- 5 lanes	LF	0	4.58	\$
Trafic Signing $\&$ Striping - 7 lanes	LF	13.075	4.85	63,381.81
Trafic S Sigal, Full Inersection	EA	5	494,973.19	2.474.86.97
Interomeectrafic Signals	LF	13,075	9.47	123,865.67
Trafic Signa, Future "Bxxin"	EA	5	6.099.47	30,247.36
Catch Basin	EA	44	6.631.89	291,803.2
Scuper	EA		5.001.54	\$
Dravel	EA		\$ 41,988.26	\$
Stom Drain System (reterition basin opioion)	mile		\$ 816,68.61	s
${ }^{18}{ }^{\text {" CMP and smaller }}$	$\stackrel{\text { LF }}{ }$		57.51	5
$24^{\circ} \mathrm{cmP}$	LF		78.02	\$
$30^{\circ} \mathrm{CMP}$	LF		1116.44	
$36^{\prime \prime \mathrm{CMP}}$	LF	300	122.02	36.600.04
44^{27} CMP	LF		103.53	\$
54 CMP	LF		231.91	\$
60"CMP	LF		318.29	s
$72{ }^{\text {2 CMP }}$	LF	660		
128"\&24"RGRCP, Class III	LF	2.592	95.00	\$ 246,240.00
33"\& 36 "RGRCPP, Class III	LF		105.00	
$422^{\text {" } ~ 48 " R G R C P, ~ C l a s s ~ I I I ~}$	LF	0	154.00	\$
$54^{48} 860^{\circ} \mathrm{RGR}$ CPP, Class III	LF	0	230.00	\$
$54 * \& 60^{\circ}$ Stom Drain Manhole	EA	0	4.137.04	\$
Headwal (MAG detilis)	EA		5,941.91	s
Irigation Junction Box (MAG details)	EA			
Concrete Slip Fom Inigation Ditch	LF		52.58	\$
Eath Irigation Ditch/special Prainge Ditch, 6' Top $^{\text {a }}$	LF			s
Box Cuvert see Stucture sheet)	Ls		\$ 1,567,82.00	\$
Irigation Stucture with Gates	EA		\$ 2.789.56	\$
Bridge < 1000 (see Stucture sheet)	SF			
Bidge $\geqslant 100$ '(see Stucture sheet)	SF		${ }^{5}$ -	\$
Suardrai without Approach End Section	LF	0	47.71	\$
Suardial Approach End Section, New ADOTT Type	EA	0	2.558.97	\$ -
Median Fine Grading, Preemergent \& D.G.	Sord	18,338	27.50	504,220.00
$8^{\text {P/ Masonry Soundwall** }}$	LF	6.618	85.00	562,530.00
Concrete Soundwall*	SQrd	0	431.00	\$ -
	Subtoal			10,469,947,76
Removal of Exising Improvements © 2\%	Lump Sum	1	\$ 209,39.00	209,399.00
Tremer	Lump Sum	1	\$ 418,798.00	418,798.00
	Lump sum	1	314,098.00	314,098.00
SUBTOTAL Constuction				\$ 1141224276
	Contingency		20\%	\$ 2,282,448.55
	TOTAL			s 13,694,691.31
**Calculated current costs for the 8' Masonry Soundwall and Concrete Soundwall items above were not available in the current				
projects and therefore they were calculated using the ADOT construction cost 2008-2010 projects.				

roject Name: Peoria Ave fermini: Perryville Rd to SR 30 .

box CuLvert cost calculations

TYPE OF ROAD	BOX LENGTH (t)	Box DESCRRPTION	Box WIDTH (t)	TOP SFC AREA	UNIT	cosT*	Total cost
URBAN MINOR ARTERIAL OR LESS (27 m or 88.58 ' for 5 lanes \& 2 sidewalks)	$\begin{aligned} & 150 \\ & 65 \end{aligned}$	$\begin{gathered} \mathrm{H}=4 \\ \mathrm{H}=4 \end{gathered}$	$\begin{aligned} & 36 \\ & 36 \end{aligned}$	$\begin{aligned} & 5,400.00 \\ & 2,340.00 \end{aligned}$	$\begin{aligned} & \text { sof } \\ & \text { Sat } \end{aligned}$		\$459,000.00 \$198,900.00
URBAN MINOR ARTERIAL W/ BIKE LANES (28.8 m or 94.49 ' for 5 lanes, 2 B/L's \& 2 S/W's)	$\begin{aligned} & 135 \\ & 115 \end{aligned}$	$\begin{gathered} \mathrm{H}= \\ \mathrm{H}=4 \end{gathered}$	30	$\begin{gathered} 4.050 .00 \\ 555.00 \\ \hline \end{gathered}$	SO FT SOFT SOT	($\begin{array}{ll}\text { S } & 8.50 \\ \text { s }\end{array}$	\$344,250.00 \$48,875.00
URBAN MAJ OR ARTERIAL (31.8 m or 104.33' for 7 lanes \& 2 S/W's)	190	H=4	32	6.080.00	SQ FT	85.00	\$51.800.00
SPECIAL LOW VOLUME ROAD CONDITION*** (16 m or 52.49' for 2 lanes with shoulders)				0.00	SQ ft	\$52.01	\$0.00

*Top surface area of box
*Hncludes costo 5 standa

BRIDGE COSt CALCULATION

TYPE OF ROAD	BRIIGE LENGTH (t)	DESCRIPTION	BRIDGE WIDTH (ft)	TOP SFC AREA*	UnIT	cost ${ }^{\text {a }}$	TOTAL Cost
URBAN MINOR ARTERIAL OR	0		${ }^{89.58}$	0	SQ FT	\$ 190.00	${ }^{50.00}$
URBAN MINOR ARTERRAL W/ IIEE L LNES	0		94.49	0	SQ Ft	\$ 190.00	90.00
URBAN MAJ OR ARTERIAL (31.8 m or 104.33' for 7 lanes \& 2 SN's)	-		. 33	0	SQ FT	\$ 190.00	50.00
SPECIAL LOW VOLUME ROAD CONDITION*** (16 m or 52.49' for 2 lanes with shoulders)	0		52.49	${ }^{\circ}$	SQ Ft	\$ 190.00	\$0.00

** Cost includes bridige railings, bamiers, approach slabs, piers, and other items used in bridge construction

Project Name: Peoria Ave

Termini: Perryville Rd to SR 303L

Project Name: Peoria Ave
Termini: SR 303L to Bullard Ave

Alternative:				
Item Description	Unit	Quantity	Unit Cost	Total
N.P.D.E.S.	Lump Sum	1	31,858.71	31,858.71
Community Relations	Allowance	1	12,790.30	12,790.30
Engineers Field office	Lump Sum	1	139,708.51	139,708.51
Roadway Excavaion	cro	61,335	4.26	261,345.29
Borow Excavaion (ff anicipated)	cro	30,000	8.37	251,158.18
Chamnel \& Retention Basin Exavation	cro	1,429	2.88	4,115.
Subgrade Preparation	Sord	120,700	1.59	192,504.46
New Asphat Concrete Pavement (see Pavement sheet)	Sord	0	13.85	
New R ubberized Asphat Pavement (see Pavement sheet)	serd	120,700	19.45	2,347,68,52
Asphat R u beer Overay (see Pavements sheet)	Sord	0	7.70	
Chip Seal on AC Pavement (see Pavement sheet)	Sord	0	2.65	\$
Double Chip Seal on Aggreate Base (see Pavement sheet)	SQrd	0	4.90	s
Concrete Single Curb	LF	23,29	14.42	335,890.10
Concrete Curb \& Gutter	LF	24,438	12.36	302.022.40
Concrete Sidewalk Ramp stat det 233, Type "A"	EA	28	1.522.65	$42,634.16$
Concrete Sidewalk Stal det 230	SQrd	16,292	50.41	821.251.49
Concrete Diveway w with 5 'Wings, 5 trd det 250	SQYD	722		19,703.49
Trafic S Signing \& Stiping - 2 lanes	LF	0	2.41	\$ -
Trafic S Signing \& stiping - 5 lanes	LF	0	4.58	
Trafic S igning \& stiping - 7 lanes	LF	12,300	4.85	59,624.95
Trafic S Signal. Full Intersection	EA	4	494,973.19	1,979,992.78
InterconnectTrafic Sigals	LF	12,300		116,523.73
Trafic Signal, Future "Boxin"	ea	5	6,099.47	30,247.36
Catch Basin	EA	6	6.631.89	39,791.35
Scuper	EA		5.001.54	
Drwell	EA		41,998.26	s
Stom Drain System (retention basin option)	mie		\$ 816,68,61	s
$18^{\prime \prime} \mathrm{CMP}$ and smaller	LF		57.51	5
24 cmP	LF			
$30^{\circ} \mathrm{CMP}$	LF		116.44	\$
$36^{6 / \mathrm{cmP}}$	LF		122.02	
$42^{2 \prime \prime}$ CMP	LF		103.53	
$54^{4} \mathrm{CMP}$	LF		231.91	\$
60"cmp	LF		318.29	
18" 224 "RGRCP, Class III	LF	143	95.00	13,585.00
30" \& 36"RGRCP, Class III	LF		105.00	
$42^{\prime \prime}$ \&48"RGRCP, Class III	LF		154.00	\$
$544^{\text {- } 6000 R G R C P, ~ C l a s s ~ I I I ~}$	LF	${ }^{6.166}$	230.00	\$ 1,418,180.00
54.8600 Stom Drain Mahnole	EA	12	4.137.04	49,644.48
Headwal (MAG debils)	EA		\$ 5,941.91	
Irigation Junction Box (MAG detais)	EA			
Concretes Slip Foml ligation Ditch	LF		52.58	\$
Eath Irigation Ditch/special Drainge Ditch, 6'Top	LF		4.57	\$
Box Cuver (see Stucture sheet)	Ls		\$ 555,90.00	
Irigation Stucture with Gates	EA		2,789.56	s
Bridge <100 ' (se Stucture sheet)	SF			
Bridge $=100$ ' 'see Stucture sheet)	sF		${ }^{5}$ -	\$
Suardrail without Approach End Section	LF	0	47.71	\$
Guarcrill Approch End Section, New ADOot Type	EA	0	2.558.97	\$ -
Median Fine Grading, Preemergent, \& D.G.	SQro	19,378	27.50	532,809.64
$8^{\text {P/Masony Soundwall**}}$	LF	480	85.00	40,800.00
Concrete Soundwall*	SQYD	0	431.00	${ }_{5}$
	Sutboal			9.043,690.45
Removal of Exising Improvements © 2%	Lump sum	1	180,874.00	180,874.00
Moblizaionvemobilizaion@ 4\%	Lump Sum	1	\$ 361,78.00	361,788.00
Trafic Contole 3\%	Lump Sum	1	271,311.00	271.311.00
SUBTOTAL Constuction				9,857,623.45
	Contingency		20\%	1.971.524.69
	total			S 11,82, 148.14
*Calculated current costs for the 8 ' Masonv Soundwall and Concrete Soundwall items above were not avaliable in the curent				
projects and therefore they were calculated using the ADOT construction cost 2008-2010 projects. **** avement Sawcut Removed as pay item				

Project Name: Peoria Ave Termini: SR 303L to Bullard Ave

ox culvert costcalculations

TYPE OF ROAD	BOX LENGTH (t)	BOX DESCRIPTION	BOX WIDTH (ft)	TOP SFC AREA	* UNIT	CosT*	TOTAL Cost
URBAN MINOR ARTERIAL OR LESS (27 m or 88.58 ' for 5 lanes \& 2 sidewalks)	${ }^{130}$	H=6	24	${ }^{3.120 .00}$	SQ Ft	\$ 85.00	\$265,200.00
URBAN MINOR ARTERIAL W/ BIKE LANES (28.8 m or 94.49 ' for 5 lanes, 2 B/L's \& 2 S/W's)	31	H=6	60	1.860.00	SQ ft	\$ 85.00	\$158,100.00
URBAN MAJ OR ARTERIAL (31.8 m or 104.33' for 7 lanes \& 2 S/W's)	130	H=3	12	1.560.00	ft	\$ 85.00	\$132,600.00
SPECIAL LOW VOLUME ROAD CONDITION*** (16 m or 52.49 for 2 lanes with shoulders)	0		-	0.00	SQ FT	552.00	50.00

Top surface area of box.
Includes cost of standard wing walls and bridge barier. For special constuction review unit cost with MCDOT bridge section

bridge cost calculations

TYPE OF ROAD	BRIDGE LENGTH (t)	DESCRIPTION	BRIDGE WIDTH (ti)	TOP SFC AREA*	NIT	cost*	OTAL Cost
URBAN MINOR A ATERIAL OR LE	0		89.58	-	SQ FT	190.	50.00
URBAN MINOR ARTERIAL W/ BIKE LANES (28.8 m or 94.49' for 5 lanes, 2 B/L's \& 2 S/W's)	0		94.49	0	SQ FT	\$ 190.00	90.00
URBAN MAJ OR ARTERIAL (31.8 m or 104.33' for 7 lanes \& 2 SN's)	0		104.33	0	SQ Ft	\$ 190.00	\$0.00
SPECIAL LOW VOLUME ROAD CONDITION*** (16 m or 52.49' for 2 lanes with shoulders)	0		52.49	0	SQ Ft	\$ 190.00	\$0.00
Top surace area of brigge.						(eit	${ }_{\substack{\text { ¢0.00 } \\ \text { soon }}}$

Cost includes bididge railings, bamiers, approach slabs, piers, and other items used in bridge constuctio.

Utility Relocation

Project Name: Peoria Ave

Termini: SR 303L to Bullard Ave

Project Name: Peoria Ave

Termini: SR 303L to Bullard Ave

Alternative:				
Item Description	Unit	Quantity	Unit Cost	Total
Mobilization	Ls	1	\$5,398.49	\$5,398.49
Clearing, Grubbing and Site Clean Up	EA	1	\$5,398.49	\$5,398.49
Irrigation Structure w/ Gates, Medium	EA	1	\$70,911.55	\$70,911.55
Imigation Structure w/ Gates, Large	EA		\$129,596.98	
24" RGRCP	LF		\$95.00	\$0.00
30" \& 36" RGRCP	LF	12,300	\$105.00	\$1,291,500.00
42" \& 48" RGRCP	LF		\$154.00	\$0.00
54" \& 60" RGRCP	LF		\$230.00	\$0.00
Headwall w/ Trash Rack	EA	1	\$14,426.83	\$14,426.83
Headwall	EA		\$10,025.43	\$0.0
Manhole	EA	25	\$7,091.16	\$174,867.89
Remove Existing Structures	Ls		\$30,809.85	\$0.00
Concrete Lined Ditch	LF		\$106.37	\$0.00
Well Site Relocation	EA	4	\$750,000.00	\$3,000,000.00
Catch Basin	EA			\$0.00
Subtotal Construction			10\%	\$4,562,503.26
Irigation System Design Total SRP Relocation Estimate				\$456,250.33
				\$5,018,753.59
*Note: English units used per SRP standards				

Summary

Project Name: Peoria Ave

Termini: Bullard Ave to Dysart Rd

COST CATEGORIES	Factors		No Build		Alternative 1		ve 2
Construction		\$	-	\$	10,543,606.21	\$	-
Design (10\% TO 15\%)	12\%	\$	-	\$	1,265,232.74	\$	-
Construction Management	15\%	\$	-	\$	1,581,540.93	\$	-
Right-of-Way		\$	-	\$	1,840,000.00	\$	-
Structures		\$	-	\$	576,300.00	\$	-
Utility Relocation		\$	-	\$	7,852,395.52	\$	-
Administration (8\% TO 13\%)	10\%	\$	-	\$	1,054,360.62	\$	-
Total		\$	-	\$	24,713,436.02	\$	-

PRELIMINARY SUMMARY COST ESTIMATES (Adjusted for Inflation)
Assumed Annual Inflation Rate $=3.50 \%$
Assumed Number of Years $=5$

Adjusted Construction Cost	$\$$	-	$\$ 12,522,496.70$	$\$$	-	
Design	$\$$	-	$\$$	$1,502,699.60$	$\$$	-
Construction Management	$\$$	-	$\$ 1,878,374.51$	$\$$	-	
Right-of-Way	$\$$	-	$\$$	$2,185,342.80$	$\$$	-
Structures	$\$$	-	$\$$	$684,463.62$	$\$$	-
Utility Relocation	$\$$	-	$\$$	$9,326,182.62$	$\$$	-
Administration	$\$$	-	$\$$	$1,252,249.67$	$\$$	-
Adjusted Total	$\$$	-	$\$ 29,351,809.53$	$\$$	-	

Project Name: Peoria Ave
Termini: Bullard Ave to Dysart Rd

Alternative:				
Item Description	nit	Quantity	Unit Cost	Total
N.P.D.E.S.	Lump Sum	1	31,.858.71	31, 8.58 .71
Communit Relations	Allowance	1	12,790.30	12,790.30
Engineers Field office	Lump Sum	1	139,708.51	139,708.51
Roadway Excavation	CYD	49,279	4.26	209,973.88
Borow Excevation (ff anicipated)	cro	68,465	8.37	573,183,27
Chamnel $\&$ Retention Basin Exavation	cro	5.378	2.88	15,493.47
Subgrade Preparaion	serd	103,065	1.59	164,379.20
New Asphalt Concrete Pavement(sse Pavement sheet)	SQYD	0	13.85	\$
New R ubberized Asphat Pavement (see Pavement sheet)	sord	103,065	19.45	2,004,618.57
Asphat R ubber Overay (see Pavementsheet)	SQrd	0	7.70	\$
Chip Seal on AC Pavement (see Pavementsheet)	sord	0	2.65	\$ -
Double Chip Seal on Aggregate Base (see Pavement sheet)	sord	0	4.90	
Concrete Single Curb	LF	19,996	14.42	286,992.31
Concrete Curb \& Gutter	LF	20.926	12.36	258,68.57
Concrete Stidewalk Ramp sta det 233, Type "A"	EA	36	1.522.65	54,815.35
Concrete Sidewalk 5 tal det 230	SQYD	13,951	50.41	703.228.93
Concrete Diviveway with 5. ' ings, 5 Std Det 250	SQrd	578	27.28	15,762.79
Trafic Signing \& Striping - 2 lanes	LF	0	2.41	\$ -
Trafic Signing \& Stiping - 5 lanes	LF	0		
Trafic S Signing \& Stiping -7 lanes	LF	10.500	4.85	50,899.35
Traffic Signal, full Intersection	EA	4.5	\$ 494,973.19	\$ 2,227,379.38
Interconnectraffic Signals	LF	10.500	9.47	99,471.48
Trafic Signal, Future "Box:in"	EA	4	6.049.47	24,197.89
Catch Basin	EA	10	6.631.89	66,318,92
Scuper	EA		5.001.54	\$
Drwell	EA		\$ 41,998.26	\$
stom Drain System (retention basin option)	mile		\$ 816,688.61	\$
$18^{\text {" }}$ CMP and smaller	LF		\$ 57.51	\$
$24^{4 . c M P}$	LF		78.02	\$
$30^{\circ \prime \mathrm{CMP}}$	LF		116.44	\$
$36{ }^{\text {cmp }}$	LF	40	122.02	4.8
$42^{2 \prime C M P}$	LF		103.53	+ -
$54 . \mathrm{CMP}$	LF		231.91	\$
60"CMP	LF		318.29	\$
18" 824 "RGRCP, Class III	LF	526	95.00	49,970.00
30" \& 36"RGRCP, Class III	LF		105.00	\$ -
$427^{\prime \prime} \times 88^{\prime \prime}$ RGRCP, Class III	LF		154.00	\$ -
$544^{\text {¢ ¢ 60" RGRCP, Class III }}$	LF	1.688	230.00	388,240.00
72"RGRCP, Class III	LF	750	318.29	238,717.08
$54^{4} \& 60^{\circ}$ Stom Drain Manhole	EA	4	4.137.04	16.548.16
Headwall (MAG deails)	EA		5,941.91	\$ -
Irigation Junction Box (MAG detais)	EA		5 -	\$
Concrete Slip Fom Imigation Ditch	LF		52.58	
Earth Imigation Ditch/special Drainage Ditch, 6'Top	LF		${ }^{4.57}$	\$
Box Culvert (see Stucture sheet)	Ls		\$ 576,30.00	\$
Irigation Stucture with Cates	EA		2,789.56	\$
Bride <100 ' (see Stucture sheet)	SF		\$ -	\$
Bidge x 100' (se Stucture sheet)	SF			\$
Suardial without Approach End Section	LF	0	47.71	\$
Guardial Approach End Section, New ADOTT Type	EA	0	2.55.97	+ -
Median Fine Grading, Preemergent \& D.G.	SQrd	15,381	27.50	422,914.60
$8^{\text {B Masonry Soundwall* }}$	LF	0	85.00	\$ -
Concrete Soundwalle	Sord	0	43.00	
	Subloal			8.060.861.50
Removal of Exising Improvements @ 2\%	Lump Sum	1	\$ 161,217.00	161,217.00
Moblizationvemobilization@ 4\%	Lump Sum	1	\$ 322,434.00	322,434.00
Trafic Contro @ 3\%	Lump Sum	1	241,826.00	241.826 .00
	LConstuction			${ }^{5}$ 8,786,38.50
	Contingence		20\%	\$ 1,757,267.70
	TOTAL			10,533,606.21
\#Calculted current costs for the 8' Masony Soundwal and	oundwal tems	above were no	tavailabl in the cur	
Projects and therfore they were calculated using the ADOT	cost $2008-2$	10 projects.		
upavement Sawcut Removed as pay item				

box CuLvert cost calculations

TYPE OF ROAD	BOX LENGTH（t）	BOX DESCRIPTION	BOX WIDTH（f）	TOP SFC AREA＊	UNIT	Costm	OTAL cos
URBAN MINOR ARTERIAL OR LESS （ 27 m or 88.58^{\prime} for 5 lanes \＆ 2 sidewalks）	226	H＝6＇	${ }^{30}$	6．780．00	SQft	\＄ 85.00	\＄576．300．00
URBAN MINOR ARTERIAL W／BIKE LANES （ 28.8 m or 94.49 ＇for 5 lanes， 2 B／L＇s \＆ 2 S／W＇s）	－			0.00	t	\＄ 85.00	\＄0．00
URBAN MAJ OR ARTERIAL （31．8 m or 104．33＇for 7 lanes \＆ 2 SNV＇s）	0			0.00	T	\＄ 85.00	50.00
SPECIAL LOW VOLUME ROAD CONDITION＊＊＊ （ 16 m or 52.49 for 2 lanes with shoulders）	0		。	0.00	¢	\＄52．00	5．00

${ }^{*}$ Top surface area of box．
＊Includes cost tof standard wing walls and bridge barier．For special constuction reviem uit cost with MCDOT bridge section

bridge cost calculations

TYPE OF ROAD	BRIDGE LENGTH（t）	DESCRIPTION	BRIDGE WIDTH（ft）	TOP SFC AREA＊	UNIT	cost	Total cost
URBAN MINOR ARTERIAL OR LESS	0		89.58	0	sQ ft	\＄190．00	50.00
URBAN MINOR ARTERIAL W／BIKE LANES	。		94.49	。	SQ FT	\＄190．00	50.0
URBAN MAJ OR ARTERIAL （31．8 m or 104．33＇for 7 lanes \＆ 2 SNV＇s）	－		． 33	0	SQ Ft	\＄190．00	50.00
SPECIAL LOW VOLUME ROAD CONDITION＊＊＊ （16 m or 52．49＇for 2 lanes with shoulders）	0		52.49	0	SQ Ft	\＄190．00	\＄0．00

${ }^{\text {＊Top surface area of frigee }}$
＊＊Cost inculdes bindger railings，bariers，approach slabs，piers，and other items used in bridge constuction
Note：show costof thannel exay

Termini: 82+00 to 97+00 (North Side), 82+00 to 97+00 (South Side) and 110+00 to 120+00 (South Side)

COST CATEGORIES	Factors	No Build			Alternative 1		ve 2
Construction		\$	-	\$	2,994,505.14	\$	-
Design (10\% TO 15\%)	12\%	\$	-	\$	359,340.62	\$	-
Construction Management	15\%	\$	-	\$	449,175.77	\$	-
Right-of-Way		\$	-	\$	290,000.00	\$	-
Structures		\$	-	\$	-	\$	-
Utility Relocation		\$	-	\$	1,397,553.65	\$	-
Administration (8\% TO 13\%)	10\%	\$	-	\$	299,450.51	\$	-
Total		\$	-	\$	5,790,025.68	\$	-

PRELIMINARY SUMMARY COST ESTIMATES (Adjusted for Inflation)
Assumed Annual Inflation Rate $=3.50 \%$
Assumed Number of Years $=5$

Adjusted Construction Cost	$\$$	-	$\$$	$3,556,532.74$	$\$$	-
Design	$\$$	-	$\$$	$426,783.93$	$\$$	-
Construction Management	$\$$	-	$\$$	$533,479.91$	$\$$	-
Right-of-Way	$\$$	-	$\$$	$344,429.03$	$\$$	-
Structures	$\$$	-	$\$$	-	$\$$	-
Utility Relocation	$\$$	-	$\$$	$1,659,855.33$	$\$$	-
Administration	$\$$	-	$\$$	$355,653.27$	$\$$	-
Adjusted Total	$\$$	-	$\$$	$\mathbf{6 , 8 7 6 , 7 3 4 . 2 1}$	$\$$	-

Project Name: Peoria Ave
Termini: $82+00$ to $97+00$ (

Iternative:				
Item Description	Unit	Quantity	Unit Cost	Total
N.P. D.E.S.	Lump Sum	1	31,858.71	31,858.71
Communit Relations	Allowance	1	12,790.30	12,790.30
Engineers Field office	Lump Sum	1	139,708.51	139,708.51
Roadway Exavation	cro	${ }_{8,889}$	4.26	37,875.21
Borow Excavation (ff anticipated)	cro	${ }^{7.500}$	8.37	62,789.54
Chamel \& Reternion Basin Exavation	cro	0	2.88	\$ -
Subgrade Preparation	sord	19.589	1.59	31,241.88
New Asphalt Concrete Pavement sse Pavement sheet)	Sord	0	13.85	
New R ubberized Asphat Pavement (see Pavement sheet)	SQYD	19,589	19.45	380,997.41
Asphalt R ubber Overay (see Pavements sheet)	SQrd	0	7.70	\$
Chip Seal on AC Pavement (see Pavement sheet)	SQYD	0	2.65	\$
Doule Chip Seal on Aggregate Base (see Pavement sheet)	Sord	0	4.90	\$ -
Concrees Single Curb	LF	3,853	14.42	55,558.71
Concrete Curb \& Gutter	LF	4.106	12.36	50,744.90
Concrete Sidewak Ramp sta Det 233, Type "A"	EA	12	1.522.65	18,271.78
Concrete Sidewak 5 td Det 230	SQYD	2,737	50.41	137,984,23
Concrete Diviveway with 5 'Wings, 5 tal Det 250	SQ Y	108	27.28	2,955.52
Trafic S Signing \& Striping - 2 lanes	LF	0	2.41	\$ -
Trafic S Signing \& Stiping- 5 lanes	LF	0	4.58	\$ -
Trafic Signing \& Stiping -7 lanes	$\stackrel{L}{ }$	4.000	4.85	19,390.23
Traffic Signal, Ful Intersection	EA		494,973.19	989,946.39
Interconnectrrafic Signals	LF	4,000	9.47	37,893.90
Trafic Signal, Future "Boxin"	EA	1	6.099.47	6.049.47
Catch Basin	EA	2	6.631.89	13,263.78
Scupper	EA		5.00.54	\$ -
Drwell	EA		41,998.26	\$
stom Drain System (reternion basin opion)	mile		\$ 816,688.61	s
18" CMP and smaler	LF		57.51	s
$24^{4 . c M P}$	LF		78.02	\$
$33^{0 . c M P}$	LF		116.44	s
366 cmP	LF		122.02	\$
$42^{2 \prime} \mathrm{CMP}$	LF		103.53	\$
54 cmP	LF		231.91	s
$60^{\circ} \mathrm{CMP}$	LF		318.29	\$
18" \&24"RGRCP, Class III	LF	102		9,690.00
330"\&36"RGRCP, Class III	LF		105.00	\$ -
$42^{\prime \prime} \& 88^{\prime \prime}$ RGRCP, Class III	LF		154.00	
$544^{\text {¢ ¢ 60" RGRCP, Class III }}$	LF		230.00	s
$54^{\prime \prime} \& 60^{\circ} \mathrm{s}$ Stom Drain Manhole	EA	0	4.137.04	\$
Headwal (MAG detils)	EA		5,941.91	\$
Inigation Junction Box (MAG details)	EA		5 -	s
Concrete Slip Foml lirigation Ditch	LF		52.58	\$
	LF		4.57	\$
Box Cuvert (see Stucture sheet)	Ls			
Inigation Stucture with Gates	EA		2,789.56	\$
Bridge $<100^{\prime}$ (see Stucture shee)	SF		${ }_{5}$	\$
Bridge ≈ 100 ' (see Stucture sheet)	SF			\$
Guardrail withut Approach End Section	LF	0	47.71	\$
Suardilil Approach End Section, New ADOTT Type	EA	0	2.558.97	\$ -
Median Fine Grading, Preemergent, \& D.G.	SQYD	2.969	27.50	81.641 .47
	LF	1,985	85.00	168,725.00
Concrete Soundwall*	SQrd	0	431.00	\$ -
	Subloal			\$ 2,289,376.95
Removal of Exising Improvements @ 2\%	Lump Sum	1	45,788.00	\$ 45,78.00
MoblizationDemomilization@ 4\%	Lump Sum	1	\$ 991,57.00	\$ 91,575.00
Traficic Contol @ 3\%	Lump Sum	1	68,681.00	68,681.00
	LConstuction			\$ 2,495,420.95
	Contingency		20\%	\$ 499,084.19
	total			s 2,994,505.14
*CCalculated curent costs for the 8 ' Masonry Soundwal and C	oundwal tems	above were no	tavalable in the cur	
projects and therefore they were calculated using the ADOT c	cost 2008 -2	10 projects.		

box CuLvert cost calculations

TYPE OF ROAD	Box Lencth (ti)	BOX DESCRRPTION	BOX WIDTH (t)	TOP SFC ARE	* UNIT	CosT*	Total Cost
URBAN MINOR ARTERIAL OR LESS (27 m or 88.58^{\prime} for 5 lanes \& 2 sidewalks)	0			0.00	SQft	\$ 85.00	50.00
URBAN MINOR ARTERIAL W/ BIKE LANES (28.8 m or 94.49 ' for 5 lanes, 2 B/L's \& 2 S/W's)	0			0.00	SQft	\$ 85.00	50.00
URBAN MAJ OR ARTERIAL (31.8 m or 104.33' for 7 lanes \& 2 S/W's)	0			0.00	SQ FT	\$ 85.00	50.00
SPECIAL LOW VOLUME ROAD CONDITION*** (16 m or 52.49' for 2 lanes with shoulders)	0		\bigcirc	0.00	SQ ft	\$55.00	50.00

*Top surface area of box.
\#世 ncludes costof ftandard
Includes costrof t standardard wing walls and bridge barier. For special constuction review unit cost with MCDOT bridge section.
"16 mox with approval only. Generally non-section line, low volume location.
Oost in Red is fom FY 2006 as
there was not any newn data available for FY 2010
bridge cost calculations

TYPE OF ROAD	BRIDGE LENGTH (t)	DESCRIPTION	BRIDGE WIDTH (f)	TOP SFC AREA*	UNIT	cost ${ }^{\text {m }}$	Total cost
URBAN MINOR ARTERIAL OR LESS (27 m or 88.58 ' for 5 lanes \& 2 sidewalks)	0		89.58	0	SQ Ft	190.00	\$0.00
URBAN MINOR ARTERIAL W/ BIKE LANES (28.8 m or 94.49' for 5 lanes, 2 B/L's \& 2 S/W's)	0		94.	0	SQ FT	190.00	50.00
URBAN MAJ OR ARTERIAL (31.8 m or 104.33' for 7 lanes \& 2 S/W's)	0		104.33	0	SQ FT	\$ 190.00	80.00
SPECIAL LOW VOLUME ROAD CONDITION*** (16 m or 52.49' for 2 lanes with shoulders)	0		52.4	0	so	\$ 190.00	\$0.00
*Top surface area of bridge.						$<100^{\prime}$ Long $>=100^{\prime}$ Long	¢0.00

*Top surface area of bingee

Project Name: Peoria Ave
Termini: $82+00$ to $97+00$ (North Side), $82+00$ to $97+00$ (South Side) and 110+00 to 120+00 (South Side)

Utility Relocation

Project Name: Peoria Ave

Termini: $82+00$ to $97+00$ (North Side), $82+00$ to $97+00$ (South Side) and 110+00 to 120+00 (South Side)

Alternative:				
Item Description	Unit	Quantity	Unit Cost	Total
Relocate 12 kv Wood Pole (Tangent) Relocate 12 kv Wood Pole (Dead-End) Relocate 69 kv Wood Pole (Tangent) Relocate 69 kv Steel Pole (Tangent) Relocate 69 kv Wood Pole (Dead-End) Relocate 69 kv Steel Pole (Dead-End) Other Poles associated w/ 69kv Power Line Railroad Crossing Irigation (See Irrigation sheet)	EA EA EA EA EA EA EA EA		$\begin{array}{r} \$ 5,000.00 \\ \$ 7,000.00 \\ \$ 18,000.00 \\ \$ 20,000.00 \\ \$ 38,000.00 \\ \$ 40,000.00 \\ \$ 8,400.00 \\ \$ 650,000.00 \\ \$ 1,164,628.00 \end{array}$	\$1,164,628.04
	struction tingency Total		20\%	$\begin{array}{\|c} \$ 1,164,628.04 \\ \$ 232,925.61 \\ \$ 1,397,553.65 \end{array}$

/18/2011

Alternative:				
Item Description	Unit	Quantity	Unit Cost	Total
Mobilization	LS	1	\$5,398.49	\$5,398.49
Clearing, Grubbing and Site Clean Up	EA	1	\$5,398.49	\$5,398.49
Irrigation Structure w/ Gates, Medium	EA	0	\$70,911.55	\$0.00
Irrigation Structure w/Gates, Large	EA		\$129,596.98	
24" RGRCP	LF		\$95.00	\$0.00
30" \& 36" RGRCP	LF	2,500	\$105.00	\$262,500.00
42" \& 48" RGRCP	LF		\$154.00	\$0.00
54" \& 60" RGRCP	LF		\$230.00	0.0
Headwall w/ Trash Rack	EA	0	\$14,426.83	\$0.0
Headwall	EA		\$10,025.43	\$0.00
Manhole	EA	5	\$7,091.16	\$35,455.78
Remove Existing Structures	Ls		\$30,809.85	\$0.00
Concrete Lined Ditch	LF		\$106.37	\$0.00
Well Site Relocation	EA	1	\$750,000.00	\$750,000.00
Catch Basin	EA			\$0.00
Subtotal Construction			10\%	\$1,058,752.76
Irigation System Design Total SRP Relocation Estimate				$\frac{\$ 105,875.28}{\$ 1161.608}$
\pm Note: English units used per SRP standards				

Summary

Project Name: Peoria Ave
 Termini: 119+30 to 202+59

COST CATEGORIES	Factors	No Build			Alternative 1		ve 2
Construction		\$	-	\$	6,368,131.87	\$	-
Design (10\% TO 15\%)	12\%	\$	-	\$	764,175.82	\$	-
Construction Management	15\%	\$	-	\$	955,219.78	\$	-
Right-of-Way		\$	-	\$	2,070,000.00	\$	-
Structures		\$	-	\$	516,800.00	\$	-
Utility Relocation		\$	-	\$	5,586,979.70	\$	-
Administration (8\% TO 13\%)	10\%	\$	-	\$	636,813.19	\$	-
Total		\$		\$	16,898,120.37	\$	-

PRELIMINARY SUMMARY COST ESTIMATES (Adjusted for Inflation)
Assumed Annual Inflation Rate $=3.50 \%$
Assumed Number of Years $=5$

Adjusted Construction Cost	$\$$	-	$\$$	$7,563,343.02$	$\$$	-
Design	$\$$	-	$\$$	$907,601.16$	$\$$	-
Construction Management	$\$$	-	$\$$	$1,134,501.45$	$\$$	-
Right-of-Way	$\$$	-	$\$$	$2,458,510.65$	$\$$	-
Structures	$\$$	-	$\$$	$613,796.28$	$\$$	-
Utility Relocation	$\$$	-	$\$$	$6,635,579.29$	$\$$	-
Administration	$\$$	-	$\$$	$756,334.30$	$\$$	-
Adjusted Total	$\$$	-	$\$$	$20,069,666.16$	$\$$	-

Project Name: Peoria Ave Termini:119+30 to $202+59$

Alternative:				
Item Description	Unit	Quantity	Unit Cost	Total
N.P.D.E.S.	Lunp Sum	1	31,858.71	31,858.71
Communiy Relations	Allowance	1	12,790.30	12,790.30
Engineers Field office	Lump Sum	1	139,708.51	139,708.51
Roadway Excavation	cro	41,433	4.26	176,542.69
Borow Exceavaion (ff anticipated)	cro	47,499	8.37	397,240,76
Chamnel \& Retention Basin Exavation	Crd	0	2.88	\$
Subgrade Preparation	sord	52,334	1.59	83,467.39
New Asphalt Concrete Pavement (see Pavement sheet)	SQrd	0	13.85	
New Rubberized Asphat Pavement (see Pavement sheet)	sord	52,334	19.45	1,017,891.98
Asphat R u uber Overay (see Pavement sheet)	Sord	0	7.70	\$ -
Chip Seal on AC Pavement (see Pavementsheet)	SQYD	0	\$ 2.65	\$
Double C Chip Seal on Aggregate Base (see Pavement sheet)	SQYD	0	4.90	+
Concrete Single Curb	LF	7.839	14.42	113,035.22
Concrete Cub \& Gutter	LF	17,069	12.36	210,950.99
Concrete Sidewak Ramp sta Det 231, Type "A"	EA	20	1.522.65	30,452.97
Concrete Sidewalk 5 ted det 230	SQrd	5.403	50.41	272.372.67
Concrete Diviveway with 5'Wings, 5 tod det 250	SQYD	181	27.28	4,925.87
Trafic S Signing $\&$ Stiping 2 llanes	LF	0	2.41	\$ -
Trafic Signing \& Stiping - 5 lanes	LF	0	4.58	\$ -
Trafic Signing \& Stiping -7 lines	LF	8,330	\$ 4.85	40,380.15
Traffic Signal. Full Intersection	EA	3	\$ 494,973.19	\$ 1.484,999.58
Interconnectrrafic Signals	LF	${ }^{8,330}$		78,914,04
Trafic Signal, Future "Boxin"	EA	4	6,099.47	24,197.89
Catch Basin	EA	20	6.631.89	132,637.84
Scupper	EA		\$ 5.001.54	\$ -
Drwell	EA		\$ 41,998.26	\$
stom Drain System (retention basin option)	mie		\$ 816,688.61	\$
18"CMP and smaller	LF		57.51	\$
244 cmP	LF			\$
30 CMP	LF		116.44	${ }_{5}$
$36^{6 \prime C M P}$	LF		122.02	\$
$42^{2 \prime C M P}$	LF		103.53	s
$54{ }^{\text {cmp }}$	LF		231.91	\$
60"cmp	LF		318.29	\$
18" \&24"RGRCP, Class III	LF	${ }^{835}$	95.00	79,3
330"\&36"RGRCP, Class III	LF		105.00	\$
422^{4} \& 88"RGRCP. Class III	LF		154.00	\$
$544^{\text {" } 6000 R G R C P, ~ C l a s s ~ I I I ~}$	LF		230.00	\$
$54 \pm \% 600^{\text {s Stom Drain Manhole }}$	ea		4.137.04	\$
Headwall (MAG debils)	EA		5,941.91	\$
Imigation Junction Box (MAG details)	EA			
Concrete Slip Fomm lirgation Ditch	LF		52.58	\$
Eath Irigation Diters/special Drainage Ditch, 6'Top	LF			\$
Box Cuvert (see Sturcture sheet)	Ls		\$ 516.800.00	
Irigation Stucture with Gates	EA		2,789.56	\$
Bridge $<100^{\prime}$ (se Stucture sheet)	SF			\$
Bridge >100 '(se Stucture sheet)	sF		\$.	\$
Guardial without Approach End Section	LF	0	47.71	\$
Guardial Approach End Section, New ADOTT Type	EA	0	2.558.97	\$ -
Median Fine Grading, Preemergent \& D.G.	SQYD	5.025	27.50	138,17.00
Concrete Soundwall*	LF	4.692	85.00	398,820.00
	SQrd	0	431.00	\$
	Subtotal			\$ 4.868,602.56
Removal of Exising Improvements @ 2\%	Lump Sum	1	97,372.00	97,372.00
Tremer	Lump Sum	1	\$ 199,744.00	199,744.00
	Lump Sum	1	146,058.00	146,058.00
SUBTOTAL Constuction				\$ 5,306,776.56
	Contingence		20\%	\$ 1.061,355.31
	total			s 6,368,131.87
\#Calculted current costs for te 8 ' Masony Soundwal and Concrete Soundwal items above were not vailiale in the curent				
Projects and therefore they were calculuted using the ADOT constuction cost 2008 -2010 projects.				
mpavement Sawcut Removed as pay item				

6/18/2011
box culvert cost calculations

TYPE OF ROAD	BOX LENGTH（t）	Box DESCRRPTION	Box WIDTH（t）	TOP SFC AREA	UNIT	cosT＊	Total cost
URBAN MINOR ARTERIAL OR LESS （ 27 m or 88.58 ＇for 5 lanes \＆ 2 sidewalks）	190	H \％	32	6，080．00	SQ Ft	85.00	\＄516，800．00
URBAN MINOR ARTERIAL W／BIKE LANES （ 28.8 m or 94.49 ＇for 5 lanes， 2 B／L＇s \＆ 2 S／W＇s）	0		。	0.00	SQ Ft	85.00	50.00
URBAN MAJ OR ARTERIAL （31．8 m or 104．33＇for 7 lanes \＆ 2 S／W＇s）	0		。	0.00	SQ Ft	85.00	50.0
SPECIAL LOW VOLUME ROAD CONDITION＊＊＊ （ 16 m or 52．49＇for 2 lanes with shoulders）	0		－	0.00	SQ ft	\＄52．00	90.00

＊Includes cost of standardd wing walls and bridge barier．For special constuction reviem uitcost with MCDOT bridge section

ridge cost calculations

TYPE OF ROAD	BRIDGE LENGTH（t）	DESCRIPTION	BRIDGE WIDTH（ft）	TOP SFC AREA＊	UNIT	cost	Total cost
URBAN MINOR ARTERIAL OR LESS	0		89.58	0	sQ ft	\＄190．00	50.00
URBAN MINOR ARTERIAL W／BIKE LANES	。		94.49	。	SQ FT	\＄190．00	50.0
URBAN MAJ OR ARTERIAL （31．8 m or 104．33＇for 7 lanes \＆ 2 SNV＇s）	－		． 33	0	SQ Ft	\＄190．00	50.00
SPECIAL LOW VOLUME ROAD CONDITION＊＊＊ （16 m or 52．49＇for 2 lanes with shoulders）	0		52.49	0	SQ Ft	\＄190．00	\＄0．00

$\underset{ }{*}{ }^{*}{ }^{*}$ Top sut
＊＊Cost inculdes bindger ailings，bariers，approach slabs，piers，and other items used in bridge constuction
Note：show costof thannel exay

Project Name: Peoria Ave Termini: 119+30 to 202+59

Project Name: Peoria Ave

Termini: 340+00 to 385+00 (North Side) and 340+00 to 380+00 (South Side)

COST CATEGORIES	Factors	No Build			Alternative 1		ve 2
Construction		\$	-	\$	3,951,654.73	\$	-
Design (10% TO 15\%)	12\%	\$	-	\$	474,198.57	\$	-
Construction Management	15\%	\$	-	\$	592,748.21	\$	-
Right-of-Way		\$	-	\$	490,000.00	\$	-
Structures		\$	-	\$	132,600.00	\$	-
Utility Relocation		\$	-	\$	3,613,534.62	\$	-
Administration (8\% TO 13\%)	10\%	\$	-	\$	395,165.47	\$	-
Total		\$	-	\$	9,649,901.60	\$	-
PRELIMINARY SUMMARY COST ESTIMATES (Adjusted for Inflation)							
$\begin{aligned} \text { Assumed Annual Inflation Rate } & =3.50 \% \\ \text { Assumed Number of Years } & =5 \end{aligned}$							
Adjusted Construction Cost		\$	-	\$	4,693,326.20	\$	-
Design		\$	-	\$	563,199.14	\$	-
Construction Management		\$	-	\$	703,998.93	\$	-
Right-of-Way		\$	-	\$	581,966.29	\$	-
Structures		\$	-	\$	157,487.20	\$	-
Utility Relocation		\$	-	\$	4,291,745.59	\$	-
Administration		\$	-	\$	469,332.62	\$	-
Adjusted Total		\$	-	\$	11,461,055.98	\$	-

Project Name: Peoria Ave
Termini: $340+00$ to $385+00$ (North Side) and $340+00$ to $380+00$ (South Side)

Alternative:				
Item Description	Unit	Quantity	Unit Cost	Total
N.P.D.E.S.	Lump Sum	1	31,858.71	31,858.71
Community Relations	Allowarce	1	12,790.30	12,790.30
Engineers Field office	Lump Sum	1	139,708.51	139,708.51
Roodway Excavation	cro	18,889	4.26	80,484.83
Borow Excavation (ff anticipated)	crd	15,000	${ }_{5}{ }^{8} 3$	125,579.09
Chamel \& Retention Basin Excavation	cro	0	2.88	\$ -
Subgrade Preparaion	Sord	40.526	1.59	64,634
New Asphat Concrete Pavement (see Pavement sheet)	sord		13.85	\$ -
New Rubberized Asphat Pavement (see Pavementsheet)	SQYD	${ }^{40.526}$	19.45	788,228.54
Asphalt Rubber Overay (see Pavementsheet)	Sord	0	7.70	\$ -
Chip Seal on AC Pavement (see Pavement shee)	SQrd	0	2.65	\$
Double Chip Sea on Aggregate Base (see Pavement sheet)	SQYD	0	4.90	
Concrete S Singe Curb	LF	7,774	14.42	112,097.9
Concrete Curb \& Gutter	LF	8.318	12.36	102,799.83
Concrete S Sidevalk Ramp stad det 231, Type "A"	EA	12	1.522.65	18.271.78
Concrete S Sidewalk 5 ted Det 230	SQrd	5.545	50.41	279,530.64
Concrete D Diveway with 5 'W Wiggs, 5 tad det 250	SQYD	217	27.28	5.911.05
Trafic Sigining \& Stiping - 2 lanes	LF	0	2.41	\$ -
Trafic Sigining \& Stiping - 5 lanes	LF	0	4.58	\$
Trafic Signing \& Stiping - 7 lanes	LF	8.500	\$ 4.85	41,204,23
Trafic Signal, Ful Intersection	EA	2	${ }^{\text {¢ }}$ 4 494,973.19	989,946.39
Interconnectrrafic Signals	Le	8.500	9.47	80,524.53
Trafic Signal, Future "Boxin"	ea	2	6,099.47	12,098.94
Catch Basin	EA		6.631.89	
Scuper	EA		\$ 5,001.54	s
Drwell	EA		\$ 41,998.26	s
Stom Drain System (retention basin opioion)	mile		\$ 816,688.61	\$
$18^{\prime \prime}$ CMP and smaller	LF		57.51	\$
$24^{4} \mathrm{CMP}$	LF			
$30^{\circ \prime \mathrm{CMP}}$	LF		116.44	\$
$36^{\prime \prime} \mathrm{CMP}$	LF		122.02	\$
$42^{\prime \prime} \mathrm{CMP}$	LF		103.53	\$
$54{ }^{\text {c CMP }}$	LF		231.91	\$
60"CMP	LF		318.29	
18" 224 "RGRCP, Class III	LF		95.00	s
30" \& 36"RGRCP, Class III	LF		105.00	\$
$42^{\prime \prime}$ \&48"RGRCP, Class III	LF		154.00	\$
$544^{8600 \% R G R C P, ~ C l a s s ~ I I I ~}$	LF		230.00	s
54.8600 Stom Drain Manhole	EA	0	4.137.04	\$
Headwal (MAG debils)	EA		5,941.91	s
Irigation Junction Box (MAG deails)	ea			
Concrete Slip Fom Inigation Ditch	LF		52.58	\$
Eath Imigation Ditch/special Drainage Ditch, 6'Top	LF			\$
Box Cuver (see Stucture sheet)	Ls		\$ 132,600.00	
Irigation Stucture with Gates	EA		\$ 2,789.56	s
Bidge <100' (see Stucture sheet)	SF			\$
Bridge ± 100 ' (see Stucture sheet)	sF		\$ -	\$
Guarcrial without Approach End Section	LF	0	47.71	\$
Guarcrin Approach End Section, New ADOOT Type	EA	0	2.558.97	s
Median Fine Grading, Preemergent \& D.G.	SQYD	4,927	27.50	135,472.35
	LF		85.00	\$ -
Concrete Soundwall*	SQYD	0	431.00	\$ -
	Sutbotal			3.021,142.61
Removal of Existing lmprovement © $\mathrm{L}^{2 \%}$	Lump Sum	1	60,423.00	60,423.00
MoblizationDemmbilization @ 4\%	Lump Sum	1	\$ 120,846.00	120,846.00
Trafic Contole © 3\%	Lump Sum	1	90,634.00	90.634.00
	Constuction			3,293,045.61
	Contingency		20\%	658.609.12
	total			3,951,654.73
*Calculted current costs for the 8 ' Masony Soundwall and Concrete Soundwall teens above were notavalable in the curent				
projects and therefore they were calculated using the ADOT construction cost 2008 - 2010 projects.				
Pavement sawcut Removed as pay iem				

Project Name: Peoria Ave Termini: $340+00$ to $385+00$ (North Side) and $340+00$ to $380+00$ (South Side

box Culvert cost calculations

TYPE OF ROAD	Box Lencth (t)	Box DESCRIPTION	BOX WIDTH (t)	TOP SFC C AREA*	UNIT	COST*	Total cost
URBAN MINOR ARTERIAL OR LESS (27 m or 88.58 ' for 5 lanes \& 2 sidewalks)	130	H=3'	12	1.560.00	SQ FT	\$ 85.00	\$132,60.00
URBAN MINOR ARTERIAL W/ BIKE LANES (28.8 m or 94.49 ' for 5 lanes, 2 B/L's \& 2 S/W's)	0			0.00		\$ 85.00	\$0.00
URBAN MAJ OR ARTERIAL (31.8 m or 104.33' for 7 lanes \& 2 S/W's)	0			0.00		\$ 85.00	50.8
SPECIAL LOW VOLUME ROAD CONDITION*** (16 m or 52.49' for 2 lanes with shoulders)	0		o	0.00	SQft	\$52.00	50.00

Top surface area of box.
*Includes costor standard wing walls and bridge barier. For special constuction

BRIDGE COST CALCULATIONS

TYPE OFROAD	BRIDGE LENGTH (t)	DESCRRIPTION	IDEE WII	Top SFC AREA*	UnIT	cost**	TOTAL Cost
URBAN MINOR ARTERIAL OR LESS (27 m or 88.58^{\prime} for 5 lanes \& 2 sidewalks	0		${ }^{89.58}$	0	SQ FT	190.00	\$0.00
URBAN MINOR ARTERIAL W/ BIKE LANES (28.8 m or 94.49 ' for 5 lanes, 2 B/L's \& 2 S/W's)	0		94.49	0	SQ FT	190.00	90.00
URBAN MAJ OR ARTERIAL (31.8 m or 104.33' for 7 lanes \& 2 SN's)	0		104	0	SQ FT	\$ 190.00	50.0
SPECIAL LOW VOLUME ROAD CONDITION*** (16 m or 52.49' for 2 lanes with shoulders)	0		52.49	0	SQ Ft	\$ 190.00	\$0.00
Top sufface area of bridge.						<100 ' Long	$\begin{aligned} & \$ 0.00 \\ & \$ 0.00 \end{aligned}$

Costrincludes bridge salings, bamiers, approach slabs, piers. and other items used in bidge constuction.

Project Name: Peoria Ave
Termini: 340+00 to 385+00 (North Side) and 340+00 to 380+00 (South Side)

Road Construction

Summary

Project Name: Peoria Ave
Termini: 395+00 to 420+00 (North Side), 395+00 to 420+00 (South Side) and 420+00 to 445+00 (North Side)

COST CATEGORIES	Factors	No Build			Alternative 1		ive 2
Construction		\$	-	\$	5,393,377.35	\$	-
Design (10\% TO 15\%)	12\%	\$	-	\$	647,205.28	\$	-
Construction Management	15\%	\$	-	\$	809,006.60	\$	-
Right-of-Way		\$	-	\$	620,000.00	\$	-
Structures		\$	-	\$	576,300.00	\$	-
Uility Relocation		\$	-	\$	612,597.07	\$	-
Administration (8\% TO 13\%)	10\%	\$	-	\$	539,337.74	\$	-
Total		\$	-	\$	9,197,824.04	\$	-

PRELIMINARY SUMMARY COST ESTIMATES (Adjusted for Inflation)
Assumed Annual Inflation Rate $=3.50 \%$
Assumed Number of Years $=5$

Adjusted Construction Cost	$\$$	-	$\$$	$6,405,640.42$	$\$$	-
Design	$\$$	-	$\$$	$768,676.85$	$\$$	-
Construction Management	$\$$	-	$\$$	$960,846.06$	$\$$	-
Right-of-Way	$\$$	-	$\$$	$736,365.51$	$\$$	-
Structures	$\$$	-	$\$$	$684,463.62$	$\$$	-
Utility Relocation	$\$$	-	$\$$	$727,573.15$	$\$$	-
Administration	$\$$	-	$\$$	$640,564.04$	$\$$	-
Adjusted Total	$\$$	-	$\$$	$10,924,129.65$	$\$$	-

Project Name: Peoria Ave
Termini: $395+00$ to $420+00$

Alternative:	Unit	Quantity		Total	
Item Description			Unit Cost		
N.P.d.E.S.	Lump Sum	1	31,858.71	s	31.858.71
Communit Relations	Allowance	1	12,790.30	5	12,790.30
Engineers Field office	Lump Sum	1	139,708.51	s	139,708.51
Roadway Excavation	cro	18,611	4.26	\$	79,301.23
Borow Excavation (ff anicipated)	cro	42,417	8.37	\$	355,109,76
Channel \& Reterioion Basin Excavation	cro	5,378	2.88	\$	15.493.47
Subgrade Preparation	sord	39,151	1.59	\$	62,441.93
New Asphat Concrete Pavement (see Pavement sheet)	SQYD	0	13.85	\$	
New Rubberized Asphat Pavement (see Pavement sheet)	Sord	39,151	19.45	\$	761,884.79
Asphatt Rubber overlay (see Pavement sheet)	SQYD	0	7.70	\$	
Chip Seal on AC Pavement (see Pavementsheet)	SQYD	0	2.65	\$	
Double Chip Seal on Aggregate Base (see Pavement shee)	SQrd	0	4.90	s	
Concrete S Single Curb	LF	7,632	14.42	\$	110,050.37
Concrete Curb \& Gutter	LF	7,797	12.36	s	96,360.94
Concrete Sidewalk Ramp Sta deet 231, Type "A"	EA	18	1.522.65	\$	27,407.67
Concrete Sidewalk Stal det 230	SQYD	5.198	50.41	\$	262,022.17
Concrete Diveway with 5 ' Wings, 5 tod det 250	SQYD	217	27.28	\$	5.911.05
Trafic S Siging \& Striping - 2 lanes	LF	0	2.41	s	
Traficic Siging \& Stiping - 5 lanes	LF	0		\$	
Trafic Signing \& Stiping - 7 lanes	LF	7.500	4.85	s	36,356.68
Trafic S ignal, Ful Intersection	EA	3	\$ 494,973.19	\$	1,484,999.58
Interconnecttrafic Signals	LF	7.500	9.47	5	71.051.05
Trafic S Signa, Future "Boxin"	EA	2	6,099.47	\$	12,098.94
Catch Basin	EA	9	6.631.89	s	59,687.03
scuper	EA		5.001.54	s	
orwell	EA		\$ 41,998.26	${ }^{5}$	
Stom Drain System (reternion basin option)	Mile		\$ 816,688.61	\$	
$18^{\prime \prime}$ CMP and smaller	LF		57.51	5	
$24^{4 \prime \mathrm{CMP}}$	LF		78.02	s	
$30^{\circ \prime \mathrm{CMP}}$	LF		116.44	\$	
$36^{\prime \prime} \mathrm{CMP}$	LF		122.02	\$	
$42^{\prime \prime} \mathrm{CMP}$	LF		103.53	\$	
544 CMP	LF		231.91	\$	
$60^{\text {c CMP }}$	LF		318.29	5	
188" 24 " RGRRCP, Class III	LF	526	95.00	\$	49,970.00
30" \& 36"RGRCP, Class III	LF		105.00	5	
$42^{\text {" }}$ \& 48"RGRCP, Class III	LF		154.00	\$	
$544^{\circ} \times 60^{\prime \prime}$ RGRCP, Class III	LF	48	230.00	s	11,040.00
72"RGRCP, Class III	LF	750	318.29	\$	238,77.08
$544^{4} \& 600^{\prime \prime}$ Stom Drain Manhole	EA	0	\$ 4,137.04	5	
Headwal (MAGG deails)	EA		\$ 5,941.91	s	
Irigation Juction Box (MAGG deails)	EA		\$ -	s	
Concrete Slip Fom I Irigation Ditch	LF		52.58	s	
Eath Imigation Ditch/special Drainage Ditch, 6'Top	LF		4.57	\$	
Box Cuvert (see Stucture sheet)	Ls		\$ 576,300.00	\$	
rimation Stucture with Gates	EA		\$ 2,789.56	s	
Bidide $<100^{\prime}$ (see Stucture shee)	SF		\$.	s	
Bridge $>=100$ '(see Stucture sheet)	sF			s	
Guarcrail without Approach End Section	LF	0	47.71	\$	
Guarcrial Approach End Section, New ADOOT Type	EA	0	2.558.97	\$	
Median Fine Grading, Preeemergent \& D.G.	SQrd	7.259	27.50	\$	199.595.87
Concrete Soundwall*	LF	0	85.00	s	
	Sord	0	431.00	5	
	Subloal			\$	4,123,377.13
Removal of Existing Improvements © ${ }^{2 \%}$	Lump Sum	1	\$ 82,468.00	5	82,468.00
Mobiliztionverobilization @ 4\%	Lump Sum	1	\$ 164,935.00	\$	164,935.00
	Lump Sum	1	\$ 123,701.00	\$	123,701.00
SUBTOTAL Constuction				\$	4,494,481.13
	Contingency		20\%	\$	898,896.23
	TOTAL			s	5,393,377.35
*Calculated current costs for the 8'M Masony Soundwall and Concrete Soundwall items above were not available in the curent					

box Culvert cost calculations

TYPE OF ROAD	BOX LENGTH (t)	Box DESCRIPTION	BOX WIDTH (t)	TOP SFC AREA	${ }^{\text {a* }}$ UNIT	Cost*	TOTAL Cost
URBAN MINOR ARTERIAL OR LESS (27 m or 88.58^{\prime} for 5 lanes $\& 2$ sidewalks)	226	H=6'	30	6.780.00	SQft	\$ 85.00	\$576.300.00
URBAN MINOR ARTERIAL W/ BIKE LANES (28.8 m or 94.49 ' for 5 lanes, 2 B/L's \& 2 S/W's)	-		-	0.00	SQ Ft	\$ 85.00	\$0.00
URBAN MAJ OR ARTERIAL (31.8 m or 104.33' for 7 lanes \& 2 SN's)	0			0.00	SQ Ft	\$ 85.00	\$0.00
SPECIAL LOW VOLUME ROAD CONDITION** (16 m or 52.49' for 2 lanes with shoulders)	0		\bigcirc	0.00	SQ FT	\$52.00	\$0.00

"Includes costor standard wing walls and bridge barier. For special construction review unit cost with MCDOT bridge section.

bridge cost calculations

TYPE OF ROAD	BRIDGE LENGTH (t)	DESCRIPTION	BRIDGE WIDTH (t)	TOP SFC AREA*	UNIT	cost*	total cost
URBAN MINOR ARTERIAL OR LESS	0		${ }^{89.58}$	-	SQ FT	190.00	90.00
URBAN MINOR ARTERIAL W/ BIKE LANES (28.8 m or 94.49 ' for 5 lanes, 2 B/L's \& 2 S/W's)	0		94.49	-	SQ ft	\$ 190.00	90.00
URBAN MAJ OR ARTERIAL (31.8 m or 104.33' for 7 lanes \& 2 SN's)	0		104.33	0	SQ ft	\$ 190.00	50.00
SPECIAL LOW VOLUME ROAD CONDITION*** (16 m or 52.49' for 2 lanes with shoulders)	0		52.49	0	SQ FT	\$ 190	\$0.00

${ }^{*}$ *Top sufface area of bidige
*T Cost inctudes bridge railings, bamiers. approach slabs, piers, and other items used in bridge construction
Note:

Utility Relocation

Project Name: Peoria Ave

Termini: 395+00 to 420+00 (North Side), 395+00 to 420+00 (South Side) and 420+00 to 445+00 (North Side)

Termini: $395+00$ to $420+00$ (North Side), $395+00$ to $420+00$ (South Side) and $420+00$ to $445+00$ (North Side)

Alternative:				
Item Description	Unit	Quantity	Unit Cost	Tol
Mobilization	Ls	1	\$5,398.49	\$5,398.49
Clearing, Grubbing and Site Clean Up	EA	1	\$5,398.49	\$5,398.49
Imigation Structure w/ Gates, Medium	EA	0	\$70,911.55	\$0.00
Inigation Structure w/ Gates, Large	EA		\$129,596.98	
24"RGRCP	LF		\$95.00	\$0.00
30" \& 36" RGRCP	LF	2,500	\$105.00	\$262,500.00
42" \& 48" RGRCP	LF		\$154.00	\$0.00
54" \& 60" RGRCP	LF		\$230.00	\$0.00
72" RGRCP	LF			\$0.0
Headwall w/ Trash Rack	EA	1	\$14,426.83	\$14,426.83
Headwall	EA		\$10,025.43	\$0.00
Manhole	EA	5	\$7,091.16	\$35,455.78
Remove Existing Structures	Ls		\$30,809.85	\$0.00
Concrete Lined Ditch	LF		\$106.37	\$0.00
Well Site Relocation	EA	0	\$750,000.00	\$0.00
Reclaim Water Head	EA	2	\$50,000.00	\$100,000.00
Catch Basin	EA			\$0.00
Subtotal Construction				\$423,179.60
Inigation System Design			10\%	\$42,317.96
Irigation System Design				\$465,497.56
*Note: English units used per SRP standards				

Appendix F

Technical Memorandum No. 6: Public and Stakeholder Participation

Peoria Avenue Corridor Improvement Study: Jackrabbit Trail Parkway to Dysart Road

Technical Memorandum \#6: Public and Stakeholder Participation

Table of Contents
1.0 INTRODUCTION

20 PUBLIC AND STAKEHOLDER PARTICIPATION List of Figures

Figure 1 - Vicinity Map ... 2

Appendices
Appendix A - Technical Advisory Committee Meeting Materials
Appendix B - Public Meeting Materials
Appendix C - MCDOT RightRoads Program Summary of Public Involvement

1.0 INTRODUCTION

The Maricopa Association of Govemments (MAG) prepared the Interstate 10/Hassayampa Valley Roadway Framework Study (Hassayampa Framework Study) that identified a comprehensive roadway network to meet traffic demands for the build out of the area west of State Route 303 (SR 303L). This long range regional transportation study identified the need for a roadway network consisting of freeways, parkways, and major arterial roads.

The Hassayampa Framework Study recommended an extension of Peoria Avenue west from Peryville Road to the future J ackrabbit Trail Parkway, and identified Peoria Avenue as a major arterial from the future J ackrabbit Trail Parkway to Sarival Avenue. The study area for this project includes Peoria Avenue from the future J ackrabbit Trail Parkway alignment to Dysart Road (Peoria Avenue Coridor). The study area generally encompasses a 2-mile wide coridor centered on the existing Peoria Avenue. The study area is shown in Figure 1.

This study will establish the facility type, number of lanes, right-of-way needs, and general alignment for the Peoria Avenue Corridor that will be required to accommodate projected traffic growth and enhance safety. In cooperation with the City of Surprise, the City of Glendale, and the City of EI Mirage, the study will also develop access management guidelines, determine design standards based upon which jurisdiction anticipates annexing the roadway, and develop an implementation plan. In general, the purpose of this Coridor Improvement Study is to provide the Maricopa County Department of Transportation (MCDOT) and other jurisdictions with a future "footprint" of the Peoria Avenue Corridor and a timeframe for the implementation of the recommended future roadway improvements.

The key objectives of this Corridor Improvement Study are to:

- Define and assess strategic issues within the project study area
- Develop and evaluate conceptual alternative alignments within the corridor study area;
- Recommend a preferred alignment;
- Develop consensus for the preferred alignment
- Define the characteristics of the preferred alignment; and
- Develop an implementation plan.

This technical memorandum summarizes the public and stakeholder participation process, including meeting summaries for Technical Advisory Committee meetings and public open houses.

2.0 PUBLIC AND STAKEHOLDER PARTICIPATION

Gaining consensus among stakeholder agencies and the public is critical to the success of this transportation study, as well as the future implementation of its recommendations to provide a long-term functional and efficient transportation corridor

The participation of the public and stakeholder agencies aids in the development of a consistent recommendation, resolves conflicting agency requirements, facilitates ultimate regional traffic flow, and preserves the interests and rights of area residents and adjacent development

Technical Advisory Committee

A Technical Advisory Committee (TAC) was established to solicit feedback from partnering agencies and key stakeholders at multiple stages of the corridor improvement study. Members of the TAC include: Maricopa County (Transportation, Engineering, Traffic, Planning and Development, Environmental, Cultural Resources, Parks and Recreation, Intergovemmental Relations, Real Estate, Utilities), Flood Control District of Maricopa County (FCDMC), Maricopa Association of Governments (MAG), Arizona Department of Transportation (ADOT), Arizona Game and Fish Department (AGFD), Arizona State Land Department (ASLD), Arizona Public Service (APS), City of El Mirage, City of Glendale, City of Surprise, Dysart School District, Luke Air Force Base, Maricopa Water District, and major land developers.

Five separate TAC meetings were planned over the course of the study

- The first TAC meeting was held on August 23, 2010. The purpose of this meeting was to initiate the MCDOT Peoria Avenue Corridor Improvement Study, define the role of the TAC, gather information relative to the study needs, and share next steps with the committee. Preparations were made for the first public open house.
- The second TAC meeting was held on October 12, 2010. The meeting presented study area issues, constraints, and opportunities identified through the development of the first three technical memoranda; discussed potential alternatives and evaluation criteria gathered additional information from TAC members to consider as the next phase of the project progressed; and shared next steps. Traffic volume information was presented to determine the corridor's ultimate typical section parameters.
- The third TAC meeting was planned for November 2010, but was cancelled and instead information was disseminated through email to gain consensus on evaluation criteria and altemative corridor scenarios.
- The fourth TAC meeting was held on December 14, 2010. The meeting discussed progress on the alternatives development, evaluation, and preliminary recommendations; and gathered pertinent information to complete the evaluation Planning efforts for the second public open house were discussed.
- The fifth TAC meeting was held on February 15, 2011. The meeting presented the results of the alternatives evaluation process, discussed design features of the recommended alignment, and preliminary implementation plan

Minutes and meeting materials for all TAC meetings may be found in Appendix A

Public Meetings

Three public meetings were held during the course of the Peoria Avenue Corridor Improvement Study, all located at Shadow Ridge High School, positioned at the westem end of the study corridor. All meetings were conducted in an open house format which provided a free and open exchange of information between area residents with specific issues or questions and the project team. Study fact sheets and comment cards were distributed to all those in attendance.

- The first meeting was held for scoping purposes (September 20, 2010) to provide area The first meeting was held for scoping purposes (September 20, 2010) to provide area
residents and impacted stakeholders an opportunity to inform project team members about study area issues and local transportation needs. This meeting also provided project team members an opportunity to present and elicit feedback on the study purpose, process, and goals and objectives
- The second meeting was held to discuss alternatives development and analysis J anuary 18, 2011), presenting three separate alternative alignment options in each of the nine corridor segments. Proposed roadway cross sections and the project team's preliminary evaluation were presented for public review and comment. Out of this meeting, a series of additional alignment options were requested for consideration by the public for the western portion of the study area between Cotton Lane and the future J ackrabbit Trail Parkway.
- The third meeting focused on the findings and recommendations of the Peoria Avenue Corridor Improvement Study (March 22, 2011). The alternatives, along with the recommended roadway cross section and future roadway alignment, were presented for public review and comment. Positive feedback was received on the preferred alignment and innovative solutions presented to accommodate corridor obstacles.

Meeting flyers, newspaper notices and articles, and information presented at all three public meetings may be found in Appendix B.

Appendix C contains the MCDOT RightRoads Program Summary of Public Involvement.

Appendix A:

Technical Advisory Committee Meeting Materials

PEORIA AVENUE CORRIDOR IMPROVEMENT STUDY

 Jackrabbit Trail Parkway to Dysart RoadMCDOT Contract No. 2010-005
Work Order No. TT005

	MEETING MINUTES
Date:	August 23, 2010
To:	Mitch Wagner, Project Manager, MCDOT
From:	Rodney Bragg, AECOM
Re:	Peoria Avenue Corridor Improvement Study
Subject:	August 17, 2010 TAC Meeting \#1
Attendees:	See attached sign-in sheet

I. Introductions

See attached sign-in sheet
II. Meeting Purpose

The purpose of this meeting is to initiate the MCDOT Peoria Avenue Corridor Improvement Study, define the role of the Technical Advisory Committee (TAC) gather information relative to the study needs, and share next steps with the committee. All meeting documents will be made available on an online FTP system
III. Study Purpose and Objectives

The purpose of this study is to establish the facility type, number of lanes, right-ofway, and corridor alignment required to accommodate the ultimate facility classification and safely accommodate forecast travel demands for Peoria Avenue. This study will result in a future "footprint" of the corridor implementation timeframe, and phasing of identified roadway improvements.

Study objectives include assessing the strategic issues and potential impacts of existing and proposed developments, drainage features, utilities, and environmenta issues. Based on this information, the study will develop and evaluate candidate alternatives, as well as identify a preferred alignment. With a preferred alignmen specific characteristics of the corridor will be further defined and an implementation
plan developed to carry out corridor improvements. Most importantly, the study aims at gaining consensus amongst partners to achieve design consistency and preserve the corridor for future implementation.

IV. Study Area

The study area extends approximately 7.5 miles, from the future Jackrabbit Trail Parkway alignment to Dysart Road, including a two-mile wide area, centered on Peoria Avenue. Multiple jurisdictions have control over the land in this area. The Peoria Avenue section line provides the boundary between the City of Surprise and City of Glendale planning areas, with portions of the corridor to the far west belonging to Maricopa County, and portions to the east belonging to the City of El Mirage. Most of the area within the Surprise and El Mirage municipal planning areas (MPAs) is incorporated, whereas only a small parcel adjacent to Peoria Avenue and SR 303L is annexed by Glendale.

White Tank Mountain Regional Park sits to the west of the study area and Luke Air Force Base to the south. McMicken Dam and the Beardsley Canal constitute two major drainage structures, both located at the western end of the study area. The SR 303L corridor will be upgraded to a freeway, with a connection to Peoria Avenue. The BNSF Ennis Spur also intersects the corridor between Litchfield and Dysart Roads.

V. Project Overview

The study is divided into two phases: Phase 1 - Study Area Assessment; and Phase The study is divided into two phases: Phase 1 - Study Area Assessment; and
2 - Alternative Development and Evaluation. Phase 1 is currently underway, 2 - Alternative Development and Evaluation. Phase 1 is currently underway, conditions. Four technical memos will be produced as part of Phase 1 (\#1, 2, 3, and 7), including existing and future conditions, drainage, environmental overview, and traffic conditions. The first two TAC meetings will occur during this phase, of which this is the first, as well as the first public meeting. This phase is expected to last through the end of September.

Phase 2 will extend from October to the end of the study, approximately June 2011. This phase will include development and evaluation of candidate alternatives, the identification of a preferred alternative, and development of a corresponding implementation plan. Technical memos \#4, 5, and 6 will be produced during this phase, including candidate alternatives and evaluation, preferred alignment and implementation, and public and stakeholder participation. Three TAC meetings and two public meetings will be held during this phase. Preparation and completion of draft and final reports will culminate the project
VI. Study Process

The study process involves a three step involvement plan, which leads to the preparation of a phased implementation plan of the preferred alignment. This includes:

- Scoping and development of a stakeholder database to identify corridor issues and needs;
- Development, evaluation, and refinement of alternatives with stakeholder input; and
- Development of an implementation plan with the stakeholders whereby major design features are finalized

VII. Study Milestones

Major milestones are as follows:
Phase 1

- Project kick-off and study initiation
- Data collection phas
- TAC meeting \#1
- Public meeting \#1 (scoping)
- TAC meeting \#2

Phase 2

- TAC meeting \#3
- TAC meeting \#4
- Public meeting \#2 (alternatives)
- TAC meeting \#5
- Public meeting
- Draft final report
- Final report submission

July 2010
July - September 2010
August 17, 2010
September 22, 2010 (approx)
October 12, 2010

November 9, 2010
December 14, 2010
January 12, 2011 (approx.)
February 15, 2010
March 16, 2011 (approx.)
April 2011
April 2011
June 2011
VIII. Technical Advisory Committee

The major roles and responsibilities of the TAC include assisting in issue identification, providing input to alternative evaluation, and previewing public meeting materials. Building consensus among TAC members is desired to develop a universal and implementable plan. Each member is asked to represent their agency and bring interests, issues, and opportunities to the table. Lastly, everyone is asked to participate in each of the planned TAC meetings.
IX. Study Area Overview

To provide a more thorough understanding of the conditions in the study area, the corridor was split into four segments. An overview of existing developments, future developments, flood control and drainage, utilities, and other notable features was provided for each segment.
Throughout the entire corridor, it is important to note that almost the entire area is privately owned. The land west of the Beardsley Canal, with exception of the McMicken Dam, is owned by the Arizona State Land Department (ASLD). The rest coridor today is comprised of single-family residential homes or agriculture land uses.

Segment 1 The area from Jackrabbit Trail Parkway to Citrus Road contains many of the study area's most important drainage structures. The McMicken Dam is located at the far west, and the Beardsley Canal crosses the Peoria Avenue section line between Jackrabbit Trail and Perryville Road. Several washes traverse the area, draining into the dam or the floodpool upstream of the canal. Numerous wells are located along the section line and will need to be accommodated regarding future right-of-way and
planning for the ultimate roadway footprint. Additionally, a series of irrigation ditches abut Peoria Avenue to the south throughout the corridor.

One major residential subdivision exists in this segment, Cortessa, located south of Peoria Avenue and east of Perryville Road Shadow Ridge High School has been Peoria Avenue and east of Perryville Road. Shadow Ridge High School has been newly constructed to the north of the subdivision. The roadway dividing the high corridor. Conversely, the segment of Peoria Avenue between Citrus Road and Cotton Lane is the only unpaved portion of the existing roadway corridor.

Two other major developments are planned within this segment - Zanjero Trails and Prasada. Zanjero Trails is entitled for 2,551 acres with almost 10,000 dwelling units. North of Peoria Avenue, Zanjero Trails extends from the Beardsley Canal to approximately $1 / 2$ mile east of Perryville Road. This subdivision sits adjacent to the planned Prasada community, actively under development further to the north and east. Adjacent to Peoria Avenue, Prasada stretches from its border with Zanjero Trails east to Cotton Lane. South of Peoria Avenue, Zanjero Trails extends from the Beardsley Canal to Perryville Road.

Segment 2

From Citrus Road to Sarival Road, two major infrastructure projects are planned the SR 303L freeway, intersecting Peoria Avenue between Cotton Lane and Sarival Road; and the planned APS West Valley-North power line, adjacent to SR 303L. An existing power substation is located at Cotton Lane and Caclus Road, and a 303 L and Olive Avenue Some housing currently exists in this segment however the majority of land is agriculture with future master planned communities (Prasada and Sycamore Farms north of Peoria Avenue, Zanjero Pass and Glendale 303 south of Peoria Avenue).

Irrigation ditches and wells continue to be located within the study area, generally along the south side of Peoria Avenue.

Segment 3
From Sarival Road to Bullard Avenue, much of the land north of Peoria Avenue is already developed. The Luke Air Force Base noise contours extend into this portion of the study area, noticeable by the parallel boundary of residential development in Rancho Gabriela, following the furthest contour. Because of the noise impacts, little residential development is planned south of Peoria Avenue within the radius of Luke Air Force Base. Municipal planning and zoning show future industrial or mixed-use development here. Again, drainage corridors and wells are present throughout the study area.

Segment 4

From Bullard Avenue to Dysart Road, various pockets of existing residential and industrial development exist north of the corridor. Agriculture is predominately located south of Peoria Avenue, within the noise contours of Luke Air Force Base. Much of the industrial development is near the BNSF Ennis Spur, which intersects Peoria Avenue between Litchfield and Dysart Roads. This is currently an at-grade crossing. The Ennis Spur connects to the BNSF Phoenix Subdivision parallel to Grand Avenue to the north. Future plans may exist to extend the Ennis Spur to a
major industrial development south of the study area at Luke Air Force Base. If this occurs, the volume of trains crossing Peoria Avenue per day could increase. Train volumes and the decision to maintain an at-grade rail crossing will need to be considered

To summarize, some of the key issues in the study area include

- Existing developments and right-of-way availability
- Half-street improvements
- Future development plans
- Existing and future drainage facilities
- Planned APS transmission corrido
- Ennis Spur
- Beardsley Cana
- ASLD planning
- Street classification - ultimate typical section

X. Typical Section

Peoria Avenue is categorized slightly different in each jurisdiction's functional classification plans. The 2005 City of Surprise Transportation Plan shows Peoria Avenue as a major arterial with six lanes and 130 feet of right-of-way. Surprise's updated transportation plan does not change Peoria Avenue's classification.

The City of Glendale's 2025 General Plan classifies Peoria Avenue as an A-1 arterial which includes four lanes and 110 feet of right-of-way. The city has an updated transportation plan that shows this corridor as an A-4 arterial with six lanes and 130 feet of right-of-way

The Maricopa County 2004 Major Streets and Routes Plan classifies Peoria Avenue as an urban principal arterial with six lanes and 130 feet of right-of-way.
XI. Next Steps

Data collection will continue through Phase 1, culminating in documentation of the four working papers specified above. The first public meeting will occur in mid September to present the existing conditions and gain public input on other issues and opportunities. The time and location of this meeting are still to be determined. Concurrently, travel demand forecasts for the study area will be under review.

XII. Open Discussion

Maricopa Water District
It was asked whether the results of this study would include any improvements to Cactus Road and Olive Avenue. While the study area includes both of these arteria corridors to gain a broad understanding of constraints and opportunities relative to Peoria Avenue, no improvements will be recommended for those corridors as part of this study. Other projects may be conducted to study or design these corridors.

The Maricopa Water District (MWD) has a water treatment plant on Cactus, east of the Beardsley Canal. They own property east of the canal which is currently platted for the Zanjero Trails development. A crossing of Peoria Avenue with the Beardsley

Canal will require an agreement with MWD, similar to the current crossing they are working on at Indian School Road. Several wells are located throughout the study area, as well as a canal/pipeline crossing at Peoria Avenue and Citrus Road Impacts to these facilities will need to be coordinated with MWD

City of Surprise
The City of Surprise is working with the Greer Ranch development, abutting Peoria Avenue to the north, between Sarival and Reems Roads, to construct their portion of a half-street on Peoria Avenue. The city has a development agreement with the community to construct this half-street, but they have not yet done so. This project will be dealing with many of the same issues (e.g., drainage, utilities, etc.) and the city hopes that coordination will occur so that Greer Ranch improvements
complement this study's recommendations for Peoria Avenue. In addition to developer funding, Surprise is applying for Maricopa County Special Projects Funds for improvements to Peoria Avenue.
The Dysart Unified School District (DUSD) is working with the City of Surprise and MWD to extend Perryville north to Cactus Road, allowing Cactus Road to operate as an alternative route for school traffic, as a portion of Peoria Avenue is unpaved.

City of Glendale

The City of Glendale asked the project team to be cognizant of the travel demand impact of Northern Avenue Parkway on Peoria Avenue. Northern Avenue has long been planned as a "super-street" throughout the western metropolitan area.

The portion of Peoria Avenue that is annexed by Glendale within the study area, within a development entitled "Glendale 303" located between SR 303L and Sarival Road south of Peoria Avenue, is being asked to conform with Maricopa County and/or City of Surprise guidelines for roadway design. The City of Glendale would like to eventually turn this corridor over to another jurisdiction for maintenance responsibility.

General

The concern over ownership and maintenance of Peoria Avenue is a major factor for this study. It was expressed that one jurisdiction should have full control over the corridor to ensure consistent design, construction, and maintenance. This will likely result in an intergovernmental agreement (IGA) among Surprise, El Mirage, Glendale, and Maricopa County.

The Flood Control District of Maricopa County is planning a channel parallel to the Ennis Spur.

Because Peoria Avenue is part of the regional arterial roadway network, its connectivity to the east was questioned, as the corridor currently does not have a crossing over the Agua Fria River. As the river is outside the study area extent, no will be modeled with and without a future crossing El Miragesing. Travel demand an interim crossing of the river to be included in their next Capital Improvement Plan. The city is also drafting a revised transportation plan that will limit the Peoria Avenue cross section to a 2-1-2 configuration east of Dysart Road.

Luke Air Force Base would like to be kept appraised of any proposed elevated overpasses or tall construction elements (e.g., cranes) that could impact flight patterns.

Concern was expressed regarding the one-mile unpaved section of Peoria Avenue between Citrus Road and Cotton Lane. It was suggested that CMAQ/PM 10 funds

Attachments

- Meeting Sign-In Shee
- Meeting Agenda
- TAC Welcome Letter
- Study Area Map
- PowerPoint slides

Peoria Avenue: Jackrabbit Trail Parkway to Dysart Road, Corridor Improvement Study
TAC Sign-In Sheet

Initals	Name	Organization	Telephone	Postal Address	E.mall Address
	Beastey, Stive	ADOTVPM	${ }^{(602) 712-7645}$	1611 W. Jackson, MD EM01 Phoenix, AZ 85007	steasepeqarder
	Mathew, Velvet	ADOT VPM	(602)712-3062	1611 W. Jackson. MD EM01 Phoenix, AZ 85007	vrathemmarsol son
	Dewit, Mike	APS	(602) 493.4448	AtPO. Box S3933 Ath Maistation 030 Phoenix 85072	michaed deyetrinas com
	Richards, Paul	APS	(602) 371-6186	$\begin{gathered} 2043 \text { W. Cheryl Drive } \\ \text { M.S. } 3040 \\ \text { Phoenix } 85021 \end{gathered}$	Paukitrats ${ }^{\text {a mas com }}$
	Wamecke, Dana	Az Game \& Fish	(602) 942-3000	5000 W. Carefree Highway Phoenix, AZ 85006	dianeceiesarat gor
	Tayor, Gordon	Az State Land dept.	(602) $542 \cdot 2647$	1616 W. Adams Street Phoenix 8500	alayoraind aziou
34	Calvert, Lance	Cily ofemirage	(623) 876-2971	12145 NW Grand Avenue El Mirage, AZ 85335	Leavetis chotemiane ori
	urabadabala or Dart, Bob	City of Glendale	$6_{(623)_{930-2942}}^{623}$	$265800 \text { W. Glenn Drive \#315 }$	Padabala@ulend rdarmalendaleaz com
		, City of Glendale	(623) 930-2940	5800 W. Glenn Drive \#315 Glendale 85301	Clemka . danvervendeazoom
N	Mascia, Nick	City f Supise	(623) 222-6140	16000 N. Civic Center Plaza Surprise, AZ 85374	nichoas mascia sumorsezazey
pos	Savage, Karen	City of Supise	(623) 222-6132	16000 N. Civic Center Plaza	${ }^{\text {karen savaeasummiseazao }}$
	Wollay, vern	Dysant School District	(623) 876-7052	15802 N. Parkview Place Surprise, AZ 85374	Vem Woteracossan ora
元	Lokey, Burke	FCDMC	(602) 502-0867	2801 W. Durango Street Phoenix 85009	bukecteyenail mancora oer
Δ	Dubsesy, Bob	Luke Aif Force Base	(623) 856-6.195		
η	Stow, Tim	mag	(602) 452-5055	302 N. First Avenue Phoenix 85003	Estrowamamaticora roy
	Hom, Mat	Maicopa Couny P80	(602) 508.7162	501 N. 44th Street Phoenix 85008	
0	Coover. Chis	Maricopa County Parks \& Recreation	(602) 506.8719	$\begin{gathered} 234 \text { N. Central Avenue, } \\ \text { Suite } 6400 \\ \text { Phoenix } 85004 \end{gathered}$	croveramal matices cos
	Cain, Chis	Maricopa Water Distsict	(623) 546-8266	14825 W. Grand Avenue Surprise, AZ 85374	chascianmazazom
	Davidson, Hugh	$\begin{gathered} \text { MCDOT } \\ \text { Cultural Resources } \end{gathered}$	(602) 500 -8082	2901 W. Durango Street Phoenix 85009	
	Kog. Michele	Engineering \& Planning	(602) 506 -8799	2902 W. Durango Street Phoenix 85009	mecherexpuan mil mancora
	Lacey, Denise	$\begin{gathered} \text { Mcoot } \\ \text { Engineoing \& Planning } \end{gathered}$	(602) 500.6172	2901 W. Durango Street Phoenix 85009	
	Oliver, Tim	$\begin{aligned} & \text { Mcoot } \\ & \text { Engineinig \& Planning } \end{aligned}$	(602) 506.3994	2901 W. Durango Street Phoenix 85009	
MP	Pascak, Gary	$\begin{gathered} \text { MCDOT } \\ \text { Engineering \& Planning } \end{gathered}$	(602) $500-8790$	2902 W. Durango Street Phoenix 85009	Ganppasakamail mancona oev
wn^{2}	Sabaini. Mike	$\begin{aligned} & \text { McDot } \\ & \text { Engineering \& Planning } \end{aligned}$	(602) 506.6828	2901 W. Durango Street Phoenix 85009	
ansis	Wagree, Mitch	$\begin{gathered} \text { MCDOT } \\ \text { Engineering \& Planning } \end{gathered}$	(602) 506.8054	2901 W. Durango Street Phoenix 85009	muthwanerairal muticomag
	Pinto, Joe	$\begin{gathered} \text { MCDOT } \\ \text { Environmenta } \end{gathered}$	${ }^{(602) ~ 506-8068 ~}$	2901 W. Durango Street Phoenix 85009	

Peoria Avenue: Jackrabbit Trail Parkway to Dysart Road, Corridor Improvement Study
TAC Sign-In Sheet
Date: Aug, 17, 2010

nitials	Name	Organization	Telephone	Postal Address	E.mal Address
	Heinich, Chad	Intergovernmental Relations	(602) 506-1630	2901 W. Durango Street Phoenix ssoos	
	Ligocki, Clem	$\begin{aligned} & \text { Mcoot } \\ & \text { Intergovermmenal Reations } \end{aligned}$	(602) 506.8672	2901 W. Durango Street Phoenix 85009	
	Morast John	MCDOT Operations \& Maintainance	${ }^{(602)} 506.5419$	2901 W. Durango Street Phoenix 85009	iohnmerestomal maxicopay
	Katan, Al	$\begin{gathered} \text { MCDOT } \\ \text { PMO \& Construction } \end{gathered}$	${ }^{(602)} 50064618$	2901 W. Durango Street Phoenix 85009	AKalanainal maricosagay
4	$5^{\text {coswe Robera }}$	$\begin{aligned} & \text { Public MCocmation Office } \\ & \hline \end{aligned}$	(602) 5068.8003	2901 W. Durango Street Phoenix 85009	
GMS	Scotl, Gary	MCDOT Real Estate	(602) 506 -4638	2801 W. Durango Street Phoenix 55009	Ganscturamat mextora
	Wilson. Mike	MCDOT	${ }^{(602)} 506$-4706	2801 W. Durango Street Phoenix 85009	munamal mancos 900
	Sargent, Jim	$\begin{gathered} \text { Mcoor } \\ \text { Traficic } \end{gathered}$	${ }^{(602)} 506$-8678	2901 W. Durango Street Phoenix 85009	
8	Swat, Nicolas		${ }^{(602)}$ 506-0599	2901 W. Durango Street Phoenix 85009	
	Butch, Wayne	$\begin{gathered} \text { Mcoor } \\ \text { Uaitities } \end{gathered}$	${ }^{(602)} 5068.8603$	2901 W. Durango Street Phoenix 85009	Warmeictiolmal mancomax
	Nies, Ryan	MCDOT	${ }_{(602)}^{506-8529}$	2901 W. Durango Street Phoenix 85009	namies imal mancora gex
RB	Sragg, Ruchney	AECOM	$(602)(3,37-1$	2777 E. Camel back Rel	rodney - bragge clece 4z 85016
JOG	Guano, Javier	Andes Enaiming	$\begin{gathered} 400.272 \\ 662.6258 \end{gathered}$	hgil NTATUH BCVO \# 30.31 PHX9.028	jguaraleandes us
	Bney Urguize	Manicoha WATENGT	$\begin{aligned} & 623 \\ & 546.8266 \end{aligned}$	$\begin{aligned} & \text { p.0. } 12=900 \\ & \text { waddell Az } 853 \end{aligned}$	nequemwdaz.
7.8\%.	Veronicat Valemzuela	MARICOPA WATER DISTRICT	$\begin{gathered} 623 \\ 546.8266 \end{gathered}$	$\begin{aligned} & \text { P.O.BOX } 900 \\ & \text { WADDELY,AZ } 85355 \end{aligned}$	veronicav@mwdaz.
JP	Jaclyn pfeffer	Aecom	402. 337.2984	2777 E.camelbact sulte 2000 , Phy 80	
		Aewr		$\text { sule } 200 ; \text { phe exal }$	a jaclyn. plefferdace

Maricopa County

Public Works

Fax G12-506-xxs
www mancopagov
Subject: Peoria Avenue: Jackrabbit Trail Parkway to Dysart Road
Peoria Avenue: Jackrabbit
Corridor Improvement Study
Technical Advisory Committee (TAC) Kick-off Meeting

Welcome

On behalf of the Maricopa County Department of Transportation (MCDOT), I would like to thank you for participating in today's TAC kick-off meeting and for your involvement in this important long-term planning effort. This is the first of five TAC meetings planned for the Peoria Avenue, Jackrabbit Trail Parkway to Dysart Road Corridor improvement Study. Our goals for today's meeting are to provide an overview of the project scope and schedule familiarize you with the corridor; identify issues and challenges that will need to be considered during the study; and gain insight into your organization's perspective and plans for the development of this corridor.

The recommended alternative must address community and aesthetic concerns and reflec present and future community development efforts, while achieving regional and loca transportation network goals

In order to meet these ambitious project expectations, your commitment to actively participate as a TAC member is vital to the project's overall success. As a TAC member you will help develop innovative yet feasible alternatives that address our challenging study objectives, provide relevant guidance to the alternative evaluation process, and review the technical reports and plans.

The TAC is expected to meet five times during this study. Your involvement is crucial so you can effectively contribute your expertise at critical times in the project development process so that we can avoid unnecessary delays or missed opportunities.

Again, thank you for your interest and involvement in the Peoria Avenue Corridor mprovement Study. If you have any questions, please feel free to contact me at (602) 506 8054 or email me at mitchwagner@mail.maricopa.gov.

Sincerely,

Mitch Alagner
Mitch Wagner
Senior Planner

Peoria avenue Corridor Improvement Study

 JACKRABBIT TRAIL PARKWAY TO DYSART ROADMCDOT Contract No. 2010-005
Work Order No. TT005
Technical Advisory Committee Meeting Agenda

August 17, 2010, 9:00 AM
Apache \& Cochise Conference Rooms at MCDOT

- I ntroductions
- Meeting Purpose
- Study Purpose \& Objectives
- Project Overview and Schedule
- Study Area Overview
- Next Steps
- Open Discussion
- Adj ourn

PEORIA AVENUE CORRIDOR IMPROVEMENT STUDY Jackrabbit Trail Parkway to Dysart Road

Legend

Peoria Avenue Corridor Improvement Study

Technical Advisory Committee Meeting \#1
August 17, 2010

Meeting Agenda

- Introductions
- Meeting Purpose
- Study Purpose \& Objectives
- Project Overview \& Schedule
- TAC Role \& Responsibilities
- Study Area Overview
- Next Steps
- Open Discussion
- Adjourn

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Study Purpose

- Establish the facility type, number of lanes, right-ofway, and corridor alignment required to safely accommodate forecast travel demands
- Provide a future "footprint" of the corridor, implementation timeframe \& phasing of the identified roadway improvements

Study Area

Study Objectives

- Assess the study area for strategic issues
- Develop and evaluate conceptual alternative alignments
- Identify a Preferred Alignment
- Define characteristics of Preferred Alignment
- Develop an implementation plan
- Develop consensus

Project Overview

Phase 1 - Study Area Assessment

- Existing and future study area conditions
- Technical Memos \#1, \#2, \#3, and \#7
- TAC Meetings \#1 and \#2
- Public Meeting \#1

Project Overview

Phase 2 - Alternative Development \& Evaluation

- Conceptual alternatives
- Alternative evaluation
- Preferred Alternative
- Implementation plan
- Technical Memos \#4, \#5, and \#6
- TAC Meetings \#3, \#4, and \#5
- Public Meetings \#2 and \#3
- Draft and Final Reports

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Study Process

Maricopa County Department of Transportation Peoria Avenue Corridor Improvement Study

Study Milestones

- Project Kick-off \& Study Initiation July 2010
- Data Collection Phase July - Sept 2010
- TAC Meeting \#1 August 17, 2010
- Public Meeting \#1 (Scoping) Sept 22, 2010
- TAC Meeting \#2 Oct 12, 2010
- Alternatives Development \& Oct 2010 - Jan 2011 Evaluation Phase

Maricopa County Department of Transportation

Study Milestones Contd.

- TAC Meeting \#3

Nov 9, 2010

- TAC Meeting \#4

Dec 14, 2010

- Public Meeting \#2 (Alternatives)

Jan 12, 2011

- TAC Meeting \#5

Feb 15, 2011

- Public Meeting \#3 (Pref. Alt.)

March 16, 2011

- Draft Final Report
- Final Report Submission April 2011 June 2011

Maricopa County Department of Transportation

Technical Advisory Committee (TAC)

- Assist in issue identification
- Provide input to alternative evaluation
- Preview public meeting materials
- Build consensus
- Represent your agency/interests
- Participate in TAC meetings

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Study Area Overview

- Existing developments
- Future developments
- Flood control and drainage
- Utilities
- Other

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Segment 1: Jackrabbit Trail Parkway to Citrus Road

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study
Segment 2: Citrus Road to Sarival Road

Maricopa County Department of Transportation Peoria Avenue Corridor Improvement Study

Segment 3: Sarival Road to Bullard Avenue

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study
AECOM

Key Issues

- Existing developments/land uses (R/W availability)
- Half-street improvements
- Future development
- Existing and future drainage facilities
- APS corridor
- Ennis Spur \& Beardsley Canal
- Arizona State Land Department planning
- Street classification - ultimate typical section
memmen med

Typical Section

- City of Surprise Transportation Plan, 2005
- City of Surprise Major Arterial
- 6 lanes in 136' R/W

Typical Section

- City of Glendale 2025 General Plan
- City of Glendale Arterial
- 4 lanes in $110^{\prime} \mathrm{R} / \mathrm{W}$

Typical Section

- MCDOT Major Streets and Routes Plan, 2004
- Urban Principal Arterial
- 6 lanes in 130' R/W

Next Steps

- Public meeting
- Travel demand model review
- Existing and future conditions documentation

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Open Discussion

- Study area issues, constraints, \& opportunities
- Stakeholder expectations
- Stakeholder involvement

Time \& Location TBD
Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study AECOM

Next TAC Meeting

October 12, 2010

Peoria avenue Corridor Improvement Study JACKRABBIT TRAIL PARKWAY TO DYSART ROAD MCDOT Contract No. 2010-005 Work Order No. TT005

	MEETING MINUTES
Date:	October 19, 2010
To:	Mitch Wagner, Project Manager, MCDOT
From:	Jackie Pfieffer, AECOM
Re:	Peoria Avenue Corridor Improvement Study
Subject:	October 12, 2010 TAC Meeting \#2
Attendees:	See attached sign-in sheet

I. Introductions

See attached sign-in sheet
II. Meeting Purpose

The purpose of this meeting it to update the TAC on the project status; present study area issues, constraints, and opportunities (ICO) learned through the development of the first three technical memoranda; discuss potential alternatives and evaluation criteria; gather additional information from TAC members to consider as the next phase of the project progresses; and share the next steps. All meeting documents
will be made available on the online FTP system.
III. Study Purpose and Objectives

The purpose of this study is to establish the facility type, number of lanes, right-ofway, and corridor alignment required to accommodate the ultimate facility classification and safely accommodate forecast travel demands for Peoria Avenue. This study will result in a future "footprint" of the corridor, implementation timeframe, and phasing of identified roadway improvements.

Study objectives include assessing the strategic issues and potential impacts by existing and proposed developments, drainage features, utilities, and environmental issues. Based on this information, the study will develop and evaluate conceptual
alternative alignments, as well as identify a preferred alignment. With a preferred alignment, specific characteristics of the corridor will be further defined and an implementation plan developed to carry out corridor improvements. Mos importantly, the study aims at gaining consensus amongst partners to achieve design consistency and preserve the corridor for future implementation.

IV. Study Area

The study area extends approximately 7.5 miles, from the future Jackrabbit Trai Parkway alignment to Dysart Road, including a two-mile wide area, centered on Peoria Avenue. Multiple jurisdictions have control over the land in this area. The Peoria Avenue section line provides the boundary between the City of Surprise and City of Glendale planning areas, with portions of the corridor to the far west belonging to Maricopa County, and portions to the east belonging to the City of El Mirage. Most of the area within the Surprise and El Mirage municipal planning areas (MPAs) is incorporated, whereas only a small parcel adjacent to Peoria Avenue and SR 303L is annexed by Glendale.
White Tank Mountain Regional Park sits to the west of the study area and Luke Air Force Base to the south. McMicken Dam and the Beardsley Canal constitute two major drainage structures, both located at the western end of the study area. The SR 303L corridor will be upgraded to a freeway, wh a connection fo Peoria Avenue, Roads. Roads.
V. Study Process

The study process involves a three step involvement plan, which leads to the preparation of a phased implementation plan of the selected alternative. This includes:

- Step 1: Scoping and development of a stakeholder database to identify corridor issues and needs;
- Step 2: Development, evaluation, and refinement of alternatives with
stakeholder input; and
- Step 3: Development of an implementation plan with the stakeholders whereby major design features are finalized.

Currently, the project is moving from step 1 to step 2.
VI. Study Milestones

Major milestones are as follows.

Phase 1

- Project kick-off and study initiation
- Data collection phase
- TAC meeting \#1
- Public meeting \#1 (scoping)
- TAC meeting \#2

July 2010 (completed) July - September 2010 (completed) August 17, 2010 (completed) September 20, 2010 (completed) October 12, 2010

Phase 2

- TAC meeting \#3
- TAC meeting \#4
- Public meeting \#2 (alternatives)
- TAC meeting \#5
- Public meeting \#3 (pref. alternative)
- Draft final report
- Final report submission

November 9, 2010
December 14, 2010
January 12, 2011 (approx.)
February 15, 2010
March 16, 2011 (approx.)
April 2011
June 2011
VII. Public Meeting Summary

The project's first public meeting was held on September 20, 2010 at Shadow Ridge High School in an open house format. Approximately 60 people were in attendance. Participants shared mixed reactions to the study, particularly pertaining to the onemile unpaved segment between Citrus Road and Cotton Lane. Some residents were under the impression that no improvements would ever be made in this area and would like to see that remain the case; others wanted to know how soon the road could be paved to mitigate the dust issues caused by increased traffic on this segment. Some members of the community indicated that they had been misled by realtors regarding future improvements to Peoria Avenue. Overall, most participants were pleased to receive more information on the study purpose and schedule.
VIII. Study Area ICO Overview

To provide a more thorough understanding of the conditions in the study area, the corridor was split into four segments. The following discussion built on a general study area overview presented at the first TAC meeting by noting specific ICOs that could impact the development of corridor alternatives. These ICOs can generally be categorized as: roadway, major utility, drainage, topography, land ownership, existing development, future development, or growth area-related.

Throughout the entire corridor, several half-streets or segments with significant roadway improvements are constructed. The development of alternatives will seek to maximize use of these improvements to reduce reconstruction in the future. Most of the utility considerations are corridor-wide and not restricted to a particular particularly adjacent to the south side of Peoria Avenue. As major pieces of particularly adjacent to the south side of Peoria Avenue. As major pieces of infrastructure, their locations will need to be considered to develop the ultimate located on both sides of the roadway, as well as underground city water and sewer lines, natural gas lines, and telephone lines.

Segment 1
This segment extends from the Jackrabbit Trail Parkway alignment to Citrus Road. Much of the land west of the Beardsley Canal is owned by the Arizona State Land Department (ASLD). The project team met with ASLD on Friday, October 8, 2010 to better understand ongoing planning efforts in this area. ASLD developed a conceptual master plan for this parcel, known as the Westside Study Area, which includes varying residential densities and pockets of commercial development within the Peoria Avenue study area. This conceptual master plan was not adopted by the State Land Commissioner. However, a portion of the State Lands are also located in
the Surprise municipal planning area, which classifies the future land use as lowdensity residential development.

One major residential subdivision exists in this segment, Cortessa, located south of Peoria Avenue and east of Perryville Road Shadow Ridge High School south of newly constructed to the north of the subdivision. The roadway dividing the high school and subdivision is the only full-width arterial cross section throughout the corridor.

Two other major developments are planned within this segment - Zanjero Trails and Prasada. Zanjero Trails spans Peoria Avenue between the Beardsley Canal and Perryville Road. The preliminary plat for Zanjero Trails shows 136' of right-of-way (R/W) centered on the section line for an extension of Peoria Avenue to the west.

The planned Prasada community is located north of Peoria Avenue, stretching from its border with Zanjero Trails east to Cotton Lane. The master plan illustrates this portion of the community to be primarily residential development. The street pattern shows a connection of Citrus Road into Prasada at the current Citrus Road alignment, then transitioning into an internal curvilinear street pattern.

Segment 1 includes several major drainage facilities, including the Beardsley Canal, McMicken Dam, and various washes. The McMicken Dam and Waterfall Wash both cross the Peoria Ans sen Avenue extension and its intersection with Jackrabbit Trail Parkway.

Segment 2

Between Citrus Road and Cotton Lane, Peoria Avenue is currently unpaved. The area to the north is part of the Prasada community; the area to the south is comprised of individual large-lot homes. Right-of-way dedications within this onemile segment are unclear. This segment is not operated or maintained by the county.

The construction to upgrade SR 303L to a freeway is expected to begin late 2010/early 2011, with corridor completion two to three years later. ADOT has planned a full diamond interchange on the Peoria Avenue section line, with the freeway crossing above the roadway corridor. The development of alternatives will need to connect to this interchange.

In addition, major commercial/employment land uses are planned along the freeway corridor. Glendale 303, the only portion of land annexed into the City of Glendale within the study area, abuts SR 303L on the east, south of Peoria Avenue. Prasada has three major commercial centers planned north of Cactus, centered on SR 303L an automall, power center, and urban village
Some housing currently exists in this segment, however the majority of land is agriculture with future master planned communities (Prasada and Sycamore Farms).

From a drainage perspective, west of SR 303L, the land drains south into Peoria Avenue. Depending on the order of improvements, any drainage-related issues could be taken care of with the construction of Prasada. If the roadway
improvements commence first additional drainage solutions will be required existing drainage channel is located along the west side of Cotton Lane.

The Flood Control District for Maricopa County (FCDMC) previously completed the Loop 303 Area Drainage Master Plan. The plan identified a future channel along the west side of SR 303L. This channel will be completed with the construction of the SR 303L freeway corridor and will likely alleviate the flooding along Peoria Avenue in this area.

Segment 3

From Sarival Road to Bullard Avenue, much of the land north of Peoria Avenue is already developed in a series of residential master planned communities. Any future development in this segment will be shaped by the noise contours from Luke Air Force Base, noticeable already by the boundary of residential development in Rancho Gabriela, following the noise contour. Because of the noise impacts, little residential development is planned south of Peoria Avenue within the radius of Luke Air Force Base
Greer Ranch has dedicated 55' of R/W and has constructed some improvements, however the full half-street is not built and still lacks curb and gutter and sidewalk. The City of Surprise is coordinating Peoria Avenue roadway improvements with the homebuilder. Just south of Greer Ranch, Twelve Oaks Estates has dedicated 65^{\prime} of sides of Peoria Avenue through this area. To the east of Greer Ranch, Rancho Gabriela has dedicated 65' f RM, and again the half-street is not fully constucted.

Segment 4

From Bullard Avenue to Dysart Road, one residential community exists and three industrial communities are in varying phases of the development process. Copper Canyon Ranch, located between Bullard Avenue and Litchfield Road has dedicated 55^{\prime} of R/W. Curb, gutter, and sidewalk is installed, however the full half-street does not exist. Existing private home development is present to the south of Peoria Avenue.

The industrial developments between Litchfield and Dysart Roads include: Desert Cove Commercial (68 R/W dedicated north of Peoria Avenue), Skyway Business Park (67.5' R/W dedicated north of Peoria Avenue), and John F. Long Industrial Complex (40^{\prime} R/W dedicated south of Peoria Avenue). The BNSF Ennis Spur bisects these developments. The intersection of Peoria Avenue and the Ennis Spur is currently an at-grade crossing. The Ennis Spur connects to the BNSF Phoenix Subdivision parallel to Grand Avenue to the north. Future plans may exist to extend the Ennis Spur to a major industrial development south of the study area at Luke Air Force Base. If this occurs, the volume of trains crossing Peoria Avenue per day coull ncrease. Train volumes and the decision to maintain an at-grade rall crossing whe future intersection design and construction phasing needs to comply with Luke Air Force, Air Force Base height restrictions

FCDMC has plans for a future drainage channel along the Ennis Spur. Channels currently exist parallel to Litchfield Road and Peoria Avenue, but there is no outfall where these intersect. Drainage improvements may be warranted in the future

Generally speaking, all existing drainage channels were not constructed to handle build out conditions in the study area and therefore an issue may arise regarding their ability to handle increased runoff due to pavement drainage in the future.
To summarize, some of the key constraints in the study area include:

- Existing developments and R/W availability
- Half-street improvements

Future development plans

- SR 303L traffic interchange
- Major utilities
IX. Traffic Volume Information and Ultimate Typical Section

The MAG 2031 travel demand model shows that only a four-lane facility will be warranted on Peoria Avenue by 2030. This model takes into consideration socioeconomic considerations and planned transportation improvements. The 2031 model specifically accounts for a Peoria Avenue crossing of the Agua Fria River. An intersection analysis will be conducted to estimate lane configurations for 2030.

Although the model notes the required four-lane facility in 2030, this does not account for full build out conditions. Therefore the jurisdictions within the study area have agreed to maintain Peoria Avenue's functional classification designation as a principal arterial, which includes six lanes at build out. This will include retaining a minimum of 140^{\prime} R/W throughout the corridor, with a wider footprint envisioned between Cotton Lane and Sarival Road to account for increased traffic and turning movements required at the of SR 303L traffic interchange. Major intersections throughout the corridor may also be planned for wider R/W footprints to accommodate dual lefts, and right turn lanes on all intersection legs.
X. Potential Corridor Alternatives

The development and evaluation of alternatives will generally occur in one-mile corridor segments. The segmentation of the corridor is expected to better accommodate the existing checkerboard development pattern and varying degree of roadway improvements currently constructed. Alternatives will include an ultimate footprint symmetric about the section line, slightly shifted to the north, or slightly shifted to the south.
XI. Potential Evaluation Criteria

The project team has drafted up a series of potential evaluation criteria to apply to the alternatives, when developed. This includes criteria that will be measured both qualitatively and quantitatively. Major criteria categories include

- R/W considerations
- Compatibility with existing developments
- Compatibility with planned future developments
- Compatibility with existing and planned roadway improvements
- Engineering complexity and constructability
- Public acceptability
- Local agency suppor
- Drainage/flood control considerations
- Utility considerations
- Environmental consideration

The project team has requested that each TAC member review the preliminary evaluation criteria and respond with any comments or questions by October 22, 2010.
XII. Next Steps

TAC members should have received access to Technical Memoranda 1 and 3, via the project FTP site. Technical Memorandum 2 will be available later today; the committee will be notified via email. Please submit all comments to Mitch Wagner and/or Rodney Bragg by October 22, 2010. Please provide any comments on the potential evaluation criteria by the same deadline.

A draft of Technical Memorandum 7 will be circulated later this month. With these four documents complete, the project will move into the next phase, which includes alternatives development and evaluation. The TAC will have an opportunity to review and comment on the alternatives before the next public meeting in January.
XIII. Open Discussion

The City of Glendale requested the project team to set up a meeting with the Planning and Transportation Engineering departments in the near future to discuss municipal roadway design standards. These standards should be considered as part of the development of alternatives (e.g., City of Glendale does not allow retention facilities as part of the roadway R/W

Both Glendale and El Mirage do not see a need for the project team to brief their City Councils on the project's progress. City staff will take care of providing these updates.

The City of El Mirage, while only having jurisdiction over the southern portion of the far eastern half-mile of Peoria Avenue, does not see the corridor as a six lane roadway in the future. They envision the corridor through their community including five lanes maximum, mostly due to the lack of an Agua Fria river crossing. It was suggested that the alternatives may want to show a transition to a narrower footprint east of Dysart Road. The City is okay with maintaining the required 140' R/W associated with a principal arterial in the study area; however they do not intend to preserve such a wide footprint to the east of the study boundary

There are several Maricopa Water District well sites within the study area. These will need to be considered when developing and evaluating alternatives. Additionally, there are height restrictions associated with the proximity of Luke Air Force Base. This will be particularly important with regard to a potential grade separation at the Ennis Spur, street lighting, and traffic signals

Attachments:

Meeting Sign-In Shee
Meeting Agenda

- PowerPoint Slides
- Draft Evaluation Criteria

Peoria Avenue: Jackrabbit Trail Parkway to Dysart Road, Corridor Improvement Study
TAC sign.In Sheet
Date: Oct. 12, 2010

[ntulals	Name	Organtzation	Telephone	Postal Addross	E-mal Adfross
	${ }^{\text {Beasisy, Stieve }}$	ADOT VPM	${ }^{(502)} 712$-7645	1611 W. Jacks on, MD EM01 Phoenix, AZ 85007	steastyuazzol.ay
	Mathew, Velvet	ADOT VPM	(602) 712.3062	1611 W. Jackson, MD EM01 Phoenix, AZ B5007	Yrathempazato goe
	Dexwit, Miko	APS	(602) 493 -4448	$\begin{gathered} \text { P.O. Box } 53933 \\ \text { Atto: Mail Slation } 4030 \\ \text { Phoenix } 85072 \\ \hline \end{gathered}$	michaldsemtuas.com
	Richards, Paul	APS	(602) $371-6166$	$\begin{gathered} 2043 \text { W. Cheryl Drive } \\ \text { M.S. } 3040 \\ \text { Phoenix } 65021 \end{gathered}$	Peulicicarssfars.eem
	Wamecke, Dana	AZ Game \& Fish	(662) 942:3000	5000 W. Carefree Highway Phoenix AZ 85006	
	Taytor, Gordon	AZ Stait Land Depl.	(602) $542-2647$	1616 W. Adams street Phoonix 55007	glaycoratan zzaor
	Calvert, Lance	Cily of El Mirage	(683) $87-2971$	12145 NW Grand Avenue El Mirage, AZ 85335	maventactrodemeanecin
OH	Adabala, Purab	Cityof Slendale	(682) $930-2926$	5800 W. Gienn Drive 7315 Glendale 85301	2askatasterdemex com
(B)	Lemka, Chis	City of Gendale	(623)930-2940	5800 W. Glenn Drive $\$ 315$ Glendale 85301	stemaearentasezem
	Mascia, Nick	City of Suppise	(683) 222 -6140	16000 N. Civic Center Plaza Surprise, AZ 85374	nitcoismascia@sureriseaz oov
	Sevage, Karen	Cily of Surpise	(623)222-6132	16000 N. Cric Center Plaza	kreen savaeatsurnisazav
	Walley, Vern	Dysart School Distict	(682) 876\%/052	15802 N. Parkview Place Surprise, AZ 85374	Venwoneyatreator
	Lotey, Bure	Fcomc	(602) $502-0867$	2601 W. Durángo Streel Phoenix 85009	surcecteveramin matena
	Dusty, Bob	Luke Air Force Base	(683) 855.6195	Luke Air Force Base 8530	
	stow, Tim	mag	(662) 452.5055	302 N. Firsl Avenue Phoenix 85003	
	Holm, Mat	Maricopa Counly P8D	(602) 508.7182	501 N. 44lh Sueet Phoenix 85008	
	Coover. Chis	Maricopa County Parks \& Recreation	(602) 5068.8719	$\begin{gathered} 234 \text { N. Cantral Avenue, } \\ \text { Suite } 6400 \\ \text { Phoenix } 85004 \\ \hline \end{gathered}$	ccooverianmil mariona ouy
W	Ungura, Oney	Maricopa Water District	${ }^{(623)} 5498.8266$		onevennuda con
	Valenuuela, veronica	Mericopa Water ilstricl	(623) 546-8266	PO Box 900 Waddell, AZ. 85355	yenneraxamaxicon
	Lacey, Denise	MCDOT Enginearing \& Planning	(602) 506.6172	2901 W. Durango Slieet Phomix 85009	densslacutumelmericona
	Ofiver, Tim	$\begin{gathered} \text { MCDOT } \\ \text { Engineering \& Planning } \end{gathered}$	(602) 506-3934	2901 W. Durarbgo Slreet Phoenix 85009	
	Wagner, Mich	MCDOT Engineering \& Planning	(602) 506-8054	2901 W. Durango Streel Phoentx 85009	
	Pinlo. Joe	$\begin{gathered} \text { HCDOT } \\ \text { Environmental } \end{gathered}$	${ }^{(602)} 5006$-0088	2901 W. Dorango Streel Phoenix 85009	
	Kol, Michele	MCDOT Engineering \& Planning	(602) 506 -879	2902 W. Durango Street Phoenix 85009	Mitetegay Mcoorx
	Crowe Robera	MCDOT Public Information Office	(602) 50680003	2901 W. Durango Street Phoanix 85009	Rexeticiemeanainaricoratov
	Pasciak, Gary	$\begin{aligned} & \text { MCDOT } \\ & \text { Engineering \&Planning } \end{aligned}$	(602) 506 -8700	2902 W. Durango Street	Care Pascicik Mcoorx

Peoria Avenue: Jackrabbit Trail Parkway to Dysart Road, Corridor Improvement Study TAG Sign-In Sheet

Date: Oct. 12, 2010

Peoria avenue Corridor Improvement Study Jackrabbit Trail Parkway to Dysart Road MCDOT Contract No. 2010-005 Work Order No. TT005

Technical Advisory Committee Meeting Agenda
October 12, 2010, 9:00 AM

- Introduction s
- Meeting Purpose
- Project Status Update
- Overview of Study Area Issues, Constraints, \& Opportunities
- Traffic Volume Data \& Corridor Traffic Analysis
- Potential Alternative Alignments
- Potential Evaluation Criteria
- Next Steps
- Open Discussion
- Adjourn

Peoria Avenue Corridor Improvement Study

Technical Advisory Committee Meeting \#2

October 12, 2010

AЕСОМ
Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Meeting Agenda

- Introductions
- Meeting Purpose
- Project Status Update
- Overview of Study Area Issues, Constraints, \& Opportunities (ICOs)
- Traffic Volume Data \& Corridor Traffic Analysis
- Potential Alternative Alignments \& Evaluation Criteria
- Next Steps
- Open Discussion
- Adjourn

Peoria Avenue Corridor Improvement Study

Meeting Purpose

- Update on project status
- Identify initial Study Area ICOs
- Discuss potential alternatives \& evaluation criteria
- Gather information
- Share next steps

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Study Purpose

- Establish the facility type, number of lanes, right-ofway, and corridor alignment required to safely accommodate forecast travel demands
- Provide a future "footprint" of the corridor, implementation timeframe \& phasing of the identified roadway improvements

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Study Area

AECOM
Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Study Process

AECOM

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study
Study Milestones Contd.

- TAC Meeting \#3

Nov 9, 2010

- TAC Meeting \#4 Dec 14, 2010
- Public Meeting \#2 (Alternatives) Jan 12, 2011
- TAC Meeting \#5

Feb 15, 2011

- Public Meeting \#3 (Pref. Alt.)

March 16, 2011

- Draft Final Report

April 2011

- Final Report Submission June 2011

Peoria Avenue Corridor Improvement Study

Public Meeting Summary

- Public Scoping Meeting
- Held Sept. 20 at Shadow Ridge High School
- Approx. 60 people attended

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Study Area ICO Overview

- Roadway
- Major Utility
- Drainage
- Topography
- Land ownership
- Existing developments
- Future developments
- Growth areas

Segment 1: Jackrabbit Trail Parkway to Citrus Road

Segment 2: Citrus Road to Sarival Road

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Segment 3: Sarival Road to Bullard Avenue

Mcion

AECOM
Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Segment 4: Bullard Avenue to Dysart Road

Peoria Avenue Corridor Improvement Study

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study
AECOM

Summary of Key Constraints

- Existing developments/land uses (R/W availability)
- Half-street improvements
- Future development
- Existing and future drainage facilities
- SR 303L TI
- Major utilities

Traffic Volumes

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Ultimate Typical Section

- City of Surprise, City of Glendale, MAG, and Maricopa County all identify 6-Lane Arterial
- Corridor planning based on 6 lanes in 140' R/W (min.)
- Wider footprint between Cotton Lane and Sarival Road
- Major intersections to accommodate dual lefts and right-turn lanes on all legs

Peoria Avenue Corridor Improvement Study

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Potential Corridor Alternatives

- Evaluation generally by 1 -mile segments
- Symmetric about section line
- Slight shift to south
- Slight shift to north

Potential Evaluation Criteria

- Right-of-way Considerations
- Compatibility w/ Existing Developments
- Compatibility w/ Future Developments
- Compatibility w/ Existing \& Future Roadway Improvements
- Engineering Complexity \& Constructability
- Public Acceptance
- Local Agency Support

Peoria Avenue Corridor Improvement Study

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Potential Evaluation Criteria

- Drainage/Flood Control Considerations
- Environmental Considerations
- Utility Considerations

Next Steps

- TAC comments on Draft TM \#1, 2, \& 3 due on October 22 ${ }^{\text {nd }}$
- Distribute Draft TM \#7
- Finalize TM \#1, 2, \& 3
- Develop evaluation criteria \& alternatives
- Conduct evaluation

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Open Discussion

- Study area issues, constraints, \& opportunities
- Traffic volumes and analysis
- Alternatives \& evaluation criteria
- Other stakeholder concerns

Next TAC Meeting

November 9, 2010

Draft Evaluation Criteria

Criteria Title	Criteria Description	Criteria Performance Measure
Right-of-way Considerations	An assessment of the amount and value of the right-of-way that would need to be acquired for corridor alternatives in relation to other alternatives under consideration for the segment.	Quantitative assessment of acres or square feet of acquisition
		Qualitative assessment of potential cost
Compatibility with Existing Developments	An estimate of the potential effect of proposed corridor alternatives on the existing developments most directly affected. Key considerations include the proximity to existing developments and potential displacements.	Qualitative assessment of compatibility
Compatibility with Planned Future Developments	An estimate of the potential effect of the corridor alternatives on planned developments and/or land that is currently under the jurisdiction of the Arizona State Land Department. Key considerations include compatibility with approved master plans and/or preliminary and final plats.	Qualitative assessment of compatibility
Compatibility with Existing and Planned Roadway Improvements	An assessment of the compatibility of the corridor alternatives with the existing and planned roadway improvements.	Qualitative assessment of compatibility
Engineering Complexity and Constructability	A general assessment of engineering complications, exclusive of cost considerations, which could arise from construction of the roadway. Key considerations include roadway geometry, permitting requirements, construction staging, etc.	Qualitative assessment of complexity and constructability
Public Acceptability	Estimated community support for and acceptance of the corridor alternative, based on input from municipal staff, stakeholders, homeowner associations, and the public.	Qualitative assessment of acceptability
Local Agency Support	Estimated local agency (city) support for and acceptance of the corridor alternative, based on input from municipal staff.	Qualitative assessment of acceptability
Drainage/Flood Control Considerations	An estimate of potential impacts from the proposed corridor alternatives to both existing FCDMC facilities as well as to future improvements.	Qualitative assessment of potential impacts
Environmental Considerations	An assessment of social, ecological, and cultural environment in the study area.	Qualitative assessment of potential impacts to socioeconomic environment
		Qualitative assessment of potential impacts to physical and natural environment
		Qualitative assessment of potential impacts to cultural resources
Utility Considerations	Estimate of potential impacts from the proposed corridor alternatives to both existing and planned future utility facilities such as the MWD canals, wells, reclaimed water delivery headers, and overhead lines.	Quantitative assessment of potential impacts

Peoria avenue Corridor Improvement Study Jackrabbit Trail Parkway to DYsart Road

MCDOT Contract No. 2010-005
Work Order No. TT005
MEETING MINUTES

Date:
To:
December 17, 2010

From:
Mitch Wagner, Project Manager, MCDOT
Rodney Bragg, AECOM
Re:
Peoria Avenue Corridor Improvement Study
Subject: December 14, 2010 TAC Meeting \#4
Attendees: See attached sign-in sheet
I. Introductions

See attached sign-in sheet

II. Meeting Purpose

The purpose of this meeting was to provide an update on the project status; discuss the alternatives development, evaluation, and preliminary recommendations; and gather information to complete the evaluation.
III. Study Purpose and Objectives

The purpose of this study is to establish the facility type, number of lanes, right-ofway, and corridor alignment required to accommodate the ultimate facility This sudy will recast travel demands for Peonia Avenue. "footprint" of the corridor, implementation timeframe and phasing of identified roadway improvements.

Study objectives include assessing the strategic issues and potential impacts by existing and proposed developments, drainage features, utilities, and environmental issues. Based on this information, the study will develop and evaluate conceptual altemative alignments, as well as identify a preferred alignment. With a preferred alignment, specific characteristics of the corridor will be further defined and an implementation plan developed to carry out corridor improvements. Most
importantly, the study aims at gaining consensus amongst partners to achieve design consistency and preserve the corridor for future implementation.
IV. Study Area

The study area extends approximately 7.5 miles, from the future J ackrabbit Trail The study area extends approximately 7.5 miles, from the future J ackrabbit Trai Parkway alignment to Dysart Road, including a two-mile wide area, centered on
Peoria Avenue. Multiple jurisdictions have control over the land in this area. The Peoria Avenue. Multiple jurisdictions have control over the land in this area. The
Peoria Avenue section line provides the boundary between the City of Surprise and Peoria Avenue section line provides the boundary between the City of Surprise and
City of Glendale planning areas, with portions of the corridor to the far west City of Glendale planning areas, with portions of the corridor to the far west
belonging to Maricopa County, and portions to the east belonging to the City of El Mirage. Most of the area within the Surprise and EI Mirage municipal planning areas (MPAs) is incorporated, whereas only a small parcel adjacent to Peoria Avenue and SR 303L is annexed by Glendale.

White Tank Mountain Regional Park sits to the west of the study area and Luke Air Force Base to the south. McMicken Dam and the Beardsley Canal constitute two major drainage structures, both located at the western end of the study area. The SR 303 L corridor will be upgraded to a freeway, with a connection to Peoria Avenue. The BNSF Ennis Spur also intersects the corridor between Litchfield and Dysart Roads.
V. Study Process

The study process involves a three step involvement plan, which leads to the preparation of a phased implementation plan of the selected alternative. This includes:

- Scoping and development of a stakeholder database to identify corridor issues and needs;
- Development, evaluation, and refinement of altematives with stakeholder input; and
- Development of an implementation plan with the stakeholders whereby major design features are finalized

VI. Study Milestones

Major milestones are as follows:

Phase 1

- Project kick-off and study initiation
- Data collection phase
- TAC meeting \#1
- Public meeting \#1 (scoping)
- TAC meeting \#2

Phase 2

- TAC meeting \#3
- TAC meeting \#4
- Public meeting \#2 (alternatives)
- TAC meeting \#5
- Public meeting \#3 (pref. altermative)
- Draft final report
- Final report submission

J uly 2010 (completed) J uly - September 2010 (completed) August 17, 2010 (completed) September 20, 2010 (completed) October 12, 2010 (completed)

November 9, 2010 (cancelled) December 14, 2010
J anuary 18, 2011
February 15, 2010
March 16, 2011 (approx.)
April 2011
Aprii 2011
VII. Draft Tech Memo \#7

Draft Tech Memo \#f is available on the FTP site for review and comment. TAC comments were previously requested by December $17^{\text {th }}$. It includes a review of existing and future traffic conditions with an analysis horizon year of 2030. The MAG 2030 travel demand model shows that a four-lane facility will be warranted on Peoria Avenue by 2030, therefore a sensitivity analysis was conducted to determine what conditions imply that six lanes are not warranted by 2030 and when a six-lane facility may be required.

Although the MAG model demand warrants a four-lane facility in 2030, this does not account for full build out conditions. The City of Surprise, City of Glendale, and MCDOT all categorize Peoria Avenue as a principal arterial and have agreed to maintain the corridor's functional classification designation which includes six travel lanes. For planning purposes, a minimum of 140 R/W will be used throughout the corridor, with a wider footprint envisioned between Cotton Lane and Sarival Road to account for increased traffic and turning movements required near the SR 303L traffic interchange. Major intersections throughout the corridor will also be planned for wider R/W footprints to accommodate dual lefts and separate right turm lanes on all intersection legs.
VIII. Alternatives Development and Evaluation

Evaluation Criteria
Evaluation Critenia Ten evaluation criteria were drafted by the Project Team and reviewed by the TAC for use in the altematives evaluation. This includes criteria that can be measured both qualitatively and quantitatively. Criteria categories include (full list of criteria and descriptions in attachments):

- R/W considerations (including both square footage of R/W takes and estimated order of magnitude R/W costs)
- Compatibility with existing developments
- Compatibility with planned future developments
- Compatibility with existing and planned roadway improvements
- Engineering complexity and constructability
- Public acceptability
- Local agency support
- Drainage/flood control considerations
- Utility considerations
- Environmental considerations (including consideration of socioeconomic physical/natural, and cultural resources)

Alignment Alternatives
Three alternative alignments were considered for the Peoria Avenue corridor. Altemative 1 includes widening the corridor symmetrically to the section line, attempting to balance impacts to both sides of the corridor. Alternative 2 includes widening the corridor to the south, maintaining the northem R/W boundary and therefore only impacting land to the south. Alternative 3 includes widening the corridor to the north, maintaining the southem R/W boundary and therefore only impacting land to the north

Because the existing R/W throughout the corridor differs due to varying dedications, the degree of shifting to the north or south changes (detailed listing of altemative alignments and RN shifts in attachments). Because Peoria Avenue does not ye exist through Segments 1 and 2, and due to different constraints, a lesser number of altematives were considered

Evaluation Process
The corridor was divided into nine segments for the evaluation process:

1. J ackrabbit Trail Parkway to Beardsley Canal
2. Beardsley Canal to Peryville Road
3. Perryville Road to Citrus Road
4. Citrus Road to Cotton Lane
5. Cotton Lane to Sarival Road
6. Sarival Road to Reems Road
7. Reems Road to Bullard Avenue
8. Bullard Avenue to Litchfield Road
9. Litchfield Road to Dysart Road

The Project Team (composed of a multidisciplinary consultant group) conducted the evaluation which determined a preliminary recommendation for the corrido alignment. Two measures were left blank during this evaluation, public acceptability The TAC is requested to review the alternatives and the consultant team's preliminary evalution and provide input on (1) TAC member's preferred alternative by segment and (2) any other comments regarding preliminary evaluation, by December 24, 2010. Public input will be gathered at the J anuary 2011 public meeting.

Evaluation Highlights

Through the evaluation process, some segments contained constraints and/or opportunities that clearly favored one altemative (Segments 2, 4, 6, 8). Once those alignment recommendations were established, those conditions assisted in etming the recommended altemative for the adjacentsegments (Segments 3, 5 , 7,9). The following evaluation highlights are presented out of numerical order to illustrate this process.

Segment 2: Beardsley Canal to Perryville Road
The Zanjero Trails master planned community is planned on both sides of Peoria Avenue. Their preliminary plat dedicates 136 feet of R/W for Peoria Avenue, centered on the section line. Because Zanjero Trails is expected to move forward with this plat configuration in the future, the section line option (Altemative 1) wa decided to be the only practical altemative. Because this segment only has on alternative, no evaluation was conducted.

Segment 4: Citrus Road to Cotton Lane
Maricopa County does not have any RW recorded in this segment, therefore the full width, regardless of altemative, will require RNW negotiations. Key factors for this segment focus on existing and planned land uses. To the north, the Prasada community is planned, although no preliminary plat yet exists. To the south, Peoria Avenue is lined with existing large-lot, single-family houses that front the roadway
corridor and often have driveways that access Peoria Avenue. In addition, two sets of irigation canals run parallel to Peoria Avenue to the south. Because of the more imminent constraint that the existing land uses pose the recommendation favored Altemative 3 , shifting to the north to minimize impacts to the existing land uses to the south.

Segment 6: Sarival Road to Reems Road
Existing residential development and related drainage facilities are located on both sides of Peoria Avenue through Segment 6. In an effort to balance the impacts to both sides of the corridor, Altemative 1 (symmetrical on section line) was recommended.

Segment 8: Bullard Avenue to Litchfield Road
Like Segment 6 , Segment 8 contains existing residential development on both sides of the corridor. To the north there is a newer residential subdivision that includes a small landscaped buffer between the RM and property lines. To the south, individual large-lot, single-family homes front Peoria Avenue but are significantly offset from the roadway. Recommending Alternative 1 (symmetrical on section line) was seen to best balance the impacts to existing development.

Segments $2,4,6$, and 8 provided the context which influenced the recommendation for the adjacent segments. Oftentimes, two or even all three alternatives in the following segments scored very closely, with one altemative not presenung a clear adval determine the most practical solution Likewise transition areas were strategically placed throughout these segments to avoid certain constraints or maximize the use of other oppotunities to form a seamless connection of seaments. Because of the relative equality of the impacts of the different altematives if Because of the relative equality of the impacts of the different alternatives, if etc.), the recommendations for the following segments could be reviewed and changed to reflect current conditions.

Segment 3: Perryville Road to Citrus Road
Existing and planned developments, as well as existing and planned roadway improvements were the key factors for Segment 3. To the north, Shadow Ridge High School is built at the west end. A portion of the remaining land is platted through Zanjero Trails and preliminarily planned as part of the Prasada community. To the south, the Cortessa subdivision is constructed, as well as several imigation facilities and wells. On the west end, between Cortessa and the high school, is the corridor's only full width constructed street section. In an effort to maximize use of this full width street, which is built symmetrically on the section line, Altemative 1 was recommended. This supports a connection to Segment 2 to the west, which is also recommended to be located symmetrically to the section line. To the east, Segment 4 is recommended to shit nort. Because on the south side co chift is reso in Seged to Segment 3.

Segment 5: Cotton Lane to Sarival Road
The key determinant in Segment 5 is ADOT's final design for SR 303L, which includes a traffic interchange at Peoria Avenue, centered on the section line Ver little development exists today through this segment. As both SR 303L requires a section line alignment and Segment 6 recommended a section line alignment the section line alignment and Segment 6 recommended a section line alignment, the on section line). Because of the constraint the existing development on the south on section line). Because of the constraint the existing development on the south
side of the corridor poses in Segment 4, the transition area from the section line to a northerly shift is recommended to occur in the westem portion of Segment 5 , slightly impacting an existing development to the north, although not impacting any structures

Segment 7: Reems Road to Bullard Avenue
Because of the noise contours associated with Luke Air Force Base, the majority of the corridor is undeveloped, with the exception of approximately four houses that back up to Peoria Avenue on the west end. However, the presence of these houses skews the evaluation away from an option that impacts the north side of the corridor The south side of the corridor, however, contains ingigation facilities and well sites. The adjacent links, Segments 6 and 8 , recommend section line alignments. In an effort to both reduce impact to the drainage facilities as well as the existing development, and also connect to the adjacent segments, the recommendation fo this segment includes a northerly shift in the center of the segment to avoid the line at the east and west ends, avoiding impact to the existing development if corider conditions change in the future, such as the removal of the inigation facilities on the south side or new development on the noth side, this recommendation could be reconsidered to recommend a section line alignment

Segment 9: Litchfield Road to Dysart Road
Segment 9 contains no existing or platted development to the south. To the north of Peoria Avenue, existing land uses are adjacent to the Ennis Spur in the middle of the corridor. Development is planned and platted to the east and west. Half-streets have been constructed on the north side throughout, however with no constan centerline offset. Therefore, the corridor's constructed half street varies with differing amounts of R/W. To minimize impacts to existing land uses, the recommendation fo this segment includes a southerly shift in the alignment with transition areas to connect back to the section line on the east and west ends. Like Segment 7, if corridor conditions change in the future (e.g., existing land uses are redeveloped), consideration could be given to maintaining a section line alignment.

Segment 1 is unique because no roadway or existing development is currently present and no development plans are imminent. Only two alternatives were practical for this section - Altemative 1 , alignment symmetrical along the section line and Altemative 2, which does not follow the other widening guidelines. Altemative 2 in this segment dips south to miss the flood basin south of the truncated McMicke

Segment 1: Jackrabbit Trail Parkway to Beardsley Canal
Drainage impacts and local agency support (specifically the Flood Control District of Maricopa County [FCDMC]) are the two key determining factors. After the Project Team's evaluation, Alternative 1, which travels through the flood basin, was seen to
have the least drainage impacts, as Alternative 2 would cross numerous washes Waterfall Wash potentially including a substantial crossing. The recommendation for Segment 1 is to move forward with Alternative 1 , predicated upon consensus from FCDMC that it is less impactful to cross the basin than to cross a number of natural washes, By recommending a section line alignment this also maximizes the ability for larger tracts of developable land in the future, to be auctioned by the Arizona State Land Department (ASLD). Currently, ASLD has a general master plan for the land, but no formal planning will be documented until a developer assumes responsibility. In addition, Altemative 1 would provide better intersection spacing along the future J ackrabbit Trail Parkway.
IX. Next Steps

Key milestones and next steps include:
Tech Memos \#1, 2, and 3 will be distributed in final form shortly.

- TAC comments on Draft Tech Memo \#7 are due December 17
- TAC comments on altematives evaluation and local agency support are due December $24^{\text {th }}$.
- Project Team will submit Pre-Draft Tech Memo \#4 during the first week of J anuary
Second public open house will be conducted J anuary 18
- Next TAC meeting is scheduled for February $15^{\text {th }}$.

Attachments:

- Meeting Sign-In Shee
- Meeting Agenda
- Power Point Slides
- Evaluation Criteria and Descriptions
- Alternative Alignment Descriptions
- Draft Evaluation Matrix
- Recommended Alignment Map

Peoria Ayenue: Jackrabbit Trail Parkway to Dysart Road, Corridor Improvement Study
TAC Sign-In Sheet
Date: Dec. 14, 2010

Initials	Name	Organization	Telephone	Postal Address	E.mall Address
	Beasle, Steve	ADOTVPM	${ }^{(602) 71277645}$	1611 W. Jackson, MD EM01 Phoenix, AZ 85007	sthaserearatht cow
	Mathew, Veveret	ADOTVPM	(602) 712 23062	1611 W. Jackson, MD EM01 Phoenix, AZ 85007	
	Devit, Mike	APS	(602) 493.4448	$\begin{aligned} & \text { P.O. Box } 53933 \\ & \text { Attn: Mail Station } 4030 \\ & \text { Phoenix } 85072 \end{aligned}$	michae disatitran com
	Richards, Paul	APS	(602) 371.6186	2043 W. Cheryl Drive M.S. 3040 Phoenix 85021	Pauritandstans com
	Warnecke. Dana	AZ Game \& Fish	(602) 942.3000	5000 W. Carefree Highway Phoenix, AZ 85006	diamedesarat or
	Tayor. Gordon	Az Sliat Land Dept.	(602) 542 -2647	1616 W. Adams Street Phoenix 85007	gavoraiord za coe
	Calver, Lance	City of El Mriage	(623) 876.2971	12145 NW Grand Avenue El Mirage, AZ 85335	raveraturemitace ora
$p i k A$	Adabala, Purab	Cily of Glendale	(623) $930-2926$	5800 W. Glenn Drive \#315 Glendale 85301	
	Lemka, Chis	City of Glendale	${ }^{(623)} 930-2940$	5800 W. Gienn Divive \#315 Glendale 85301	cemeraventroaz oin
	Mascia, Nick	City of Suprise	${ }^{(623)} 222.6140$	16000 N. Civic Center Plaza Surprise, AZ 85374	
k 4	Savage, Karen	Cliy of Surpise	(623) 222.6132	16000 N. Civic Center Plaza	
	Wolley, Vem	Dysart School Distict	${ }^{(623)} 8787.7052$	15802 N. Parkview Place Surprise, AZ 85374	Ven Waterevorsatore
	Lokey, Buke	FCDMC	(602) $502-0887$	2801 W. Durango Street Phoenix 85009	Eurteateramal maricoraver
	Dussk, 8ob	Luke Aif Force Base	${ }^{(623)} 8556.6195$	$\begin{aligned} & 56 \text { Fighter Wing Community } \\ & \text { nititates } \\ & \text { 141855 Warcon Street } \\ & \text { Luke Air Force Base } 85309 \end{aligned}$	thent
F	Strow, Tim	mag	(602) 452-5055	302 N. First Avenue Phoenix 85003	Istrasaman matcopay
	Holm, Mat	Maricopa County P8D	(602) $500 \cdot 7162$	501 N. 44th Street Phoenix 85008	Mastent
	Coover. Chis	Maricopa County Parks \& Recreatio	(602) 506.8719	234 N. Central Avenue, Suite 6400 Phoenix 85004	ccoveranual muticosag
$8 m$	UIguiza, Oney	Maricopa Water District	(623) 546.8266	$\begin{gathered} \text { PO Box } 900 \\ \text { Waddell, AZ } 85355 \end{gathered}$	comanamacom
	Valenzuela, Veronica	Maicopa Waler District	(623) 546.8266	PO Box 900 Waddell, AZ 85355	Sencrevememarcim
	Lacey, Denise	MCDOT Engineering \& Planning	(602) 506.6172	2901 W. Durango Street Phoenix 85009	
	Oliver, Tim	MCDOT Engineering \& Planning	(602) 506.3994	2901 W. Durango Street Phoenix 85009	Trioveranailmatconave
	Wagner. Mith	MCDOT Engineering \& Planning	(602) 506.8054	2901 W. Durango Street Phoenix 85009	
	Pinto, Joe	$\begin{gathered} \text { MCDOT } \\ \text { Environmental } \end{gathered}$	${ }^{(602)} 50068068$	2901 W. Durango Street Phoenix 85009	
	Kog, Michele	$\underset{\substack{\text { McDot } \\ \text { Engineeing \& Planning }}}{\text { and }}$	(602) 500.8799	2902 W. Durango Street Phoenix 85009	Mcheie Koal Mcootx
	Crowe, Robeta	$\begin{aligned} & \text { McDot } \\ & \text { Public hiformaion Office } \end{aligned}$	(602) 506.8003	2901 W. Durango Street Phoenix 85009	
	Pasciak, Gary	MCDOT Engineering \& Planning	${ }^{(602) ~ 500.8790}$	2002 W. Durango Street Phoenix 85009	Garp Pascak- Mecoorx

Peoria Avenue: Jackrabbit Trail Parkway to Dysart Road, Corridor Improvement Study TAC Sign-In Sheet

Date: Dec. 14, 20

Peoria avenue Corridor Improvement Study JACKRABBIT TRAIL PARKWAY TO DYSART ROAD MCDOT Contract No. 2010-005 Work Order No. TT005

Technical Advisory Committee Meeting Agenda
December 14, 2010, 9:00 AM

- Introductions
- Meeting Purpose
- Project Status Update
- Overview of Draft Tech Memo \#7
- Overview of Alternative Development \& Evaluation
- Next Steps
- Open Discussion
- Adjourn

Peoria Avenue
 Corridor Improvement Study

Technical Advisory Committee Meeting \#4
December 14, 2010

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Meeting Agenda

- Introductions
- Meeting Purpose
- Project Status Update
- Overview of Tech Memo \#7
- Overview of Alternative Development and Evaluation

Meeting Agenda

- Next Steps
- Open Discussion
- Adjourn

Meeting Purpose

- Update on project status
- Discuss altemative development \& evaluation
- Gather information
- Share next steps

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Study Purpose

- Establish the facility type, number of lanes, right-ofway, and corridor alignment required to safely accommodate forecast travel demands
- Provide a future "footprint" of the corridor, implementation timeframe \& phasing of the identified roadway improvements

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Peoria Avenue Corridor Improvement Study

Study Area

Study Process

AECOM

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Study Milestones Contd.

- TAC Meeting \#3	Nov 9, 2010
- TAC Meeting \#4	Dec 14, 2010
- Public Meeting \#2 (Alternatives)	J an 12, 2011
- TAC Meeting \#5	Feb 15, 2011
- Public Meeting \#3 (Pref. Alt.)	March 16, 2011
- Draft Final Report	April 2011
- Final Report Submission	J une 2011

Study Milestones

- Project Kick-off \& Study Initiation

July 2010

- Data Collection Phase

July - Sept 2010

- TAC Meeting \#1 August 17, 2010
- Public Meeting \#l (Scoping)

Sept 20, 2010

- TAC Meeting \#2
- Alternatives Development \& Evaluation Phase

Oct 2010 - J an 2011

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Ultimate Typical Section

- City of Surprise, City of Glendale, MAG, and Maricopa County all identify 6-Lane Arterial
- Corridor planning based on 6 lanes in 140' R/W (min.)
- Wider footprint between Cotton Lane and Sarival Road
- Major intersections to accommodate dual lefts and right-turn lanes on all legs

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Traffic Information

- 4-Lane facility warranted by 2030 based on MAG model
- Intersection analysis to estimate lane requirements for 2030
- Accommodate ultimate facility

DRAFT
PEORIA AVENUE CORRIDOR IMPROVEMENT STUDY
Jackrabbit Trail Parkway to Dysart Road

2031 Projected Average Daily Traffic Volumes

三
三

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Evaluation Criteria

- Right-of-way Considerations
- Compatibility w/ Existing Developments
- Compatibility w/ Future Developments
- Compatibility w/ Existing \& Future Roadway Improvements
- Engineering Complexity \& Constructability
- Public Acceptance
- Local Agency Support

Evaluation Criteria

- Drainage/Flood Control Considerations
- Environmental Considerations
- Utility Considerations

Peoria Avenue Corridor Improvement Study

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Overview of Evaluation Process

- Consultant team evaluation - Preliminary Recommendation
- TAC feedback
- Plan sheets available on FTP site
- Feedback due by December $24^{\text {th }}$
- Public feedback

Segment 2: Beardsley Canal to Perryville Road

ightiroads
mosen memen men

Segment 6: Sarival Road to Reems Road

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study
AECOM

Segment 8: Bullard Avenue to Litchfield Road

Migoot

Ridithans
whemem nem

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Recommended Alignment

AECOM
Maricopa County Department of Transportation

Peoria Avenue Corridor Improvement Study

Segment 3: Perryville Road to Citrus Road

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Segment 5: Cotton Lane to Sarival Road

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study
Segment 7: Reems Road to Bullard Avenue

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Segment 9: Litchfield Road to Dysart Road

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Recommended Alignment

\square
Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study
AECOM

Recommended Alignment

Next Steps

- Distribute Final TM \#1, 2, and 3
- TAC comments on Draft TM \#7 due on December $17^{\text {th }}$
- TAC comments on altemative evaluation due December $24^{\text {th }}$
- Submit Draft TM \#4 during $1^{\text {st }}$ week of J anuary
- Conduct public open house \#2 in J anuary

Open Discussion

- Study area issues, constraints, \& opportunities
- Traffic volumes and analysis
- Alternatives \& evaluation process
- Other stakeholder concerns

Evaluation Criteria

Criteria Title	Criteria Description	Criteria Performance Measure
Right-of-way Considerations	An assessment of the amount and value of the right-of-way that would need to be acquired for coridor altematives in relation to other altematives under consideration for the segment	Quantitative assessment of acres or square feet of acquisition
		Qualitative assessment of potential cost
Compatibility with Existing Developments	An estimate of the potential effect of proposed corridor alternatives on the existing developments most directly affected. Key considerations include the proximity to existing developments and potential displacements.	Qualitative assessment of compatibility
Compatibility with Planned Future Developments	An estimate of the potential effect of the corridor alternatives on planned developments and/or land that is currently under the jurisdiction of the Arizona State Land Department. Key considerations include compatibility with approved master plans and/or preliminary and final plats.	Qualitaitive assessment of compatibility
Compatibility with Existing and Planned Roadway Improvements	An assessment of the compatibility of the corridor altematives with the existing and planned roadway improvements.	Qualitaive assessment of compatibility
Engineering Complexity and Constructability	A general assessment of engineering complications, exclusive of cost considerations, which could arise from construction of the roadway. Key considerations include roadway geometry, permitting requirements, construction staging, etc.	Qualitative assessment of complexity and constructability
Public Acceptability	Estimated community support for and acceptance of the corridor altemative, based on input from municipal staff, stakeholders, homeowner associations, and the public.	Qualitative assessment of acceptability
Local Agency Support	Estimated local agency (city) support for and acceptance of the corridor alternative, based on input from municipal staff.	Qualitaive assessment of acceptability
Drainage/Flood Control Considerations	An estimate of potential impacts from the proposed corridor altematives to both existing FCDMC facilities as well as to future improvements.	Qualitative assessment of potential impacts
Environmental Considerations	An assessment of social, ecological, and cultural environment in the study area.	Qualitative assessment of potential impacts to socioeconomic environment
		Qualitative assessment of potential impacts to physical and natural environment
		Qualitative assessment of potential impacts to cultural resources
Utility Considerations	Estimate of potential impacts from the proposed corridor altematives to both existing and planned future utility facilities such as the MWD canals, wells, reclaimed water delivery headers, and overhead lines.	Quantitative assessment of potential impacts

Peoria Avenue Corridor Improvement Study
Jackrabbit Trail Parkway to Dysart Road
Alternative Alignment Descriptions

Jackrabbit Pkwy to Beardsley Canal		
Alt \#1	Centerline on Section Line	Goes through basin \& floodpool
Alt \#2	South of reconstructed McMicken Dam	Goes south of floodpool
Beardsley Canal to Perrville Rd		
Alt \#1	Centerine on Section Line	Matches Zanjero Trails Preliminary Plat
Perrsville Rd to Citus Rd		
Alt \#1	$\begin{aligned} & \text { Centerline on Section } \\ & \text { Line } \end{aligned}$	140 ' wide corridor requires acquisition on both sides
Alt \#2	Centerline shifted 5^{\prime} south of Section Line	Holds planned dedicated R/W along north side
Alt \#3	Centerline shifted 15 north of Section Line	Holds existing south R/W line
Citrus Rd to Cotton Ln		
Alt \#1	Centerline on Section Line	140 ' wide corridor requires acquisition on both sides
Alt \#2	Centerline shifted 5' south of Section Line	Holds planned dedicated R/W along noth side
Alt \#3	Centerline shifted 37' north of Section Line	Places south R/W line approx. 10' south of ditch \& allows room for potential frontage road
Cotton Ln to Sarival Rd		
Alt \#1	Centerine on Section Line	176 ' wide corridor requires acquisition on both sides
Alt \#2	Centerline shifted 55' south of Section Line	Holds existing north R/W line
Alt \#3	Centerline shifted 55' north of Section Line	Holds existing south R/W line
Sarival Rd to Reems Rd		
Alt \#1	Centerline on Section Line	140 ' wide corridor requires acquisition on both sides
Alt \#2	Centerline shifted 15'	Holds existing notth R/W line along developed areas
Alt \#3	Centerline shifted 5^{\prime}	Holds existing south R/W line along developed areas
Reems Rd to Bullard Ave		
Alt \#1	$\begin{aligned} & \text { Centerline on Section } \\ & \text { Line } \end{aligned}$	140 ' wide corridor requires acquisition on both sides
Alt \#2	Centerline shifted 5' south of Section Line	Holds existing notth R/W line along developed areas
Alt \#3	Centerline shifted 30^{\prime}	Holds existing south R/W line
Bullard Ave to Litchfield Rd		
Alt \#1	Centerline on Section Line	140' wide corridor requires acquisition on both sides
Alt \#2	Centerline shifted 15' south of Section Line	Holds existing noth R/W line
Alt \#3	Centerline shifted 30^{\prime} north of Section Line	Holds existing south R/W line
Litchfield Rd to Dysart Rd		
Alt \#1	$\begin{aligned} & \text { Centerine on Section } \\ & \hline \text { Line } \end{aligned}$	140 ' wide corridor requires acquisition on both sides
Alt \#2	$\begin{aligned} & \text { Centerline shift south of } \\ & \text { Section Line [varies from } \\ & 2^{\prime} \text { (west end) to } 37^{\prime} \\ & \text { (middle) to } 2^{\prime} \text { (east end)] } \end{aligned}$	Holds existing noth R/W line
Alt \#3	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Centerine shift north of } \\ \text { Section Line [varies from } \\ \text { 37' (west end) to } 30^{\prime} \\ \text { (east end)] } \end{array} \\ \hline \end{array}$	Holds existing south R/W line

Peoria Avenue Corridor Improvement Stud J ackrabbit Trail Parkway to Dysart Road

DRAFT EVALUATION MATRIX

Criteria		Segment 1: Jackrabbit Trail to Beardsley Canal			
		Alternative 1 (on section line)		Alternative 2 (shift to south)	
Right-of-way Considerations		\bigcirc	779k SF	\bigcirc	825k SF
			\bigcirc	\bigcirc	Higher cost due to additional length
Compatibility with Existing Developments		\bigcirc	No existing development	\bigcirc	No existing development
Compatibility with Planned Future Developments		\bigcirc	Most compatible with future ASLD plans		\bigcirc
Compatibility with Existing and Planned Roadway Improvements		\bigcirc	Facilitates 1-mile intersection spacing along J ackrabbit Parkway		\bigcirc
Engineering Complexity \& Constructability			\bigcirc	\bigcirc	Numerous wash and floodplain crossing
Public Acceptability					
Local Agency Support					
Drainage/Flood Control Considerations			\bigcirc	\bigcirc	Numerous wash and floodplain crossing
Environmental Considerations	Socioeconomic	\bigcirc	No known impacts	\bigcirc	No known impacts
	Physical \& Natural		\bigcirc	\bigcirc	Greatest impact to wash coridors and floodplains
	Cultural	\bigcirc	Impactst to Beardsley Canal	\bigcirc	Impacts to Beardsley Canal
Utility Considerations		\bigcirc	No known impacts	\bigcirc	No known impacts
Recommendations		$\begin{gathered} \text { Ree } \\ \text { Rower } \\ \text { cr } \\ \text { sp } \end{gathered}$	mmended Alignment-likely cost; minimizes natural wash ssings; better intersection ing along J ackrabbit Trail		

Peoria Avenue Corridor Improvement Study J ackrabbit Trail Parkway to Dysart Road

DRAFT EVALUATION MATRIX

Criteria		Segment 4: Citrus Road to Cotton Lane					
		Alternative 1 (on section line)		Alternative 2 (shift 5' south)		Alternative 3(shift 37' north)	
Right-of-way Considerations		\bigcirc	716k SF	\bigcirc	716k SF	\bigcirc	718k SF
			\bigcirc	\bigcirc	Higher cost likely to south		\bigcirc
Compatibility with Existing Developments		\bigcirc	Balances impacts	\bigcirc	Greatest impact to most properties	\bigcirc	No known impacts
Compatibility with Planned Future Developments		\bigcirc	Balances impacts	\bigcirc	No new planned development to south		All planned development to the north
Compatibility with Existing and Planned Roadway Improvements		\bigcirc	Half-street constructed at Citrus		\bigcirc		\bigcirc
Engineering Complexity \& Constructability		\bigcirc	Access fronting Peoria Ave	\bigcirc	Access fronting Peoria Ave	\bigcirc	Opportunity for frontage road
Public Acceptability							
Local Agency Support							
Drainage/Flood Control Considerations		\bigcirc	No existing drainage infrastructure constructed; must continue channel from the west	\bigcirc	No existing drainage infrastructure constructed; must continue channel from the west)	No existing drainage infrastructure constructed; must continue channel from the west
Environmental Considerations	Socioeconomic		Impacts to private property		Impacts to private property	\bigcirc	No known impacts
	Physical \& Natural	\bigcirc	Balances impacts	\bigcirc	Balances impacts		Impacts to famland
	Cultural	\bigcirc	Impacts to itigation ditch	\bigcirc	Impacts to irrigation ditch	\bigcirc	Impacts to inigation ditch
Utility Considerations			1 well site; 5200 ft lined irrigation ditch; 20 power poles		1 well site; 5200 ft lined irrigation ditch; 20 power poles	\bigcirc	$\begin{aligned} & 5200 \text { ft lined } \\ & \text { inigation ditch; } 20 \\ & \text { power poles } \end{aligned}$
Recommendation							mended Alignment impacts to existing d uses to south

Peoria Avenue Corridor Improvement Study J ackrabbit Trail Parkway to Dysart Road

DRAFT EVALUATION MATRIX

Criteria		Segment 5: Cotton Lane to Sarival Road					
		Alternative 1 (on section line)		Alternative 2 (shift 55' south)		$\begin{gathered} \text { Alternative } 3 \\ \text { (shift 55' north) } \end{gathered}$	
Right-of-way Considerations		\bigcirc	543k SF	\bigcirc	453k SF	\bigcirc	457k SF
			\bigcirc	\bigcirc	Lower cost to south	-	Highest cost to north
Compatibility with Existing Developments		\bigcirc	Balances impacts	\bigcirc	No known impacts	\bigcirc	Impacts property to the notth
Compatibility with Planned Future Developments		\bigcirc	Least impact to all properties	\bigcirc	Balances impacts	\bigcirc	Greatest impact to most properties
Compatibility with Existing and Planned Roadway Improvements		\bigcirc	Most compatible w/ ADOT's plans for SR303L interchange		\bigcirc		\bigcirc
Engineering Complexity \& Constructability			\bigcirc		\bigcirc		\bigcirc
Public Acceptability							
Local Agency Support							
Drainage/Flood Control Considerations		\bigcirc	Minimal impacts	\bigcirc	Minimal impacts	\bigcirc	Minimal impacts
Environmental Considerations	Socioeconomic	\bigcirc	Minor impacts to existing land uses	\bigcirc	Minor impacts to existing land uses	\bigcirc	Minor impacts to existing land uses
	Physical \& Natural	\bigcirc	Minor impacts to farmlands	\bigcirc	Minor impacts to farmlands	\bigcirc	Minor impacts to farmlands
	Cultural	\bigcirc	Impacts to irrigation ditch	\bigcirc	Impacts to irrigation ditch	\bigcirc	No known impacts
Utility Considerations			2 well sites; 4300 ft lined irrigation ditch; 14 power poles	-	2 well sites; 4300 ft lined imigation ditch; 6 power poles	\bigcirc	8 power poles
Recommendations		Reco tr con tra min	nded Alignment w/ n at west end ble with SR303 \& impacts to wells mpacts to well				

DRAFT EVALUATION MATRIX

Criteria		Segment 6: Sarival Road to Reems Road					
		Alternative 1 (on section line)		Alternative 2 (shift 15' south)		Alternative 3 (shift 5' north)	
Right-of-way Considerations		\bigcirc	182k SF	\bigcirc	182k SF	\bigcirc	182k SF
			\bigcirc		\bigcirc		Greatest impact to existing and planned developments in right of-way
Compatibility with Existing Developments		\bigcirc	Balances impacts to both sides	\bigcirc	Minor impacts to south side	\bigcirc	Minor impacts to noth side side
Compatibility with Planned Future Developments		\bigcirc	Minor impact to future development to north	\bigcirc	No known future development to south	\bigcirc	Impacts future development to north
Compatibility with Existing and Planned Roadway Improvements		\bigcirc	Most compatible with existing street and Reems Rd intersection	\bigcirc	Not compatible with existing street and Reems Rd intersection	\bigcirc	$\begin{aligned} & \text { Not compatible with } \\ & \text { existing street but more } \\ & \text { compatible than \#2 } \\ & \text { with Reems Rd } \\ & \text { intersection } \\ & \hline \end{aligned}$
Engineering Complexity \& Constructability			\bigcirc		\bigcirc		\bigcirc
Public Acceptability							
Local Agency Support							
Drainage/Flood Control Considerations		\bigcirc	Least impact to existing drainage facilities	\bigcirc	Minor impacts to existing drainage facilities	\bigcirc	Minor impacts to existing drainage facilities
Environmental Considerations	Socioeconomic	\bigcirc	Minimal impact	\bigcirc	Minimal impact	\bigcirc	Minimal impact
	Physical \& Natural	\bigcirc	Minimal impact	\bigcirc	Minimal impact	\bigcirc	Minimal impact
	Cultural	\bigcirc	No known impact	\bigcirc	No known impact	\bigcirc	No known impact
Utility Considerations		\bigcirc	No known impacts to irrigation or power lines	\bigcirc	Potential relocation of underground irrigation facilities	\bigcirc	No known impacts to irrigation or power lines
Recommendations			mended Alignments impacts and scores drainage and existing pment compatibility				

Peoria Avenue Corridor Improvement Study J ackrabbit Trail Parkway to Dysart Road

DRAFT EVALUATION MATRIX

Criteria		Segment 7: Reems Road to Bullard Ave					
		Alternative 1 (on section line)		Alternative 2 (shift 5' south)		Alternative 3 (shift 30' north)	
Right-of-way Considerations		\bigcirc	227k SF	\bigcirc	227 k SF	\bigcirc	224 kF
			\bigcirc		\bigcirc	\bigcirc	Higher cost likely to north; encroachment into residential lots
Compatibility with Existing Developments		\bigcirc	Balances impacts	\bigcirc	Balances impacts	\bigcirc	$\begin{gathered} \text { All existing } \\ \text { development to the } \\ \text { north } \end{gathered}$
Compatibility with Planned Future Developments		\bigcirc	Balances impacts to both sides	\bigcirc	$\begin{aligned} & \text { No future } \\ & \text { development plans } \\ & \text { to the south } \end{aligned}$		All future development plans to the north
Compatibility with Existing and Planned Roadway Improvements		\bigcirc	Reems Road improved to full street section; centered on section line		\bigcirc		\bigcirc
Engineering Complexity \& Constructability			\bigcirc		\bigcirc		\bigcirc
Public Acceptability							
Local Agency Support							
Drainage/Flood Control Considerations		\bigcirc	No known impacts	\bigcirc	No known impacts	\bigcirc	No known impacts
Environmental Considerations	Socioeconomic	\bigcirc	Impacts to agriculture	\bigcirc	Impacts to agriculture	\bigcirc	Impacts to private property
	Physical \& Natural		Potential impact to farms and habitat	\bigcirc	Potential impact to farms and habitat	\bigcirc	Potential impact to habitat
	Cultural	\bigcirc	Impacts to irrigation ditch	\bigcirc	Impacts to imiggation ditch	\bigcirc	No known impacts
Utility Considerations			5 well sites; 4500 ft lined irrigation ditch; 16 power poles	\bigcirc	5 well sites; 4500 ft lined irrigation ditch	\bigcirc	3 well sites; 16 power poles
Recommendations						Rection	mended Alignment with at west end and east id minimize impacts to acilities. Low scores due pacts at west end

DRAFT EVALUATION MATRIX

Criteria		Segment 8: Bullard Ave to Litchfield Rd					
		Alternative 1 (on section line)		Alternative 2 (shift 15' south)		Alternative 3 (shift 30' north)	
Right-of-way Considerations		\bigcirc	235 k SF	\bigcirc	235 k SF	\bigcirc	233 k S
			\bigcirc	\bigcirc	Highest cost likely to south		\bigcirc
Compatibility with Existing Developments		\bigcirc	Balances impacts	\bigcirc	$\begin{aligned} & \text { Impacts land uses to } \\ & \text { south } \end{aligned}$	\bigcirc	Impacts land uses to north
Compatibility with Planned Future Developments		\bigcirc	Minor impacts to future development	\bigcirc	No future development to south	-	Impacts to future development to north
Compatibility with Existing and Planned Roadway Improvements		\bigcirc	Litchfield and Bullard intersections fully mproved; centered on section line		\bigcirc		\bigcirc
Engineering Complexity \& Constructability			\bigcirc		\bigcirc		\bigcirc
Public Acceptability							
Local Agency Support							
Drainage/Flood Control Considerations		\bigcirc	Minor impacts to existing drainage facilities	\bigcirc	Least impacts to existing drainage facilities	\bigcirc	Most impacts to existing drainage facilities (channel and box culverts)
Environmental Considerations	Socioeconomic	\bigcirc	Balanced impacts	\bigcirc	Impacts to private property lots	\bigcirc	No known impacts
	Physical \& Natural	\bigcirc	Balanced impacts	\bigcirc	Greatest impact to farmland and potential habitat areas	\bigcirc	No known impacts
	Cultural	\bigcirc	No known impacts	\bigcirc	No known impacts	\bigcirc	No known impacts
Utility Considerations		\bigcirc	2 well sites	\bigcirc	4 well sites	\bigcirc	No well sites impacted
Recommendations			mended Alignment impacts and scores an \#3 in drainage and ting development compatibility				

PEORIA AVENUE CORRIDOR IMPROVEMENT STUDY
 Jackrabbit Trail Parkway to Dysart Road

Legend

Study Area Boundary	- , Railroad	Alignment Alternative
qumuma Peoria Avenue Section Line	General Floodplain Limits	Shift North
듭 Proposed Freeway	Drainage Structure (canal, dam)	Shift South
-= Proposed Parkway	\sim Stream/Wash	Symmetric on Section Line
Road		Transition Area

Peoria avenue Corridor improvement Study Jackrabbit Trail Parkway to Dysart Road

MCDOT Contract No. 2010-005
Work Order No. TT005
MEETING MINUTES

Date:

To:
February 17, 2011
Mitch Wagner, Project Manager, MCDO

Re: Peoria Avenue Corridor Improvement Study
Subject: February 15, 2011 TAC Meeting \#5
Attendees: See attached sign-in sheet
I. Introductions

See attached sign-in sheet
II. Meeting Purpose

The purpose of this meeting was to provide an update on the project status; discuss the alternatives evaluation process, design features of the recommended alignment and prel iminary implementation plan; dis cuss the next steps in the stu dy; and to gather input/feedback from the TAC
III. Study Purpose and Objectives

The purpose of this study is to establish the facility type, number of lanes, right-ofway, an d cor ridor alignment r equired to ac commodate the ultimate facility classification and safely accommodate forecast travel demands for Peoria Avenue. This study will result in a future "footprint" of the corridor, implementation timeframe, and phasing of identified roadway improvements.

Study o bjectives include assessing the strategic issues a nd potential impacts by existing and proposed developments, drainage features, utilities, and environmenta issues. Based on this information, the study will develop and evaluate conceptual alternative alignments, as well as identify a pr eferred alignment. With a pr eferred alignment, sp ecific characteristics of the corridor will be further de fined and an implementation plan developedtoc arry o ut corridor improvements. Most
mportantly, the st udy aims at g aining co nsensus amongst par tners to ac hieve design consistency and preserve the corridor for future implementation.

IV. Study Area

The st udy area extends approximately 7.5 miles, from the future Jackrabbit Trail Parkway alignment to Dysart Road including a two-mile wide area, centered on Peoria Avenue. M ultiple jurisdictions have control over the land in this area. The Peoria Avenue section line provides the boundary between the City of Surprise and City of Gl endale planning areas, with portions of the c orridor to the far west belonging to Maricopa County, and portions to the east belonging to the City of El Mirage. Most of the area within the Surprise and El Mirage municipal planning areas (MPAs) is incorporated, whereas only a small parcel adjacent to Peoria Avenue and SR 303L is annexed by Glendale.

White Tank Mountain Regional Park sits to the west of the study area and Luke Air Force Base to the south. M cMicken Dam and the Beardsley Canal constitute two major drainage structures, both located at the western end of the study area. The SR 303L corridor will be upgraded to a freeway, with a connection to Peoria Avenue. The BNSF Ennis Spur also intersects the corridor between Litchfield and Dys art Roads.
v. Study Process

The study pr ocess involves a three st ep involvement pl an, w hich le ads to the preparation of a ph ased im plementation pl an of the sel ected al ternative. This includes:

1. Scoping and development of a stakeholder database to identify corridor issues and needs;
2. Development, evaluation, and refinement of alternatives with stakeholde input; and
Development of an implementation plan with the stakeholders whereby major design features are finalized.
VI. Study Milestones

Major milestones are as follows

Phase 1

- Project kick-off and study initiation
- Data collection phase
- TAC meeting \#1
- Public meeting \#1 (scoping)
- TAC meeting \#2

Phase 2

- TAC meeting \#3
- TAC meeting \#4
- Public meeting \#2 (alternatives)
- TAC meeting \#5
- Public meeting \#3 (pref. alternative)
- Draft final report

July 2010 (completed) July - September 2010 (completed) August 17, 2010 (completed) September 20, 2010 (completed) October 12, 2010 (completed)

November 9, 2010 (cancelled) December 14, 2010 (completed) January 12, 2011 (completed) February 15, 2010
March 16, 2011
April 2011

- Final report submission

VII. Technical Memorandums

Study technical memorandums and their status are as follows:

1. Existing and Future Corridor Conditions - completed
2. Environmental Overview - completed
. Drainage Overview - completed
. Candidate Alternative Alignments and Evaluation - draft distributed for review
3. Preferred Alignment - draft anticipated in March
4. Public and Stakeholder Participation - draft anticipated in April
5. Traffic Analysis - completed
VIII. Alternatives Evaluation Proces

The alternatives evaluation process began with the Project Team (composed of a multidisciplinary c onsultant group) conducting the first r ound ev aluation, whi ch determined a pr eliminary recommendation for the cor ridor al ignment. Thi swas followed by a ser ies of stakeholder m eetings to r efine t he evaluation a nd recommendation, and to gain agency and public input and comments as follows:

- TAC \#4 and follow-up comments (December 2010)
- Public Open House (January 2011
- FCDMC meeting (January 2011)
- City of Surprise meeting (January 2011
- TAC \#5 (February 2011)
- Prasada/City of Surprise meeting (TBD)

Alternative Alignment Options

Approximately 30 people w ere in at tendance at the J anuary 2011 P ublic Op en House, of which the majority were residents of or interested in the one-mile section between Citrus Road and Cotton Lane. Most attendees were interested in seeing not int Arested in any additional capacity improvements th at might increase traffic along th ecor ridor. Ther efore a tendees at $\mathrm{the} p$ ublic m e ting su gested an alternative alignment of Peoria Avenue that would shift the roadway approximately one-half mile to the north, west of Cotton Lane, continuing west to an intersection with Perryville Road. As a terminus at Perryville Road does not provide connectivity to the western end of the study area, the Project Team developed a series of options to the western end of the study area, the Project Team developed a series of options
to complete the s uggested re alignment, attempting to provide corridor continuity (illustrated in h andout m ap en titled "West P eoria A venue Al ignment O ptions"). These options include:

- Option A (blue): Continue the northern shift to the west on the half-mile alignment
- Option B (green): Continue to the west, but swing to the south to connect back to the Peoria Avenue section line to provide a connection to Jackrabbit Trail Parkway.
- Option C (yellow): Provide a continuation of the existing Peoria Avenue to the west along the Peoria Avenue section line, beginning at Perryville Road This option would result in offset intersections located one-half mile apart.
- Option D (red + yellow): Modify Option C to provide a connection from the new P eoria A venue to t he old P eoria Avenue thr ough th e Pra sada community.

While all of the abovementioned options would shift the corridor to the north, away from existing land uses, they each cause separate impacts to the corridor.

- The shared link (shifted half-mile north within the Citrus to Cotton segment) could disrupt existing plans for the Prasada and Zanjero Trails communities.
- Option A requires crossing McMicken Dam to provide the through connection to Jackrabbit Trail Parkway, which may be seen as a fatal flaw by FCDMC.
- Option B could have significant impacts on the Zanjero Trails development, which already has a preliminary plat on file.
- Option C does not provide a continuous east-west facility, and will require the half-mile segment of Perryville Road north of Peoria Avenue to serve as a connector between the two facilities.
- Option D, like Option C, does not provide a continuous east-west facility, although it r equires fewer i ntersection turn m ovements. I n the fut ure, however, the operational capacity at the intersection may not be sufficient
IX. Recommended Alignment

While the recommended alignment has changed slightly from what was presented at the fourth TAC meeting due to subsequent stakeholder meetings, it is generally very similar. The "Recommended Alignment" map in the meeting handouts illustrates this by segment, with the purple sh ading re presenting im provements symmetric about the s ection line, t urquoise s hading re presenting an alignment shift to the nor th, orange s hading re presenting an alignment shift to the south, and yel low shading representing transtion areas to form a c ontinuous alignment. A summary of the recommendatill follo alignment is still recommended west of Cotton Lane, de spite alternative alignment options explored for the west portion of the corridor

- Segment 1, Jackrabbit Trail Parkway to the Beardsley Canal: Symmetric about section line.
- Segment 2, Beardsley Canal to Perryville Road: Symmetric about section line.
- Segment 3, Perryville Road to Citrus Road: Symmetric about section line, with transition area near Citrus Road to a shift north
- Segment 4, Citrus Road to Cotton Lane: Shift north. shift back to section line alignment.
Segment 6, Sarival Road to Reems Road: Symmetric about section line.
- Segment 7, Reems Road to Bullard Avenue: Symmetric about section line adjacent to existing development at Rancho Gabriela; slight shift north in the middle of the segment to av oid an existing well site on the so uth side of Peoria Avenue; transition west of Bullard Avenue to shift back to a se ction line alignment.
- Segment 8, Bullard Avenue to Litchfield Road: Symmetric about section line
- Segment 9, Litchfield Road to Dysart Road: Transition from section line alignment at both segment ends; shift south in the center of the segment to avoid existing development to the north.

X. Recommended Design Feature

The following des ign fe ature dis cussions will be ex plored in m ore de tail by the Project Team, but the initial concepts were identified to solicit stakeholder feedback. Typical Section
The City of Surprise, City of Glendale, MAG, and Maricopa County all identify Peoria Avenue as a six -lane arterial roadway. Cor ridor planning has been based on a 6lane roadway with 140 feet of right-of-way (RW), as this is the widest R/W footprin of all the participating jurisdictions and because Peoria Avenue forms the boundary between multiple entities. The existing R/W in the corridor is not consistent however varying between 33 feet of RW in undeveloped areas to 55 - to 68-foot dedications in developed se gments. Additionally, the o nly location with an exi sting full width roadway is just east of Perryville Road, and the R/W width does not conform to any jurisdiction's RN standards (no room for bicycle lane or shoulder, narrow median)
Because of the lack of corridor RN consistency, and varying requirements of each jurisdiction, the Project Team recommends using Maricopa County's principal arteria typical section (130 feet RNW) as the minimum R/W for future improvements. This is similar to the City of Glendale's requirements, but slightly narrower than Surprise's It is the best match to the existing R/W dedications and could be slightly varied to

This typical section, illustrated in the handout materials, includes 43.5 -foot curb-tocurb travel widths with a 14 -foot median. This leaves 14.5 feet between the roadway curb and R/W boundary on each side - a buffer zone which could be reduced slightly to accommodate improvements in existing developed corridor segments.

Access Control - Driveway Spacing
The City of Surprise requires the greatest spacing between driveways (200 to 300 feet); the City of Glendale requires the least spacing (150 feet); and Maricopa County requires either 165 feet or 300 feet - depending on the traffic volume. The Project Team recommends using the county's standards, as they are the most moderate and flexible. As Pe oria Av enue is generally planned f or adj acent res identia development, there will not likely be many new driveways constructed along the corridor, minimizing potential conflicts.

Other Access Control Technique

Additional ac cess control t echniques th at ar e r ecommended al ong the cor rido include:

- No on-street parking

Raised median
Full median breaks at quarter-mile spacing

- Frontage road (south side) between Citrus Road and Cotton Lane

Drainage
The ultimate vision for Peoria Avenue is to retain and continue the drainage channel on the north side of the corridor, with future outfalls to the SR 303L, Reems, and Ennis channels. The corridor will not have storm drain trunk lines. The roadway drainage will be conveyed to the northern channel and appropriate outfall locations. drainage im provements will be im plemented as development occurs on the north side of the corridor, although interim improvements may be required at spot locations to remedy existing issues (e.g., Litchfield Road and Sarival Road intersections with Peoria Avenue).
XI. Implementation Plan

The implementation plan developed as part of this project is intended to be used to preserve corridor R/W, as construction of improvements will not likely be completed in the near-term, but rather by developers as the cor ridor builds out. H owever, interim improvements may need to be constructed to ensure corridor functionality. Therefore, the implementation plan (map in handout materials) splits up the corridor according to implementation responsibilities, which generally follow a similar phasing plan.
The colored shading represents:

- Turquoise: Improvements currently programmed or planned
- Purple: Future improvements by develope
- Orange: Future mid-term improvements by city/county
- Yellow: Future long-term improvements by city/county

$0-5$ Years

The turquoise-shaded improvements will likely occur in the near-term, within the next five years. These two areas include: (1) improvements at the SR 303L interchange to be completed by ADOT when SR 303L is upgraded to a freeway facility, and (2) completion of the north half street between Sarival and Reems Roads that was not constructed when the Copper Canyon Ranch community was developed Although shaded orange as a mid-term improvement to be completed by the city/county, two other improvements elements may need to be expedited to respond to existing issues: (1) acquire RW and construct a two-lane roadway between Citrus Road and Cotton L ane, an d (2) construct dr ainage im provements at Litchfield an d Sar ival Roads.

5-15 Years
Generally, the remainder of the orange segments (those to be implemented by the city/county), fall into the mid-term ti meframe for i mplementation a nd would be required to pr ovide a $4-\mathrm{I}$ ane facility by the 2025-2030 timeframe. M any of these improvement areas are currently built out and not envisioned to redevelop before 2030. These include

- South half-street and frontage road between Citrus Road and Cotton Lan
- Cotton Lane intersection (RM acquisition required to implement the connection from the segment to the west - s hifted north. Th e city/county would likely need to be involved, as this requires coordination with an existing andowner)
- Reems Road intersection
- South half-street between Bullard Avenue and Litchfield Road (existing residential development)
- North half-street near Ennis Spur (existing commercial development)

Assuming com pletion of the segments to be im plemented by d evelopment, al ong with the completion of these improvements within the next 15 years, a continuous 4 lane facility (at a minimum) would be provided by the 2025-2030 timeframe.

More than 15 Years
The y ellow-shaded im provements are lon g-term efforts to bring conformity to t he corridor or widen to the ultimate 6 -lane footprint. Areas where these improvements could occur, with participating by the city/county, include.

Perryville Road to Citrus Road

- Sarival Road to Reems Road
- Bullard Road to Litchfield Road
- Litchfield Road to Dysart Road
XII. Next Steps

Key milestones and next steps include

- TAC comments on Technical Memorandum \#4 due on February 25, 2011.

Draft Technical Memorandum \#5 to be distributed in March.
Third public open house will be conducted in March

- Draft final report to be distributed in April.
XIII. Discussion

Issues raised regarding the alternate alignment options for the west portion of the corridor include:

- An element of the Maricopa County trail system exists parallel to McMicken Dam. Ch oosing an alternate alignment option that crosses this trail could raise $6(f)$ issues if federal funds were used to construct the trail.
- The FCDMC will coordinate with the dam safety division regarding the feasibility of considering an alignment option which crosses over McMicken Dam.

During the discussion of the implementation plan, it was noted that the map should be changed to reflect a piece of land owned by the City of Phoenix on the south side of the cor ridor between Le flaidd R oad by the E nnis Spur Cur rently, t be of the cor ridor between Lit chfield R oad a nd the E nnis Spur. Cur rently, t he this half-street. In actuality, the City plans to maintain this segment as permanent open space to protect Luke Air Force Base. Therefore any required improvements will likely be taken on by the city/county, and therefore the sh ading should be changed to orange.

Feedback from the TAC was requested on the realignment options at the west end the design f eatures (typical section, ac cess control, a nd dr ainage), a nd the implementation plan

Attachments:

- Meeting Sign-In Shee
- Meeting Agenda
- Power Point Slides
- Recommended Alternative Typical Section
- West Peoria Avenue Alignment Options map
- Recommended Alignment map
- Implementation Plan map

Peoria Avenue: Jackrabbit Trail Parkway to Dysart Road, Corridor Improvement Study TAC Sign-In Sheet

Date: Feb. 15, 2011

Initials	Name	Organization	Telephone	Postal Address	E.mal Address
	Beastey, Steve	ADOT VPM	(602) $712 \cdot 7645$	1611 W. Jackson, MD EM01 Phoenix, AZ 85007	Stessemmazde
	Mannew, veveret	ADOTVPM	(602)712-3062	1611 W. Jackson, MD EM01 Phoenix, AZ 85007	Yrateremezatice
	Dewit, Mike	APS	(602) 493.4448	$\begin{aligned} & \text { P.O. Box } 53933 \\ & \text { Ath Mail } \\ & \text { Phoentiono } 4030 \end{aligned}$	mechar deatrous cem
	Richards, Paul	APS	(602) 377-6186	$\begin{aligned} & 2043 \text { W. Cheryl Drive } \\ & \text { M.S. } 3040 \\ & \text { Phoenix } 85021 \end{aligned}$	Pau Ritardstans can
	Warnecke, Dana	AZ Game \& Fish	(602) 942-3000	5000 W. Carefree Highway Phoenix, AZ 85006	dramestegraytrov:
	Taylor, Gortion	Az State Land Dept.	(602) 542 2-2647	1616 W. Adams Street Phoenix 85007	neversirandza
	Calvert, Lance	City of El Mirage	(623) 876-2971	12145 NW Grand Avenue EI Mirage, AZ 85335	
$B<A$	Adabala, Purab	City of Glendale	(623) 930-2926	5800 W. Glenn Drive \#315 Glendale 85301	vesoberayersex con
	Lemka, Chis	City of Glendale	(623) 930-2940	5800 W. Glenn Drive \#315 Glendale 85301	cimmeanetrisaz Com
	Mascia, Nick	City f Supise	(623) 222.6140	16000 N. Civic Center Plaza Surprise, AZ 85374	nictues mascriasumseazare
,	Savage, Karen	Cityo Suprise	(623) 222 -6132	16000 N. Civic Cenler Plaza	kren savaeas suriseazas:
	Wollie, Verin	Dysart School Distsict	(623) 876-7052	15802 N. Parkview Place Surprise, AZ 85374	Ven Woteracusan or
$P B L$	Lokey, Burke	Fcomc	${ }_{(6027) 502-0867}$	2801 W. Durango Street Phoenix 85009	
	Oubsky Bob	Luke Aif Force Base	(623) 855 -6195	56 Fighter Wing Community Initiatives 14185 W. Falcon Street Luke Air Force Base 8530	tobent cosbswivive imm
	Strow, Tim	MAG	(602) 452.5055	302 N. First Avenue Phoenix 85003	Itrowama materasage
	Holm, Mat	Maricopa County P8D	(602) $500 \cdot 7162$	501 N. 44th Street Phoenix 85008	
	Coover, Chis	Maricopa County Parks \& Recreation	(602) 500.8719	234 N. Central Avenue, Suite 6400 Phoenix 85004	ccovereamal maticosa ovx
	Urguiza, Oney	Maricopa Water District	${ }_{1623)}^{564-8266}$	PO Box 900 Waddell, AZ 85355	oremamearem
	Valenzuela, Veronica	Maricopa Waler District	${ }^{(623)} 546$-8266	PO Box 900 Waddell, AZ 85355	verencteramidecem
	Lacey, Denise	$\begin{gathered} \text { MCDOT } \\ \text { Engineering \& Planning } \end{gathered}$	${ }^{(602)} 500.6172$	2901 W. Durango Street Phoenix 85009	
	Oiver. Tim	$\underset{\substack{\text { MCDOT } \\ \text { Engineering \& Planning }}}{\text { and }}$	${ }^{(602)} 500-3994$	2901 W. Durango Street Phoenix 85009	Timolverammal mancoria 0 ov
	Wagner, Mitch	$\begin{gathered} \text { MCDOT } \\ \text { Engineering \& Planning } \end{gathered}$	(602) 506 -8054	2901 W. Durango Street Phoenix 85009	
	Pinto. Joe	$\begin{gathered} \text { MCDOT } \\ \text { Environmental } \end{gathered}$	${ }^{(602) ~ 500-8068 ~}$	2901 W. Durango Street	
	Kog. Michele	$\begin{gathered} \text { Mcoot } \\ \text { Engineering \& Planning } \end{gathered}$	(602) 500.8799	2902 W. Durango Street Phoenix 85009	
	Crowe, Robera	$\begin{gathered} \text { MCDOT } \\ \text { Public Information Office } \end{gathered}$	${ }^{(602)} 500$-8003	2901 W. Durango Street Phoenix 85009	Reveractoseatul marcepa gox
	Pasciak, Gary	$\begin{gathered} \text { MCDOT } \\ \text { Engineering \& Planning } \end{gathered}$	(602) 506 -8790	2902 W. Durango Street Phoenix 85009	Gay Pastax - Mcoort

Peoria Avenue: Jackrabbit Trail Parkway to Dysart Road, Corridor Improvement Study TAC Sign-In Sheet

Date: Feb. 15, 2011

Initals	Name	Organization	Telephone	Postal Address	E.mal Address
	Scoll, Gary	MCDOT Real Estate	(602) 500-4638	2801 W, Durango Street	Ganscumama marcera mix
	WWison, Mike	MCDOT	(502) 506.4706	2801 W. Durango Street	mixamuthancons
$8 \times$	Sargent, Jim	$\underset{\substack{\text { Mcoot } \\ \text { Trafic }}}{\substack{c}}$	(602) 506.6878	2901 W. Durango Street Phoenix 85009	
	Swat. Nicolass		${ }^{(602) ~ 506-0599}$	2901 W. Durango Street	ncecessmantimal mancosater
	Butch. Wayne	MCDOT Unilities	(602) 566.6603	2901 W. Durango Street Phoenix 85009	
$K(n)$	Davisson, Hugh	$\begin{gathered} \text { MCDOT } \\ \text { Cultural Resources } \end{gathered}$	(602) 506-8082	2901 W. Durango Street Phoenix 85009	
	Sabatio. Mike	$\begin{gathered} \text { MCDOT } \\ \text { Engineering \& Planning } \end{gathered}$	(602) 506.8628	2901 W. Durargo Street	
	Heinichich, Chad	$\begin{gathered} \text { MCDOT } \\ \text { integgovenmenal Reations } \end{gathered}$	(602) 500-1630	2901 W. Durango Street Phoenix 85009	
	Morast. John	MCDOT Operations \& Maintainance	(602) 500.5419	2901 W. Durango Street Phoenix 85009	
	Katan. Al	$\begin{aligned} & \text { PMO }{ }_{8}^{\text {Mconot }} \text { Contuction } \end{aligned}$	(602) 500.4618	2901 W. Durango Street Phoenix 85009	
PN	Nies. Ryan	мсоот Uuities	(602) 506.8529	2901 W. Durango Street Phoenix 85009	
	Askew-Ross, Brooke	GPE Management Serices	(480) 423-7910	7201 E. Camelback Road, Suite 250 Scottsdale, AZ 85251	Bashewtrossionpel com
	Maguire, David	Land Solutions fic.	(602) 8441.1945	$\begin{aligned} & 2051 \text { W. Northern Avenue, } \\ & \text { Suite } 102 \\ & \text { Phoenix } 85021 \end{aligned}$	dmaurequandsoutionsinc.com
$R B$	Brag. Rodney	AECOM	(602) $337-2617$	2777 E. Camelback Rd Suite 200, Phoenix AZ 85016	redrey branoaacomicom
P	Pfeiffer, Jackie	AECOM	(602) $337-2584$	2777 E. Camelback Rd Suite 200, Phoenix AZ 85016	lackn Piefiferoascom com
J064	Guana, Javier	Andes Engineering	(480) 272.6258	1811 N. Tatum Blvo Suite 3031, Phoenix, AZ 85028	cuanearases us

Peoria avenue Corridor Improvement Study
JACKRABBIT TRAIL PARKWAY TO DYSART ROAD MCDOT Contract No. 2010-005 Work Order No. TT005

Technical Advisory Committee Meeting Agenda
February 15, 2011, 9:00 AM
-I ntroductions

- Meeting Purpose
- Project Status Update
- Overview of Alternative Evaluation
- Recommended Alignment
- Recommended Design Features
- Implementation Plan
- Next Steps
- Open Discussion
- Adj ourn

Peoria Avenue
 Corridor Improvement Study

Technical Advisory Committee Meeting \#5

February 15, 2011

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Meeting Agenda

- Introductions
- Meeting Purpose
- Project Status Update
- Overview of Alternative Evaluation
- Recommended Alignment
- Recommended Design Features

Meeting Agenda

- Implementation Plan
- Next Steps
- Open Discussion
- Adjourn

Peoria Avenue Corridor Improvement Study

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Study Purpose

- Establish the facility type, number of lanes, right-ofway, and corridor alignment required to safely accommodate forecast travel demands
- Provide a future "footprint" of the comidor, implementation timeframe \& phasing of the identified roadway improvements

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Peoria Avenue Corridor Improvement Study

Study Area

Study Process

AECOM

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Study Milestones Contd.

- TAC Meeting \#3	Nov 9, 2010
- TAC Meeting \#4	Dec 14, 2010
- Public Meeting \#2 (Alternatives)	Jan 18, 2011
- TAC Meeting \#5	Feb 15, 2011
- Public Meeting \#3 (Pref. Alt.)	March 16, 2011
- Draft Final Report	April 2011
- Final Report Submission	June 2011

Peoria Avenue Corridor Improvement Study

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Alternative Evaluation Process

- TAC Meeting \#4 - Dec. 2010
- TAC comments due in Dec. 2010
- Public Meeting - J an. 2011
- FCDMC Meeting - J an. 2011
- City of Surprise Meeting - J an. 2011
- TAC Meeting \#5 - Feb. 2011
- Prasada/City of Surprise Meeting - TBD

6. Public \& Stakeholder Participation
7. Traffic Analysis - completed

Maricopa County Department of Transportation Peoria Avenue Corridor Improvement Study

Jackrabbit Trail to Cotton Lane

PEORIA AVENUE CORRIDOR IMPROVEMENT STUDY Jackrabbit Trail Parkway to Dysart Road

West Peoria Avenue Alignment Options
$\stackrel{a r c s}{a s}+\cdots$
Leme

AECOM
Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Jackrabbit Trail to Cotton Lane

- All options would shift corridor to north, away from existing land uses
- Options A \& B would have substantial impacts to the planned Zanjero Trails and Prasada developments
- Option A would cross McMicken Dam
- Option C (with offset intersections) would not provide route continuity
- Option D would likely experience operational issues due to heavy turn movements at intersection between realigned Peoria Ave and existing Peoria Ave

```
Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study
```

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Recommended Alignment

Recommended Alternative

Typical Section

- City of Surprise, City of Glendale, MAG, and Maricopa County all identify 6-Lane Arterial
- Corridor planning based on 6 lanes in 140^{\prime} R/W
- Boundary between agencies
- Existing R/W varies
- Existing Peoria Ave section east of Perryville Rd

Recommended Alternative

Typical Section

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Recommended Alternative

 Access Control - Driveway Spacing- Boundary between agencies
- City of Surprise - most conservative
- City of Glendale - least conservative
- MCDOT - moderate
- Recommendation - MCDOT
,

Peoria Avenue Corridor Improvement Study

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Recommended Alternative

 Other Access Control Techniques- No on-street parking
- Raised median
- Full median breaks at $1 / 4$ mile spacing
- Frontage road (south side) from Citrus Road to Cotton Lane

Recommended Alternative

Drainage

- Ultimate vision - channel along north side outfall to SR 303L, Reems, and Ennis channels
- No storm drain trunk line(s)
- Implemented as development occurs on north side
- Interim improvements at Litchfield Rd and Sarival Rd

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Implementation Plan

- Majority of improvements by developers, as development occurs
- Coordination with developers to preserve R/W corridor

Maricopa County Department of Transportation

Implementation Plan

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Implementation Plan

$0-5$ years

- Complete planned/programmed improvements
- Acquire R/W and construct 2-lane roadway between Citrus Rd and Cotton Ln
- Drainage improvements at Litchfield Rd \& Sarival Rd

5-15 years

- South half-street and frontage road between Citrus Road and Cotton Lane
- Cotton Lane intersection
- Reems Road intersection
- South half-street between Bullard Ave and Litchfield Rd
- North half-street near Ennis Spur

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Next Steps

- TAC comments on Draft TM \#4 due on February $25^{\text {th }}$
- Distribute Draft TM \#5 in March
- Conduct public open house \#3 in March
- Distribute Draft Report in April

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Maricopa County Department of Transportation
Peoria Avenue Corridor Improvement Study

Open Discussion

- Alternatives \& evaluation process
- Recommended alignment
- Recommended typical section \& access control
- Implementation plan
- Other stakeholder concems

Next TAC Meeting

PEORIA AVENUE CORRIDOR IM PROVEM ENT STUDY
Jackrabbit Trail Parkway to Dysart Road

West Peoria Avenue Alignment Options
$0,0.125,0.25$
$\stackrel{0.25}{M_{i} \text { iles }}$

Legend

- Proposed Parkway Alignment Options
\sim Stream/Wash
\longrightarrow Option A

West Peoria Avenue Alignment Change*
\longrightarrow Option B
Option C
\longrightarrow Option D
*NOTE: Alignment illustrated in white, beginning at Peoria Avenue/Cotton Lane, is common to all subsequent alignment options.

PEORIA AVENUE CORRIDOR IMPROVEMENT STUDY
 Jackrabbit Trail Parkway to Dysart Road

Legend

- Study Area Bounda	- Railroad	Alignment Alternative
mantra Peoria Avenue Section Line	General Floodplain Limits	Shift North
- ${ }^{\text {- }}$ Proposed Freeway	Drainage Structure (canal, dam)	Shift South
- Proposed Parkway	$\sim \sim$ Stream/Wash	Symmetric on Section Line
Road		Transition Area

PEORIA AVENUE CORRIDOR IM PROVEM ENT STUDY Jackrabbit Trail Parkway to Dysart Road

Appendix B
Public Meeting Materials

MARICOPA COUNTY DEPARTMENT OF TRANSPORTATION

We Need Your Input

 Peoria Avenue
Corridor Improvement Study

 Jackrabbit Trail Parkway to Dysart Road
Public "Scoping" Meeting

The Maricopa County Department of Transportation's (MCDOT) RightRoads Program, is conducting the first in a series of three public open house meetings to gather community input about potential improvements along an eight-mile section of Peoria Avenue from Jackrabbit Trail Parkway to Dysart Road. The goal of this study is to identify and establish the future roadway type, alignment, number of lanes and right-of-way requirements along the Peoria Avenue corridor to safely accommodate future traffic demand

Stop by anytime between 5:00 and 7:00 p.m. to speak with MCDOT project eam members. For more information, contact Mitch Wagner at (602) 506-8054 write to Wagner at: MCDOT, 2901 W. Durango Street, Phoenix, AZ 85009, or e-mail at: mitchwagner@mail.maricopa.gov or contact Roberta Crowe, Public Information Officer at (602) 506-8003.

Public Open House

Monday, September 20, 2010 5:00 p.m. to 7:00 p.m.
Shadow Ridge High School 0909 N. Perryville Road Surprise, AZ 85388 (at Peoria Avenue and Perryville Road)

Reasonable accommodations may be made available for people with disabilifies with a minimum 72-hour notice. For more information on such accommoda tions, contact Roberta Crowe at (602) 506-8003

Si desea recibir esta información en Español, favor llame (480) 350-9288 Con adviso de setenta y dos horas o más, es posible obtener plans reasonables para personas con discapacidades; lo mismo para representantes que hablan Español. Si quiere más informa ción, llame (480) 350-9288.

District 4 Supervisor, Max Wilson
www.modot.maricopa.gov

Right Road Right Time Right Cost

We Need Your Input \mid Public Open House
Peoria Avenue
Corridor Improvement Study Corridor Improvement Study
Jackrabbit Trail Parkway to D.

 ///1//////1////4

- Arizona Republic
- Buckeye Valley News
- Surprise Independent
- West Valley View

Gaining consensus among the agencies and the public is critical to the success of the study and implementation of its recommendations to provide a safe and efficient roadway planned during the course of the study process. The first public meeting will be held to inform the public of the objectives of the study and provide area residents and other stakeholders with an opportunity to inform project team members about the study area issues and local transportation needs. This meeting will also provide the public an opportunity to provide feedback on the study purpose, goals, and objectives

The second (\#2) public input meeting will be held to provide the results of the issues and constraints evaluation criteria, present the conceptual alternative alignments, and gather input that will assist in the further development and evaluation of the candidate alternatives and the selection of the preferred alignment.
The third public input meeting will present the results of the candidate alternative evaluation process, present the preferred alignment, and gather input for use in the development of the final report. Your input during each phase of the study process is very important and a vita component of study development.

Maricopa County epartment of Transportation

PEORIA AVENUE

Jack Rabbit Trail Parkway to Dysart Road

"Scoping Phase"

Maricopa County Department of Transportation September 20, 2010

Background

The Peoria Avenue Corridor Improvement Study Jackrabbit Trail Parkway to Dysart Road) is one of a series of long-range transportation planning studies being conducted by the Maricopa County Department of Transportation (MCDOT). The City of Surprise, City of Glendale, City of all arterial roadway from Jackrabbit Trail Parkway to Dysart Road. The Maricopa Association of Governments (MAG) recently prepared the Interstate 10/Hassayampa Valley Transportation Framework Study (Hassayampa Framework Study) that identified a comprehensive roadway network to meet traffic demands for the build out of the area west of SR Loop 303. This long range egional transpork major arterial roads

The MAG Hassayampa Framework Study recommended an extension of Peoria Avenue westward from Perryville Road to the future Jackrabbit Trail Parkway, and identified Peoria Avenue as a major arterial roadway from the uture Jackrabbit Trail Parkway to Sarival Avenue.

This study will identify the preferred alignment and footprint" for the future Peoria Avenue between "footprint" for the future Peoria Avenue between facilitate future roadway implementation by developers and local jurisdictions, providing a cohesive transportation corridor, compatible with the City of Surprise, City of Glendale, City of El Mirage, Maricopa County, and MAG ransportation plans

Corridor Description

The Peoria Avenue Corridor study area includes the segment of Peoria Avenue between the future Jackrabbi area generally encompasses a two-mile wide corridor centered on the existing Peoria Avenue alignment

Today's Peoria Avenue generally consists of a two-lane oadway (one travel lane in each direction). Half-street mprovements have been constructed along the north side of Peoria Avenue adjacent to developments such as

Shadow Ridge High School, Greer Ranch subdivision, Copper Canyon Ranch subdivision and Skyway Business Park. Improvements on the south side of Peoria Avenue have been constructed adjacent to the Cortessa Avarue is ocated immediately east of Pectrvill of Peoria between Cortessa and Shadow Ridge High School.

The BNSF Railway operates a north-south railroad spu (Ennis Spur) that crosses Peoria Avenue between Litchfield and Dysart Roads. SR Loop 303 crosses the Peoria Avenue Corridor between Cotton Lane and Sarival Road.
The majority of the land in the study area is privately owned, with the exception of the westernmost limit (west of Beardsley Canal) which is owned by the Arizona State Land Department (ASLD). The majority of the existing land use is categorized as vacant (undeveloped) or agricultural. Several residential subdivisions are built or under development, which include three elementary schools, one middle school, and one high school. In several locations, existing homes not associated with to Peoria Avenue. Small clusters of industrial and commercial development are scattered throughout the eastern end of the study area

Based on the City of Surprise, City of Glendale, and City of El Mirage future land use planning, a majority of the vacant and agricultural land within the study area is envisioned to be converted to single-family residential housing and mixed-use developments in the future. It is will expand, but remain scattered throughout the study area.

Study Need

Today's land development and existing travel demands in the Peoria Avenue Corridor do not warrant a major new east/west high capacity roadway in the near-term; however, plans are underway to convert much of the rural and low density residential lands within the corrido to more intense land uses that will generate significan development and resulting travel demand warrant a
major east/west high capacity roadway in the long term.
To help make future roadway construction economically feasible, the planning process needs to begin now to dentify and protect long-term public right-of-way needs for the future roadway under ultimate "build-out" conditions.

Study Goals \& Objectives

This corridor study is the first step in the planning process and its primary goal is to aid the affected agencies and urisdictions in defining and protecting sufficient right-ofway for a continuous future Peoria Avenue Corridor tha will safely accommodate projected travel demand. In
general, the purpose of this Corridor Improvement Study general, the purpose of this Corridor Improvement Study is future "footprint" of the Peoria Avenue Corridor and a timeframe for the implementation of the recommended future roadway improvements.

To accomplish this, the main focus of this study is to investigate, map, and analyze corridor constraints and opportunities to arrive at a recommended corridor number of lanes, right-of-way needs, and general alignment for the Peoria Avenue Corridor that will be required to accommodate projected traffic growth and enhance safety. In cooperation with the City of Surprise he City of Glendale, and the City of El Mirage, the study will also determine design standards based upon future roadway jurisdiction (anticipated roadway annexation) and an implementation or construction phasing plan

The key objectives of this Corridor

Improvement Study are to:

- Define and assess the strategic issues within th
project study area
- Develop and evaluate conceptual alternative
alignments within the corridor study area
- Recommend a preferred alignment

Define the characteristics of the preferred
alignment
Develop consensus for the preferred alignment an implementation (recommended construction phasing) plan

Study Approach

he Peoria Avenue Corridor Improvement Study is carried out in two phases, a planning phase and an engineering phase.

Planning Phase
During the Planning Phase, general background nformation regarding the corridor is gathered and ocumented in reports needs along Peoria Avenue. During the Planning Phase, meetings are conducted with affected jurisdictions, agencies, stakeholders, and the impacted public to form a
road consensus of the overall needs and vision of the corridor.

Bed on identified needs, conceptual alternatives are developed and candidate alternatives are then evaluated for technical and environmental feasibility, public acceptability, and economic viability.

Engineering Phase

The Engineering Phase of the study begins following the The Engineering Phase of the study begins follo
selection of a preferred alternative. Preliminary engineering design plans, right-of-way requirements, and estimated construction costs will be prepared for longerm roadway design features. Priorities for roadway construction phasing along with policies and guidelines to preserve the intended regional function of the road are eveloped.
Preliminary plans and cost estimates will be presented during the final "Study Findings and Recommendations" during the final "Study Findings and Recommendation
(March 2011) public meeting to present the preferred (recommended) design alternative for Peoria Avenue.

Evaluation Criteria

Potential evaluation criteria used to compare the alternatives could include:

- Compatibility with Existing/Planned Development
- Transportation System Continuity
- Drainage Impacts
- Building/Property Impacts
- Cultural/Archaeological Impacts
- Wildlife Impacts
- Public Acceptabi
-

Study Stakeholders

Arizona Department of Transportation (ADOT) Arizona Game and Fish Departmen
Arizona State Land Department
BNSF Railway
Flood Control District of Maricopa County FCDMC)
Maricopa Association of Governments (MAG) Maricopa County Department of Transportation MCDOT)
Maricopa County Environmental Services Maricopa County Parks Department Maricopa County Planning and Development Maricopa Water District
City of Surprise
City of Glendale
City of El Mirage
Dysart Unified School District
Major Utility Provider
Impacted residents, businesses and property owners

Preliminary Key Issues and

Early in the study process, a preliminary list of study issues and potential challenges is compiled. This list expands as the study progresses and input is obtained from public participation.

- Establish future connections of Peoria Avenue to planned roadways such as Jackrabbit Trail Parkway
- Account for future planned connection to SR Loop 303
- Evaluation of drainage structures across major washes, canals and channels
- Evaluation of crossing of the BNSF Railroad

Maintain functional integrity of roadway through constrained areas

- Maximize use of existing roadway improvements along corridor to reduce costs
- Identify ultimate alignment and access management strategies

Consideration of environmenta

Study Schedule

Project Kick-off \& Study Initiation
PHASE I:
Data Collection/Issues Identification

July - September 2010
Public Input Meeting \# (Scoping Phase)

September 20, 2010
PHASE II:
ternative Development
And Evaluation
October 2010 - January 201
Public Input Meeting \#2
(Alternatives Analysis Phase) January 2011
Public Input Meeting \#3
Study Findings \&
Recommendations Phase) March 2011
Study Completion/Final
Report Submitted

PEORIA AVENUE
$\begin{gathered}\text { Jackrabbit Trail Parkway to Dysart Road } \\ \text { Corridor Improvement Study }\end{gathered}$
KEY STUDY OBJECTIVES

- Define and assess the strategic issues within the project study area
Develop and evaluate conceptual alternative alignments within the
corridor study area

Recommend a preferred alignment

- Define the characteristics of the preferred alignment
- Develop consensus for the preferred alignment
- Develop an implementation (recommended construction phasing) plan

STUDY NEED

- (3.5 million population projected at build-out between Wickenburg and Gila Bend -- MAG I-8/I-10 Hidden Valley and I-10/Hassayampa Valley Transportation Framework studies)
Preserve sufficient public right-of-way for a high capacity east/west
transportation corridor
Ensure future roadway compatibility with existing/future land uses and environmental conditions
Identify potential connectivity issues with other future planned

PEORIA AVENUE
J ackrabbit Trail Parkway to Dysart Road
Corridor Improvement Study

PEORIA AVENUE
J ackrabbit Trail Parkway to Dysart Road
Corridor Improvement Study
Right Road Right Time Right Cost

Interactive Study Process

DATABASE
 - Conduct Data Analysis

DEVELOP ALTERNATIVES WITH STAKEHOLDER INPUT
 Development

- Evaluate Alternatives
- Refine Alternatives

DEVELOP IMPLEMENTATION PLAN WITH STAKEHOLDERS

- Conceptual Concurrence on Recommended Alternative and Study Findings
- Finalize Major Design Features

IMPLEMENTATION PLAN

- Project Development
- Funding Plan
- Access Management Plan
Study Schedule
Project Kick-off \& Study Initiation

PHASE I:

PHASE II:

Alternative Development and Evaluation
Public Input Meeting \#2 (Alternatives Analysis Phase)
Public Input Meeting \#3 (Study Findings \& Recommendations Phase)
Study Completion/Final Report Submitted

> PEORIA AVENUE $\begin{gathered}\text { J ackrabbit Trail Parkway to Dysart Road } \\ \text { Corridor Improvement Study }\end{gathered}$ STUDY STAKEHOLDERS

Flood Control District of Maricopa County (FCDMC)

Maricopa Association of Governments (MAG)
Maricopa County Department of Transportation (MCDOT)

Maricopa County Environmental Services

Maricopa County Parks Department

Maricopa Water District
City of Surprise
City of Glendale
City of El Mirage
Dysart School District
Major Utility Providers

Land Developments

Affected Businesses, Property Owners and Residents
PEORIAANENE
ackrabbit Trail Parkway to Dysart Road
Corridor Improvement Study

EVALUATION CRITERIA

Potential evaluation criteria used to compare the alternatives could include: Compatibility with Existing/Planned Development Transportation System Continuity
Drainage Impacts
Irrigation Impacts

- Building/Property Impacts
Cultural/Archaeological Impacts
Wildlife Impacts
Public Acceptability
Cost

PRELIMINARY KEY ISSUES AND CHALLENGES

Early in the study process, a preliminary list of study issues and potential challenges is compiled. This list expands as the study progresses and input is obtained from public participation.
Establish future connections of Peoria Avenue to planned roadways such as Jackrabbit Trail Parkway
Account for future planned connection to SR Loop 303
Evaluation of drainage structures across major washes, canals and channels

Evaluation of crossing of the BNSF Railroad

Maintain functional integrity of roadway through constrained areas
Maximize use of existing roadway improvements along corridor to reduce costs
Identify ultimate alignment and access management strategies
Consideration of environmental constraints

PEORIA AVENUE J ackrabbit Trail Parkway to Dysart Road
 Corridor Improvement Study
 ROADWAY CROSS SECTIONS

PEORIA AVENUE
J ackrabbit Trail Parkway to Dysart Road
Corridor Improvement Study

LAND OWNERSHIP

Legend

Study Area Bounda	Topography ($100{ }^{\prime}$)	Land Ownership
- Proposed Freeway	Luke AFB Noise Contour	State Trust Land
-- Proposed Parkway	General Floodplain Limits	Private Land Parcels
Road	Drainage Structure (canal, dam)	
- Railroad	Stream/Wash	

Source: Flood Control District of Maricopa County, ALRIS

Right Road Right Time Right Cost

PEORIA AVENUE

J ackrabbit Trail Parkway to Dysart Road
Corridor Improvement Study

MUNICIPAL PLANNING AREAS AND INCORPORATED AREAS

Legend

-.....- Study Area Boundary	Topography (100')	Muncipal Planning Area	Incorporated Area
Peoria Avenue	Luke AFB Noise Contour	(1). El Mirage	El Mirage
Proposed Freeway	General Floodplain Limits	\%) Glendale	Glendale
Proposed Parkway	Drainage Structure (canal, dam)	V/, Surprise	Surprise

\uparrow Railroad

ight Road Right Time Right Cost

EXISTING LAND USE

Legend

- Study Area Boundary	Topography (100')	Existing Land Use	Employment	Open Space
Proposed freeway	ke AFB Noise Contour	Single-Family Residential	V/l/, Developing Employment	Agriculture
Proposed Parkway	General Floodplain Limits	Muti-Family Residential	Public facility	Vacant
Road	Prainage Structure (canal, dam)	Developing Residential	Institutional	
- Railroad	Stream/Wash	Commercial	Industrial	

ource: Flood Control District of Maricopa County, ALRIS, MAG

PEORIA AVENUE
J ackrabbit Trail Parkway to Dysart Road
Corridor Improvement Study

FUTURE LAND USE

Legend

Study Area Bounda	poography (100')	Future Land Use	Employment
- Proposed Freeway	Luke AFB Noise Contour	Single-Family Residential	Institutional
- Proposed Parkway	General Floodplain Limits	Mutti-Family Residential	Public Facility
- Road	Drainage Structure (canal, dam)	Mixed Use	Industrial
Railroad	Stream/Wash	Commercial	Open Space

ource: Flood Control Districic of Maricopa County, ALRIS, MAG

Department of Transportation

PEORIA AVENUE
J ackrabbit Trail Parkway to Dysart Road
Corridor Improvement Study
MASTER PLANNED COMMUNITIES

Legend

-umu- Study Area Bounda	Topography (100')	Development Status
posed Freew	Luke AFB Noise Contour	Built Out
Proposed Parkway	General Floodplain Limits	Active
Road	Drainage Structure (canal, dam)	Entitled
Railroad	Stream/Wash	

Jurce: Flood Control District of Maricopa County, ALRIS, MAG 2007, City of Glendale, City of Surprise

PEORIA AVENUE
J ackrabbit Trail Parkway to Dysart Road
Corridor Improvement Study

DRAINAGE

Legend

Study Area Bound	-- Topography (100')	Floodplain
- Proposed Freeway) Luke AFB Noise Contour	100-year floodplain
-- Proposed Parkway	Drainage Structure (canal, dam)	Floodway
Road	\sim Stream/Wash	
- Railroad	- Well	

Source: Flood Control District of Maricopa County, ALRIS

PEORIA AVENUE
J ackrabbit Trail Parkway to Dysart Road
Corridor Improvement Study

2031 PROJ ECTED AVERAGE DAILY TRAFFIC VOLUMES

- $=$ -	Future Roadway Network
Road	Freeway
¢ Railroad	Parkway
Drainage Structure (canal, dam)	Arterial
\sim Stream/Wash	

XXX Existing Daily Traffic Volumes (City of Surpise and MCDOT 2008 \& 2009; and 2010 field counts)

PEORIA AVENUE

Right Road Right Time Right Cost
J ackrabbit Trail Parkway to Dysart Road
Corridor Improvement Study

RECREATION AND TRAILS

Recreation and Trails

Legend

Study Area Boundary	Luke AFB Noise Contour	Community Parks
Road	General Floodplain Limits	Maricopa County Trail System
Railroad	Drainage Structure (canal, dam)	Existing Trail
Topography (100')	Stream/Wash	Future Trail

urce: Flood Control District of Maricopa County, ALRIS

PEORIA AVENUE
J ackrabbit Trail Parkway to Dysart Road Corridor Improvement Study

SEGMENT 1

PEORIA AVENUE
J ackrabbit Trail Parkway to Dysart Road
Corridor Improvement Study
SEGMENT 2

PEORIA AVENUE
J ackrabbit Trail Parkway to Dysart Road
Corridor Improvement Study
SEGMENT 3

PEORIA AVENUE
J ackrabbit Trail Parkway to Dysart Road
Corridor Improvement Study

SEGMENT 4

We Need Your Input
 Peoria Avenue
 Corridor Improvement Study Jackrabbit Trail Parkway to Dysart Road

"Alternative Analysis" Phase Public Input Meeting The Maricopa County Department of Transportation's (MCDOT) RightRoads Program, is conducting the second in a series of tireee public open house meetings to gather com-munity input about potential improvements along an eight-mile section of Peoria ave establish the future roadway type, alignment and righ-of-way requirements along the Peoria Avenue corridor to safely address forecast travel demands and to accommodate the future six-lane major arterial roadway as identified in the Surprise, Glendale, MCDOT and MAG (Maricopa Association of Govermments) long range transportation plans.
This second (Alternatives Analysis Phase) public input meeting will provide area residents and other impacted study stakeholders with an opportunity to inform study team members about study area issues and local transportation needs. This meeting wil also serve to elicit feedback regarding the study's purpose, goals and objectives Alternatives for proposed roadway cross sections, aternative alignments, and an evaluafion of each conceptual aternaive wis be presented for pubic review and comment.

Stop by anytime between $5: 00$ and $7: 00$ p.m. to speak with MCDOT project team members. For more information, contact Miltch Wagner at (602) $506-8054$ write to Wagner at: MCDOT, 2901 W. Durango Street, Phoenix, AZ 85009, or e-mail at: mitchwagner@mail.maricopa.gov or contact Roberta Crowe, Public Information Officer

Corridor Improvemen Study is one of several long range transportation planning studies currently being conducted by MCDOT on future West Valley roadways identified in the recently completed Maricopa Association of Governments (MAG) $1-8 / 1-10$ Hidden Valley Transportation Framework and Interstate 10/Hassayampa Roadway Framework Studies.
Reasonable accommodations may be made avaiable for people with disshilities made avalabble for people with disabiilities information on such accommodations contact Roberta Crowe at (602) 506-80

Si desea recibir esta información en Español, favor llame (480) 350-9288.
Con adviso de setenta y dos horas o más es posible obtener plans reasonables para personas con discapacidades; 10 mismo hablan Español. Si quiere más información llame (480) 350-9288.

District 4 Supervisor, Max Wilson
District 4 Supervisor, Max
www.mcdot.maricopa.gov

Right Road Right Time Right Cost

Alternatives Analysis Phase Public Input Meeting Newspaper Advertisement

We Need Your Input \mid Public Open House \quad Arizona Republic
 Public Open Hous Tuestay, , amanay 18,201

Peoria Avenue Corridor Improvement Study Jackrabbit Trail Parkway to Dysart Road
 Shadow RIIge HIghi sctiool

"Alternative Analysis" Phase Public Input Meeting

 MCDOT and MAG (Mariopopa Associtition of This second (Alterative Amathis Pheas) putic inpuis metiogs will provide area arsidents and other impaced

The Pooria Avenue Coridor

 West valley raxdayys iom
 Governmenst (MASA) 1 -81-10
Hiddon Valley
Tansporation
 10:Hhasespangan Roadmay
Framevolk Sudies.
\qquad
nay be made avaliabb for people 72 -hour noticice For mortare infort: manion on ouch hacommmodations 506-8003.

en Espaiol ta
$350-9288$.

 ल CDOT

- Buckeye Valley New
- Surprise Independen
- West Valley View

PEORIA AVENUE
 Corridor Improvement Study

Jack Rabbit Trail Parkway to Dysart Road
"Alternative Analysis Phase"
Right Road Right Time Right Cost

Maricopa County Department of Transportation January 18, 2011

Background

The Peoria Avenue Corridor Improvement Study Jackrabbit Trail Parkway to Dysart Road) is one of series of long-range transportation planning studies eing conducted by the Maricopa County Department of Glendale, City of El Mirage, and Maricopa County transportation plans all identify Peoria Avenue as a uture arterial roadway from Jackrabbit Trail Parkway to Dysart Road. The Maricopa Association of Governments (MAG) recently prepared the Interstate 10/Hassayampa Framework Study) that identified a comprehensive roadway network to meet traffic demands for the build put of the area west of SR Loop 303. This long range egional transportation study identified the need ure roadway network consisting of freeways, arkways, and major arterial roads.

The MAG Hassayampa Framework Study recommended an extension of Peoria Avenue westward from Perryville Road to the future Jackrabbit Trail Parkway, and entified Peoria Avenue as a major arterial roadw arkway to Sarival

This study will identify the preferred alignment and "footprint" for the future Peoria Avenue between ackrabbit Trail Parkway and Dysart Road and will cilitate future roadway implementation by developers and local jurisdictions, providing a cohesive Surprise, City of Glendale, City of El Mirage, Maricopa County, and MAG transportation plans.

Corridor Description

The Peoria Avenue Corridor study area includes the egment of Peoria Avenue between the future Jackrabbil a coraly encompasse a The study centered on the existing Peoria Avenue alignment.
oday's Peoria Avenue generally consists of a two-lane adway (one travel lane in each direction). Half-stree roadway (one travel lane in each direction). Hail-street
side of Peoria Avenue adjacent to developments such as Shadow Ridge High School, Greer Ranch subdivision, Copper Canyon Ranch subdivision and Skyway Business Park. Improvements on the south side Cortessa subdivision. The only full-width roadway section of Peoria Avenue is located immediately east of Perryville Road between Cortessa and Shadow Ridge High School.
The BNSF Railway operates a north-south railroad spur Ennis Spur) that crosses Peoria Avenue between Litchfield and Dysart Roads. SR Loop 303 crosses the Peoria Avenue Corridor between Cotton Lane and Sarival Road.
The majority of the land in the study area is privately owned, with the exception of the westernmost limit (west and Department (ASLD). The majority of the existing and use is categorized as vacant (undeveloped) or agricultural. Several residential subdivisions are built or under development, which include three elementary schoors, one middle sctool, and one high school. In arge master-planned communities, are located adjacent o Peoria Avenue. Small clusters of industrial and commercial development are scattered throughout the eastern end of the study area

Based on the City of Surprise, City of Glendale, and City of El Mirage future land use planning, a majority of the vacant and agricultural land within the study area is envisioned to be converted to single-family residential housing and mixed-use developments in the future. It is anticipated that commercial and industrial development

Study Need

Today's land development and existing travel demands in the Peoria Avenue Corridor do not warrant a major east/west arterial roadway in the near-term; however, plans are underway to convert much of the rural and lo intense land uses that will generate significantly more
traffic. The "build-out" forecast for future land developmen and resulting travel demand warrant a major east/west arterial roadway in the long term.
To help make future roadway construction economically feasible, the planning process needs to begin now to identify and protect long-term public right-of-way needs for the future roadway under ultimate "build-out" conditions.

Study Goals \& Objectives

This corridor study is the first step in the planning process and its primary goal is to aid the affected agencies and jurisdictions in defining and protecting sufficient right-of-way for a continuous future Peoria Avenue Corridor that wil
safely accommodate projected travel demand and to accommodate the future six-lane major arterial roadway as identified in the Surprise, Glendale, MCDOT and MAG long range transportation plans. In general, the purpose of this Corridor Improvement Study is to provide MCDOT and our Avenue Corridor and a timeframe for the implementation of the recommended future roadway improvements.

To accomplish this, the main focus of this study is to investigate, map, and analyze corridor constraints and opportunities to arrive at a recommended corridor alignment. This study will establish the facility type, number of lanes, right-of-way needs, and general alignment for the Peoria projected traffic growth and enhance safety. In cooperation with the City of Surprise, the City of Glendale, and the City of El Mirage, the study will also determine design standards based upon future roadway jurisdiction (anticipated roadway annexation) and an implementation or construction phasing plan.
The key objectives of this Corridor Improvement Study are to:
efine and assess the strategic issues within the project study area

- Develop and evaluate conceptual alternative alignments within the corridor study area
- Define the characteristics of the preferred alignme Develop consensus for the preferred alignment
Develop an implementation (recommended construction phasing) plan

Study Approach

The Peoria Avenue Corridor Improvement Study is carried out in two phases, a planning phase and an engineering phase.

Planning Phase
During the Planning Phase, general background information
regarding the corridor is gathered and documented in reports that will lead to well-founded recommendations for improvements and longer-term needs along Peoria conducted with affected jurisdictions, agencies, stakeholders, and the impacted public to form a broad consensus of the overall needs and vision of the corridor.

Based on identified needs, conceptual alternatives are developed and candidate alternatives are then evaluated for technical and environmental feasibility, public acceptability, and economic viability

Engineering Phase

The Engineering Phase of the study begins following the selection of a preferred alternative. Preliminary engineering design plans, right-of-way requirements, and estimated construction costs will be prepared for long-term roadway design features. Priorities for roadway construction phasing along with policies and guidelines to preserve the intended regional function of the road are developed

Preliminary plans and cost estimates will be presented Preliming the final "Study Findings and Recommendation (March 2011) public meeting to present the preferred (recommended) design alternative for Peoria Avenue

Study Stakeholders

- Arizona Department of Transportation (ADOT)
- Arizona Game and Fish Departmen
- Arizona State Land Department
- BNSF Railway
- Flood Control District of Maricopa County (FCDMC)
- Maricopa Association of Governments (MAG)
- Maricopa County Department of Transportation (MCDOT)
- Maricopa County Environmental Services
- Maricopa County Parks Department
- Maricopa County Planning and Developmen
- Maricopa Water District
- City of Surprise
- City of Glendale
- Dysart Unified School District
- Major Utility Providers
- Land Developments
- Impacted residents, businesses and property owners

Preliminary Key Issues and Challenges

Early in the study process, a preliminary list of study issues and potential challenges is compiled. This list expands as
the study progresses and input is obtained from public participation.

- Establish future connections of Peoria Avenue to planned roadways such as Jackrabbit Trail
Parkway
- Account for future planned connection to SR Loop 303
Evaluation of drainage structures across major
washes, canals and channels
- Evaluation of crossing of the BNSF Railroad
- Maintain functional integrity of roadway through constrained areas
Maximize use of existing roadway improvements
along corridor to reduce costs
management strategies
- Consideration of environmental constraints

Study Schedule

Project Kick-off \& Study Initiation
July 2010
PHASE I:
Data Collection/Issues
Identification
July - September 2010
Public Input Meeting \#1
(Scoping Phase)
September 20, 2010
PHASE II:
Alternative Development
and Evaluation
October 2010 - January 2011
Public Input Meeting \#
Public Input Meeting \#2
(Alternatives Analysis Phase)
January 18, 2011
Public Input Meeting \#3
(Study Findings \&
Recommendations Phase.)
March 2011

Submitted
June 2011

Alternative Development \& Evaluation

After completion of the inventory of existing and future conditions, the study team developed the following evaluation criteria to help determine the optimum alignment for the future Peoria Avenue corridor:

- Right-of-way impacts
- Compatibility with existing developments
- Compatibility with existing and planned roadway
improvements
- Engineering con
- Public acceptance
- Local agency support
- Drainage/flood control considerations
- Utility considerations
- Environmental consideration

Based on the findings of the Phase 1 "fatal flaw" Based on the findings of the Phase 1 "fatal flaw"
evaluation of Conceptual Alternatives and input received from the public and Technical Advisory Committee, Candidate Alternatives will be advanced to undergo the more in-depth Phase 2 evaluation. For the purposes of this evaluation, the Peoria Avenue corrido was split into nine segments. Up to three alternative alignments are being considered for each segment of the Peoria Avenue corridor. Alternative 1 includes attempting to balance impacts to both sides of the corridor. Alternative 2 includes widening the corridor to the south, maintaining the northern right-of-way boundary. Alternative 3 includes widening the corridor to the north, maintaining the southern right-of-way boundary.
Based on the current evaluation (pending public and agency feedback), the following alternatives are being gency alternatives:

Segment 1 (Jackrabbit Trail Parkway to Beardsley Canal):

- Alternative 1 - new corridor along section line

Segment 2 (Beardsley Canal to Perryville Road)

- Alternative 1 - new corridor along the section
egment 3 (Perryville Road to Citrus Road):
- Alternative 1 - widen symmetric along th section line
Segment 4 (Citrus Road to Cotton Lane) - Alternative 1 - widen symmetric along section line
Alternative 3 - shift north
Segment 5 (Cotton Lane to Sarival Road):
- Alternative 1 - widen symmetric along the section line
Segment (Sarival Road to Reems Road)
- Alternative 1 - widen symmetric along the section line
Segment 7 (Reems Road to Bullard Avenue): - Alternative 1 - widen symmetric along section line
Segment 8 (Bullard Avenue to Litchfield Road):
- Alternative 1 - widen symmetric along the section line - Alternative 2 - shift south

The findings of the Candidate Alternative evaluation will result in the recommendation of a Preferred Alignment or the future Peoria Avene orridor hat will serve as guide for future land development and planning efforts.

Public Involvement

Gaining consensus among the furisdictional agencies and he public is critical to the success of the study and
 and efficient roadway for the long term. A total of three public input meetings are planned during the course of the study process. The first public input meeting (September 20,2010) was held during the data collection and Scoping hase to inform the public of the objectives of the study an provertunity to inform project team members about study rea issues and local transportation needs. This meeting also provided the public an opportunity to provide feedback on the study purpose, goals, and objectives.
The second public input meeting (January 18, 2011) is onducted during the Alternatives Analysis Phase. This constraints identification process and reviews the candidate
alignment evaluation criteria. This meeting also presents the conceptual alternative alignments, and gathers more public feedback to assist further Candidate Alternatives, leading to the study's primary objective, the selection of a Preferred Alignment.
The third and final public input meeting will be held during the Findings and Recommendations Phase of the study (March 2011). This meeting will review process, present the Preferred Alignment, and gath additional public input and feedback for use in the development of the final report. Public participation and feedback during each phase of the study process is very important and a vital component of study development.

MCDOT

Right Road Right Time Right Cost

PEORIA AVENUE

Jackrabbit Trail Parkway to Dysart Road Corridor Improvement Study

KEY STUDY OBJECTIVES

- Define and assess the strategic issues within the project study area
- Develop and evaluate conceptual alternative alignments within the corridor study area
- Recommend a preferred alignment
- Define the characteristics of the preferred alignment
- Develop consensus for the preferred alignment
- Develop an implementation (recommended construction phasing) plan

STUDY NEED

- Address regional and local growth and development within study area (3.5 million population projected at build-out between Wickenburg and Gila Bend -- MAG I-8/l-10 Hidden Valley and I-10/Hassayampa Valley Transportation Framework studies)
- Preserve sufficient public right-of-way for an east/west transportation corridor
- Ensure future roadway compatibility with existing/future land uses and environmental conditions
- Identify potential connectivity issues with other future planned roadways and freeways

Study Schedule

Project Kick-off \& Study Initiation

PHASE I:

Data Collection/Issues Identification
Public Input Meeting \#1 (Scoping Phase)
July - September 2010

PHASE II:

Alternative Development and Evaluation
Public Input Meeting \#2
(Alternatives Analysis Phase)
Public Input Meeting \#3
(Study Findings \& Recommendations Phase)
September 20, 2010

October 2010 -
January 2011
January 18, 2011

March 2011
Study Completion/Final Report Submitted

PEORIA AVENUE

Jackrabbit Trail Parkway to Dysart Road Corridor Improvement Study

Right Road Right Time Right Cost

PEORIA AVENUE

Jackrabbit Trail Parkway to Dysart Road Corridor Improvement Study

EVALUATION CRITERIA

- Right-of-way impacts
- Compatibility with existing developments
- Compatibility with planned future developments
- Compatibility with existing and planned roadway
improvements
- Engineering complexity and constructability
- Public acceptance
- Local agency support
- Drainage/flood control considerations
- Utility considerations
- Environmental considerations

PRELIMINARY KEY ISSUES AND CHALLENGES

Early in the study process, a preliminary list of study issues and potential challenges is compiled. This list expands as the study progresses and input is obtained from public participation.

- Establish future connections of Peoria Avenue to planned roadways such as Jackrabbit Trail Parkway
- Account for future planned connection to SR Loop 303
- Evaluation of drainage structures across major washes, canals and channels
- Evaluation of crossing of the BNSF Railroad
- Maintain functional integrity of roadway through constrained areas
- Maximize use of existing roadway improvements along corridor to reduce costs
- Identify ultimate alignment and access management strategies
- Consideration of environmental constraints

Existing Land Use						
Maricopa County Department of Transportation AECOM						

MCDOT Roadway Classitication

We Need Your Input Peoria Avenue Corridor Improvement Study Jackrabbit Trail Parkway to Dysart Road

Findings \& Recommendations Phase Public Input Meeting
The Maricopa County Department of Transportation's (MCDOT) RightRoads Program, is conducting the final in a series of three pubic open house meetings to gather community input about potential improvements along an eight-mile section of Peoria Avenue between Jackrabbit Trail Parkway and Dysart Road. The study goal is to identify and establish th future roadway type, alignment and right-of-way requirements along the Peoria Avenue corridor to safely address forecast travel demands and to accommodate the future sixlane major arterial roadway as identified in the Surprise, Glendale, MCDOT and MAG (Maricopa Association of Governments) long range transportation plans.
This final "Study Findings and Recommendations" public input meeting will provide area residents and other impacted study stakeholders with an opportunity to inform study eam members about study area issues and local transportation needs. Evaluated alterna ives along with the recommended "preferred" roadway cross section and future roadwa lignment wiil be presented for public review and comment. Project informaion maps exhibits will be avaliable for viewing doring the meeting. Stop by 5:00 p.m. and 7:00 p.m. to speak with MCDOT project team members.

For more information, contact Mitch Wagner at (602) 506-8054 write to Wagner at: MCDOT, 2901 W. Durango Street, Phoenix, AZ 85009, or e-mail at:
mitchwagner@mail.maricopa.gov or contact Roberta Crowe, Public Information Officer at (602) 506-8003, robertacrowe@mail.maricopa.gov.

District 4 Supervisor, Max Wilson www.modot.maricopa.gov

Public Open House
Tuesday, March 22, 2011 5:00 p.m. to 7:00 p.m.
Shadow Ridge High School 10909 N. Perryville Road Surprise, AZ 85388 (On Perryville Road just north of Peoria Avenue)

The Peoria Avenue Corridor Improvement Study is one of several long range trans portation planning studies currently being conducted by MCDOT on future West Valley roadways identified in the recently ompleted Maricopa Association of Governments (MAG) I-8//-10 Hidden Valley Transportation Framework and nterstate 10/Hassayampa Roadway Framework Studies.
Reasonable accommodations may be made available for people with disabilities with a minimum 72-hour notice. For mor information on such accommodations, ontact Roberta Crowe at (602) 506-800 Si desea recibir esta información en Español, favor llame (480) 350-9288

Con adviso de setenta y dos horas o más es posible obtener plans reasonables para

MCDO

MARICOPA COUNTY DEPARTMENT OF TRANSPORTATION

Findings \& Recommendations Phase Public Input Meeting Newspaper Advertisement

- Arizona Republic
- Buckeye Valley News
- Surprise Independen
- West Valley View

Safe Driving Tips:

Inoperative Traffic Light/Power Outage

- Treat the intersection just like a four-way STOP!

Flooded Roadway and Washes

- Don't Risk It!

Never cross a rain-swollen wash
Do not drive around roadway barriers

- Never underestimate the power and force of water
- A vericle is NOT a flotation device!

Dust Storms
Turn your headlights on and slow to a prudent speed
If you pull off the road, get as far to the right as possible. Turn off the car and
Keep your foot off the brake pedal - other drivers may think you're a car in motion

Share the Ride!
Do your part to help improve air quality in Maricopa County. If you are planning on attending this public input meeting, why not car pool with a neighbor Learn more ways to reduce ozone pollution by visiting www.maricopa.gov/aq.

Study Schedule

Project Kick-off \& Study Initiation
PHASE I:
ata Collection/Issues Identification

July - September 2010
ublic Input Meeting \#1
(Scoping Phase)
September 20, 2010

HASEII

ternatives Development
and Evaluation
October 2010 - January 2011
Public Input Meeting \#2
(Alternatives Analysis Phase) January 2011
Public Input Meeting \#3
(Findings \& Recommendations)
March 22, 2011
Study Completion/Final Report

Public Involvement

Gaining consensus among the jurisdictional agencies and the public is critical to the success of the study and implementation of its recommendations to provide a safe and efficient roadway for the long term. A total of thre public input meetings are planned during the course of the
tudy process. The first public input meeting (September 20,2010) was held during the data collection and Scoping Phase to inform the public of the objectives of the study and provide area residents and other stakeholders with an opportunity to inform project team members about study area issues and local transportation needs. This meeting also provided the public an opportunity to contribut edback on the study purpose goals, and objective

The second public input meeting (January 18, 2011) was conducted during the Alternatives Analysis Phase. This meeting served to provide the results of the issues and constraints identification process and reviewed the candidate alignment evaluation criteria. This meeting also presented the conceptual alternative alignments, and athered more public feedback to assist furthe evelopment and evaluation of the advanced Candidate 's primary objective, the selection of a Preferred Alignment.

The third and final public input meeting (March 22, 2011) is held during the Findings and Recommendations Phase of he study. This meeting reviews the results of the Candidate Alternative evaluation process, presents the Preferred Alternative (recommended alignment), and gathers additional public input and feedback for use in the evelopment of the final report. Public participation and mportant and a vital component of study development

Maricopa County epartment of Transportation

PEORIA AVENUE

Corridor Improvement Study

 Jackrabbit Trail Parkway to Dysart Road"Findings \& Recommendations"

Maricopa County Department of Transportation March 22, 2011

Background

The Peoria Avenue Corridor Improvement Study (Jackrabbit Trail Parkway to Dysart Road) is one of a series of longrange transportation planning studies being conducted by (MCDT) Th Couny Deparn Mirage, and Maricopa County transportation plans all include Peoria Avenue as a future arterial roadway from Jackrabbit Trail Parkway to Dysart Road. The Maricopa Association of Governments (MAG) recently prepared the Interstate 10/Hassayampa Valley Transportation Framework Study (Hassayampa Framework Study) that dentified a comprenensive roadway network to meet traffic demands for the build out of the area west of SR 303L. This ong range regional transportation study identified the need parkways, and major arterial roads.

The MAG Hassayampa Framework Study recommended an extension of Peoria Avenue westward from Perryville Road to the future Jackrabbit Trail Parkway, and identified Peoria Avenue as a major arterial roadway from the future Jackrabbit Trail Parkway to Sarival Avenue

This study will identify the preferred alignment and "footprint" for the future Peoria Avenue between Jackrabbit Trail Parkway and Dysart Road and will facilitate future roadway implementation by developers and local jurisdictions, providing a cohesive transportation corridor, compatible with the City of Surprise, City of Glendale, City of El Mirage, Maricopa County, and MAG transportation plans.

Corridor Description

The Peoria Avenue Corridor study area includes the segment of Peoria Avenue between the future Jackrabbit Trail Parkway alignment and Dysart Road. The study area on the existing Peoria Avenue alignment.

Today's Peoria Avenue generally consists of a two-lane roadway (one travel lane in each direction). Half-street improvements have been constructed along the north side of Peoria Avenue adjacent to developments such as Shadow Ridge High School, Greer Ranch subdivision, Copper Canyon Ranch subdivision and Skyway Business Park

Improvements on the south side of Peoria Avenue have
been constructed adjacent to the Cortessa subdivision. The only full-width roadway section of Peoria Avenue is Cortessa and Shadow Ridge High School.

The BNSF Railway operates a north-south railroad spur (Ennis Spur) that crosses Peoria Avenue between Litchfield and Dysart Roads. SR 303L crosses the Peoria Avenue Corridor between Cotton Lane and Sarival Road.
The majority of the land in the study area is privately owned, with the exception of the westernmost limit (west of Land Department (ASLD). The majority of the existing land use is categorized as vacant (undeveloped) or agricultural. Several residential subdivisions are built or under development, which include three elementary schools, one middle school, and one high school. In several locations, existing homes not associated with large master-planned communities, are located adjacent to Peoria Avenue. Small clusters of industrial and costernend of the study area

Basedon
Based on the City of Surprise, City of Glendale, and City of El Mirage future land use planning, a majority of the vacant and agricultural land within the study area is envisioned to be converted to single-family residential housing and mixed-use developments in the future. It is anticipated that commercial and industrial development will expand, but
remain scattered throughout the study area.

Study Need

Today's land development and existing travel demands in the Peoria Avenue Corridor do not warrant a major east/west arterial roadway in the near-term; however, density residential to convert much of the rural and low land uses that will generate significantly more traffic. The "build-out" forecast for future land development and resulting travel demand warrant a major east/west arterial roadway in the long term

To help make future roadway construction economically feasible, the planning process needs to begin now to
dentify and protect long-term public right-of-way needs fo the future roadway under ultimate "build-out" conditions.

Study Goals \& Objectives

This corridor study is the first step in the planning process and its primary goal is to aid the affected agencies and urisdictions in defining and protecting sufficient right-of-way accommodate projected travel demand and the future six ane major arterial roadway as identified in the Surprise Glendale, MCDOT and MAG long-range transportation plans. In general, the purpose of this Corridor Improvement Study is to provide MCDOT and partner jurisdictions with a timeframe for the implementation of the recommended futur roadway improvements.

To accomplish this, the main focus of this study is to investigate, map, and analyze corridor constraints an opportunities to arrive at a recommended corridor alignment This study will establish the facility type, number of lanes right-of-way needs, and general alignment for the Peoria Avenue Corridor that will be required to accommodate with the City of Surprise, the City of Glendale, and the City of El Mirage, the study will also determine design standards based upon future roadway jurisdiction (anticipated roadway annexation) and an implementation or construction phasing plan.
The key objectives of this Corridor Improvement Study are to:

- Define and assess the strategic issues within the project study area
- Develop and evaluate conceptual alternative alignments within the corridor study area
- Recommend a preferred alignment
- Define the characteristics of the preferred alignment
Develop consensus for the preferred alignment Develop an implementation (recommended construction phasing) plan

Preliminary Key Issues and Challenges

Early in the study process, a preliminary list of study issues and potential challenges is compiled. This list expands as the study progresses and input is obtained from public participation.

- Establish future connections of Peoria Avenue to planned roadways such as Jackrabbit Trail Parkway
Account for future planned connection to SR 303L Evaluation of drainage structures across major washes, canals and channels.
- Evaluation of crossing of the BNSF Railway Ennis Spur
- Maintain functional integrity of roadway through constrained areas
Maximize use of existing roadway improvements along corridor to reduce costs
- Identify ultimate alignment and access management strategies
Consideration of environmental constraint

Study Approach

The Peoria Avenue Corridor Improvement Study is carried at in two phases, a planning phase and an engineering phase.

Planning Phase
During the Planning Phase, general background information regarding the corridor is gathered and documented in reports that will lead to well-founded ecommendations for improvements and longer-term needs along Peoria Avenue. Meetings are conducted with affected jurisdictions, agencies, stakeholders, and impacted public to form a broad consensus of the overall

Based on identified needs, conceptual alternatives are leveloped and candidate alternatives are then evaluated or technical and environmental feasibility, public acceptability, and economic viability.

Engineering Phase
The Engineering Phase of the study begins following the selection of a preferred alternative. Preliminary engineering design plans, right-of-way requirements, and estimated construction costs will be prepared for long-term oadway design features. Priorities for roadway construction phasing along with policies and guidelines to preserve the intended regional function of the road are developed

Alternatives Development \&

Evaluation

After completion of the inventory of existing and future conditions, the study team developed the following evaluation criteria to help determine the alignment fo PeoriaAvenue:

Right-of-way impacts

- Compatibility with existing developments
- Compatibility with planned future developments
- Compatibility with existing and planned roadway
improvements
- Engineering comple
- Public acceptance
- Local agency support

Drainage/flood control consideration
Utility considerations

- Environmental considerations

Preferred Alternatives (Recommended

 Alignments)The Peoria Avenue corridor was split into nine east/west geographic segments to conduct the evaluation. Up to three alternative alignments were considered for each segmen Alternative 1 included widening the corridor symmetric to he section line, attempting to balance impacts to both sides to the south, maintaining the northern right-of-way boundary; Alternative 3 included widening the corridor to the north, maintaining the southern right-of-way boundary.

Based on this evaluation and study findings, the following alternatives are being recommended along the corridor:
Segment 1 (future Jackrabbit Trail Parkway to Beardsley Canal):

- Alternative 1 - new corridor along section lin

Segment 2 (Beardsley Canal to Perryville Road):

- Alternative 1 - new corridor along the section line egment 3 (Perryville Road to Citrus Road): - Altern

Segment 4 (Citrus Road to Cotton Lane): Alternative 3 - shift north
Segment 5 (Cotton Lane to Sarival Road):

- Alternative 1 - widen symmetric along the section

Segment 6 (Sarival Road to Reems Road) Aternative 1 - widen symmetric alo
line
Segment 7 (Reems Road to Bulla

- Alternative 3 - shift north
Segment 8 (Bullard Avenue to Litchfield Road):
- Alternative 1 - widen symmetric along the section line
Segment 9 (Litchfield Road to Dysart Road):
- Alternative 2 - shift south

After receiving input from the public and the local agencies, the recommended alignment and corridor plan will be finalized and used for future land development planning

Recommended Implementation Plan

The recommendations of this study are intended to be used to preserve corridor right-of-way for the ultimate Peoria Avenue, as construction of improvements will not likely be completed in the near-term, but rather by developers as

Near-Term Improvements
In the near-term, projects that are already funded will be completed, such as improvements at the Loop 303/Peoria
Avenue interchange (to be constructed by ADOT when
oop 303 is upgraded to a freeway) and City of Surpris planned completion of the north half-street section between Sarival and Reems Roads. Other near-term improvement ecommended for consideration include acquiring right-of Road and Cotton Lane, and constructing drainage improvements at Litchfield and Sarival roads.

Mid-Term Improvements

Several additional improvement projects, most likely constructed by adjacent development, would be neor-lan facility by the year 2030

- South half-street and frontage road construction
between Citrus Road and Cotton Lane
- Cotton Lane intersection improvements
- Reems Road intersection improvements
- South half-street construction between Bullard
g-Term Improvements
Long-term (likely beyond 2030) improvements will focus on bringing uniformity to the corridor and widening to the ultimate six-lane facility. Areas where these improvements would occur include:
- Perryville Road to Citrus Road
- Sarival Road to Reems Road
- Litchfield Road to Dysart Road

Study Stakeholders

- Arizona Department of Transportation (ADOT)
- Arizona Game and Fish Department
- Arizona State Land Department (ASLD)
- BNSF Railway
- Flood Control District of Maricopa County (FCDMC)
- Maricopa Association of Governments (MAG)
- Maricopa County Department of Transportation (MCDOT)
Maricopa County Environmental Service
- Maricopa County Parks Department
- Maricopa County Planning and Development

Maricopa Water District

- City of Surprise
- City of El Mirag
- Dysart Unified School Distric
- Major Utility Providers
- Impacted residents, businesses and property owners

Define and assess the strategic issues within the project study area

Develop and evaluate conceptual alternative alignments within the
corridor study area

Recommend a preferred alignment

- Define the characteristics of the preferred alignment
- Develop consensus for the preferred alignment
- Develop an implementation (recommended construction phasing) plan

STUDY NEED

еәле Крпұs и!чџ!м ұиәшdоןәләр рие чұмолб ןеэоן pue ןио!!әл ssәлрр \forall
3.5 million population projected at build-out between Wickenburg and

Preserve sufficient public right-of-way for an east/west transportation
corridor
Ensure future roadway compatibility with existing/future land uses and environmental conditions
Identify potential connectivity issues with other future planned
roadways and freeways

peoratavenes Jackrabbit Trail Parkway to Dysart Road
Corridor Improvement Study
OLOZ Kןnr

Study Schedule

Project Kick-off \& Study Initiation

$$
\text { July } 2010
$$

$$
\begin{array}{lr}
\text { PHASE I: } & \\
\text { Data Collection/lssues Identification } & \text { July - September } 2010 \\
\text { Public Input Meeting \#1 (Scoping Phase) } & \text { September 20, } 2010 \\
\text { PHASE II: } & \\
\text { Alternative Development and Evaluation } & \text { October 2010-1 } \\
\begin{array}{l}
\text { Public Input Meeting \#2 } \\
\text { (Alternatives Analysis Phase) }
\end{array} \\
\begin{array}{l}
\text { Public Input Meeting \#3 } \\
\text { (Study Findings \& Recommendations Phase) }
\end{array} \\
\text { Study Completion/Final Report Submitted } & \text { January 18, } 2011 \\
\text { March 22, } 2011
\end{array}
$$

peorianavene

STUDY STAKEHOLDERS

Burlington Northern Santa Fe Railway (BNSF)
 Maricopa County Department of Transportation (MCDOT)

Arizona Game and Fish Department

Arizona State Land Department
Maricopa County Environmental Services
Maricopa County Parks Department
Maricopa Water District
City of Surprise
City of Glendale
City of El Mirage
Dysart School District
Major Utility Providers

Land Developments

Jackrabbit Trail Parkway to Dysart Road
Corridor Improvement Study

> Issues and Challenges

- Right-of-way impacts

- Compatibility with existing developments

- Compatibility with planned future developments
- Compatibility with existing and planned roadway improvements
- Engineering complexity and constructability

- Public acceptance

- Local agency support
- Drainage/flood control considerations

> - Utility considerations

- Environmental considerations

LAND OWNERSHIP

Legend

Study Area Boundary	Topography (100')	Land Ownership
- Proposed Freeway	Luke AFB Noise Contour	State Trust Land
-- Proposed Parkway	General Floodplain Limits	Private Land Parcels
Road	Drainage Structure (canal, dam)	
- Railroad	Stream/Wash	

Source: Flood Control District of Maricopa County, ALRIS

Department of Transportation

Right Road Right Time Right Cost

EXISTING LAND USE

Legend

- Study Area Boundary	Topography (100')	Existing Land Use	Employment	Open Space
- Proposed Freeway	Luke AFB Noise Contour	Single-Family Residential	'/I/I, Developing Employment	Agriculture
--- Proposed Parkway	General Floodplain Limits	Multi-Family Residential	Public Facility	Vacant
Road	Drainage Structure (canal, dam)	Developing Residential	Institutional	
\uparrow Railroad	Stream/Wash	Commercial	Industrial	

ource: Flood Control District of Maricopa Countr, ALRIS, MAG

FUTURE LAND USE

Legend

-- Study Area Boundary	Topography (100')	Future Land Use	
- Proposed freeway	Luke AFB Noise Contour	Single-Family Residential	Institutional
Proposed Parkway	General Floodplain Limits	Mutti-Family Residential	Public Facility
Road	Drainage Structure (canal, dam)	Mixed Use	Industrial
Railroad	Stream/Wash	Commercial	Open Space

ource: Flood Control District of Maricopa County, ALIIS, MAG

Right Road Right Time Right Cost

MASTER PLANNED COMMUNITIES

Source: Flood Control District of Maricopa County, ALRIS, MAG 2007, City of Glendale, City of Surprise

Right Road Right Time Right Cost

Legend
=.---- Study Area Boundary
-モロ Proposed Freeway

--- Proposed Parkway

—— Road
Stream/Wash
\uparrow Railroad

Source: Flood Control District of Maricopa County, ALRIS

AVERAGE DAILY TRAFFIC VOLUMES

(20)

Study Area Boundary	Future Roadway Network
Road	Freeway
Railroad	- Parkway
Drainage Structure (canal, dam)	Arterial
Stream/Wash	

XXX 2031 Projected Average Daily Traffic (from MAG nodel)
XXX Existing Daily Traffic Volumes (City of Surpise and MCDOT 2008 \& 2009; and 2010 field counts)

Right Road Right Time Right Cost

RECREATION AND TRAILS

Legend

urce: Flood Control District of Maricopa Countr, ALRIS

MCDOT Roadway Classification

Consideration of environmental constraints

SEGMENT 1:
Jackrabbit Pkwy to Perryville Road

1
θ
1

Legend

Existing R/f
R/W Aquisitio
Well
Abandoned Well
Reclaimed Water
Delivery Header

Right Road Right Time Right Cost

Segment 1: Jackrabbit Trail to Beardsley Canal

Criteria		Preferred Alternative			
		$\begin{gathered} \hline \text { Alternative } 1 \\ \text { (on section line) } \\ \hline \end{gathered}$		Alternative 2 (shift to south)	
Right-of-way Considerations		\bigcirc	779k SF	-	825k SF
			\bigcirc	\bullet	Higher cost due to additional length
Compatibility with Existing Developments		O	No existing development	0	No existing development
Compatibility with Planned Future Developments		O	Likely to provide more developable land nea intersection		\bigcirc
Compatibility with Existing and Planned Roadway Improvements		O	Facilitates 1-mile intersection spacing along Jackrabbit Parkway		\bigcirc
Engineering Complexity \& Constructability			\bigcirc	\bullet	Numerous wash and floodplain crossing
Public Acceptability			\bigcirc		\bigcirc
Local Agency Support			\bigcirc		\bigcirc
Drainage/Flood Control Considerations			\bigcirc	\bullet	Numerous wash and floodplain crossing
Environmental Considerations	Socioeconomic	O	No known impacts	\bigcirc	No known impacts
	Physical \& Natural		\bigcirc	\bullet	Greatest impact to wash corridors and floodplains
	Cultural	\bullet	Impactst to Beardsley Canal	\bullet	Impacts to Beardsley Canal
Utility Considerations		0	No known impacts	\bigcirc	No known impacts

O Lowest impact/best performance

Segment 3: Perryville Road to Citrus Road

Criteria			Alternative				
		$\begin{gathered} \text { Alternative } 1 \\ \text { (on section line) } \\ \hline \end{gathered}$		$\begin{gathered} \text { Alternative } 2 \\ \text { (shift 5' south) } \end{gathered}$		$\begin{gathered} \hline \text { Alternative 3 } \\ \text { (shift 15' north) } \\ \hline \end{gathered}$	
Right-of-way Considerations		\bigcirc	295k SF	\bigcirc	293k SF	-	309k SF
			\bigcirc		\bigcirc		\bigcirc
Compatibility with Existing Developments		\bigcirc	Moderate impact to existing land uses	\bigcirc	$\begin{gathered} \text { Moderate } \\ \text { impact to } \\ \text { existing land } \\ \text { uses } \end{gathered}$	O	Least impact to existing land uses
Compatibility with Planned Future Developments		\bigcirc	Moderate impact to planned land uses	\bigcirc	$\begin{gathered} \text { Moderate } \\ \text { impact to } \\ \text { planed land } \\ \text { uses } \end{gathered}$	\bullet	$\begin{gathered} \text { Least compatible } \\ \text { with } \\ \text { develomure ount to } \\ \text { north } \end{gathered}$
Compatibility with Existing and Planned Roadway Improvements		0	Most compatible with existing stree improvements		\bigcirc		\bullet
Engineering Complexity \& Constructability			\bigcirc		\bigcirc		0
Public Acceptab			\bigcirc		\bigcirc		\bigcirc
Local Agency Support			\bigcirc		\bigcirc		\bigcirc
Drainage/Flood Control Considerations		0	Minimal impact	O	Minimal impact	\bigcirc	$\begin{gathered} \text { Slight impact to } \\ \text { existing drainage } \\ \text { channel to the } \\ \text { north } \end{gathered}$
Environmental Considerations	Socioeconomic	\bigcirc	Slight impact to land; no impact to structures	\bigcirc	Slight impact to land; no impact or structures	\bigcirc	Slight impact to land; no impact to structures
	Physical \& Natural	\bigcirc	Some impact to farmland	\bigcirc	Some impact to farmland	\bigcirc	Some impact to farmland
	Cultural	\bigcirc	Impacts to irrigation ditch	\bigcirc	Impacts to irrigation ditch	\bigcirc	Impacts to irrigation ditch
Utility Considerations		\bigcirc	$\begin{gathered} 1600 \text { of lined } \\ \begin{array}{c} \text { irrigation ditch, } \\ \text { power poles, } \\ \text { sites } \end{array} \\ \hline \end{gathered}$	\bigcirc	1600 ft lined irrigation ditith, 7 power popes, 2 2 well sites	\bigcirc	$\begin{gathered} 1600 \mathrm{ftlined} \\ \text { irrigation ditch, } \\ \text { power poles. } \\ \text { pell sites } 2 \\ \text { wes. } \\ \hline \end{gathered}$

Moderate impact/moderate performance

- Highest impact/worst performance

PEORIA AVENUE
Jackrabbit Trail Parkway to Dysart Road
Corridor Improvement Study

SEGMENT 3:
Perryville Road to Citrus Road

PEORIA AVENUE
Jackrabbit Trail Parkway to Dysart Road
Corridor Improvement Study

SEGMENT 4:

Citrus Road to Cotton Lane

Right Road Right Time Right Cost

Segment 4: Citrus Road to Cotton Lane

Criteria							red Alternative
		$\begin{gathered} \text { Alternative } 1 \\ \text { (on section line) } \\ \hline \end{gathered}$		Alternative 2 (shift 5' south)		Alternative 3(shift 37 '	
Right-of-way Considerations	Area	\bigcirc	716 kF	\bigcirc	716k SF	\bigcirc	718k SF
	Cost	\bigcirc		\bullet	Higher cost ikely to south	\bigcirc	
Compatibility with Existing Developments		\bigcirc	Balances impacts	\bullet	Greatest impact to most properties	\bigcirc	No known impacts
Compatibility with Planned Future Developments		\bigcirc	Balances impacts	0	No new planned development to south	\bullet	$\begin{gathered} \text { All planned } \\ \text { develomment to the } \\ \text { north } \end{gathered}$
Compatibility with Existing and Planned Roadway Improvements		\bigcirc	Half-street constructed at Citrus	\bigcirc		\bigcirc	
Engineering Complexity \& Constructability		\bigcirc	Access fronting Peoria Ave	\bigcirc	Access fronting Peoria Ave	\bigcirc	Opportunity for frontage road
Public Acceptability			\bullet		\bullet		\bigcirc
Local Agency Support			\bigcirc		\bigcirc		\bigcirc
Drainage/Flood Control Considerations		\bigcirc	No existing drainage infratsuruture construturum conturued comanel from the west	\bigcirc	No existing drainage infrastucture constructed, must contrinue channel from the west	\bigcirc	$\begin{gathered} \hline \text { No existing drainage } \\ \text { infratsurcture } \\ \text { construtuct must } \\ \text { contunue ccananel } \\ \text { from the west } \end{gathered}$
Environmental Considerations	Socieeconomic	\bullet	Impacts to private	\bullet	Impacts to private property	\bigcirc	No known impacts
	Physical \& Natural	\bigcirc	Balances impacts	\bigcirc	Balances impacts	\bullet	Impacts to farmland
	Cultural	\bigcirc	Impacts toiririgation ditich	\bigcirc		\bigcirc	Impacts to irigation ditch
Utility Considerations		\bullet	1 well site; 5200 ft lined irrigation ditch; 20 power poles	\bullet	1 well site; 5200 ft lined irigation dith; 2 20 power poles	\bigcirc	$\begin{aligned} & 5200 \text { ft lined } \\ & \text { irrigation ditch; } \\ & \text { power poles } \end{aligned}$

Segment 5: Cotton Lane to Sarival Road

Criteria		Preferred Alternative Alternative 1							
		Alternative 2 (shift 55' south)	$\begin{gathered} \text { Alternative } 3 \\ \text { (shift } 55 \text { ' north) } \\ \hline \end{gathered}$						
Right-of-way Considerations					543k SF	\bigcirc	453k SF	\bigcirc	457k SF
			\bigcirc	\bigcirc	Lower cost to south	\bullet	Highest cost to north		
Compatibility with ExistingDevelopments Developments		\bigcirc	Balances impacts	O	No known impacts	\bullet	Impacts property to the		
Compatibility with Planned Future Developments		\bigcirc	Least impact to all properties	\bigcirc	Balances impacts	\bullet	Greatest impact to most properties		
Compatibility with Existing and Planned Roadway Improvements		\bigcirc	Most compatible w/ ADOT's plans for SR303L interchange		\bigcirc		\bigcirc		
Engineering Complexity \& Constructability			\bigcirc		\bigcirc		\bigcirc		
Public Acceptability			\bigcirc		\bigcirc		\bigcirc		
Local Agency Support			\bigcirc		\bigcirc		\bigcirc		
Drainage/Flood ControlConsiderations		\bigcirc	Minimal impacts	O	Minimal impacts	\bigcirc	Minimal impacts		
Environmental Considerations	Socioeconomic	\bigcirc	Minor impacts to existing land use	\bigcirc	Minor impacts to existing land uses	\bigcirc	Minor impacts to existing land uses		
	Physical \& Natural	\bigcirc	$\underset{\substack{\text { Minor impacts to } \\ \text { farmanands }}}{\text { s. }}$	\bigcirc	$\underset{\substack{\text { Minor impacts to to } \\ \text { farmlands }}}{ }$	\bigcirc	$\underset{\substack{\text { Minor impacts to to } \\ \text { farmlands }}}{ }$		
	Cultural	\bigcirc	Impacts to irrigation ditch	\bigcirc	${ }_{\substack{\text { Impacts to irigation } \\ \text { ditch }}}^{\text {nen }}$	\bigcirc	No known impacts		
Utility Considerations		\bullet	2 well sites; 4300 ft lined irrigation ditch; 14 power poles	\bullet	2 well sites; 4300 ft lined irrigation ditch 6 power poles	\bigcirc	8 power poles		

O Lowest impact/best performance
Moderate impact/moderate performance
Highest impact/worst performance

SEGMENT 5:

Cotton Lane to Sarival Road

Legend

SEGMENT 6:

Sarival Road to Reems Road

Right Road Right Time Right Cost
Segment 6: Sarival Road to Reems Road

Criteria		Preferreed Alternative Atterative (on section line)		Alternative 2(shift 15' south)		Alternative 3 (shift 5' north)	
Right-of-way Considerations		\bigcirc	182 kF	\bigcirc	182 kF	\bigcirc	182k SF
			\bigcirc		\bigcirc	\bullet	Greatest impact to existing and planned of-way
Compatibility with Existing Developments		\bigcirc	Balances impacts to both sides	\bigcirc	Minor impacts to south side	\bigcirc	$\begin{aligned} & \text { Minor impacts to north } \\ & \text { side } \end{aligned}$
Compatibility with Planned Future Developments		\bigcirc	$\begin{aligned} & \text { Minor impact to } \\ & \text { future develocment } \\ & \text { to north } \end{aligned}$	O	No known future development to south	\bullet	Impacts future development to north
Compatibility with Existing and Planned Roadway Improvements		\bigcirc	$\begin{aligned} & \text { Most compatible with } \\ & \text { exisintingtreetended } \\ & \text { intersecection } \\ & \text { ind } \end{aligned}$	\bullet	$\begin{gathered} \text { Not compotible with } \\ \text { existing street and } \\ \text { Reme } \\ \text { intersection } \end{gathered}$	\bigcirc	Not compatible with existing street but more compatible than \#2 with Reems Rd intersection
Engineering Complexity \& Constructability			\bigcirc		\bigcirc		\bigcirc
Public Acceptability			\bigcirc		\bigcirc		\bigcirc
Local Agency Support			\bigcirc		\bigcirc		\bigcirc
Drainage/Flood Control Considerations		\bigcirc	Least impact to existing drainage existing drainag facilitie	\bigcirc	Minor impacts to existing drainage facilities	\bigcirc	Minor impacts to existing drainage facilities
Environmental Considerations	Socioeconomic	\bigcirc	Minimal impact	\bigcirc	Minimal impact	\bigcirc	Minimal impact
	Physical \& Natural	\bigcirc	Minimal impact	O	Minimal impact	O	Minimal impact
	Cultural	O	No known impact	O	No known impact	O	No known impact
Utility Considerations		\bigcirc	No known impacts to irrigation or power lines	\bigcirc	Potential relocation of underground irrigation facilities	\bigcirc	No known impacts to irrigation or power lines

PEORIA AVENUE
Jackrabbit Trail Parkway to Dysart Road Corridor Improvement Study

Segment 7: Reems Road to Bullard Ave

							red Alternative
			ternative 1 section line)		Iternative 2 ift 5' south)		Iternative 3 ift 30' north)
Right-of-way Considerations		\bigcirc	227k SF	\bigcirc	227k SF	\bigcirc	224k SF
			\bigcirc		\bigcirc	\bullet	Higher cost likely to north; encroachmen into residential lots
Compatibility with Existing Developments		\bigcirc	Balances impacts	\bigcirc	Balances impacts	\bullet	$\begin{gathered} \text { All existing } \\ \text { development to the } \\ \text { north } \end{gathered}$
Compatibility with Planned Future Developments		\bigcirc	Balances impacts to both sides	0	No future development plans to the south	\bullet	All future development plans to the north
Compatibility with Existing and Planned Roadway Improvements		\bigcirc	$\underset{\substack{\text { Reems Road } \\ \text { improved to tull street } \\ \text { section; centered on }}}{ }$ section; centered on section lin		\bigcirc		\bigcirc
Engineering Complexity \& Constructability			\bigcirc		0		\bigcirc
Public Acceptability			\bigcirc		\bigcirc		\bigcirc
Local Agency Support			\bigcirc		\bigcirc		\bigcirc
Drainage/Flood Control Considerations		O	No known impacts	O	No known impacts	O	No known impacts
Environmental Considerations	Socioeconomic	\bigcirc	Impacts to agriculture	\bigcirc	Impacts to agriculture agriculture	\bullet	Impacts to private property
	Physical \& Natural	\bullet	Potential impact to farms and habitat	\bullet	Potential impact to farms and habitat	\bigcirc	Potential impact to habitat
	Cultural	\bigcirc	Impacts to irrigation ditch ditch	\bigcirc	$\begin{aligned} & \text { Impacts to irrigation } \\ & \text { ditch } \end{aligned}$	O	No known impacts
Utility Considerations		\bullet	5 well sites; 4500 ft lined irrigation ditch 16 power poles	\bigcirc	5 well sites; 4500 ft lined irrigation ditch	0	3 well sites; 16 power poles

O Lowest impact/best performance
Moderate impact/moderate performance
Highest impact/worst performance

PEORIA AVENUE
Jackrabbit Trail Parkway to Dysart Road
Corridor Improvement Study

SEGMENT 7:

Reems Road to Bullard Ave

PEORIA AVENUE
Jackrabbit Trail Parkway to Dysart Road
Corridor Improvement Study

SEGMENT 8:

Bullard Ave to Litchfield Road

Right Road Right Time Right Cost

Segment 8: Bullard Ave to Litchfield Rd

Criteria		Preferred Alternative					
			$\begin{aligned} & \text { Alternative } 1 \\ & \mathrm{n} \text { section line) } \end{aligned}$		$\begin{gathered} \begin{array}{c} \text { Alternative 2 } \\ \text { (shift 15' south) } \end{array} \\ \hline \end{gathered}$		$\begin{gathered} \text { Alternative } 3 \\ \text { (shift 30' north) } \\ \hline \end{gathered}$
Right-of-way Considerations		\bigcirc	235k SF	\bigcirc	235 kF	\bigcirc	233k SF
			\bigcirc	\bullet	Highest cost tikely to south		\bigcirc
Compatibility w	Eisting	\bigcirc	Balances impacts	\bullet	Impacts land uses to south	\bullet	Impacts land uses to north
Compatibility with Planned Future Developments		\bigcirc	Minor impacts to future development	\bigcirc	No future development to south	-	Impacts to future development to north
Compatibility with Existing and Planned Roadway Improvements		0	Litchfield and Bullard intersections fully improved; centered on section line		\bigcirc		\bullet
Engineering Complexity \& Constructability			\bigcirc		\bigcirc		\bigcirc
Public Acceptability			\bigcirc		\bigcirc		\bigcirc
Local Agency Support			\bigcirc		\bigcirc		\bigcirc
Drainage/Flood Control Considerations		\bigcirc	Minor impacts to existing drainage facilities facilities	\bigcirc	Least impacts to existing drainage facilities	\bullet	Most impacts to existing drainage facilities (chann and box culverts)
Environmental Considerations	Socioeconomic	\bigcirc	Balanced impacts	\bullet	Impacts to private property lots	\bigcirc	No known impacts
	Physical \& Natural	\bigcirc	Balanced impacts	\bullet	Greatest impact to farmland and potentia habitat areas	\bigcirc	No known impacts
	Cultural	\bigcirc	No known impacts	\bigcirc	No known impacts	\bigcirc	No known impacts
Utility Considerations		\bigcirc	2 well sites	-	4 well sites	\bigcirc	No well sites impacted

PEORIA AVENUE
Jackrabbit Trail Parkway to Dysart Road Corridor Improvement Study

Segment 9: Litchfield Rd to Dysart Rd

Criteria				Preferred Alternative			
		$\begin{gathered} \hline \text { Alternative } 1 \\ \text { (on section line) } \\ \hline \end{gathered}$			$\begin{aligned} & \text { Alternative } 2 \\ & \text { (shift south) } \\ & \hline \end{aligned}$		$\begin{aligned} & \begin{array}{l} \text { Alternative 3 } \\ \text { (shift north) } \end{array} \\ & \hline \end{aligned}$
Right-of-way Considerations		0	257k SF	\bullet	300 kF	\bigcirc	252k SF
		\bigcirc	Moderate costs	0	Lowest cost likely to south		Highest cost likely to north, including potent building takes
Compatibility with Developments	xisting	\bigcirc	Minor impacts to land uses to north	0	No known impacts	-	Impacts to to land uses to north to
Compatibility with Planned Future Developments		\bigcirc	No known impacts to future development	\bigcirc	Minor impacts to future development to south		Impacts future development to north
Compatibility with Existing and Planned Roadway Improvements		0	Most compatible with existing half-streets Dysart intersections	\bigcirc	Balances impacts		Least compatible with existing half-streets and Litchfield and Dysart intersections
Engineering Complexity \& Constructability			\bigcirc		\bigcirc		\bigcirc
Public Acceptability			\bigcirc		\bigcirc		\bigcirc
Local Agency Support			\bigcirc		\bigcirc		\bigcirc
Drainage/Flood Control Considerations		\bigcirc	Balances impacts	\bigcirc	Least impact to existing	-	Most impact to existing drainage facilities
Environmental Consideration	Socioeconomic	\bigcirc	Balances impacts	\bigcirc	No known impacts	\bullet	Impacts to private property to north
	Physical \& Natural	\bigcirc	Balances impacts	\bullet	Greatest impact to farmland	O	No known impacts
	Cultural	\bullet	Impacts to Ennis Spur	\bullet	Impacts to Ennis Spur	-	Impacts to Ennis Spur
Utility Considerations		\bullet	2 well sites; 2 reclaim taps; 7 power poles	-	2 well sites; 2 reclaim taps; 7 power poles	O	No well sites, reclaim taps or power poles

O Lowest impact/best performance
Moderate impact/moderate performance

- Highest impact/worst performance

PEORIA AVENUE

Jackrabbit Trail Parkway to Dysart Road Corridor Improvement Study

SEGMENT 9:

Litchfield Road to Dysart Road

Summary of Recommended Alignment

© C (1) E E 0 0												
도 0 0 0												
등 © E O © ©	F	N	\cdots		∇	\square		(0)	N		00	O)

[8)
 Right Road Right Time Right Cost

PEORIA AVENUE Jackrabbit Trail Parkway to Dysart Road
 Corridor Improvement Study

Implementation Plan

Legend

Study Area Boundary	Railroad	Future Improvements by Developer
mum Peoria Avenue Section Line	General Floodplain Limits	Future Mid-Term Improvements by City/County
Proposed Freeway	Drainage Structure (canal, dam)	Future Long-Term Improvements by City/Count
Proposed Parkway	Stream/Wash	mprovements Currently Programmed/Plan

NOTES:

Implementation of corridor improvements will be prim development as it occurs adjacent to Peoria Avenue.
e assumed to occur prior to 2030 .
3. Segments identified as "mid-term" are those needed prior to 2030, based
3. segmeftic projections, to provide a continuous 4 -lane facility.
4. Segments identified as "long-term" are those needed after 2030 to provide
a 6 -lane facility and provide corridor continuity.
5. This implementation plan is conceptual and does not guarantee actual construction by any specific time. Actual programming of future planning, design, and construction to be determined as part of normal budgeting process of city and/or county

Surprise City Council OKs Peoria Avenue agreement

 The Arizona Republic4-29-11
The Surprise City Council on Tuesday discussed the following items.
ISSUE
Vote to al low city staff to enter into an intergovemmental agreement that would make Surprise responsible for operating and maintaining the road. Maricopa County has conducted a transportation study that suggests Peoria A venue between Dysart Road and J ackrabbit Trail Parkway be converted into a six-lane, major arterial street.

The road is currently two lanes across most of the 7.5 -mile span and is bordered by Surprise to the north and Glendale and the county to the south.

Construction and design will not begin for years, but city staff hopes that taking ownership over the road will give Surprise a say in its design and provide another east-west crossing of the Agua Fria River. Maintaining the new road is estimated to cost the city an additional $\$ 137,000$ per year and would begin once it is complete.

VOTE
Approved 7-0.

Appendix C:

MCDOT RightRoads Program Summary of Public Involvement

Right Road Right Time Right Cost

Summary of Public Involvement

Peoria Avenue
 Corridor Improvement Study
 J ackrabbit Trail to Dysart Road

May 10, 2011

Maricopa County Department of Transportation

2901 W. Durango St.	
Phoenix, AZ 85009	MCDOT RightRoads Program
Phone: 602-506-4608 Fax: 602-506-4882	Summary of Public Involvement
	Peoria Avenue Corridor Improvement Study J ackrabbit Trail to Dysart Road TT005

FINAL REPOR

PURPOSE OF PUBLIC INVOLVEMENT

This study evaluated planned corridor development and the resulting projected 2030 traffic volumes along the future Peoria Avenue corridor between J ackrabbit Trail and Dysart Road to develop the most cost-effective improvement plans that include a recommendation for establishing the future roadway type, alignment, access management strategies, future drainage structures and network connectivity.

Gaining consensus among the agencies and the public is critical to the success of this long range transportation study as well as the future implementation of its recommendations to provide an efficient roadway for the long term.

Maricopa County Department of Transportation (MCDOT), Flood Control District of Maricopa County (FCDMC), Arizona Department of Transportation (ADOT), Arizona State Land Department (ASLD), Maricopa Association of Governments (MAG), the Burlington-Santa Fe Railway (BNSF), Maricopa County Environmental Services, Maricopa County Parks Department, Maricopa County Planning and Development, Maricopa Water District, the City of Surprise, the City of Glendale, the City of El Mirage, Dysart Unified School District, major utility providers, impacted land developments, affected businesses, property owners and residents are all major stakeholders in this study.

The participation of stakeholder public and multi-agency involvement aids in the development of a consistent roadway and the resolution of conflicting agency requirements; facilitates ultimate regional traffic flow; and preserves the interests and rights of area residents and adjacent development.

STUDY BACKGROUND \& PURPOSE

The Peoria Avenue Corridor Improvement Study (J ackrabbit Trail Parkway to Dysart Road) is one of a series of long-range transportation planning studies being conducted by the Maricopa County Department of Transportation (MCDOT). The City of Surprise, City of Glendale, City of EI Mirage, and Maricopa County transportation plans all include Peoria Avenue as a future arterial roadway from Jackrabbit Trail Parkway to Dysart Road. The Maricopa Association of Governments (MAG) recently prepared the Interstate 10/Hassayampa Valley Transportation Framework Study (Hassayampa Framework Study) that identified a comprehensive roadway network to meet traffic demands for the build out of the area west of SR 303L. This long range regional transportation study identified the need for future roadway network consisting of freeways, parkways, and major arterial roads.

The MAG Hassayampa Framework Study recommended an extension of Peoria Avenue westward from Perryville Road to the future J ackrabbit Trail Parkway, and identified Peoria Avenue as a major arterial roadway from the future J ackrabbit Trail Parkway to Sarival Avenue.

This study will identify the preferred alignment and "footprint" for the future Peoria Avenue between J ackrabbit Trail Parkway and Dysart Road and will facilitate future roadway implementation by developers and local jurisdictions, providing a cohesive transportation corridor, compatible with the City of Surprise, City of Glendale, City of EI Mirage, Maricopa County, and MAG transportation plans

Corridor Description

The Peoria Avenue Corridor study area includes the segment of Peoria Avenue between the future J ackrabbit Trail Parkway alignment and Dysart Road. The study area generally encompasses a two-mile wide corridor centered on the existing Peoria Avenue alignment.

Today's Peoria Avenue generally consists of a two-lane roadway (one travel lane in each direction). Half-street improvements have been constructed along the north side of Peoria Avenue adjacent to developments such as Shadow Ridge High School, Greer Ranch subdivision, Copper Canyon Ranch subdivision and Skyway Business Park. Improvements on the south side of Peoria Avenue have been constructed adjacent to the Cortessa subdivision. The only full-width roadway section of Peoria Avenue is located immediately east of Perryville Road between Cortessa and Shadow Ridge High School.

The BNSF Railway operates a north-south railroad spur (Ennis Spur) that crosses Peoria Avenue between Litchfield and Dysart Roads. SR 303L crosses the Peoria Avenue Corridor between Cotton Lane and Sarival Road

The majority of the land in the study area is privately owned, with the exception of the westernmost limit (west of Beardsley Canal) which is owned by the Arizona State Land Department (ASLD). The majority of the existing land use is categorized as Land Department (ASLD). The majority of the existing land use is categorized as
under development, which include three elementary schools, one middle school, and one high school. In several locations, existing homes not associated with large master-planned communities, are located adjacent to Peoria Avenue. Small clusters of industrial and commercial development are scattered throughout the eastem end of the study area.

Based on the City of Surprise, City of Glendale, and City of EI Mirage future land use planning, a majority of the vacant and agricultural land within the study area is envisioned to be converted to single-family residential housing and mixed-use developments in the future. It is anticipated that commercial and industrial development will expand, but remain scattered throughout the study area.

Study Need

Today's land development and existing travel demands in the Peoria Avenue Corridor do not warrant a major east/west arterial roadway in the near-term however, plans are underway to convert much of the rural and low density residential lands within the corridor to more intense land uses that will generate significantly more traffic. The "build-out" forecast for future land development and resulting travel demand warrant a major east/west arterial roadway in the long term.

To help make future roadway construction economically feasible, the planning process needs to begin now to identify and protect long-term public right-of-way needs for the future roadway under ultimate "build-out" conditions

Study Goals \& Objectives

This corridor study is the first step in the planning process and its primary goal is to aid the affected agencies and jurisdictions in defining and protecting sufficient right-of-way for a continuous future Peoria Avenue Corridor that will safely accommodate projected travel demand and the future six-lane major arterial roadway as identified in the Surprise, Glendale, MCDOT and MAG long-range transportation plans. In general, the purpose of this Corridor Improvement Study is to provide MCDOT and partner jurisdictions with a future "footprint" of the Peoria Avenue Corridor and a timeframe for the implementation of the recommended future roadway improvements.

To accomplish this, the main focus of this study is to investigate, map, and analyze corridor constraints and opportunities to arrive at a recommended corridor alignment. This study will establish the facility type, number of lanes, right-of-way needs, and general alignment for the Peoria Avenue Corridor that will be required to accommodate projected traffic growth and enhance safety. In cooperation with the City of Surprise, the City of Glendale, and the City of EI Mirage, the study will also determine design standards based upon future roadway jurisdiction (anticipated roadway annexation) and an implementation or construction phasing plan.

The key objectives of this Corridor Improvement Study are to:

- Define and assess the strategic issues within the project study area

Develop and evaluate conceptual alternative alignments within the corrido study area

- Recommend a preferred alignment
- Define the characteristics of the preferred alignment
- Develop consensus for the preferred alignment

Develop an implementation (recommended construction phasing) plan

Preliminary Key Issues and Challenges

Early in the study process, a preliminary list of study issues and potential challenges is compiled. This list expands as the study progresses and input is obtained from public participation.

- Establish future connections of Peoria Avenue to planned roadways such as Jackrabbit Trail Parkway
- Account for future planned connection to SR 303L
- Evaluation of drainage structures across major washes, canals and channels
- Evaluation of crossing of the BNSF Railway Ennis Spur
- Maintain functional integrity of roadway through constrained areas
- Maximize use of existing roadway improvements along corridor to reduce costs
- Identify ultimate alignment and access management strategies
- Consideration of environmental constraints

Study Approach

The Peoria Avenue Corridor Improvement Study is carried out in two phases, a planning phase and an engineering phase.

Planning Phase

During the Planning Phase, general background information regarding the corridor is gathered and documented in reports that will lead to well-founded recommendations for improvements and longer-term needs along Peoria Avenue. Meetings are conducted with affected jurisdictions, agencies, stakeholders, and the impacted public to form a broad consensus of the overall needs and vision of the corridor.

Based on identified needs, conceptual altematives are developed and candidate alternatives are then evaluated for technical and environmental feasibility, public acceptability, and economic viability.

Engineering Phase
The Engineering Phase of the study begins following the selection of a preferred alternative. Preliminary engineering design plans, right-of-way requirements, and estimated construction costs will be prepared for long-term roadway design features.

Priorities for roadway construction phasing along with policies and guidelines to preserve the intended regional function of the road are developed

STUDY MILESTONES

Project Kick-off \& Study Initiation
PHASE I:
Data Collection/Issues Identification
Public Input Meeting \#1 (Scoping Phase)
PHASE II:
Alternatives Development
and Evaluation
October 2010 - J anuary 2011
Public Input Meeting \#2
(Alternatives Analysis Phase)
J anuary 18, 2011
Public Input Meeting \#3
(Findings \& Recommendations)
March 22, 2011
Study Completion/Final Report J une 2011

ALTERNATIVES DEVELOPMENT \& EVALUATION

After completion of the inventory of existing and future conditions, the study team developed the following evaluation criteria to help determine the alignment for Peoria Avenue:

- Right-of-way impacts
- Compatibility with existing developments
- Compatibility with planned future developments
- Compatibility with existing and planned roadway improvements
- Engineering complexity and constructability
- Public acceptance
- Local agency support
- Drainage/flood control considerations
- Utility considerations
- Environmental considerations

Preferred Alternatives (Recommended Alignments)
The Peoria Avenue corridor was split into nine east/west geographic segments to conduct the evaluation. Up to three alternative alignments were considered for each segment: Alternative 1 included widening the corridor symmetric to the section line,
attempting to balance impacts to both sides of the corridor; Alternative 2 included widening the corridor to the south, maintaining the northern right-of-way boundary: Altemative 3 included widening the corridor to the north, maintaining the southern right-of-way boundary.

Based on this evaluation and study findings, the following alternatives are recommended along the corridor:

Segment 1 (future J ackrabbit Trail Parkway to Beardsley Canal)

- Alternative 1 - new corridor along section line

Segment 2 (Beardsley Canal to Perryville Road):

- Alternative 1 - new corridor along the section line

Segment 3 (Perryville Road to Citrus Road):

- Alternative 1 - widen symmetric along the section line

Segment 4 (Citrus Road to Cotton Lane):

- Alternative 3 - shift north

Segment 5 (Cotton Lane to Sarival Road):

- Alternative 1 - widen symmetric along the section line

Segment 6 (Sarival Road to Reems Road):

- Alternative 1 - widen symmetric along the section line

Segment 7 (Reems Road to Bullard Avenue)

- Alternative 3 - shift north

Segment 8 (Bullard Avenue to Litchfield Road):

- Alternative 1 - widen symmetric along the section line Segment 9 (Litchfield Road to Dysart Road):
- Alternative 2 - shift south

SUMMARY OF RECOMMENDED ALIGNMENT

Segment	Location	Recommended Alignment	Comments
$\mathbf{1}$	Future J ackrabbit Trail Parkway to Beardsley Canal	Alternative 1 Centered on section line	Scored higher due to shorter corridor length and less disturbance to drainage corridors.
$\mathbf{2}$	Beardsley Canal to Perryville Road	Alternative 1 Centered on section line	Independent evaluation not carried out; alignment is already set in the Zanjero Trails Preliminary Plat.
$\mathbf{3}$	Perrvville Road to Citrus Road	Alternative 1 Centered on section line	Scored highest of the three alternatives, most compatible with existing street improvement on Peoria Avenue.
Corridor will transition at east end to			
meet Segment 4, shifted north of the			
section line.			

Segment	Location	Recommended Alignment	Comments
4	Citrus Road to Cotton Lane	Alternative 3 Centerline shifted 37 feet north of section line	Scored highest of the three alternatives; most compatible with existing development; likely to have least right-of-way cost.
5	Cotton Lane to Sarival Road	Alternative 1 Centered on section line	All three alternatives scored similarly. Altemative 1 chosen due to compatibility with existing development and planned roadway improvements, specifically placement of Loop 303 and the Peoria Avenue traffic interchange. Corridor will transition from Segment 4 north shift to centerline symmetry at the west end of this segment.
6	Sarival Road to Reems Road	Alternative 1 Centered on section line	Scored highest of the three alternatives; balances impacts throughout segment and performs best in key factors, including compatibility with existing development and drainage/flood control considerations.
7	Segment 7: Reems Road to Bullard Avenue	Alternative 3 Centerline shifted 30- feet north of section line for short distance in middle portion of segment	Although scoring the lowest due to impacts to existing development, maintaining section line alignment at west end and transitioning to the north, east of existing development allows alignment to miss well site and balance impacts throughout remainder of segment. Corridor will transition at east end to meet segment 8 , centered on the section line.
8	Bullard Avenue to Litchfield Road	Alternative 1 Centered on section line	Scored highest of the three alternatives; balances impacts throughout segment and performs better than Alternative 3 in key factors, including compatibility with existing development and drainage/flood control considerations.
9	Litchfield Road to Dysart Road	Alternative 2 Centerline shifted south of section line	Because of the varying shifts associated with Altemative 2 , it best minimizes impacts to existing land uses throughout the segment.

Recommended Implementation Plan

The recommendations of this study are intended to be used to preserve corridor right-of-way for the ultimate Peoria Avenue. It is anticipated that construction of
improvements will not likely be completed in the near-term, but rather by private developers as development along the corridor occurs.

Near-Term Improvements

In the near-term, projects that are already funded will be completed, such as improvements at the SR Loop 303/Peoria Avenue interchange (to be constructed by ADOT when SR Loop 303 is upgraded to a freeway) and City of Surprise planned completion of the north half-street section between Sarival and Reems Roads. Other near-term improvements recommended for consideration include acquiring public right-of-way and constructing a twolane roadway between Citrus Road and Cotton Lane, and constructing drainage improvements at Litchfield and Sarival roads.

Mid-Term Improvements

Several additional improvement projects, most likely constructed by adjacent development, would be needed in the mid-term timeframe to provide a continuous four-lane facility by the year 2030:

- South half-street and frontage road construction between Citrus Road and Cotton Lane
- Cotton Lane intersection improvements
- Reems Road intersection improvements
- South half-street construction between Bullard Avenue and Litchfield Road

Long-Term Improvements

Long-term (likely beyond 2030) improvements will focus on bringing uniformity to the corridor and widening to the ultimate six-lane facility. Areas where these improvements would occur include.

- Perryville Road to Citrus Road
- Sarival Road to Reems Road
- Bullard Road to Litchfield Road
- Litchfield Road to Dysart Road

PUBLIC INVOLVEMENT

Public participation and feedback during each phase of the study process is very important and a vital component of study development. Gaining consensus among the jurisdictional agencies and the public is critical to the success of the study and implementation of its recommendations to provide a safe and efficient roadway for the long term.

In addition to multiple Stakeholder Advisory Committee meetings, a total of three public input meetings are conducted during the course of the study process. The first public input meeting (September 20, 2010) was held during the data collection and Scoping P hase to inform the public of the objectives of the study and provide area residents and other stakeholders with an opportunity to inform project team
members about study area issues and local transportation needs. This meeting also provided the public an opportunity to contribute feedback on the study purpose goals, and objectives.

The second public input meeting (J anuary 18, 2011) was conducted during the Alternatives Analysis Phase. This meeting served to provide the results of the issues and constraints identification process and reviewed the candidate alignmen evaluation criteria. This meeting also presented the conceptual altemative alignments, and gathered more public feedback to assist further development and evaluation of the advanced Candidate Alternatives, leading to the study's primary objective, the selection of a Preferred Alignment.

The third and final public input meeting (March 22, 2011) was held during the Findings and Recommendations Phase of the study. This meeting reviewed the results of the Candidate Alternative evaluation process, presented the P referred Alternative (recommended alignment), and gathered additional public input and feedback for use in the development of the final report.

Participants

MCDOT Planning \& Engineering:	Consultant Team:
Mitch Wagner	Rodney Bragg (AECOM)
Roberta Crowe	J ackie Pfeiffer (AECOM)
Mike Pavlina	J avier Guana (Andes)

Mike Pavlina
ackie Pfeiffer (AECOM)
J avier Guana (Andes)

Public Works Lands/Real Estate:
Robert Sachs

Outreach Methods

The following outreach methods were used to inform and notify the general public and impacted residents about the study, public input meeting dates and locations and additional opportunities or means for input:

- Media releases
- Newspaper articles
- Display advertisements in local and regional publications
- Arizona Republic
- Surprise Independen
- West Valley View
- Buckeye Valley News
- MCDOT website
- Partner agency mediums
- Direct mail flyers to adjacent property owners and previous meeting attendees

PUBLIC COMMENT

Over 150 people attended three public input meetings conducted through the course of this study. Graphics, aerials and display exhibits presented corridor alternatives and study information. Study Fact Sheets and Comment Sheets were distributed to those in attendance. All public meetings were conducted in an "open house" format providing a free, open and accurate exchange of information between area residents with specific issues or questions and the project team. The following information is representative of discussions that the project team had with meeting attendees and written comments received by MCDOT:

Scoping Phase Public Meeting

Meeting Purpose: Gather public comment regarding the study area, existing conditions, current corridor deficiencies, future transportation needs and public review of overall Study Goals and Objectives

5:00-7:00 p.m., September 20, 2011
Shadow Ridge High School Media Center
Surprise, AZ 85388
Attendance: 66

- There are lot of people using this road especially in the peak hours. I would suggest there should be a minimum of 2 lanes on each side with lighting on both sides of the road. West of Bullard avenue there is no lighting on the road. There is lot of vacant land surrounding the Peoria Ave and I am assuming there will be lot of future residential/commercial development will be happening adjacent to Peoria Avenue.
- Intersection of 303 \& Peoria Avenue needs to be signalized
- I support the completion/improvement of Peoria Avenue fromJ ackrabbit Trai to Dysart Road. It is imperative that alternate ingress and egress roadways are established for the residents in this area
- Peoria between Cotton Lane and Citrus needs to be addressed sooner than later. For emergency services to meet somewhat decent response times this road should be paved or monthly maintained for proper and secure road travel. Owner made speed bumps and or ditches should be addressed.
- If a road improvement is needed then Olive should be the road. It has much less housing affected and it goes all the way through to the 101. Peoria after Dysart turns into 25 mph . Peoria does not make sense.
- MCDOT not very knowledgeable about Peoria Avenue \& Citrus as to how it is going to be improved (\# of lanes, speed, traffic control devices) right of way purchasing and speed enforcement/traffic control devices, i.e. residential neighborhood 25 mph or less. What time frame for project improvements This section of roadway provides a very big environmental issue caused by the dust. Very big impact from developments to the west of this location to the high school.
- Please pave Peoria between Cotton Lane and Citrus ASAP. Thank you
- The community on $178^{\text {th }}$ Avenue does not want the street ($178^{\text {th }}$ Ave.) to exit onto Peoria Ave. What noise barriers are going to be installed to cut down on noise pollution? The dust pollution on Peoria is terrible. What is the County and City of Surprise going to do about the pollution from traffic between now and the time pavement is installed.
- My concern is the area from Cotton Lane to Citrus on Peoria. Before the school was built, someone should have thought about the people who already live in the neighborhood. What is the speed limit; will there be stoplights or stop signs? Where will the intersections be? What can you do in the meantime to control the dust? What about the speeders? How many lanes will there be? We need to have more answers if you wanted out opinions!
- Provide more info at next meeting. Do something about the dirt road between Cotton lane and Citrus. The dust is killing us. Keep the speed limit at 25 mph on dirt road and enforce it. Need to know number of lanes and traffic control devices. Dust control and environmental issues at the present time and future.
- Hopeful that Peoria will become paved from Cotton Lane to Perryville. We have kids at the elementary school and traffic would be significantly decreased if this were to happen.
- Interested in the sequence/timeline of improvements and proposed changes to Peoria Ave Also - type of interchanges at 303 and arterials.
- Nobody working this meeting really had any information as to what was going to happen if anything. Nick Mascia (City of Surprise) was very helpful and knowledgeable however there are no plans for anything to happen. This meeting led me to believe there was something in the "works". What a disappointment to find out it is a dead-end. The high school will have Seniors and J uniors driving - the dust level for Peoria and Cotton area will be much worse. The 4 -way stop at Cotton and Olive is very busy and in the momings it is impossible to get through.
- I know money is dear, but can't we pave some of the dirt roads before tearing up existing roads constanty?
- Project needs to be "fast tracked" thru local City/State/County DOT officials. was disheartened to find out this "project" is still in the study phase. My main concem is Peoria fronting the community of Greer Ranch. The HOA is concemed regarding road signs, sidewalks and necessary landscaping that need to be to actually finish off the development. I would be more than happy to discuss this further. Appreciate the "Open House".
- This is a very needed project improvement for the area. The challenge will be on getting the owners (all of them) to agree on the best alternatives. The District has tried that before when we built the school and met resistance.
- We live in Cortessa and Olive Avenue right now is the only in and out of this area. Should Peoria Avenue get improved, it would help the traffic flow tremendously. Also, with the High School now being open, it would assist with traffic as well. I don't believe that there is any reason not to
- Improve Peoria Avenue with the exception of the home owners that happen to live there and don't want the additional traffic - then they should move.
- Recently a large school was put in at the end of Peoria and Citrus. Since this school was put in, we have had nothing but traffic speeding down Peoria (dirt road) each moming and also in the aftemoon. I assume these are people taking and picking up their children from school. This causes a tremendous amount of dust for the people who live in my neighborhood, especially the people whose houses face Peoria Road. Don't get me wrong, I would love to see the road paved to cut down on the dust in our neighborhood, however I have some concerms.
- We do not want $178^{\text {th }}$ Avenue to connect to Peoria Avenue. In addition, we would like to have a sound wall as well.
- My questions to you are if this road is paved, who will incur the cost? Will ou taxes be raised so people who do not live in our neighborhood can take their kids to the new school? Is there some sort of stimulus that will take care of the cost? Will the people whose houses face Peoria loose part of their frontage property, and what about the irrigation canals that run along Peoria? The stretch of road on Peoria from Cotton Lane to Citrus will there be speed bumps or stop signs?
- We would like for the road to be paved. Since Shadow Ridge High School has opened we have experienced a lot of traffic thru our community (Cortessa) and have even experienced a number of accidents down Olive ave towards Cotton Lane. Perryville Rd going towards Olive has become a race way for the High School kids as well resulting in the kids driving extremely fast down that road. We feel if Peoria Ave was paved it would eliminate the high school kids driving thru the community, allowing more routes to exit the High School eliminating accidents, kids getting hit (which this has happened) and reducing traffic flow/speed down Olive ave towards Cotton and Perryville Rd towards Olive.
- I would love to see road improvements to Peoria Ave! Not only for quicker, safer access to the High School but congestion and traffic would be reduced at all entrances/exits on Olive Ave west of Cotton Lane as well. Though the housing boom has ceased, there are many who live in the Cortessa development that would greatly benefit from the improvements. Work and shopping expeditions would have less drive, which saves on gas in these tough economic times. It is a great time to update Peoria Ave and also provide work for many. My vote is a YES!

The following are key issues captured by the study team during conversations with meeting attendees:

- Support (from a number of people who live in Cortessa) to pave the one-mile of Peoria Avenue between Citrus Road and Cotton Lane.
- Want improvements made to Peoria Avenue sooner rather than later
- Concern about emergency access if emergency vehicles "detour" around unpaved segment.
- Desire for the use of asphalt rubber to reduce noise levels.
- Don't want $178^{\text {th }}$ Ave connected to Peoria Avenue when Peoria Ave is improved.
- Questions about the study schedule and future input opportunities
- Questions about alternatives under consideration
- Questions about the timing of new development/master planned communities.
- Clarification of study purpose.
- Concern about other unpaved roads (not in the study area) and when the county will pave them
- Questions about specific development entitlements relative to future land use (e.g., when/where will a gas station be placed in the neighborhood; when will the new Safeway begin construction, etc.)

Alternatives Analysis Phase Public Meeting

Meeting Purpose: Gather public comment regarding preliminary study findings, traffic analysis, corridor alignment alternatives and future roadway options

```
5:00-7:00 p.m., September 20, 2011
Shadow Ridge High School Media Center
```

Surprise, AZ 85388
Attendance: 35

- We live at 15751 W. Becker Lane and Peoria Ave. is just beyond our back wall. Traffic noise is already high. Peoria Ave. doesn't go through to the 101 so it makes no sense to widen it. A better idea would be to widen Olive Ave. instead. There are very few homes along the corridor planned and there are stop lights already installed at the major intersections including the 303 and the 101. It is more of a major road than Peoria Ave. We are against your plans at this time.
- I attended the open house last night at the High School. Thank you for taking the time to speak with all of us and listen to the concerns of the homeowners in the neighborhood. My first concerns at this meeting was to be sure that there were no plans to open up our dead end street to Peoria Ave. (178th, 177 th, 176 , all dead end at the irrigation ditches).
You nodded your head and said that that was not included in this study or the plans. I was good with that. My second concern was a noise barrier along Peoria. This was not addressed at the meeting... so I am not sure what the plans are for that.
- After reviewing the 3 alternatives that were posted. I have to say that Alternative 3
(road to the north) is really the only option. I am the billing coordinator for Co-op 100 the co-op that owns the small irrigation ditches that provides irrigation to the homes from 175th - Citrus, south of Peoria Ave. If you went with Alt. 1 or 2 , this will affect the irrigation ditches and the wells. I am not sure how that would affect the irrigating of our property.
- Some of the homeowners have been there for over 40 years, and some are fairly new; but nevertheless, we all moved out there for the irrigated acre's and raise our children in a rural environment. I completely understand that "progress" and "change" is coming. We dealt with that with Cortessa. If there is an option (Alt. 3) that can improve the road without disturbing the homes in our neighborhood, I feel that that should be your only option. The only thing on the North side of Peoria is farmland. No homes, no families, nothing personal will be disturbed by using the farmland for your Peoria Corridor.
- PS: If the county would like to pave the existing 2 lane road from Cotton Lane to Citrus, I don't think anyone would have heartache over that.
- Peoria's unpaved section East of Citrus needs 2 lanes paved "yesterday", i not dust to control the dust, to eliminate the extra 2 miles of travel getting around it in lieu destroying your vehicle. It does not appear to be any reasonable alternative route other than Peoria, at least nothing as straight forward and nothing that wouldn't cost a lot more money.

Findings and Recommendations Phase Public Meeting

Meeting Purpose: Gather public comment regarding study findings and "Preferred Alternative", recommended access management strategies and guidelines, and an improvement phasing timeline

5:00-7:00 p.m., September 20, 2011
Shadow Ridge High School Media Center
Surprise, AZ 85388
Attendance: 50

- I live at 18537 W. Onyx Ave near Shadow Ridge School I would like to see Peoria improved from Cactus Lane to 303 . This would cut 2 miles off every time I drive to Surprise. Also the intersection of Olive and 303 is in deplorable condition. A little patch work could smoothen it up. The bumps could cause accidents. Thank You
- It is simply my feeling that the County should proceed with the plan for Peoria Ave. that make sense. There are a few vocal individuals (as usual) that will cause delay and therefore added expense to this project
- If the County doesn't proceed. The Peoria "cow trail" east of Citrus is a prime example of a few, delaying what should have been done ages ago ,but would a single lane in each direction west of the 303 be any sort of an option, at least for that section, until the entire project can move forward ?

Comments/questions received by Project Team during discussions with meeting attendees:

- Most attendees want improvements built now to mitigate dust issues along Peoria from Citrus Road to Cotton Lane.
- General support for frontage road concept in segment between Citrus Road and Cotton Lane.
- Some concerns/questions regarding frequency of median breaks/access to Peoria Avenue and intersecting side streets.
- Want noise mitigation to be considered between Citrus Road and Cotton Lane as homes will be close to roadway.
- Request to reduce speed limit along Peoria Avenue between Citrus Rood and Cotton Lane as homes will be close to roadway.
- Several questions on timeframe of implementation of Peoria Avenue improvements; preference for improvements sooner rather than later.

FUTURE PROJECT DEVELOPMENT CONSIDERATIONS

It is important to recognize that the Peoria Avenue Corridor Improvement Study is a long range transportation planning study and the earliest phase of potential project development. It is intended to identify the facility type and roadway alignment at some future date along the Peoria Avenue corridor to address forecasted travel demand associated with future area land development. No public funding is currently allocated for design, right-of-way acquisition, or construction of any elements of this segment of the Peoria Avenue corridor

The Preferred Alignments as recommended in this study will be used to guide future planning efforts and ensure that subsequent land development proposals and transportation system plans are compatible with future construction of Peoria Avenue. Further refinement and negotiation of the roadway centerline right-of-way limits and consideration of environmental impacts will take place in later phases of project development as properties develop and as transportation system improvements are implemented.

The following are key issues captured during this study's stakeholder and public involvement process that should be taken into consideration by individual jurisdictions as the recommendations of this study are carried forward into design and construction:

- Project Funding: It can be anticipated that area developers will participate as part of project requirements.
- Access Management Strategies: Specific strategies should be implemented to ensure a seamless roadway with efficient traffic flow, safety and good access to local land uses
- Environmental Impacts: (Natural, Cultural and Archeological Resources) and Noise Mitigation. Specific impacts on the local environment will require further evaluation during future project development
- New Right-of-Way Requirements: Final roadway configuration (during preparation of Final Design Plans) will determine exactly how much land will need to be acquired to accommodate the future roadway.
- Landscaping Plans: Final project design will specify the type of landscaping to be used
- Drainage Structures: Bridges along the new roadway will be designed during final roadway design efforts. It will be critical to ensure the roadway is designed to provide "all weather" crossings during major storm flows.
- Bicycle, Pedestrian and Transit Access: Future projects will be designed to accommodate alternative modes of travel and provide access to trails and neighborhoods in the area.
- Corridor Traffic Management: ITS (Intelligent Transportation System) will control operation of traffic between jurisdictions and differing intersection configurations.
- Jurisdictional Coordination: As with the overall traffic control, implementation of different corridor improvements and access management concepts will be coordinated to ensure a safe, seamless and efficient transportation facility.

Next Steps: Implementation of Recommended Improvements

- Adoption of Recommendations by Individual J urisdictions
- Functional Roadway Classification (Urban Arterial)
- Corridor Alignment
- Access Management Plan
- Right-of-way Preservation in Developing Areas
- Design Concept Report (DCR) or Scoping Report for Consideration in project programming
- Appropriation of Funds for Design, Right-of-Way Acquisition and Construction of Recommended Corridor Improvements
- Consistent Coordination between various J urisdictions on Transportation Improvements and Traffic Issues

This report contains capsulated key issues identified during this study's public involvement process that should be taken into consideration by individual jurisdictions as the recommendations of this study are carried forward through design and construction.

It is recommended that future project development build upon the public involvement program established during this study and continue as a comprehensive program progression.

For more information about the study, contact Mitch Wagner, MCDOT Planning, at 602/506-8054 or Roberta Crowe, MCDOT Public Information Officer at 602/5068003.

Appendix G

Technical Memorandum No. 7: Traffic Analysis

Peoria Avenue Corridor Improvement Study: Jackrabbit Trail Parkway to Dysart Road

 J ackrabbit Trail Parkway to Dysart RoadTechnical Memorandum \#7: Traffic Analysis

February 2011

Table of Contents

1.0 INTRODUCTION 1
2.0 EXISTING TRAFFIC CONDITIONS 3
Existing Transportation Network 3
Existing Traffic Volumes 4
3.0 FUTURE TRAFFIC CONDITIONS... 11
uture Transportation Network 11
Future Typical Sections 13
Future Traffic Volumes 14
4.0 TRAFFIC ANALYSIS 24
Methodology. 24
Analysis Results.. 26
Sensitivity Analysis 27
5.0 CRASH ANALYSIS 34

List of Figures

Figure 1 - Vicinity Map.. 2
Figure 2 - Existing Transportation Network
$\ldots .$.
Figure 3 - Existing Intersection Configurations ... 6
Figure 5 - Existing 2010 Peak Hour Tuming Movement Volume.. 10
Figure 6 - Maricopa County Major Streets and Routes Plan Functional Classification.............. 15
Figure 7 - MAG I-10/Hassayampa Valley Transportation Framework Study functional Classification
Figure 8 - MAG 2030 Arterial Street System
.. 17 Figure 10 - City of Surprise F unctional Classification Map.. 18 Figure 10 - City of Glendale Functional Classification Map... 19 Figure 11 - MCDOT Principal Arterial Cross-Section.. 20
Figure 12 - MAG Principal Arterial Cross-Section.. 20
Figure 13 - City of Surprise Major Arterial Cross-Section..
Figure 14 - City of EI Mirage Minor Arterial Cross-Section..
Figure 15 - City of Glendale Major Arterial Cross-Section... 21
Figure 16-2031 Projected Daily Traffic Volumes... 22
Figure 17-2031 Projected Peak Hour Turing Volumes... 23
Figure 19 2031 Lane Conguracis and Level of Service .. 29

Figure 21 - Employment Density 2005 .. 31
Figure 22 Employment Density 2030 . 33

List of Tables

Table 1 - Existing Intersection Characteristics .. 3
Table 2 - 4-Lane Arterial LOS Thresholds. ... 24
Table 3 - ADT Volume Warran ... 25
 Table 4 - Control Delays and Co
Table 5 - Socioeconomic Data

Appendices

Appendix A - 2031 Intersection Analysis

1.0 INTRODUCTION

The Maricopa Association of Govemments (MAG) prepared the Interstate 10/Hassayampa Valley Transportation Framework Study (Hassayampa Framework Study) that identified a comprehensive roadway network to meet traffic demands for the build out of the area west of State Route 303 (SR 303L). This long range regional transportation study identified the need for a roadway network consisting of freeways, parkways, and major arterial roads.

The Hassayampa Framework Study recommended an extension of Peoria Avenue west from Pemyville Road to the future J ackrabbit Trail Parkway, and identified Peoria Avenue as a major arterial from the future J ackrabbit Trail Parkway to Sarival Avenue. The study area for this project includes Peoria Avenue from the future J ackrabbit Trail Parkway alignment to Dysart Road (Peoria Avenue Coridor). The study area generally encompasses a two-mile wide corridor centered on the existing Peoria Avenue. The study area is shown in Figure 1.

This study will establish the facility type, number of lanes, right-of-way needs, and general alignment for the Peoria Avenue Corridor that will be required to accommodate projected traffic growth and enhance safety. In cooperation with the City of Surprise, the City of Glendale, and the City of EI Mirage, the study will also develop access management guidelines, determine design standards based upon which jurisdiction anticipates annexing the roadway, and develop an implementation plan. In general, the purpose of this Corridor Improvement Study is to provide the Maricopa County Department of Transportation (MCDOT) and other jurisdictions with a future "footprint" of the Peoria Avenue Corridor and a timeframe for the implementation of the recommended future roadway improvements.

The key objectives of this Corridor Improvement Study are to:

- Define and assess strategic issues within the project study area;
- Develop and evaluate conceptual alternative alignments within the corridor study area;
- Recommend a preferred alignment;
- Develop consensus for the preferred alignment,
- Define the characteristics of the preferred alignment; and
- Develop an implementation plan.

This technical memorandum identifies the existing and future travel demand, roadway network, and traffic conditions for the Peoria Avenue Corridor.

2.0 EXISTING TRAFFIC CONDITIONS

Existing Transportation Network

Figure 2 illustrates the existing transportation network in the study area. Currently, Peoria Avenue is a two-lane roadway, with varying degrees of improvements. Presently, Peoria Avenue extends west as far as Perryville Road as a paved road, with the exception of one mile between Citrus Road and Cotton Lane that is unpaved. Between Pemyvile Road and the f the study area, J uckrabbit Trail Parkway does not yet exist Olive exists. in the wider contex of the Beardsley Canal, granting access to the west; and SR 303L remains a major arterial road with no freeway improvements completed Local roadways are intermittently developed depending on the degree of built residential and industrial land uses. The BNSF Ennis Spur crosses Peoria Avenue at an at-grade railroad crossing, protected by lights and gates.

Based on its current function in the existing network, MCDOT functionally classifies the existing Peoria Avenue roadway as a major collector in the Maricopa County Transportation System Plan, February 2007. A major collector provides short-distance (less than three miles) traffic movement, collects and distributes traffic between local and arterial streets, and provides direct access to abutting land.

The existing portion of Peoria Avenue within the study area has eight major cross-street intersections from Peryville Road to Dysart Road, not including the intersection with SR 303L The intersection with Litchfield Road is a four-legged signal controlled intersection. The other seven intersections are either two-way stop controlled or all-way stop controlled. The Pemyville Road intersection is a " T " intersection, with the existing Peoria Avenue terminating here. The roadway lane geometry and intersection traffic control was taken from aerial mapping provided by Maricopa County and field-verified in August 2010. Table 1 summarizes the configuration of these eight intersections, including the type of intersection, current traffic control, and number of lanes at each approach. Figure 3 shows the lane geometry of each intersection along with an aerial plan view of the intersection.

Table 1 - Existing Intersection Characteristics

Intersection	Type	Traffic Control	Approach Lanes			
			NB	SB	EB	WB
Perrvville Road	"T"-intersection	Three-Way STOP	1	1	n/a*	2
Citrus Road	Four-legged	NB/SB STOP	1	1	2	1
Cotton Lane	Four-legged	EB/NB STOP	1	1	1	1
Sarival Road	Four-legged	Four-Way STOP	3	2	2	2
Reems Road	Four-legged	Four-Way STOP	2	3	1	1
Bullard Avenue	"T"-intersection	Three-Way STOP	n/a	2	1	2
Litchfield Road	Four-legged	SIGNAL	2	3	2	3
Dysart Road	Four-legged	Four-Way STOP	3	3	2	3

*//a applies to approach lanes that do not exist (e.g., thre
Source: Maricopa County 2010; Field verification 2010 .

PEORIA AVENUE CORRIDOR IMPROVEMENT STUDY

Jackrabbit Trail Parkway to Dysart Road

Peoria Avenue and Perryville Road

Peoria Avenue and Cotton Lane

Figure 3 - Existing Intersection Configurations

Peoria Avenue and Sarival Road

Peoria Avenue and Reems Road

Peoria Avenue and Bullard Avenue

Figure 3 - Continued

Figure 3 - Continued

PEORIA AVENUE CORRIDOR IMPROVEMENT STUDY

Jackrabbit Trail Parkway to Dysart Road

PEORIA AVENUE CORRIDOR IMPROVEMENT STUDY
Jackrabbit Trail Parkway to Dysart Road

Figure 5 - Existing 2010 Peak Hour Turning Movement Volumes

3.0 FUTURE TRAFFIC CONDITIONS

Future Transportation Network

For the planned future network, functional classification is the process by which roads are grouped into classes or systems according to the kind of service they will provide in the future Roadways functionally classified as high-speed, high-capacity facilities tend to maximize mobility and minimize direct land access. The hierarchy of functional classification typically streets.

Maricopa County and MAG similarly classify Peoria Avenue as an (urban) principal arterial in the future network. However, Peoria Avenue actually falls within multiple jurisdictions in the study area. Each jurisdiction has assigned its own future functional classification to the portion of Peoria Avenue within its boundaries. The overlapping classifications are even more complex where Peoria Avenue forms the boundary between jurisdictions.

For the planned future network, Peoria Avenue has been classified by the local jurisdictions as listed below:

- MCDOT - Urban Principal Arterial
- MAG - Major Arteria
- City of EI Mirage - Minor Arteria
- City of Glendale - Major Arteria

City of Surprise - Major Arterial
The future MCDOT functional classification of Peoria Avenue in the study area is an urban principal arterial, as stated in the Maricopa County Major Streets and Routes Plan, adopted in 2001 and revised in 2004 (Figure 6). The corridor currently exists from Dysart to Perryville Roads, and is classified as "future" from Perryville Road to J ackrabbit Trail. A principal arterial is defined as a street that provides for long-distance traffic movement within Maricopa County or between Maricopa County and urban areas. Access to abutting land is restricted and controlled through frontage roads and raised medians, as well as by the spacing and location of driveways and intersections. Opposing traffic flows may be separated by a raised median.

MCDOT also classifies all other one-mile grid roadways in the study area as principal arterials, except Perryville Road south of Cactus Road, which is defined as a minor arterial and SR 303L, defined as a future freeway.

The MAG I-10/Hassayampa Valley Transportation Framework Study identifies Peoria Avenue as a major arterial, as illustrated in the functional classification network map in Figure 7. This is supported in the 2010 MAG Regional Transportation Plan (RTP), which defines Peoria Avenue as a four-lane arterial from Dysart to Reems Road, and as a six-lane arterial from Reems Road to J ackrabbit Trail in 2030 (Figure 8)

The City of Surprise incorporated area within the study area extends north from Peoria Avenue, arterial in the current General Plan, illustrated in Figure 9.

Incorporated EI Mirage includes the areas both north and south of Peoria Avenue east of Dysart Road (and therefore out of the study area), but also the area south of Peoria Avenue between the Ennis Spur and Dysart Road. EI Mirage classifies Peoria Avenue as a minor arterial (based upon City of Peoria standard details). El Mirage does not have a functional classification map at the current time.

The City of Glendale maintains planning jurisdiction over the south side of Peoria Avenue from the Ennis Spur to Peryville Road as part of its Municipal Planning Area (MPA). One-half mile SR 3031 and Serva as part of its Municipal Planning Area (MPA). One-half mile Recent General Plan amendments have upgraded Peoria Avenue to a major arterial madway (Figure 10).

Planned Network Improvements

Much of the surrounding roadway system to the project area does not exist or is planned to be expanded or adjusted from its current configuration. SR 303L, J ackrabbit Trail Parkway, and Northem Avenue Parkway are planned roadway facilities in the surrounding network that are considered regional routes.

SR 303L Corridor
SR 303L is located roughly in the center of the study area. It intersects Peoria Avenue between Cotton Lane and Sarival Road. It has been studied, classified, reclassified, restudied, and ultimately confirmed as a major link in the regional and state highway system. SR 303L is currently being improved from an interim two-lane roadway into a "Rural Major Freeway," as classified by MAG. SR 303L is an important link in the regional freeway system because it will alleviate the bottlenecks on the Grand Avenue arterial (US 60/US 93) and provide a new alleviate the bottenecks on the Grat Valley.

The ultimate improved SR 303 L will be a fully access-controlled, grade-separated urban freeway with a rolling profile that will be elevated or depressed at the arterial crossroads and near ground level at all other locations. The ultimate freeway will include four general purpose nerchanges. Thireen service interchanges for areial crossroads and two system

位
Peoria Avenue is one of the thirteen senvice interchanges planned for the ultimate corridor. This interchange is currently under design as a full diamond interchange. The Stage III ADOT design plans have been obtained for this interchange and will be considered throughout the study.

Jackrabbit Trail Parkway
ackrabbit Trail Parkway has undergone several planning and corridor-level studies in the last few years. In the 2007 MAG 1-10/Hassayampa Valley Transportation Framework Study, ackrabbit Trail was established as an Anzona Parkway, a new category of roadway classification in Arizona. The framework study also changed the alignment of the corridor specifically within the Peoria Avenue study area, offsetting it a half mile west of the section line to miss major topographical and drainage features.

J ackrabbit Trail Parkway will follow the new Design Guideline Recommendations for the Arizona Parkway (MCDOT, August 2008), which includes an intermediate-capacity, six- to eight-lane divided highway with partial access control and no direct left tums permitted at majo intersections. Compared with a conventional arterial, an Arizona Parkway can provid additional travel capacity without full grade separations at major intersections. It can provide the benefit of increasing intersection capacity while maintaining direct driveway access to each quadrant of the intersection. The junction of Peoria Avenue with J ackrabbit Trail Parkway will need to consider the design standards in the Arizona Parkway Intersection/Interchange Operational Analysis and Design Concepts Study (MCDOT, August 2009).

In 2008, MCDOT completed the J ackrabbit Trail Access Control and Coridor Improvement Study, which further refined the corridor and established a preferred alignment, supported by preliminary engineering considerations that provide operational and design details regarding its classification as an Arizona Parkway. Because Peoria Avenue will intersect Jackrabbit Trail Parkway, this study can provide guidance for future roadway improvements in the study corridor.

Northern Avenue Parkway
While located outside the study area, Northem Avenue through the Phoenix metropolitan area has been under study for several years, with a view to upgrading it to a "super street." With a fourteen-mile gap in the freeway system between l-10 and SR 101L, Northem Avenue has been envisioned as another east-west connection across the metropolitan area, offering more access control and capacity than a major arterial, but less speed than a freeway

In the MAG I-10/Hassayampa Valley Transportation Framework Study, this facility is defined as an Arizona Parkway, positioned approximately one-half mile between the Northem and Olive Avenue section lines throughout the study corridor.

Future Typical Sections

As mentioned previously, Peoria Avenue has been classified by the local jurisdictions as follows:

- MCDOT - Urban Principal Arteria
- MAG - Major Arterial
- City of EI Mirage - Minor Arteria
- City of Glendale - Major Arteria
- City of Surprise - Major Arterial

A MCDOT principal arterial is six lanes wide, constructed on a minimum right-of-way of 130 feet including a bicycle lane. Right-of-way for future bus pullouts should be provided on the far side of each intersection of a principal arterial with another principal or minor arterial - which, in the study area, includes every one-mile cross street. Figure 11 illustrates this MCDOT typical cross-section for Peoria Avenue.

A MAG principal arterial is also six lanes wide, constructed on a minimum right-of-way of 140 Avenue.

Surprise classifies Peoria Avenue as a major arterial in the current General Plan, whereas El Mirage classifies Peoria Avenue as a minor arterial (based on City of Peoria standard details). Typical cross-sections for both cities are illustrated in Figures 13 and 14.

The City of Glendale has indicated that amendments to the General Plan have upgraded Peoria Avenue to a major arterial. A typical cross-section for the City of Glendale is shown in Figure 15.

Future Traffic Volumes

MAG provided design year 2031 traffic volume projections for use in this study. MAG maintains a regional traffic forecasting model based on projected socioeconomic data, which provides numerous outputs including daily traffic and peak hour traffic. MAG network simulations were provided for the 2031 design year under the build scenario. For the purposes of the MAG model, the "build scenario" network corresponds to three traffic lanes in each direction of travel. The 2031 Build traffic volume projections are shown in Figure 16

MCDOT does not include a Peoria Avenue crossing of the Agua Fria River in its current or future roadway network. Other regional planning studies have suggested a need for a river crossing and the City of El Mirage has included a crossing in its roadway network. While this river crossing may not be implemented in the near future, a conservative approach (by including the river crossing) was used to project the 2031 Peoria Avenue travel demand. While the transportation plans described above were used to establish the ultimate Peoria Avenue classification, the 2031 travel demand will be used to help determine an implementation strategy for the corridor.

The 2031 MAG daily traffic projections were also used to develop projected peak hour tuming movements at the major intersections. The following assumptions were applied to the daily traffic projections to estimate approach and departure peak hour volumes at each major intersection:

- Approximately 8% of the daily traffic would occur during the peak hours (K factor)
- A $60 / 40$ directional split (D factor) would occur during the peak hours with the dominant movement in the A.M. peak hour being toward SR 303L and to the south with the reverse movement in the P.M. peak hour

The estimated approach and departure volumes were then converted to peak hour tuming volumes utilizing procedures outlined in NCHRP 255. In order to balance the tuming movements, slight adjustments were made to the K factor at isolated locations with the resulting K factors varying between 7% and 9%. The projected 2031 peak hour tuming movements are shown in Figure 17.

Source: Maricopa County Major Streets and Routes Plan, Street Atas, revised 2004
Figure 6 - Maricopa County Major Streets and Routes Plan Functional Classification

Source: MAG I-10 Hassayampa Valley Transportation Framework Study, 2007
Figure 7 - MAG I-10/Hassayampa Valley Transportation Framework Study Functional Classification

Source: MAG RTP 2010 Update, 2010,

Source: City of Surpise General Plan 2030, Transportation Plan, 2010.
Figure 9 - City of Surprise Functional Classification Map

GLENDALE

ROADWAY FUNCTIONAL

CLASSIFICATION

Freeway／Expr	
Super Street	
Major Arterial	
	Arterial
Collector	

－－Municipal Planning Area Boundary

 ぶ
京
in

Pinnacle Peak Rd Deer Valley Rd．

Union Hills Dr

Bell Rd．

Greenway Rd．
Thunderbird Rd． Cactus Rd．

Peoria Ave．
Olive Ave．

Glendale Ave

Bethany Home Rd．
Camelback Rd．

Source: Maricopa County Major Streets and Routes Plan, Policy Document, revised 2004
Figure 11 - MCDOT Urban Principal Arterial Cross-Section

PRINCIPAL ARTER|AL

Source: MAG I-10 Hassayampa Valley Transportation Framework Study, 2007.

Figure 12 - MAG Principal Arterial Cross-Section

Source: City of Surprise Street Design Guidelines, 2009.
Figure 13 - City of Surprise Major Arterial Cross-Section

Figure 14 - City of El Mirage Minor Arterial Cross-Section

Source: City of Glendale Standard Detail Index, 2002.

Figure 15 - City of Glendale Major Arterial Cross-Section

Figure 16-2031 Projected Daily Traffic Volumes

PEORIA AVENUE CORRIDOR IMPROVEMENT STUDY

Jackrabbit Trail Parkway to Dysart Road

Figure 17-2031 Projected Peak Hour Turing Volumes

4.0 TRAFFIC ANALYSIS

Methodology

Arterial Street Analysis
Table 2.1 of the MCDOT Roadway Design Manual includes information regarding planning level traffic volume thresholds for different facility types. According to this table, a 4-lane urban arterial can accommodate approximately $35,000 \mathrm{vpd}$

In addition, planning level analyses were conducted using Highway Capacity Software to estimate volume thresholds for a 4-lane urban arterial roadway. The following assumptions were utilized in this analysis:

- 45 mph free-flow speed
- 60/40 directional split in peak hour
- 0.95 peak hour factor (PHF)
- 9% of daily traffic occurs during peak hour
- Class II street with medians and tum bays
- 15% tums from exclusive lanes
- 1 mile segment
- 3 signals (actuated)

Randomarivals (type 3)

- 90 sec cycle length
- $0.42 \mathrm{~g} / \mathrm{c}$ ratio

Table 2 shows the resulting daily traffic ranges and corresponding level-of-service thresholds.
Table 2 - 4-Lane Arterial LOS Thresholds

Level-of- Service	ADT Range - Arterial (veh/day)
C	$<19,000$
D	$19,000-31,000$
E	$31,000-33,000$
F	$>33,000$

This analysis, along with the MCDOT Roadway Design Manual, generally shows that a 4-lane arterial can accommodate approximately 30,000 vpd. Daily traffic volumes greater than approximately $30,000 \mathrm{vpd}$ would warrant a 6 -lane arterial.
Signal Warrant Analysis
Signal warrant analyses were conducted in accordance with MCDOT Traffic Engineering Policy/Procedure Guideline (PPG), Section 4, Subject 4.6. This guideline sets forth the ADT Policy/Procedure Guideline (PPG), Section 4, Subject 4.6. This guideline sets forth the ADT
volume warrant to be evaluated for future traffic needs on a new intersection, an intersection revised by a proposed roadway construction project, or at the driveway of a new commercial or

Table 4 - Control Delays and Corresponding Levels-of-Service

Level-of-Service	Control Delay (sec/veh)
A	<10
B	$10-20$
D	$20-35$
E	$35-55$
F	$55-80$

The following assumptions/input parameters were used in the intersection analysis:

- Peak hour factor: 0.92
- Vehicle travel speed: 45 mph
- Percentage of heavy vehicles: 4%
- Lane widths: 12 feet
- Base saturation flow rate: 1,900 pcphpl for all movements
- Right-turm on red movement was allowed and modeled in the software
- Cycle length: 60 second

Analysis Results

Arterial Street Analysis Results
As shown in Figure 16, the 2031 traffic volumes along Peoria Avenue range from approximately $10,000 \mathrm{vpd}$ to $31,000 \mathrm{vpd}$. According to the criteria established above, in 2031 a 4 -lane facility $10,000 \mathrm{vpd}$ to $31,000 \mathrm{vpd}$. According to the criteria established above, in 2031 a 4 -lane facility
would be warranted from Jackrabbit Trail Parkway to Dysart Road however, the ultimate classification is for 6 lanes.

Signal Warrant Analysis Results
According to the criteria shown in Table 3 and the 2031 traffic volume shown in Figure 16, all major intersections along Peoria Avenue would warrant signalization by 2031

Intersection Analysis Results
The intersection analysis results and recommended 2031 lane configurations are shown in Figure 18. For the 2031 design year, single left-tum lanes are recommended at a majority of the intersections with dual left-tum lanes being recommended at Jackrabbit Trail Parkway and at Cotton Lane. As signalized intersections, under the conditions shown in Figures 17 and 18, all of the intersections are expected to operate at level-of-service 'C' or better during the peak hours. These lane configurations show what is warranted in 2031 based on the conditions analyzed, the ultimate classification is for 6 lanes.

Sensitivity Analysis

Since the 2031 traffic volumes warrant a 4-lane facility, a sensitivity analysis was conducted to help determine if and when a 6 -lane facility might be needed. This analysis included a review of 2031 socioeconomic data in the MAG model to determine the land use densities assumed in 2031; a review of the growth trends in the travel demand from 2010 to 2031; and a review of the Hassayampa Framework Study travel demand model which is generally representative of a potential "build-out" scenario in the far west valley.

Socioeconomic Data
The thirteen socioeconomic analysis zones (SAZ) within the study area constitute approximately 17.5 square miles (less than one-half percent) of the 9,223 -square-mile MAG planning area and modeling region. In 2005, the study area had a population of approximately 4,550 persons and an employment base of approximately 1,500 employees. By 2030, these numbers are expected to dramatically increase.

Table 5 presents the socioeconomic data for the existing 2005 and adopted 2030 forecast scenarios, as well as the percent change between the two forecast years.

Table 5 - Socioeconomic Data

Scenario	Population (persons)	Employment (employees)
2005	4,550	1,500
2030	36,330	21,010
Percent Change	698%	$1,300 \%$

Population density maps (Figures 19 and 20) show the highest existing density located in the built out/under construction master planned communities located north of Peoria Avenue between Reems and Litchfield Roads. While that will remain an area of higher density, the between Reems and Litchfield Roads. While that will remain an area of higher density, the
greatest densities in the future will be located in the Prasada community, north of Peoria Avenue between Citrus Road and SR 303L. The areas of lowest population density include much of the area affected by the BNSF Ennis Spur and Luke Air Force Base noise contours, and the area surrounding the McMicken Dam. This will remain the same in the future, as these features are generally incompatible with adjacent residential development.

Employment density maps (Figures 21 and 22) illustrate that the largest number of existing jobs are located north of Peoria Avenue between Reems and Dysart Roads, although the employment density is still quite low, reflecting an average of 1.1 to 4 jobs per acre. Employment growth to 2030 is scattered, with the highest densities of jobs located adjacent to SR 303L and Dysart Road. The areas with the lowest employment densities are the McMicken Dam and the area south of Peoria Avenue between Sarival Road and the Ennis Spur generally affected by the Luke Air Force Base noise contours.

A majority of the area adjacent to Peoria Avenue has a 2030 population density (less than 4 persons per acre) which is lower than the current population density in the more urban areas of the valley (6 to 9 persons per acre). Therefore, it is likely that the 2030 socioeconomic data used in the MAG model is well below the future potential "build-out" of the study area. Additional development could occur beyond that reflected in the MAG 2030 socioeconomic data that would result in increased travel demand along the Peoria Avenue corridor.

Travel Demand Growth Trends

Based on the existing traffic volumes and the 2031 traffic projections, the travel demand along Peoria Avenue is expected to experience substantial growth over the next 20 years. The annual growth rates vary from approximately 5 percent to 100 percent per year. While this type of growth in travel demand can occur as development occurs in undeveloped areas, these growth rates cannot be sustained over a long period. Assuming that the annual growth rate beyond 2031 will be approximately 15 percent per year, the daily traffic volumes along a majority of Peoria Avenue will exceed 35,000 vpd by the year 2040.

I-10/Hassayampa Valley Transportation Framework Study
An expanded and updated version of the MAG regional transportation model was used to forecast the growth in total travel demand and future changes in travel pattems in the Hassayampa Study Area.

As the first step in the update of the model, MAG developed new build-out population and employment estimates. "Build-out" refers not to a specific future year, but rather to an unspecified date when urban development will have reached its highest level or maximum extent. These assumptions were based on an amalgamation of (1) expected land development patterns and densities in general plans and comprehensive plans, (2) approved private development plans, and (3) planned or proposed development plans. Each of these sources provided a glimpse of the level of future development in the MAG planning area and specifically, the density of development for all major land uses. Build-out represents the bes current understanding of how the region will develop in the long term. Build-out of the Hassayampa Valley is expected to occur at least 40 to 60 years in the future.

Daily traffic projections were obtained from MAG for the Hassayampa Framework Study model. The daily traffic projections for Peoria Avenue from this model ranged from approximately 30,000 to 60,000 vpd which would warrant a 6 -lane arterial roadway.

Conclusions

Maricopa County, City of Surprise, and City of Glendale all classify Peoria Avenue as a 6-lane arterial facility. It is likely that the 2030 socioeconomic data used in the MAG model is well below the future potential build-out of the study area. Additional development could occur beyond that reflected in the MAG 2030 socioeconomic data that would result in increased travel demand along Peoria Avenue. The MAG Hassayampa Framework Study travel demand model was based on a build-out scenario of westem Maricopa County and produced daily traffic projections that would warrant a 6 -lane arterial facility. Based on the growth trends between 2010 and 2031, a 6-lane facility may be warranted by approximately 2040.

PEORIA AVENUE CORRIDOR IMPROVEMENT STUDY

Jackrabbit Trail Parkway to Dysart Road

PEORIA AVENUE CORRIDOR IMPROVEMENT STUDY

Jackrabbit Trail Parkway to Dysart Road

Figure 20 - Population Density 2030

PEORIA AVENUE CORRIDOR IMPROVEMENT STUDY
Jackrabbit Trail Parkway to Dysart Road

Figure 21 - Employment Density 2005

PEORIA AVENUE CORRIDOR IMPROVEMENT STUDY

Jackrabbit Trail Parkway to Dysart Road

5.0 CRASH ANALYSIS

MCDOT provided detailed information on 79 crashes reported along Peoria Avenue between Perryville Road and Dysart Road, during the three-year period beginning J anuary 1, 2004 and ending December 31, 2006. A review of the crash data showed the following information:

- Approximately 90% (71 of 79) of the reported crashes were classified as multi-vehicle crashes
- Of these 71 multi-vehicle crashes, approximately 87% were reported as angle (60%) or rear-end crashes (27\%).
- Of the 79 crashes, approximately 68% were reported as non-injury
- One crash involved a fatality.

Approximately 82% (65) of the 79 crashes were recorded as occurring at an intersection.
A review of the remaining 14 crashes showed that 1 occurred at a driveway, and 12 crashes occurred near an intersection (within 200) even though they were recorded as not related to an intersection or no data was provided as to their relationship to an intersection.

Appendix A

HCM Signalized Intersection Capacity Analysis

c Critical Lane Group

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	个t		\％	个t		${ }_{1}$	个家		${ }_{1}$	$\uparrow \uparrow$	\％
Volume（vph）	80	180	50	170	350	80	50	630	50	240	730	110
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time（s）	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	4.0
Lane Util．Factor	1.00	0.95		1.00	0.95		1.00	0.95		1.00	0.95	1.00
Frt	1.00	0.97		1.00	0.97		1.00	0.99		1.00	1.00	0.85
FIl Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	1.00
Satd．Flow（prot）	1736	3359		1736	3374		1736	3433		1736	3471	1553
FIt Permitted	0.40	1.00		0.60	1.00		0.32	1.00		0.34	1.00	1.00
Satd．Flow（perm）	738	3359		1090	3374		578	3433		622	3471	1553
Peak－hour factor，PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj．Flow（vph）	87	196	54	185	380	87	54	685	54	261	793	120
RTOR Reduction（vph）	0	39	0	0	33	0	0	10	0	0	0	50
Lane Group Flow（vph）	87	211	0	185	434	0	54	729	0	261	793	70
Turn Type	Perm			Perm			Perm			Perm		Perm
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green，G（s）	17.0	17.0		17.0	17.0		35.0	35.0		35.0	35.0	35.0
Effective Green，g（s）	17.0	17.0		17.0	17.0		35.0	35.0		35.0	35.0	35.0
Actuated g／C Ratio	0.28	0.28		0.28	0.28		0.58	0.58		0.58	0.58	0.58
Clearance Time（s）	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	4.0
Vehicle Extension（s）	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Lane Grp Cap（vph）	209	952		309	956		337	2003		363	2025	906
v / s Ratio Prot		0.06			0.13			0.21			0.23	
v / s Ratio Perm	0.12			c0．17			0.09			c0．42		0.05
V / C Ratio	0.42	0.22		0.60	0.45		0.16	0.36		0.72	0.39	0.08
Uniform Delay，d1	17.5	16.4		18.6	17.7		5.7	6.6		9.0	6.8	5.5
Progression Factor	0.91	0.85		0.57	0.51		1.00	1.00		1.00	1.00	1.00
Incremental Delay，d2	5.9	0.5		7.6	1.4		1.0	0.5		11.6	0.6	0.2
Delay（s）	21.8	14.6		18.1	10.4		6.8	7.1		20.6	7.3	5.6
Level of Service	c	B		B	B		A	A		C	A	A
Approach Delay（s）		16.4			12.6			7.1			10.1	
Approach LOS		B			B			A			B	

Intersection Summary			
HCM Average Control Delay	10.6	HCM Level of Service	B
HCM Volume to Capacity ratio	0.68	Sum of lost time（s）	8.0
Actuated Cycle Lengtt（s）	60.0	In	Intersection Capacity Utilization

Analysis Period（min）
c Critical Lane Group

Sum of lost time（s）

$1 C U$	
Level of Service	8.0

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	个t		9	个 \uparrow		${ }^{7}$	个t		${ }^{7}$	$\uparrow{ }_{\text {个 }}^{\text {c }}$	
Volume（vph）	80	360	130	130	580	80	180	100	70	60	240	90
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time（s）	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Lane Util．Factor	1.00	0.95		1.00	0.95		1.00	0.95		1.00	0.95	
Frt	1.00	0.96		1.00	0.98		1.00	0.94		1.00	0.96	
Fil Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd．Flow（prot）	1736	3333		1736	3408		1736	3257		1736	3329	
Flt Permitted	0.31	1.00		0.41	1.00		0.54	1.00		0.64	1.00	
Satd．Flow（perm）	559	3333		758	3408		982	3257		1161	3329	
Peak－hour factor，PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj．Flow（vph）	87	391	141	141	630	87	196	109	76	65	261	98
RTOR Reduction（vph）	0	61	0	0	18	0	0	43	0	0	56	0
Lane Group Flow（vph）	87	471	0	141	699	0	196	142	0	65	303	0
Turn Type	Perm			Perm			Perm			Perm		
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green，G（s）	26.0	26.0		26.0	26.0		26.0	26.0		26.0	26.0	
Effective Green， $\mathrm{g}(\mathrm{s})$	26.0	26.0		26.0	26.0		26.0	26.0		26.0	26.0	
Actuated g／C Ratio	0.43	0.43		0.43	0.43		0.43	0.43		0.43	0.43	
Clearance Time（s）	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Vehicle Extension（s）	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap（vph）	242	1444		328	1477		426	1411		503	1443	
v／s Ratio Prot		0.14			c0．21			0.04			0.09	
v／s Ratio Perm	0.16			0.19			c0．20			0.06		
v／c Ratio	0.36	0.33		0.43	0.47		0.46	0.10		0.13	0.21	
Uniform Delay，d1	11.4	11.2		11.8	12.1		12.0	10.1		10.2	10.6	
Progression Factor	0.97	0.96		0.80	0.77		1.00	1.00		1.00	1.00	
Incremental Delay，d2	3.8	0.6		3.7	1.0		3.5	0.1		0.5	0.3	
Delay（s）	14.9	11.3		13.2	10.3		15.6	10.2		10.7	10.9	
Level of Service	B	B		B	B		B	，		B	B	
Approach Delay（s）		11.8			10.8			13.0			10.9	
Approach LOS		B			B			B			B	

Intersection Summary			
HCM Average Control Delay	11.5	HCM Level of Service	B
HCM Volume to Capacity ratio	0.47		
Actuated Cycle Length（s）	60.0	Sum of lost time（s）	8.0
Intersection Capacity Utilization	55.8%	ICU Level of Service	B
Analysis Period（min）	15		

c Critical Lane Group

c Critical Lane Group

HCM Signalized Intersection Capacity Analysis

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	
Lane Configurations	${ }_{1}$	1		\% ${ }^{4}$	\uparrow	"	${ }^{4}$	$\uparrow \uparrow$	7	${ }^{7}$	个¢	
Volume (vph)	50	60	70	450	100	180	90	910	0	140	470	

Volume (vph)	50	60	70	450	100	180	90	910	330	140	470	70
O	5900	Flow (vphol)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900

$$
\begin{array}{|lrrrrrrrrrrrr}
\text { |deal Flow (vphpl) } & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline \text { Total Lost time (s) } & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 &
\end{array}
$$

$$
\begin{array}{lrrrrrrrrrr}
\text { Total Lost time (s) } & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 \\
\hline \text { Lane Util. Factor } & 1.00 & 1.00 & 0.97 & 1.00 & 1.00 & 1.00 & 0.95 & 1.00 & 1.00 & 0.95 \\
\hline
\end{array}
$$

$$
\begin{array}{lcccccccccc|}
\hline \text { Fil } & 1.00 & 0.92 & 1.00 & 1.00 & 0.85 & 1.00 & 1.00 & 0.85 & 1.00 & 0.98 \\
\hline \text { Ftlt Protected } & 0.95 & 1.00 & 0.95 & 1.00 & 1.00 & 0.05 & 1.00 & 1.00 & 0.95 & 1.00 \\
\hline \text { Satd. Flow (prot) } & 1736 & 1679 & 3367 & 1827 & 1553 & 1736 & 3471 & 1553 & 1736 & 3404 \\
\hline
\end{array}
$$

$$
\begin{array}{lcccccccccc}
\text { Filt Protected } & 0.95 & 1.00 & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 \\
\hline \text { Satd. Flow (prot) } & 1736 & 1679 & 3367 & 1827 & 1553 & 1736 & 3471 & 1553 & 1736 & 3404 \\
\hline \text { FltPermitted } & 0.69 & 1.00 & 0.67 & 1.00 & 1.00 & 0.39 & 1.00 & 1.00 & 0.20 & 1.00 \\
\hline
\end{array}
$$

$$
\begin{array}{lllllllllllll}
\text { Peak-hour factor, PHF } & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92
\end{array}
$$

Adj. Flow (vph)

$$
\begin{array}{rrr}
0.92 & 0.92 & 0.9 \\
54 & 65 & 7
\end{array}
$$

$$
\begin{array}{lrrrrrrrrrr|}
\hline \text { Adj. Flow (voh) } & 54 & 65 & 76 & 489 & 109 & 196 & 98 & 989 & 359 & 152 \\
\hline \text { RTOR Reduction (vph) } & 0 & 56 & 0 & 0 & 0 & 144 & 0 & 0 & 192 & 0 \\
\hline \text { Lane Group Flow (voh) } & 54 & 85 & 0 & 489 & 109 & 52 & 98 & 989 & 167 & 152 \\
\hline \text { Turn Type } & \text { Perm } & & & \text { Perm } & & \text { Perm } & \text { pm+pt } & & \text { Perm } & \text { pm+pt } \\
\hline \text { Protected Phases } & & 4 & & 8 & 5 & 2 & & 1 \\
\hline
\end{array}
$$

$$
\begin{array}{rrrrrrrrrrr}
\text { Trurn Type } & \text { Perm } & & \text { Perm } & & \text { Perm } & \text { pm+pt } & & \text { Perm } & \text { pm+pt } \\
\hline \text { Protected Phases } & & 4 & & 8 & & 5 & 2 & & 1 & 6 \\
\hline \text { Permitted Phases } & 4 & & 8 & & 8 & 2 & & 2 & 6 & \\
\hline \text { Actuated Green, } \mathbf{G}(\mathrm{s}) & 15.9 & 15.9 & 15.9 & 15.9 & 15.9 & 32.1 & 27.9 & 27.9 & 32.1 & 27.9
\end{array}
$$

Protected Phases

$$
\begin{array}{|lcccccccccc|}
\hline \text { Actuated Green, } \mathrm{G}(\mathrm{~s}) & 15.9 & 15.9 & 15.9 & 15.9 & 15.9 & 32.1 & 27.9 & 27.9 & 32.1 & 27.9 \\
\hline \text { Affective Green, } \mathrm{s}(\mathrm{~s}) & 15.9 & 15.9 & 15.9 & 15.9 & 15.9 & 32.1 & 27.9 & 27.9 & 32.1 & 27.9 \\
\hline
\end{array}
$$

$$
\begin{array}{lcccccccccc}
\text { Effective Green, } \mathrm{g}(\mathrm{~s}) & 15.9 & 15.9 & 15.9 & 15.9 & 15.9 & 32.1 & 27.9 & 27.9 & 32.1 & 27.9 \\
\hline \text { Actuated g/C Ratio } & 0.27 & 0.27 & 0.27 & 0.27 & 0.27 & 0.54 & 0.46 & 0.46 & 0.54 & 0.46 \\
\hline \text { Cloaranco Timo (s) } & 40 & 40 & 40 & 40 & 40 & 40 & 40 & 40 & 40 & 40
\end{array}
$$

$$
\begin{array}{lrrrrrrrrrr}
\hline \text { Actuated g/C Ratio } & 0.27 & 0.27 & 0.27 & 0.27 & 0.27 & 0.54 & 0.46 & 0.46 & 0.54 & 0.46 \\
\hline \text { Clearance Time }(\mathrm{s}) & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 \\
\hline \text { Vehicle Extension }(\mathrm{s}) & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 \\
\hline
\end{array}
$$

Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	333	445	626	484	412	453	1614	722	288	1583
V/s Ratio Prot		0.05		0.06		0.02	$c 0.28$		$c 0.04$	0.17

\qquad 0.04
\qquad UC Ratio 0.16
\qquad 0.06

$$
\begin{array}{ll}
0.02 & c 0 . \\
\hline 0.10
\end{array}
$$

\qquad
\qquad $\begin{array}{cc}c 0.21 & \\ 0.78 & 0.23\end{array}$ $\begin{array}{ll}0.03 & 0.10 \\ 0.13 & 0.22\end{array}$
Uniform Delay, d1 Incremental Delay, d2 elay (s) -evel of Service Approach Delay
\qquad B
\qquad $\begin{array}{ll} & 0.11 \\ 0.61 & 0.23 \\ 120 & 9.6\end{array}$

$$
\begin{array}{r}
c 0.04 \\
\hline 0.25 \\
\hline 0.52
\end{array}
$$

 ntersection Summary

Intersection Summary			
HCM Average Control Delay	13.9	HCM Level of Service	B
HCM Volume to Capacity ratio	0.66		
Actuated Cycle Length (s)	60.0	Sum of lost time (s)	12.0
Intersection Capacity Utilization	66.5\%	ICU Level of Service	C
Analysis Period (min)	15		

HCM Signalized Intersection Capacity Analysis

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{4}$	个		\％	个t		\％	个t		${ }_{4}$	\uparrow	
Volume（vph）	50	230	60	230	290	160	180	100	180	100	50	50
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time（s）	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Lane Util．Factor	1.00	0.95		1.00	0.95		1.00	0.95		1.00	0.95	
Fit	1.00	0.97		1.00	0.95		1.00	0.90		1.00	0.93	
Fll Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd．Flow（prot）	1736	3364		1736	3286		1736	3137		1736	3211	
Flt Permitted	0.42	1.00		0.56	1.00		0.68	1.00		0.57	1.00	
Satd．Flow（perm）	761	3364		1024	3286		1249	3137		1034	3211	
Peak－hour factor，PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj．Flow（vph）	54	250	65	250	315	174	196	109	196	109	54	54
RTOR Reduction（vph）	0	42	0	0	113	0	0	94	0	0	26	0
Lane Group Flow（vph）	54	273	0	250	376	0	196	211	0	109	82	0
Turn Type	Perm			Perm			Perm			Perm		
Protected Phases		4			－8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green，G（s）	20.9	20.9		20.9	20.9		31.1	31.1		31.1	31.1	
Effective Green， g （s）	20.9	20.9		20.9	20.9		31.1	31.1		31.1	31.1	
Actuated g／C Ratio	0.35	0.35		0.35	0.35		0.52	0.52		0.52	0.52	
Clearance Time（s）	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Vehicle Extension（s）	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap（vph）	265	1172		357	1145		647	1626		536	1664	
v / s Ratio Prot		0.08			0.11			0.07			0.03	
v／s Ratio Perm	0.07			c0．24			c0．16			0.11		
v / C Ratio	0.20	0.23		0.70	0.33		0.30	0.13		0.20	0.05	
Uniform Delay，d1	13.7	13.9		16.9	14.4		8.3	7.5		7.8	7.1	
Progression Factor	0.79	0.71		0.48	0.32		$1: 00$	1.00		1.00	1.00	
Incremental Delay，d2	0.4	0.1		5.7	0.2		1.2	0.2		0.9	0.1	
Delay（s）	11.2	10.0		13.8	4.7		9.5	7.6		8.6	7.2	
Level of Service	B	A		B	A		A	A		A	A	
Approach Delay（s）		10.1			7.8			8.3			7.9	
Approach LOS		B			A			A			A	
Intersection Summary												
			8.4		HCM Level	of Servic			A			
HCM Volume to Capacity ratio			0.46									
Actuated Cycle Length（s）			60.0		Sum of lost	time（s）			8.0			
Intersection Capacity Utilization			48．5\％		CU Level	Service			A			
Analysis Period（min）			15									
c Critical Lane Group												

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	颜		\％	性		\％	个t		${ }^{7}$	$\uparrow \uparrow$	F
Volume（vph）	90	360	50	50	190	250	50	790	170	90	550	70
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time（s）	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	4.0
Lane Utill Factor	1.00	0.95		1.00	0.95		1.00	0.95		1.00	0.95	1.00
Fit	1.00	0.98		1.00	0.91		1.00	0.97		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	1.00
Satd．Flow（prot）	1736	3408		1736	3175		1736	3379		1736	3471	1553
Flt Permitted	0.35	1.00		0.39	1.00		0.42	1.00		0.24	1.00	1.00
Satd．Flow（perm）	643	3408		705	3175		767	3379		430	3471	1553
Peak－hour factor，PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj．Flow（vph）	98	391	54	54	207	272	54	859	185	98	598	76
RTOR Reduction（vph）	0	19	0	0	122	0	0	26	0	0	0	27
Lane Group Flow（vph）	98	426	0	54	357	0	54	1018	0	98	598	49
Turn Type	Perm			Perm			Perm			Perm		Perm
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		6
Actuated Green，G（s）	13.5	13.5		13.5	13.5		38.5	38.5		38.5	38.5	38.5
Effective Green， $\mathrm{g}(\mathrm{s})$	13.5	13.5		13.5	13.5		38.5	38.5		38.5	38.5	38.5
Actuated g／C Ratio	0.22	0.22		0.22	0.22		0.64	0.64		0.64	0.64	0.64
Clearance Time（s）	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	4.0
Vehicle Extension（s）	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Lane Grp Cap（vph）	145	767		159	714		492	2168		276	2227	997
v / s Ratio Prot		0.12			0.11			c0．30			0.17	
v／s Ratio Perm	c0．15			0.08			0.07			0.23		0.03
v／c Ratio	0.68	0.55		0.34	0.50		0.11	0.47		0.36	0.27	0.05
Uniform Delay，d1	21.3	20.6		19.5	20.3		4.1	5.5		5.0	4.7	4.0
Progression Factor	0.64	0.56		0.88	0.77		1.00	1.00		1.00	1.00	1.00
Incremental Delay，d2	11.3	0.8		1.2	0.5		0.5	0.7		3.5	0.3	0.1
Delay（s）	24.8	12.3		18.3	16.2		4.6	6.2		8.5	5.0	4.1
Level of Service	C	B		B	B		A	A		A	A	A
Approach Delay（s）		14.5			16.4			6.2			5.3	
Approach LOS		B			B			A			A	

Intersection Summary			
HCM Average Control Delay	9.3	HCM Level of Service	A
HCM Volume to Capacity ratio	0.52		8.0
Actuated Cycle Length（s）	60.0	Sum of lost time（s）	B
Intersection Capacity Utization	63.9%	ICU Level of Service	
Analysis Period（min）	15		

HCM Signalized Intersection Capacity Analysis

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	个个		\％	个t		${ }_{1}$	\uparrow		\％	$\uparrow \uparrow$	
Volume（vph）	80	570	160	50	380	80	140	230	130	50	130	70
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	900
Total Lost time（s）	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Lane Util．Factor	1.00	0.95		1.00	0.95		1.00	0.95		1.00	0.95	
Fit	1.00	0.97		1.00	0.97		1.00	0.95		1.00	0.95	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd．Flow（prot）	1736	3357		1736	3381		1736	3283		1736	3289	
Flt Permitted	0.40	1.00		0.21	1.00		0.62	1.00		0.52	1.00	
Satd．Flow（perm）	733	3357		380	3381		1125	3283		952	3289	
Peak－hour factor，PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj．Flow（vph）	87	620	174	54	413	87	152	250	141	54	141	7
RTOR Reduction（vph）	0	52	0	0	36	0	0	66	0	0	35	
Lane Group Flow（vph）	87	742	0	54	464	0	152	325	0	54	182	
Turn Type	Perm			Perm			Perm			Perm		
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green，G（s）	19.9	19.9		19.9	19.9		32.1	32.1		32.1	32.1	
Effective Green， $\mathrm{g}(\mathrm{s})$	19.9	19.9		19.9	19.9		32.1	32.1		32.1	32.1	
Actuated g／C Ratio	0.33	0.33		0.33	0.33		0.54	0.54		0.54	0.54	
Clearance Time（s）	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Vehicle Extension（s）	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap（vph）	243	1113		126	1121		602	1756		509	1760	
v／s Ratio Prot		c0．22			0.14			0.10			0.06	
v / s Ratio Perm	0.12			0.14			c0．14			0.06		
v／c Ratio	0.36	0.67		0.43	0.41		0.25	0.19		0.11	0.10	
Uniform Delay，d1	15.2	17.2		15.6	15.5		7.5	7.2		6.9	6.9	
Progression Factor	0.80	0.76		0.96	0.86		1.00	1.00		1.00	1.00	
Incremental Delay，d2	0.9	1.5		2.3	0.2		1.0	0.2		0.4	0.1	
Delay（s）	13.0	14.6		17.3	13.5		8.5	7.4		7.3	7.0	
Level of Service	B	B		B	B		A	A		A	A	
Approach Delay（s）		14.4			13.9			7.7			7.0	
Approach LOS		B			B			A			A	
Intersection Summary												
HCM Average Control Delay			11.8		HCM Leve	f Service			B			
			0.41									
HCM Volume to Capacity ratio			60.0		Sum of los	ime（s）			8.0			
Actuated Cycle Length（s）Intersection Capacity Utilization			51．4\％		CU Level	Service			A			
Intersection Capacity Uilization			15									

c Critical Lane Group

Appendix H

MCDOT RightRoads Summary of Public and Stakeholder Involvement

Right Road Right Time Right Cost

Summary of Public Involvement

Peoria Avenue
 Corridor Improvement Study
 J ackrabbit Trail to Dysart Road

May 10, 2011

Maricopa County Department of Transportation

FINAL REPOR

PURPOSE OF PUBLIC INVOLVEMENT

This study evaluated planned corridor development and the resulting projected 2030 traffic volumes along the future Peoria Avenue corridor between J ackrabbit Trail and Dysart Road to develop the most cost-effective improvement plans that include a recommendation for establishing the future roadway type, alignment, access management strategies, future drainage structures and network connectivity.

Gaining consensus among the agencies and the public is critical to the success of this long range transportation study as well as the future implementation of its recommendations to provide an efficient roadway for the long term.

Maricopa County Department of Transportation (MCDOT), Flood Control District of Maricopa County (FCDMC), Arizona Department of Transportation (ADOT), Arizona State Land Department (ASLD), Maricopa Association of Governments (MAG), the Burlington-Santa Fe Railway (BNSF), Maricopa County Environmental Services, Maricopa County Parks Department, Maricopa County Planning and Development, Maricopa Water District, the City of Surprise, the City of Glendale, the City of EI Mirage, Dysart Unified School District, major utility providers, impacted land developments, affected businesses, property owners and residents are all major stakeholders in this study.

The participation of stakeholder public and multi-agency involvement aids in the development of a consistent roadway and the resolution of conflicting agency requirements; facilitates ultimate regional traffic flow; and preserves the interests and rights of area residents and adjacent development.

STUDY BACKGROUND \& PURPOSE

The Peoria Avenue Corridor Improvement Study (J ackrabbit Trail Parkway to Dysart Road) is one of a series of long-range transportation planning studies being conducted by the Maricopa County Department of Transportation (MCDOT). The City of Surprise, City of Glendale, City of EI Mirage, and Maricopa County transportation plans all include Peoria Avenue as a future arterial roadway from Jackrabbit Trail Parkway to Dysart Road. The Maricopa Association of Governments (MAG) recently prepared the Interstate 10/Hassayampa Valley Transportation Framework Study (Hassayampa Framework Study) that identified a comprehensive roadway network to meet traffic demands for the build out of the area west of SR 303L. This long range regional transportation study identified the need for future roadway network consisting of freeways, parkways, and major arterial roads

The MAG Hassayampa Framework Study recommended an extension of Peoria Avenue westward from Perryville Road to the future J ackrabbit Trail Parkway, and identified Peoria Avenue as a major arterial roadway from the future J ackrabbit Trail Parkway to Sarival Avenue.

This study will identify the preferred alignment and "footprint" for the future Peoria Avenue between J ackrabbit Trail Parkway and Dysart Road and will facilitate future roadway implementation by developers and local jurisdictions, providing a cohesive transportation corridor, compatible with the City of Surprise, City of Glendale, City of EI Mirage, Maricopa County, and MAG transportation plans

Corridor Description

The Peoria Avenue Corridor study area includes the segment of Peoria Avenue between the future J ackrabbit Trail Parkway alignment and Dysart Road. The study area generally encompasses a two-mile wide corridor centered on the existing Peoria Avenue alignment.

Today's Peoria Avenue generally consists of a two-lane roadway (one travel lane in each direction). Half-street improvements have been constructed along the north side of Peoria Avenue adjacent to developments such as Shadow Ridge High School, Greer Ranch subdivision, Copper Canyon Ranch subdivision and Skyway Business Park. Improvements on the south side of Peoria Avenue have been constructed adjacent to the Cortessa subdivision. The only full-width roadway section of Peoria Avenue is located immediately east of Perryville Road between Cortessa and Shadow Ridge High School.

The BNSF Railway operates a north-south railroad spur (Ennis Spur) that crosses Peoria Avenue between Litchfield and Dysart Roads. SR 303L crosses the Peoria Avenue Corridor between Cotton Lane and Sarival Road

The majority of the land in the study area is privately owned, with the exception of the westernmost limit (west of Beardsley Canal) which is owned by the Arizona State Land Department (ASLD). The majority of the existing land use is categorized as Land Department (ASLD). The majority of the existing land use is categorized as
under development, which include three elementary schools, one middle school, and one high school. In several locations, existing homes not associated with large master-planned communities, are located adjacent to Peoria Avenue. Small clusters of industrial and commercial development are scattered throughout the eastern end of the study area.

Based on the City of Surprise, City of Glendale, and City of EI Mirage future land use planning, a majority of the vacant and agricultural land within the study area is envisioned to be converted to single-family residential housing and mixed-use developments in the future. It is anticipated that commercial and industrial development will expand, but remain scattered throughout the study area.

Study Need

Today's land development and existing travel demands in the Peoria Avenue Corridor do not warrant a major east/west arterial roadway in the near-term however, plans are underway to convert much of the rural and low density residential lands within the corridor to more intense land uses that will generate significantly more traffic. The "build-out" forecast for future land development and resulting travel demand warrant a major east/west arterial roadway in the long term.

To help make future roadway construction economically feasible, the planning process needs to begin now to identify and protect long-term public right-of-way needs for the future roadway under ultimate "build-out" conditions

Study Goals \& Objectives

This corridor study is the first step in the planning process and its primary goal is to aid the affected agencies and jurisdictions in defining and protecting sufficient right-of-way for a continuous future Peoria Avenue Corridor that will safely accommodate projected travel demand and the future six-lane major arterial roadway as identifie in the Surprise, Glendale, MCDOT and MAG long-range transportation plans. In general, the purpose of this Corridor Improvement Study is to provide MCDOT and partner jurisdictions with a future "footprint" of the Peoria Avenue Corridor and a timeframe for the implementation of the recommended future roadway improvements.

To accomplish this, the main focus of this study is to investigate, map, and analyze corridor constraints and opportunities to arrive at a recommended corridor alignment. This study will establish the facility type, number of lanes, right-of-way needs, and general alignment for the Peoria Avenue Corridor that will be required to accommodate projected traffic growth and enhance safety. In cooperation with the City of Surprise, the City of Glendale, and the City of EI Mirage, the study will also determine design standards based upon future roadway jurisdiction (anticipated roadway annexation) and an implementation or construction phasing plan.

The key objectives of this Corridor Improvement Study are to:

- Define and assess the strategic issues within the project study area

Develop and evaluate conceptual alternative alignments within the corrido study area

- Recommend a preferred alignment
- Define the characteristics of the preferred alignment
- Develop consensus for the preferred alignment

Develop an implementation (recommended construction phasing) plan

Preliminary Key Issues and Challenges

Early in the study process, a preliminary list of study issues and potential challenges is compiled. This list expands as the study progresses and input is obtained from public participation.

- Establish future connections of Peoria Avenue to planned roadways such as Jackrabbit Trail Parkway
- Account for future planned connection to SR 303L
- Evaluation of drainage structures across major washes, canals and channels
- Evaluation of crossing of the BNSF Railway Ennis Spur
- Maintain functional integrity of roadway through constrained areas
- Maximize use of existing roadway improvements along corridor to reduce costs
- Identify ultimate alignment and access management strategies
- Consideration of environmental constraints

Study Approach

The Peoria Avenue Corridor Improvement Study is carried out in two phases, a planning phase and an engineering phase.

Planning Phase

During the Planning Phase, general background information regarding the corridor is gathered and documented in reports that will lead to well-founded recommendations for improvements and longer-term needs along Peoria Avenue. Meetings are conducted with affected jurisdictions, agencies, stakeholders, and the impacted public to form a broad consensus of the overall needs and vision of the corridor

Based on identified needs, conceptual altematives are developed and candidate alternatives are then evaluated for technical and environmental feasibility, public acceptability, and economic viability.

Engineering Phase
The Engineering Phase of the study begins following the selection of a preferred alternative. Preliminary engineering design plans, right-of-way requirements, and estimated construction costs will be prepared for long-term roadway design features.

Priorities for roadway construction phasing along with policies and guidelines to preserve the intended regional function of the road are developed

STUDY MILESTONES

Project Kick-off \& Study Initiation
PHASE I:
Data Collection/Issues Identification
Public Input Meeting \#1 (Scoping Phase)
PHASE II:
Alternatives Development
and Evaluation
October 2010 - J anuary 2011
Public Input Meeting \#2
(Alternatives Analysis Phase)
J anuary 18, 2011
Public Input Meeting \#3
(Findings \& Recommendations)
March 22, 2011
Study Completion/Final Report J une 2011

ALTERNATIVES DEVELOPMENT \& EVALUATION

After completion of the inventory of existing and future conditions, the study team developed the following evaluation criteria to help determine the alignment for Peoria Avenue:

- Right-of-way impacts
- Compatibility with existing developments
- Compatibility with planned future developments
- Compatibility with existing and planned roadway improvements
- Engineering complexity and constructability
- Public acceptance
- Local agency support
- Drainage/flood control considerations
- Utility considerations
- Environmental considerations

Preferred Alternatives (Recommended Alignments)
The Peoria Avenue corridor was split into nine east/west geographic segments to conduct the evaluation. Up to three alternative alignments were considered for each segment: Alternative 1 included widening the corridor symmetric to the section line,
attempting to balance impacts to both sides of the corridor; Alternative 2 included widening the corridor to the south, maintaining the northern right-of-way boundary: Altemative 3 included widening the corridor to the north, maintaining the southern right-of-way boundary.

Based on this evaluation and study findings, the following alternatives are recommended along the corridor:

Segment 1 (future J ackrabbit Trail Parkway to Beardsley Canal)

- Alternative 1 - new corridor along section line

Segment 2 (Beardsley Canal to Perryville Road):

- Alternative 1 - new corridor along the section line

Segment 3 (Perryville Road to Citrus Road):

- Alternative 1 - widen symmetric along the section line

Segment 4 (Citrus Road to Cotton Lane):

- Alternative 3 - shift north

Segment 5 (Cotton Lane to Sarival Road):

- Alternative 1 - widen symmetric along the section line

Segment 6 (Sarival Road to Reems Road):

- Alternative 1 - widen symmetric along the section line

Segment 7 (Reems Road to Bullard Avenue)

- Alternative 3 - shift north

Segment 8 (Bullard Avenue to Litchfield Road):

- Altemative 1 - widen symmetric along the section line Segment 9 (Litchfield Road to Dysart Road):
- Alternative 2 - shift south

SUMMARY OF RECOMMENDED ALIGNMENT

Segment	Location	Recommended Alignment	Comments
$\mathbf{1}$	Future J ackrabbit Trail Parkway to Beardsley Canal	Alternative 1 Centered on section line	Scored higher due to shorter coridor length and less disturbance to drainage corridors.
$\mathbf{2}$	Beardsley Canal to Perryville Road	Alternative 1 Centered on section line	Independent evaluation not carried out; alignment is already set in the Zanjero Trails Preliminary Plat.
$\mathbf{3}$	Perrvville Road to Citrus Road	Alternative 1 Centered on section line	Scored highest of the three alternatives, most compatible with existing street improvement on Peoria Avenue.
Corridor will transition at east end to			
meet Segment 4, shifted north of the			
section line.			

Segment	Location	Recommended Alignment	Comments
4	Citrus Road to Cotton Lane	Alternative 3 Centerline shifted 37 feet north of section line	Scored highest of the three alternatives; most compatible with existing development; likely to have least right-of-way cost.
5	Cotton Lane to Sarival Road	Alternative 1 Centered on section line	All three alternatives scored similarly. Altemative 1 chosen due to compatibility with existing development and planned roadway improvements, specifically placement of Loop 303 and the Peoria Avenue traffic interchange. Corridor will transition from Segment 4 north shift to centerline symmetry at the west end of this segment.
6	Sarival Road to Reems Road	Alternative 1 Centered on section line	Scored highest of the three alternatives; balances impacts throughout segment and performs best in key factors, including compatibility with existing development and drainage/flood control considerations.
7	Segment 7: Reems Road to Bullard Avenue	Alternative 3 Centerline shifted 30- feet north of section line for short distance in middle portion of segment	Although scoring the lowest due to impacts to existing development, maintaining section line alignment at west end and transitioning to the north, east of existing development allows alignment to miss well site and balance impacts throughout remainder of segment. Corridor will transition at east end to meet segment 8 , centered on the section line.
8	Bullard Avenue to Litchfield Road	Alternative 1 Centered on section line	Scored highest of the three alternatives; balances impacts throughout segment and performs better than Alternative 3 in key factors, including compatibility with existing development and drainage/flood control considerations.
9	Litchfield Road to Dysart Road	Alternative 2 Centerline shifted south of section line	Because of the varying shifts associated with Altemative 2 , it best minimizes impacts to existing land uses throughout the segment.

Recommended Implementation Plan

The recommendations of this study are intended to be used to preserve corridor right-of-way for the ultimate Peoria Avenue. It is anticipated that construction of
improvements will not likely be completed in the near-term, but rather by private developers as development along the corridor occurs.

Near-Term Improvements

In the near-term, projects that are already funded will be completed, such as improvements at the SR Loop 303/Peoria Avenue interchange (to be constructed by ADOT when SR Loop 303 is upgraded to a freeway) and City f Surprise planned completion of the north half-street section between Sarival and Reems Roads. Other near-term improvements recommended for consideration include acquiring public right-of-way and constructing a twolane roadway between Citrus Road and Cotton Lane, and constructing drainage improvements at Litchfield and Sarival roads.

Mid-Term Improvements

Several additional improvement projects, most likely constructed by adjacent development, would be needed in the mid-term timeframe to provide a continuous four-lane facility by the year 2030:

- South half-street and frontage road construction between Citrus Road and Cotton Lane
- Cotton Lane intersection improvements
- Reems Road intersection improvements
- South half-street construction between Bullard Avenue and Litchfield Road

Long-Term Improvements

Long-term (likely beyond 2030) improvements will focus on bringing uniformity to the corridor and widening to the ultimate six-lane facility. Areas where these improvements would occur include.

- Perryville Road to Citrus Road
- Sarival Road to Reems Road
- Bullard Road to Litchfield Road
- Litchfield Road to Dysart Road

PUBLIC INVOLVEMENT

Public participation and feedback during each phase of the study process is very important and a vital component of study development. Gaining consensus among the jurisdictional agencies and the public is critical to the success of the study and implementation of its recommendations to provide a safe and efficient roadway for the long term.

In addition to multiple Stakeholder Advisory Committee meetings, a total of three public input meetings are conducted during the course of the study process. The first public input meeting (September 20, 2010) was held during the data collection and Scoping Phase to inform the public of the objectives of the study and provide area residents and other stakeholders with an opportunity to inform project team
members about study area issues and local transportation needs. This meeting also provided the public an opportunity to contribute feedback on the study purpose goals, and objectives.

The second public input meeting (J anuary 18, 2011) was conducted during the Alternatives Analysis Phase. This meeting served to provide the results of the issues and constraints identification process and reviewed the candidate alignment evaluation criteria. This meeting also presented the conceptual altemative alignments, and gathered more public feedback to assist further development and evaluation of the advanced Candidate Alternatives, leading to the study's primary objective, the selection of a Preferred Alignment.

The third and final public input meeting (March 22, 2011) was held during the Findings and Recommendations Phase of the study. This meeting reviewed the results of the Candidate Alternative evaluation process, presented the P referred Alternative (recommended alignment), and gathered additional public input and feedback for use in the development of the final report.

Participants

MCDOT Planning \& Engineering:	Consultant Team:
Mitch Wagner	Rodney Bragg (AECOM)
Roberta Crowe	J ackie Pfeiffer (AECOM)
Mike Pavlina	J avier Guana (Andes)

Mike Pavlina
ackie Pfeiffer (AECOM)
avier Guana (Andes)

Public Works Lands/Real Estate:
Robert Sachs

Outreach Methods

The following outreach methods were used to inform and notify the general public and impacted residents about the study, public input meeting dates and locations and additional opportunities or means for input:

- Media releases
- Newspaper articles
- Display advertisements in local and regional publications
- Arizona Republic
- Surprise Independen

West Valley View

- Buckeye Valley News
- MCDOT website
- Partner agency mediums
- Direct mail flyers to adjacent property owners and previous meeting attendees

PUBLIC COMMENT

Over 150 people attended three public input meetings conducted through the course of this study. Graphics, aerials and display exhibits presented corridor alternatives and study information. Study Fact Sheets and Comment Sheets were distributed to those in attendance. All public meetings were conducted in an "open house" format providing a free, open and accurate exchange of information between area residents with specific issues or questions and the project team. The following information is representative of discussions that the project team had with meeting attendees and written comments received by MCDOT:

Scoping Phase Public Meeting

Meeting Purpose: Gather public comment regarding the study area, existing conditions, current corridor deficiencies, future transportation needs and public review of overall Study Goals and Objectives

5:00-7:00 p.m., September 20, 2011
Shadow Ridge High School Media Center
Surprise, AZ 85388
Attendance: 66

- There are lot of people using this road especially in the peak hours. I would suggest there should be a minimum of 2 lanes on each side with lighting on both sides of the road. West of Bullard avenue there is no lighting on the road. There is lot of vacant land surrounding the Peoria Ave and I am assuming there will be lot of future residential/commercial development will be happening adjacent to Peoria Avenue.
- Intersection of 303 \& Peoria Avenue needs to be signalized
- I support the completion/improvement of Peoria Avenue fromJ ackrabbit Trai to Dysart Road. It is imperative that alternate ingress and egress roadways are established for the residents in this area.
- Peoria between Cotton Lane and Citrus needs to be addressed sooner than later. For emergency services to meet somewhat decent response times this road should be paved or monthly maintained for proper and secure road travel. Owner made speed bumps and or ditches should be addressed.
- If a road improvement is needed then Olive should be the road. It has much less housing affected and it goes all the way through to the 101. Peoria after Dysart turns into 25 mph . Peoria does not make sense.
- MCDOT not very knowledgeable about Peoria Avenue \& Citrus as to how it is going to be improved (\#of lanes, speed, traffic control devices) right of way purchasing and speed enforcement/traffic control devices, i.e. residential neighborhood 25 mph or less. What time frame for project improvements This section of roadway provides a very big environmental issue caused by the dust. Very big impact from developments to the west of this location to the high school.
- Please pave Peoria between Cotton Lane and Citrus ASAP. Thank you
- The community on $178^{\text {th }}$ Avenue does not want the street ($178^{\text {th }}$ Ave.) to exit onto Peoria Ave. What noise barriers are going to be installed to cut down on noise pollution? The dust pollution on Peoria is terrible. What is the County and City of Surprise going to do about the pollution from traffic between now and the time pavement is installed.
- My concern is the area from Cotton Lane to Citrus on Peoria. Before the school was built, someone should have thought about the people who already live in the neighborhood. What is the speed limit; will there be stoplights or stop signs? Where will the intersections be? What can you do in the meantime to control the dust? What about the speeders? How many lanes will there be? We need to have more answers if you wanted out opinions!
- Provide more info at next meeting. Do something about the dirt road between Cotton lane and Citrus. The dust is killing us. Keep the speed limit at 25 mph on dirt road and enforce it. Need to know number of lanes and traffic control devices. Dust control and environmental issues at the present time and future.
- Hopeful that Peoria will become paved from Cotton Lane to Perryville. We have kids at the elementary school and traffic would be significantly decreased if this were to happen
- Interested in the sequence/timeline of improvements and proposed changes to Peoria Ave Also - type of interchanges at 303 and arterials.
- Nobody working this meeting really had any information as to what was going to happen if anything. Nick Mascia (City of Surprise) was very helpful and knowledgeable however there are no plans for anything to happen. This meeting led me to believe there was something in the "works". What a disappointment to find out it is a dead-end. The high school will have Seniors and J uniors driving - the dust level for Peoria and Cotton area will be much worse. The 4 -way stop at Cotton and Olive is very busy and in the momings it is impossible to get through.
- I know money is dear, but can't we pave some of the dirt roads before tearing up existing roads constanty?
- Project needs to be "fast tracked" thru local City/State/County DOT officials. was disheartened to find out this "project" is still in the study phase. My main concem is Peoria fronting the community of Greer Ranch. The HOA is concemed regarding road signs, sidewalks and necessary landscaping that need to be to actually finish off the development. I would be more than happy to discuss this further. Appreciate the "Open House".
- This is a very needed project improvement for the area. The challenge will be on getting the owners (all of them) to agree on the best alternatives. The District has tried that before when we built the school and met resistance.
- We live in Cortessa and Olive Avenue right now is the only in and out of this area. Should Peoria Avenue get improved, it would help the traffic flow tremendously. Also, with the High School now being open, it would assist with traffic as well. I don't believe that there is any reason not to
- Improve Peoria Avenue with the exception of the home owners that happen to live there and don't want the additional traffic - then they should move.
- Recently a large school was put in at the end of Peoria and Citrus. Since this school was put in, we have had nothing but traffic speeding down Peoria (dirt road) each moming and also in the aftemoon. I assume these are people taking and picking up their children from school. This causes a tremendous amount of dust for the people who live in my neighborhood, especially the people whose houses face Peoria Road. Don't get me wrong, I would love to see the road paved to cut down on the dust in our neighborhood, however I have some concerms.
- We do not want $178^{\text {th }}$ Avenue to connect to Peoria Avenue. In addition, we would like to have a sound wall as well.
- My questions to you are if this road is paved, who will incur the cost? Will ou taxes be raised so people who do not live in our neighborhood can take their kids to the new school? Is there some sort of stimulus that will take care of the cost? Will the people whose houses face Peoria loose part of their frontage property, and what about the irrigation canals that run along Peoria? The stretch of road on Peoria from Cotton Lane to Citrus will there be speed bumps or stop signs?
- We would like for the road to be paved. Since Shadow Ridge High School has opened we have experienced a lot of traffic thru our community (Cortessa) and have even experienced a number of accidents down Olive ave towards Cotton Lane. Perryville Rd going towards Olive has become a race way for the High School kids as well resulting in the kids driving extremely fast down that road. We feel if Peoria Ave was paved it would eliminate the high school kids driving thru the community, allowing more routes to exit the High School eliminating accidents, kids getting hit (which this has happened) and reducing traffic flow/speed down Olive ave towards Cotton and Perryville Rd towards Olive.
- I would love to see road improvements to Peoria Ave! Not only for quicker, safer access to the High School but congestion and traffic would be reduced at all entrances/exits on Olive Ave west of Cotton Lane as well. Though the housing boom has ceased, there are many who live in the Cortessa development that would greatly benefit from the improvements. Work and shopping expeditions would have less drive, which saves on gas in these tough economic times. It is a great time to update Peoria Ave and also provide work for many. My vote is a YES!

The following are key issues captured by the study team during conversations with meeting attendees:

- Support (from a number of people who live in Cortessa) to pave the one-mile of Peoria Avenue between Citrus Road and Cotton Lane.
- Want improvements made to Peoria Avenue sooner rather than later
- Concern about emergency access if emergency vehicles "detour" around unpaved segment.
- Desire for the use of asphalt rubber to reduce noise levels.
- Don't want $178^{\text {th }}$ Ave connected to Peoria Avenue when Peoria Ave is improved.
- Questions about the study schedule and future input opportunities
- Questions about alternatives under consideration
- Questions about the timing of new development/master planned communities.
- Clarification of study purpose.
- Concern about other unpaved roads (not in the study area) and when the county will pave them
- Questions about specific development entitlements relative to future land use (e.g., when/where will a gas station be placed in the neighborhood; when will the new Safeway begin construction, etc.)

Alternatives Analysis Phase Public Meeting

Meeting Purpose: Gather public comment regarding preliminary study findings, traffic analysis, corridor alignment alternatives and future roadway options

```
5:00-7:00 p.m., September 20, 2011
Shadow Ridge High School Media Center
```

Surprise, AZ 85388
Attendance: 35

- We live at 15751 W. Becker Lane and Peoria Ave. is just beyond our back wall. Traffic noise is already high. Peoria Ave. doesn't go through to the 101 so it makes no sense to widen it. A better idea would be to widen Olive Ave. instead. There are very few homes along the corridor planned and there are stop lights already installed at the major intersections including the 303 and the 101. It is more of a major road than Peoria Ave. We are against your plans at this time.
- I attended the open house last night at the High School. Thank you for taking the time to speak with all of us and listen to the concerns of the homeowners in the neighborhood. My first concerns at this meeting was to be sure that there were no plans to open up our dead end street to Peoria Ave. (178th, 177 th, 176 , all dead end at the irrigation ditches).
You nodded your head and said that that was not included in this study or the plans. I was good with that. My second concern was a noise barrier along Peoria. This was not addressed at the meeting... so I am not sure what the plans are for that.
- After reviewing the 3 alternatives that were posted. I have to say that Alternative 3
(road to the north) is really the only option. I am the billing coordinator for Co-op 100 the co-op that owns the small irrigation ditches that provides irrigation to the homes from 175th - Citrus, south of Peoria Ave. If you went with Alt. 1 or 2 , this will affect the irrigation ditches and the wells. I am not sure how that would affect the irrigating of our property.
- Some of the homeowners have been there for over 40 years, and some are fairly new; but nevertheless, we all moved out there for the irrigated acre's and raise our children in a rural environment. I completely understand that "progress" and "change" is coming. We dealt with that with Cortessa. If there is an option (Alt. 3) that can improve the road without disturbing the homes in our neighborhood, I feel that that should be your only option. The only thing on the North side of Peoria is farmland. No homes, no families, nothing personal will be disturbed by using the farmland for your Peoria Corridor.
- PS: If the county would like to pave the existing 2 lane road from Cotton Lane to Citrus, I don't think anyone would have heartache over that.
- Peoria's unpaved section East of Citrus needs 2 lanes paved "yesterday", if not dust to control the dust, to eliminate the extra 2 miles of travel getting around it in lieu destroying your vehicle. It does not appear to be any reasonable alternative route other than Peoria, at least nothing as straight forward and nothing that wouldn't cost a lot more money.

Findings and Recommendations Phase Public Meeting

Meeting Purpose: Gather public comment regarding study findings and Preferred Alternative", recommended access management strategies and guidelines, and an improvement phasing timeline

5:00-7:00 p.m., September 20, 2011
Shadow Ridge High School Media Center
Surprise, AZ 85388
Attendance: 50

- I live at 18537 W. Onyx Ave near Shadow Ridge School I would like to see Peoria improved from Cactus Lane to 303 . This would cut 2 miles off every time I drive to Surprise. Also the intersection of Olive and 303 is in deplorable condition. A little patch work could smoothen it up. The bumps could cause accidents. Thank You
- It is simply my feeling that the County should proceed with the plan for Peoria Ave. that make sense. There are a few vocal individuals (as usual) that will cause delay and therefore added expense to this project
- If the County doesn't proceed. The Peoria "cow trail" east of Citrus is a prime example of a few, delaying what should have been done ages ago ,but would a single lane in each direction west of the 303 be any sort of an option, at least for that section, until the entire project can move forward ?

Comments/questions received by Project Team during discussions with meeting attendees:

- Most attendees want improvements built now to mitigate dust issues along Peoria from Citrus Road to Cotton Lane.
- General support for frontage road concept in segment between Citrus Road and Cotton Lane.
- Some concerns/questions regarding frequency of median breaks/access to Peoria Avenue and intersecting side streets.
- Want noise mitigation to be considered between Citrus Road and Cotton Lane as homes will be close to roadway.
- Request to reduce speed limit along Peoria Avenue between Citrus Rood and Cotton Lane as homes will be close to roadway.
- Several questions on timeframe of implementation of Peoria Avenue improvements; preference for improvements sooner rather than later.

FUTURE PROJECT DEVELOPMENT CONSIDERATIONS

It is important to recognize that the Peoria Avenue Corridor Improvement Study is a long range transportation planning study and the earliest phase of potential project development. It is intended to identify the facility type and roadway alignment at some future date along the Peoria Avenue corridor to address forecasted travel demand associated with future area land development. No public funding is currently allocated for design, right-of-way acquisition, or construction of any elements of this segment of the Peoria Avenue corridor

The Preferred Alignments as recommended in this study will be used to guide future planning efforts and ensure that subsequent land development proposals and transportation system plans are compatible with future construction of Peoria Avenue. Further refinement and negotiation of the roadway centerline right-of-way limits and consideration of environmental impacts will take place in later phases of project development as properties develop and as transportation system improvements are implemented.

The following are key issues captured during this study's stakeholder and public involvement process that should be taken into consideration by individual jurisdictions as the recommendations of this study are carried forward into design and construction:

- Project Funding: It can be anticipated that area developers will participate as part of project requirements.
- Access Management Strategies: Specific strategies should be implemented to ensure a seamless roadway with efficient traffic flow, safety and good access to local land uses
- Environmental Impacts: (Natural, Cultural and Archeological Resources) and Noise Mitigation. Specific impacts on the local environment will require further evaluation during future project development
- New Right-of-Way Requirements: Final roadway configuration (during preparation of Final Design Plans) will determine exactly how much land will need to be acquired to accommodate the future roadway.
- Landscaping Plans: Final project design will specify the type of landscaping to be used.
- Drainage Structures: Bridges along the new roadway will be designed during final roadway design efforts. It will be critical to ensure the roadway is designed to provide "all weather" crossings during major storm flows.
- Bicycle, Pedestrian and Transit Access: Future projects will be designed to accommodate alternative modes of travel and provide access to trails and neighborhoods in the area.
- Corridor Traffic Management: ITS (Intelligent Transportation System) will control operation of traffic between jurisdictions and differing intersection configurations.
- Jurisdictional Coordination: As with the overall traffic control, implementation of different corridor improvements and access management concepts will be coordinated to ensure a safe, seamless and efficient transportation facility.

Next Steps: Implementation of Recommended Improvements

- Adoption of Recommendations by Individual J urisdictions
- Functional Roadway Classification (Urban Arterial)
- Corridor Alignment
- Access Management Plan
- Right-of-way Preservation in Developing Areas
- Design Concept Report (DCR) or Scoping Report for Consideration in project programming
- Appropriation of Funds for Design, Right-of-Way Acquisition and Construction of Recommended Corridor Improvements
- Consistent Coordination between various J urisdictions on Transportation Improvements and Traffic Issues

This report contains capsulated key issues identified during this study's public involvement process that should be taken into consideration by individual jurisdictions as the recommendations of this study are carried forward through design and construction.

It is recommended that future project development build upon the public involvement program established during this study and continue as a comprehensive program progression.

For more information about the study, contact Mitch Wagner, MCDOT Planning, at 602/506-8054 or Roberta Crowe, MCDOT Public Information Officer at 602/5068003.

Exhibit A:
Public Meeting Notification \& Newspaper Display Advertisement

Scoping Phase Public Input Meeting Newspaper Advertisement

- Arizona Republic
- Buckeye Valley News
- Surprise Independent
- West Valley View

Scoping Phase Public Input Meeting
Mail Notification

 MARICOPA COUNTY DEPARTMENT OF TRANSPORTATION

We Need Your Input Peoria Avenue

 Corridor Improvement Study Jackrabbit Trail Parkway to Dysart RoadPublic "Scoping" Meeting
The Maricopa Courty Department of Transportation's (McDOT) RightRBaads
The Maricoopa County Department of Transpoitation's (MCDOT) Rigm
Progran. is conducting the first in a series of three public open house
Program, is conduccing the first in a series of three public open house
meetings to gathercommunity input about potential improvements along eigiti-mile section of Peoria Avenue from Jackrabbit Trail Parkway to Dysart R.oad. The goal of this study is to identify and establish the future roadway type, alignment, number of lanes and night-of-way requirements
along the Peoria Avenue coridor to safely accommodate future traftic demand
Stop by anytime between $5: 00$ and $7: 00 \mathrm{p}$.m. to speak with MCOOT project team members. For more information, contact Mitct Wagner at (602) $506-8054$ withe to Wagner at: MCDOT, 2901 W. Durango Street, Phoenix, AZ B5009, or e-mail at: mitctchwagneramail.maricopa, gov or contact Roberta Crowe, Public Infomation Officer at (602) 506 -8003

Public Open House

 Monday, September 20, 2010 5:00 p.m. 10 7:00 p.m. Shadow Ridge High School 10909 N. Perryville Road Surprise, AZ 85388(at Peoria Avenue and
Perrville Road)
Reasonableaccommodations may be made avaliable for peepole with disabilire information on such accommodations, oontact Roberta Crowe at (602) 506-800
Si desea recibir esta información en Español, favor llame (480) $350-9288$. Con adviso de setenta y dos horas o mass, es posible obtener plans reasonables para personas con discapacidades 10 mismo para representantes que hablan Español. Si quiere màs informa aín. llame (480) 350-9288.

Now Tow

- Arizona Republic
- Buckeye Valley News
- Surprise Independen
- West Valley View

We Need Your Input Peoria Avenue Corridor Improvement Study Jackrabbit Trail Parkway to Dysart Road
 Findings \& Recommendations Phase Public Input Meeting The Maricopac Country Department of Transportation's (MCDOT) Right Moads Program, is conducciog the finy in a series of three publico open house meetings to oather community conducting the final in aseries of three public open house meetings to gather community inputa about potential inprovements along an eight-mile section of Peoria Averue between input atout potential improvements along an eight-mile section ot Peoria Avenue between Jack abbit Trail Parkway and Dysart Rood. The stucy gaal is to identify and establish the future radvay type, alignment and right-of-wy requirements along the Peoria Avenue conidor to osately address forecast travel demands and to accommodate the future six lane major arterial roedway as identified in the Surprise, Glendale, MCDOT and MAG (Maricopa A Asocociation of Governmentits) Iong range transportation plans.
 This finan "Study Findings and Recommendations" public input meeting will provide area residents and dther impoxted study stakentoldorers s vith an oppoptunity to wintorm study taam members about study area issues and local transportation needs. Evaluated altema twes along with the recommended "preferered" "oadway cross section and future roadvia alignment will be presentad for public review and comment. Project information maps and exhibits will be availbble for viewing during the met ing. Stop by ay 5:00 p.m. and $7: 00$ p.m. to speak with MCDOT project team memters.
 For mere information, contact Mitch Wagner at (602) 506 -8054 write to Wagner at: MCDOT, 2901 W. Durango Street, Phoenix, AZ 85009 , or email at:
 mitchwagnere mail...ariciop.g.gov or contact Roberta Crowe, Publicic Information Oftiox at (602) 506 -8003, robertacioweer mail.mariopa.gov.

 District 4 Superviser, Max Wilsen
 www.medot.maricopa.gov
 $/ / / / / / / / / / / / / /$

Exhibit B:

1. Public Meeting 1 "Scoping Phase" Handouts, Exhibits/Graphics
2. Public Meeting 2 "Alternatives Analysis" Phase" Handouts, Exhibits/Graphics
3. Public Meeting 3 "Findings and Recommendations Phase" Handouts, Exhibits/Graphics

Exhibit C:

1. Media Coverage

Surprise City Coundil OKs Peoria Avenue agreement
 TheArizona Republic

4-29-11
The Surprise City Council on Tuesday discussed the following items.

ISSUE

Vote to allow city staff to enter into an intergovernmental agreement that would make
Surprise responsible for operating and maintaining the road. Maricopa County has conducted a transportation study that suggests Peoria Avenue between Dysart Road and Jackrabbit Trail Parkway be converted into a six-lane, major arterial street.

The road is currently two lanes across most of the 7.5 -mile span and is bordered by Surprise to the north and Glendale and the county to the south.

Construction and design will not begin for years, but city staff hopes that taking ownership over the road will give Surprise a say in its design and provide another east-west crossing of the Agua Fria River. Maintaining the new road is estimated to cost the city an additional $\$ 137,000$ per year and would begin once it is complete.

VOTE

Approved 7-0.

[^0]: Note: All roadway widths vary at intersections. TWLTL median type is a two way left-tum lane

[^1]: Notes: $\quad \mathbf{E}=$ Endangered; $\mathbf{T}=$ Threatened; $\mathbf{C}=$ Candidate; $\mathbf{C H}=$ Designated Critical Habitat within 3 Miles of Study Area;
 PT $=$ Proposed Threatened.

[^2]: hec-1 1 invut

[^3]: AMEC Earth \& Environmental, Inc.
 1405 West Auto Drive
 Tempe, Arizona 85284-1016
 Tel (480) 940-2320
 Fax (480) $785-0970$

[^4]: :1815008001drainagelfmflesimntgatefm2
 Project Engineer: Stantec Consulting, Inc.
 Cella Barr Associates CT 0 10/2002 10:28:29 AM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666

[^5]: \bigcirc O

[^6]: $\bigcirc \underset{\text { Oest performanct }}{\text { Lowest impact }}$

[^7]: Figure 9 - Off-Site Drainage Flow

