Matching Items (22)
Filtering by

Clear all filters

ContributorsDechter, Sara (Author) / Sarty, Stephanie (Author) / Mikelson, Jennifer (Author) / Donaldson, Clay (Author) / Flagstaff (Ariz.) (Author)
Created2015-11-12
Description

An update to the Flagstaff Regional Plan 2030 (FRP30), to bring its Road Network Illustration (Map 25) into compliance with Arizona Revised Statute requirements and to resolve inconsistencies between Map 25 and parts of the Flagstaff City Code. This update does not alter the intent of FRP30; it is only

An update to the Flagstaff Regional Plan 2030 (FRP30), to bring its Road Network Illustration (Map 25) into compliance with Arizona Revised Statute requirements and to resolve inconsistencies between Map 25 and parts of the Flagstaff City Code. This update does not alter the intent of FRP30; it is only concerned with correcting errors, removing legal vulnerability, and improving the readability of FRP30.

41905-Thumbnail Image.png
ContributorsSaltonstall, John (Author) / Flagstaff (Ariz.) (Author)
Created2008-05-30
Description

Plan submitted for adoption by the Flagstaff City Council to alleviate motor vehicle congestion in the area known as the Lone Tree Corridor.

41906-Thumbnail Image.png
ContributorsFlagstaff (Ariz.) (Author)
Created2015-10-20
Description

A plan for reinvestment in the La Plaza Vieja neighborhood of Flagstaff, Arizona.

ContributorsFlagstaff (Ariz.) (Author)
Created1998-01
Description

A plan for protecting and preserving existing open spaces in response to urban growth in the greater Flagstaff, Arizona area.

ContributorsFlagstaff (Ariz.) (Author)
Created2000 to 2017
Description

A complete set of independently audited financial statements for the city of Flagstaff, Arizona.

ContributorsFlagstaff (Ariz.) (Author)
Created2003 to 2017
Description

Includes a community profile, detailed statements of operating and capital improvement budgets, and discussion and analysis of budget policies and priorities.

43369-Thumbnail Image.png
ContributorsRauzi, Steven L. (Author) / Spencer, Jon E. (Author) / Arizona Geological Survey (Publisher)
Created2009
Description

This open-file report describes the carbon-sequestration potential at the site of the 1 Alpine-Federal geothermal test drill hole, which is located south of Springerville in central eastern Arizona near the New Mexico border. A previous report, Arizona Geological Survey (AZGS) Open-File Report OFR 94-1, version 2.0, describes the subsurface geology

This open-file report describes the carbon-sequestration potential at the site of the 1 Alpine-Federal geothermal test drill hole, which is located south of Springerville in central eastern Arizona near the New Mexico border. A previous report, Arizona Geological Survey (AZGS) Open-File Report OFR 94-1, version 2.0, describes the subsurface geology encountered in the 1 Alpine-Federal well in much more detail than this new report.

43370-Thumbnail Image.png
ContributorsGootee, Brian F. (Author) / Arizona Geological Survey (Publisher)
Created2009
Description

The purpose of this research project is to determine the origin of the materials used to construct the Black Hills Dam in order to restore the landscape to pre-dam conditions. The Black Hills Dam site is located in northern Scottsdale, Maricopa County, at 33.75° North, 111.80° West. The goals of

The purpose of this research project is to determine the origin of the materials used to construct the Black Hills Dam in order to restore the landscape to pre-dam conditions. The Black Hills Dam site is located in northern Scottsdale, Maricopa County, at 33.75° North, 111.80° West. The goals of this project are to characterize the surficial deposits and local geology of the dam site. This report presents our findings, interpretations and conclusions based on background research, a site visit to the dam site, and technical discussions with the City of Scottsdale engineer and planners.

43371-Thumbnail Image.png
ContributorsYouberg, Ann (Author) / Arizona Geological Survey (Publisher)
Created2008-06-30
Description

The goal of this study is to develop a method for identifying potential post-fire debris flow hazard areas prior to the occurrence of wildfires, providing more time for local governments and emergency planners to develop and execute hazard mitigation strategies. This pilot study focuses on the communities of Pine and

The goal of this study is to develop a method for identifying potential post-fire debris flow hazard areas prior to the occurrence of wildfires, providing more time for local governments and emergency planners to develop and execute hazard mitigation strategies. This pilot study focuses on the communities of Pine and Strawberry, which are located in forested canyons at the base of the Mogollon Rim in north-central Arizona. Results from this project will provide local agencies, emergency planners and land managers more effective tools for prioritizing watershed treatment areas and implementing mitigation measures to alleviate potential impacts and threats from post-fire debris flows to infrastructure, human life, and property in a timely and cost-effective manner.

43372-Thumbnail Image.png
ContributorsYouberg, Ann (Author) / Arizona Geological Survey (Publisher)
Created2008-09
Description

In order to begin to assess debris‐flow hazards along the Santa Catalina Mountains in Pima County, we mapped the extent and character of relatively young prehistoric debris‐flow deposits in detail at fifteen
canyon mouths. Mapping was conducted on a scale of 1:6,000 using aerial photographs, detailed
topography, and field relationships. Deposits were

In order to begin to assess debris‐flow hazards along the Santa Catalina Mountains in Pima County, we mapped the extent and character of relatively young prehistoric debris‐flow deposits in detail at fifteen
canyon mouths. Mapping was conducted on a scale of 1:6,000 using aerial photographs, detailed
topography, and field relationships. Deposits were classified into relative age categories based on
topographic relationships, soil development and surface characteristics of the deposits. Ages of selected
debris‐flow deposits in four canyons – Soldier, Sabino, Finger Rock and Pima – were estimated using
radiocarbon (14C) and cosmogenic (10Be) isotope methods.

Evidence of past debris flows were found in all fifteen canyons. Relative age dating, corroborated by
10Be, indicates the largest and most extensive deposits in all canyons are late Pleistocene to early
Holocene in age. Events from 2006 show that some potential exists for debris flows to exit the mountain front into developed areas near canyon mouths.